mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-11-02 20:51:23 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			813 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
			
		
		
	
	
			813 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
package Slic3r::Geometry;
 | 
						|
use strict;
 | 
						|
use warnings;
 | 
						|
 | 
						|
require Exporter;
 | 
						|
our @ISA = qw(Exporter);
 | 
						|
our @EXPORT_OK = qw(
 | 
						|
    PI X Y Z A B X1 Y1 X2 Y2 Z1 Z2 MIN MAX epsilon slope line_atan lines_parallel 
 | 
						|
    line_point_belongs_to_segment points_coincide distance_between_points 
 | 
						|
    chained_path_items chained_path_points normalize tan move_points_3D
 | 
						|
    point_in_polygon point_in_segment segment_in_segment
 | 
						|
    polyline_lines polygon_lines
 | 
						|
    point_along_segment polygon_segment_having_point polygon_has_subsegment
 | 
						|
    deg2rad rad2deg
 | 
						|
    rotate_points move_points
 | 
						|
    dot perp polygon_points_visibility
 | 
						|
    line_intersection bounding_box bounding_box_intersect
 | 
						|
    angle3points three_points_aligned line_direction
 | 
						|
    chained_path collinear scale unscale
 | 
						|
    rad2deg_dir bounding_box_center line_intersects_any douglas_peucker
 | 
						|
    polyline_remove_short_segments normal triangle_normal polygon_is_convex
 | 
						|
    scaled_epsilon bounding_box_3D size_3D size_2D
 | 
						|
    convex_hull
 | 
						|
);
 | 
						|
 | 
						|
 | 
						|
use constant PI => 4 * atan2(1, 1);
 | 
						|
use constant A => 0;
 | 
						|
use constant B => 1;
 | 
						|
use constant X => 0;
 | 
						|
use constant Y => 1;
 | 
						|
use constant Z => 2;
 | 
						|
use constant X1 => 0;
 | 
						|
use constant Y1 => 1;
 | 
						|
use constant X2 => 2;
 | 
						|
use constant Y2 => 3;
 | 
						|
use constant Z1 => 4;
 | 
						|
use constant Z2 => 5;
 | 
						|
use constant MIN => 0;
 | 
						|
use constant MAX => 1;
 | 
						|
our $parallel_degrees_limit = abs(deg2rad(0.1));
 | 
						|
 | 
						|
sub epsilon () { 1E-4 }
 | 
						|
sub scaled_epsilon () { epsilon / &Slic3r::SCALING_FACTOR }
 | 
						|
 | 
						|
sub scale   ($) { $_[0] / &Slic3r::SCALING_FACTOR }
 | 
						|
sub unscale ($) { $_[0] * &Slic3r::SCALING_FACTOR }
 | 
						|
 | 
						|
sub tan {
 | 
						|
    my ($angle) = @_;
 | 
						|
    return (sin $angle) / (cos $angle);
 | 
						|
}
 | 
						|
 | 
						|
sub slope {
 | 
						|
    my ($line) = @_;
 | 
						|
    return undef if abs($line->[B][X] - $line->[A][X]) < epsilon;  # line is vertical
 | 
						|
    return ($line->[B][Y] - $line->[A][Y]) / ($line->[B][X] - $line->[A][X]);
 | 
						|
}
 | 
						|
 | 
						|
sub line_atan {
 | 
						|
    my ($line) = @_;
 | 
						|
    return atan2($line->[B][Y] - $line->[A][Y], $line->[B][X] - $line->[A][X]);
 | 
						|
}
 | 
						|
 | 
						|
sub line_direction {
 | 
						|
    my ($line) = @_;
 | 
						|
    my $atan2 = line_atan($line);
 | 
						|
    return ($atan2 == PI) ? 0
 | 
						|
        : ($atan2 < 0) ? ($atan2 + PI)
 | 
						|
        : $atan2;
 | 
						|
}
 | 
						|
 | 
						|
sub lines_parallel {
 | 
						|
    my ($line1, $line2) = @_;
 | 
						|
    
 | 
						|
    return abs(line_direction($line1) - line_direction($line2)) < $parallel_degrees_limit;
 | 
						|
}
 | 
						|
 | 
						|
sub three_points_aligned {
 | 
						|
    my ($p1, $p2, $p3) = @_;
 | 
						|
    return lines_parallel([$p1, $p2], [$p2, $p3]);
 | 
						|
}
 | 
						|
 | 
						|
# this subroutine checks whether a given point may belong to a given
 | 
						|
# segment given the hypothesis that it belongs to the line containing
 | 
						|
# the segment
 | 
						|
sub line_point_belongs_to_segment {
 | 
						|
    my ($point, $segment) = @_;
 | 
						|
    
 | 
						|
    #printf "   checking whether %f,%f may belong to segment %f,%f - %f,%f\n",
 | 
						|
    #    @$point, map @$_, @$segment;
 | 
						|
    
 | 
						|
    my @segment_extents = (
 | 
						|
        [ sort { $a <=> $b } map $_->[X], @$segment ],
 | 
						|
        [ sort { $a <=> $b } map $_->[Y], @$segment ],
 | 
						|
    );
 | 
						|
    
 | 
						|
    return 0 if $point->[X] < ($segment_extents[X][0] - epsilon) || $point->[X] > ($segment_extents[X][1] + epsilon);
 | 
						|
    return 0 if $point->[Y] < ($segment_extents[Y][0] - epsilon) || $point->[Y] > ($segment_extents[Y][1] + epsilon);
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
sub points_coincide {
 | 
						|
    my ($p1, $p2) = @_;
 | 
						|
    return 1 if abs($p2->[X] - $p1->[X]) < epsilon && abs($p2->[Y] - $p1->[Y]) < epsilon;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
sub distance_between_points {
 | 
						|
    my ($p1, $p2) = @_;
 | 
						|
    return sqrt((($p1->[X] - $p2->[X])**2) + ($p1->[Y] - $p2->[Y])**2);
 | 
						|
}
 | 
						|
 | 
						|
# this will check whether a point is in a polygon regardless of polygon orientation
 | 
						|
sub point_in_polygon {
 | 
						|
    my ($point, $polygon) = @_;
 | 
						|
    
 | 
						|
    my ($x, $y) = @$point;
 | 
						|
    my $n = @$polygon;
 | 
						|
    my @x = map $_->[X], @$polygon;
 | 
						|
    my @y = map $_->[Y], @$polygon;
 | 
						|
    
 | 
						|
    # Derived from the comp.graphics.algorithms FAQ,
 | 
						|
    # courtesy of Wm. Randolph Franklin
 | 
						|
    my ($i, $j);
 | 
						|
    my $side = 0;                           # 0 = outside; 1 = inside
 | 
						|
    for ($i = 0, $j = $n - 1; $i < $n; $j = $i++) {
 | 
						|
        if (
 | 
						|
            # If the y is between the (y-) borders...
 | 
						|
            ($y[$i] <= $y && $y < $y[$j]) || ($y[$j] <= $y && $y < $y[$i])
 | 
						|
            and
 | 
						|
            # ...the (x,y) to infinity line crosses the edge
 | 
						|
            # from the ith point to the jth point...
 | 
						|
            ($x < ($x[$j] - $x[$i]) * ($y - $y[$i]) / ($y[$j] - $y[$i]) + $x[$i])
 | 
						|
        ) {
 | 
						|
            $side = not $side;  # Jump the fence
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    # if point is not in polygon, let's check whether it belongs to the contour
 | 
						|
    if (!$side && 0) {
 | 
						|
        return 1 if polygon_segment_having_point($polygon, $point);
 | 
						|
    }
 | 
						|
    
 | 
						|
    return $side;
 | 
						|
}
 | 
						|
 | 
						|
sub point_in_segment {
 | 
						|
    my ($point, $line) = @_;
 | 
						|
    
 | 
						|
    my ($x, $y) = @$point;
 | 
						|
    my $line_p = $line->pp;
 | 
						|
    my @line_x = sort { $a <=> $b } $line_p->[A][X], $line_p->[B][X];
 | 
						|
    my @line_y = sort { $a <=> $b } $line_p->[A][Y], $line_p->[B][Y];
 | 
						|
    
 | 
						|
    # check whether the point is in the segment bounding box
 | 
						|
    return 0 unless $x >= ($line_x[0] - epsilon) && $x <= ($line_x[1] + epsilon)
 | 
						|
        && $y >= ($line_y[0] - epsilon) && $y <= ($line_y[1] + epsilon);
 | 
						|
    
 | 
						|
    # if line is vertical, check whether point's X is the same as the line
 | 
						|
    if ($line_p->[A][X] == $line_p->[B][X]) {
 | 
						|
        return abs($x - $line_p->[A][X]) < epsilon ? 1 : 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    # calculate the Y in line at X of the point
 | 
						|
    my $y3 = $line_p->[A][Y] + ($line_p->[B][Y] - $line_p->[A][Y])
 | 
						|
        * ($x - $line_p->[A][X]) / ($line_p->[B][X] - $line_p->[A][X]);
 | 
						|
    return abs($y3 - $y) < epsilon ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
sub segment_in_segment {
 | 
						|
    my ($needle, $haystack) = @_;
 | 
						|
    
 | 
						|
    # a segment is contained in another segment if its endpoints are contained
 | 
						|
    return point_in_segment($needle->[A], $haystack) && point_in_segment($needle->[B], $haystack);
 | 
						|
}
 | 
						|
 | 
						|
sub polyline_lines {
 | 
						|
    my ($polyline) = @_;
 | 
						|
    my @points = @$polyline;
 | 
						|
    return map Slic3r::Line->new(@points[$_, $_+1]), 0 .. $#points-1;
 | 
						|
}
 | 
						|
 | 
						|
sub polygon_lines {
 | 
						|
    my ($polygon) = @_;
 | 
						|
    return polyline_lines([ @$polygon, $polygon->[0] ]);
 | 
						|
}
 | 
						|
 | 
						|
# given a segment $p1-$p2, get the point at $distance from $p1 along segment
 | 
						|
sub point_along_segment {
 | 
						|
    my ($p1, $p2, $distance) = @_;
 | 
						|
    
 | 
						|
    my $point = [ @$p1 ];
 | 
						|
    
 | 
						|
    my $line_length = sqrt( (($p2->[X] - $p1->[X])**2) + (($p2->[Y] - $p1->[Y])**2) );
 | 
						|
    for (X, Y) {
 | 
						|
        if ($p1->[$_] != $p2->[$_]) {
 | 
						|
            $point->[$_] = $p1->[$_] + ($p2->[$_] - $p1->[$_]) * $distance / $line_length;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    return Slic3r::Point->new(@$point);
 | 
						|
}
 | 
						|
 | 
						|
# given a $polygon, return the (first) segment having $point
 | 
						|
sub polygon_segment_having_point {
 | 
						|
    my ($polygon, $point) = @_;
 | 
						|
    
 | 
						|
    foreach my $line (@{ $polygon->lines }) {
 | 
						|
        return $line if point_in_segment($point, $line);
 | 
						|
    }
 | 
						|
    return undef;
 | 
						|
}
 | 
						|
 | 
						|
# return true if the given segment is contained in any edge of the polygon
 | 
						|
sub polygon_has_subsegment {
 | 
						|
    my ($polygon, $segment) = @_;
 | 
						|
    foreach my $line (polygon_lines($polygon)) {
 | 
						|
        return 1 if segment_in_segment($segment, $line);
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
# polygon must be simple (non complex) and ccw
 | 
						|
sub polygon_is_convex {
 | 
						|
    my ($points) = @_;
 | 
						|
    for (my $i = 0; $i <= $#$points; $i++) {
 | 
						|
        my $angle = angle3points($points->[$i-1], $points->[$i-2], $points->[$i]);
 | 
						|
        return 0 if $angle < PI;
 | 
						|
    }
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
sub deg2rad {
 | 
						|
    my ($degrees) = @_;
 | 
						|
    return PI() * $degrees / 180;
 | 
						|
}
 | 
						|
 | 
						|
sub rad2deg {
 | 
						|
    my ($rad) = @_;
 | 
						|
    return $rad / PI() * 180;
 | 
						|
}
 | 
						|
 | 
						|
sub rad2deg_dir {
 | 
						|
    my ($rad) = @_;
 | 
						|
    $rad = ($rad < PI) ? (-$rad + PI/2) : ($rad + PI/2);
 | 
						|
    $rad += PI if $rad < 0;
 | 
						|
    return rad2deg($rad);
 | 
						|
}
 | 
						|
 | 
						|
sub rotate_points {
 | 
						|
    my ($radians, $center, @points) = @_;
 | 
						|
    $center //= [0,0];
 | 
						|
    return map {
 | 
						|
        [
 | 
						|
            $center->[X] + cos($radians) * ($_->[X] - $center->[X]) - sin($radians) * ($_->[Y] - $center->[Y]),
 | 
						|
            $center->[Y] + cos($radians) * ($_->[Y] - $center->[Y]) + sin($radians) * ($_->[X] - $center->[X]),
 | 
						|
        ]
 | 
						|
    } @points;
 | 
						|
}
 | 
						|
 | 
						|
sub move_points {
 | 
						|
    my ($shift, @points) = @_;
 | 
						|
    return map {
 | 
						|
        my @p = @$_;
 | 
						|
        Slic3r::Point->new($shift->[X] + $p[X], $shift->[Y] + $p[Y]);
 | 
						|
    } @points;
 | 
						|
}
 | 
						|
 | 
						|
sub move_points_3D {
 | 
						|
    my ($shift, @points) = @_;
 | 
						|
    return map [
 | 
						|
        $shift->[X] + $_->[X],
 | 
						|
        $shift->[Y] + $_->[Y],
 | 
						|
        $shift->[Z] + $_->[Z],
 | 
						|
    ], @points;
 | 
						|
}
 | 
						|
 | 
						|
sub normal {
 | 
						|
    my ($line1, $line2) = @_;
 | 
						|
    
 | 
						|
    return [
 | 
						|
         ($line1->[Y] * $line2->[Z]) - ($line1->[Z] * $line2->[Y]),
 | 
						|
        -($line2->[Z] * $line1->[X]) + ($line2->[X] * $line1->[Z]),
 | 
						|
         ($line1->[X] * $line2->[Y]) - ($line1->[Y] * $line2->[X]),
 | 
						|
    ];
 | 
						|
}
 | 
						|
 | 
						|
sub triangle_normal {
 | 
						|
    my ($v1, $v2, $v3) = @_;
 | 
						|
    
 | 
						|
    my $u = [ map +($v2->[$_] - $v1->[$_]), (X,Y,Z) ];
 | 
						|
    my $v = [ map +($v3->[$_] - $v1->[$_]), (X,Y,Z) ];
 | 
						|
    
 | 
						|
    return normal($u, $v);
 | 
						|
}
 | 
						|
 | 
						|
sub normalize {
 | 
						|
    my ($line) = @_;
 | 
						|
    
 | 
						|
    my $len = sqrt( ($line->[X]**2) + ($line->[Y]**2) + ($line->[Z]**2) )
 | 
						|
        or return [0, 0, 0];  # to avoid illegal division by zero
 | 
						|
    return [ map $_ / $len, @$line ];
 | 
						|
}
 | 
						|
 | 
						|
# 2D dot product
 | 
						|
sub dot {
 | 
						|
    my ($u, $v) = @_;
 | 
						|
    return $u->[X] * $v->[X] + $u->[Y] * $v->[Y];
 | 
						|
}
 | 
						|
 | 
						|
# 2D perp product
 | 
						|
sub perp {
 | 
						|
    my ($u, $v) = @_;
 | 
						|
    return $u->[X] * $v->[Y] - $u->[Y] * $v->[X];
 | 
						|
}
 | 
						|
 | 
						|
sub polygon_points_visibility {
 | 
						|
    my ($polygon, $p1, $p2) = @_;
 | 
						|
    
 | 
						|
    my $our_line = [ $p1, $p2 ];
 | 
						|
    foreach my $line (polygon_lines($polygon)) {
 | 
						|
        my $intersection = line_intersection($our_line, $line, 1) // next;
 | 
						|
        next if grep points_coincide($intersection, $_), $p1, $p2;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
sub line_intersects_any {
 | 
						|
    my ($line, $lines) = @_;
 | 
						|
    for (@$lines) {
 | 
						|
        return 1 if line_intersection($line, $_, 1);
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
sub line_intersection {
 | 
						|
    my ($line1, $line2, $require_crossing) = @_;
 | 
						|
    $require_crossing ||= 0;
 | 
						|
    
 | 
						|
    my $intersection = _line_intersection(map @$_, @$line1, @$line2);
 | 
						|
    return (ref $intersection && $intersection->[1] == $require_crossing) 
 | 
						|
        ? $intersection->[0] 
 | 
						|
        : undef;
 | 
						|
}
 | 
						|
 | 
						|
sub collinear {
 | 
						|
    my ($line1, $line2, $require_overlapping) = @_;
 | 
						|
    my $intersection = _line_intersection(map @$_, @$line1, @$line2);
 | 
						|
    return 0 unless !ref($intersection) 
 | 
						|
        && ($intersection eq 'parallel collinear'
 | 
						|
            || ($intersection eq 'parallel vertical' && abs($line1->[A][X] - $line2->[A][X]) < epsilon));
 | 
						|
    
 | 
						|
    if ($require_overlapping) {
 | 
						|
        my @box_a = bounding_box([ $line1->[0], $line1->[1] ]);
 | 
						|
        my @box_b = bounding_box([ $line2->[0], $line2->[1] ]);
 | 
						|
        return 0 unless bounding_box_intersect( 2, @box_a, @box_b );
 | 
						|
    }
 | 
						|
    
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
sub _line_intersection {
 | 
						|
  my ( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 ) = @_;
 | 
						|
 | 
						|
  my ($x, $y);  # The as-yet-undetermined intersection point.
 | 
						|
 | 
						|
  my $dy10 = $y1 - $y0; # dyPQ, dxPQ are the coordinate differences
 | 
						|
  my $dx10 = $x1 - $x0; # between the points P and Q.
 | 
						|
  my $dy32 = $y3 - $y2;
 | 
						|
  my $dx32 = $x3 - $x2;
 | 
						|
 | 
						|
  my $dy10z = abs( $dy10 ) < epsilon; # Is the difference $dy10 "zero"?
 | 
						|
  my $dx10z = abs( $dx10 ) < epsilon;
 | 
						|
  my $dy32z = abs( $dy32 ) < epsilon;
 | 
						|
  my $dx32z = abs( $dx32 ) < epsilon;
 | 
						|
 | 
						|
  my $dyx10;                            # The slopes.
 | 
						|
  my $dyx32;
 | 
						|
  
 | 
						|
  $dyx10 = $dy10 / $dx10 unless $dx10z;
 | 
						|
  $dyx32 = $dy32 / $dx32 unless $dx32z;
 | 
						|
 | 
						|
  # Now we know all differences and the slopes;
 | 
						|
  # we can detect horizontal/vertical special cases.
 | 
						|
  # E.g., slope = 0 means a horizontal line.
 | 
						|
 | 
						|
  unless ( defined $dyx10 or defined $dyx32 ) {
 | 
						|
    return "parallel vertical";
 | 
						|
  }
 | 
						|
  elsif ( $dy10z and not $dy32z ) { # First line horizontal.
 | 
						|
    $y = $y0;
 | 
						|
    $x = $x2 + ( $y - $y2 ) * $dx32 / $dy32;
 | 
						|
  }
 | 
						|
  elsif ( not $dy10z and $dy32z ) { # Second line horizontal.
 | 
						|
    $y = $y2;
 | 
						|
    $x = $x0 + ( $y - $y0 ) * $dx10 / $dy10;
 | 
						|
  }
 | 
						|
  elsif ( $dx10z and not $dx32z ) { # First line vertical.
 | 
						|
    $x = $x0;
 | 
						|
    $y = $y2 + $dyx32 * ( $x - $x2 );
 | 
						|
  }
 | 
						|
  elsif ( not $dx10z and $dx32z ) { # Second line vertical.
 | 
						|
    $x = $x2;
 | 
						|
    $y = $y0 + $dyx10 * ( $x - $x0 );
 | 
						|
  }
 | 
						|
  elsif ( abs( $dyx10 - $dyx32 ) < epsilon ) {
 | 
						|
    # The slopes are suspiciously close to each other.
 | 
						|
    # Either we have parallel collinear or just parallel lines.
 | 
						|
 | 
						|
    # The bounding box checks have already weeded the cases
 | 
						|
    # "parallel horizontal" and "parallel vertical" away.
 | 
						|
 | 
						|
    my $ya = $y0 - $dyx10 * $x0;
 | 
						|
    my $yb = $y2 - $dyx32 * $x2;
 | 
						|
    
 | 
						|
    return "parallel collinear" if abs( $ya - $yb ) < epsilon;
 | 
						|
    return "parallel";
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    # None of the special cases matched.
 | 
						|
    # We have a "honest" line intersection.
 | 
						|
 | 
						|
    $x = ($y2 - $y0 + $dyx10*$x0 - $dyx32*$x2)/($dyx10 - $dyx32);
 | 
						|
    $y = $y0 + $dyx10 * ($x - $x0);
 | 
						|
  }
 | 
						|
 | 
						|
  my $h10 = $dx10 ? ($x - $x0) / $dx10 : ($dy10 ? ($y - $y0) / $dy10 : 1);
 | 
						|
  my $h32 = $dx32 ? ($x - $x2) / $dx32 : ($dy32 ? ($y - $y2) / $dy32 : 1);
 | 
						|
 | 
						|
  return [Slic3r::Point->new($x, $y), $h10 >= 0 && $h10 <= 1 && $h32 >= 0 && $h32 <= 1];
 | 
						|
}
 | 
						|
 | 
						|
# http://paulbourke.net/geometry/lineline2d/
 | 
						|
sub _line_intersection2 {
 | 
						|
    my ($line1, $line2) = @_;
 | 
						|
    
 | 
						|
    my $denom = ($line2->[B][Y] - $line2->[A][Y]) * ($line1->[B][X] - $line1->[A][X])
 | 
						|
        - ($line2->[B][X] - $line2->[A][X]) * ($line1->[B][Y] - $line1->[A][Y]);
 | 
						|
    my $numerA = ($line2->[B][X] - $line2->[A][X]) * ($line1->[A][Y] - $line2->[A][Y])
 | 
						|
        - ($line2->[B][Y] - $line2->[A][Y]) * ($line1->[A][X] - $line2->[A][X]);
 | 
						|
    my $numerB = ($line1->[B][X] - $line1->[A][X]) * ($line1->[A][Y] - $line2->[A][Y])
 | 
						|
        - ($line1->[B][Y] - $line1->[A][Y]) * ($line1->[A][X] - $line2->[A][X]);
 | 
						|
    
 | 
						|
    # are the lines coincident?
 | 
						|
    if (abs($numerA) < epsilon && abs($numerB) < epsilon && abs($denom) < epsilon) {
 | 
						|
        return Slic3r::Point->new(
 | 
						|
            ($line1->[A][X] + $line1->[B][X]) / 2,
 | 
						|
            ($line1->[A][Y] + $line1->[B][Y]) / 2,
 | 
						|
        );
 | 
						|
    }
 | 
						|
    
 | 
						|
    # are the lines parallel?
 | 
						|
    if (abs($denom) < epsilon) {
 | 
						|
        return undef;
 | 
						|
    }
 | 
						|
    
 | 
						|
    # is the intersection along the segments?
 | 
						|
    my $muA = $numerA / $denom;
 | 
						|
    my $muB = $numerB / $denom;
 | 
						|
    if ($muA < 0 || $muA > 1 || $muB < 0 || $muB > 1) {
 | 
						|
        return undef;
 | 
						|
    }
 | 
						|
    
 | 
						|
    return Slic3r::Point->new(
 | 
						|
        $line1->[A][X] + $muA * ($line1->[B][X] - $line1->[A][X]),
 | 
						|
        $line1->[A][Y] + $muA * ($line1->[B][Y] - $line1->[A][Y]),
 | 
						|
    );
 | 
						|
}
 | 
						|
 | 
						|
# 2D
 | 
						|
sub bounding_box {
 | 
						|
    my ($points) = @_;
 | 
						|
    
 | 
						|
    my @x = map $_->x, @$points;
 | 
						|
    my @y = map $_->y, @$points;    #,,
 | 
						|
    my @bb = (undef, undef, undef, undef);
 | 
						|
    for (0..$#x) {
 | 
						|
        $bb[X1] = $x[$_] if !defined $bb[X1] || $x[$_] < $bb[X1];
 | 
						|
        $bb[X2] = $x[$_] if !defined $bb[X2] || $x[$_] > $bb[X2];
 | 
						|
        $bb[Y1] = $y[$_] if !defined $bb[Y1] || $y[$_] < $bb[Y1];
 | 
						|
        $bb[Y2] = $y[$_] if !defined $bb[Y2] || $y[$_] > $bb[Y2];
 | 
						|
    }
 | 
						|
    
 | 
						|
    return @bb[X1,Y1,X2,Y2];
 | 
						|
}
 | 
						|
 | 
						|
sub bounding_box_center {
 | 
						|
    my ($bounding_box) = @_;
 | 
						|
    return Slic3r::Point->new(
 | 
						|
        ($bounding_box->[X2] + $bounding_box->[X1]) / 2,
 | 
						|
        ($bounding_box->[Y2] + $bounding_box->[Y1]) / 2,
 | 
						|
    );
 | 
						|
}
 | 
						|
 | 
						|
sub size_2D {
 | 
						|
    my @bounding_box = bounding_box(@_);
 | 
						|
    return (
 | 
						|
        ($bounding_box[X2] - $bounding_box[X1]),
 | 
						|
        ($bounding_box[Y2] - $bounding_box[Y1]),
 | 
						|
    );
 | 
						|
}
 | 
						|
 | 
						|
# bounding_box_intersect($d, @a, @b)
 | 
						|
#   Return true if the given bounding boxes @a and @b intersect
 | 
						|
#   in $d dimensions.  Used by line_intersection().
 | 
						|
sub bounding_box_intersect {
 | 
						|
    my ( $d, @bb ) = @_; # Number of dimensions and box coordinates.
 | 
						|
    my @aa = splice( @bb, 0, 2 * $d ); # The first box.
 | 
						|
    # (@bb is the second one.)
 | 
						|
    
 | 
						|
    # Must intersect in all dimensions.
 | 
						|
    for ( my $i_min = 0; $i_min < $d; $i_min++ ) {
 | 
						|
        my $i_max = $i_min + $d; # The index for the maximum.
 | 
						|
        return 0 if ( $aa[ $i_max ] + epsilon ) < $bb[ $i_min ];
 | 
						|
        return 0 if ( $bb[ $i_max ] + epsilon ) < $aa[ $i_min ];
 | 
						|
    }
 | 
						|
    
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
# 3D
 | 
						|
sub bounding_box_3D {
 | 
						|
    my ($points) = @_;
 | 
						|
    
 | 
						|
    my @extents = (map [undef, undef], X,Y,Z);
 | 
						|
    foreach my $point (@$points) {
 | 
						|
        for (X,Y,Z) {
 | 
						|
            $extents[$_][MIN] = $point->[$_] if !defined $extents[$_][MIN] || $point->[$_] < $extents[$_][MIN];
 | 
						|
            $extents[$_][MAX] = $point->[$_] if !defined $extents[$_][MAX] || $point->[$_] > $extents[$_][MAX];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return @extents;
 | 
						|
}
 | 
						|
 | 
						|
sub size_3D {
 | 
						|
    my ($points) = @_;
 | 
						|
    
 | 
						|
    my @extents = bounding_box_3D($points);
 | 
						|
    return map $extents[$_][MAX] - $extents[$_][MIN], (X,Y,Z);
 | 
						|
}
 | 
						|
 | 
						|
# this assumes a CCW rotation from $p2 to $p3 around $p1
 | 
						|
sub angle3points {
 | 
						|
    my ($p1, $p2, $p3) = @_;
 | 
						|
    # p1 is the center
 | 
						|
    
 | 
						|
    my $angle = atan2($p2->[X] - $p1->[X], $p2->[Y] - $p1->[Y])
 | 
						|
              - atan2($p3->[X] - $p1->[X], $p3->[Y] - $p1->[Y]);
 | 
						|
    
 | 
						|
    # we only want to return only positive angles
 | 
						|
    return $angle <= 0 ? $angle + 2*PI() : $angle;
 | 
						|
}
 | 
						|
 | 
						|
sub polyline_remove_short_segments {
 | 
						|
    my ($points, $min_length, $isPolygon) = @_;
 | 
						|
    for (my $i = $isPolygon ? 0 : 1; $i < $#$points; $i++) {
 | 
						|
        if (distance_between_points($points->[$i-1], $points->[$i]) < $min_length) {
 | 
						|
            # we can remove $points->[$i]
 | 
						|
            splice @$points, $i, 1;
 | 
						|
            $i--;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
# accepts an arrayref of points; it returns a list of indices
 | 
						|
# according to a nearest-neighbor walk
 | 
						|
sub chained_path {
 | 
						|
    my ($items, $start_near) = @_;
 | 
						|
    
 | 
						|
    my @points = @$items;
 | 
						|
    my %indices = map { $points[$_] => $_ } 0 .. $#points;
 | 
						|
    
 | 
						|
    my @result = ();
 | 
						|
    if (!$start_near && @points) {
 | 
						|
        $start_near = shift @points;
 | 
						|
        push @result, $indices{$start_near};
 | 
						|
    }
 | 
						|
    while (@points) {
 | 
						|
        my $idx = $start_near->nearest_point_index(\@points);
 | 
						|
        ($start_near) = splice @points, $idx, 1;
 | 
						|
        push @result, $indices{$start_near};
 | 
						|
    }
 | 
						|
    
 | 
						|
    return @result;
 | 
						|
}
 | 
						|
 | 
						|
# accepts an arrayref; each item should be an arrayref whose first
 | 
						|
# item is the point to be used for the shortest path, and the second
 | 
						|
# one is the value to be returned in output (if the second item
 | 
						|
# is not provided, the point will be returned)
 | 
						|
sub chained_path_items {
 | 
						|
    my ($items, $start_near) = @_;
 | 
						|
    
 | 
						|
    my @indices = chained_path([ map $_->[0], @$items ], $start_near);
 | 
						|
    return [ map $_->[1], @$items[@indices] ];
 | 
						|
}
 | 
						|
 | 
						|
sub chained_path_points {
 | 
						|
    my ($points, $start_near) = @_;
 | 
						|
    return [ @$points[ chained_path($points, $start_near) ] ];
 | 
						|
}
 | 
						|
 | 
						|
sub douglas_peucker {
 | 
						|
    my ($points, $tolerance) = @_;
 | 
						|
    no warnings "recursion";
 | 
						|
    
 | 
						|
    my $results = [];
 | 
						|
    my $dmax = 0;
 | 
						|
    my $index = 0;
 | 
						|
    for my $i (1..$#$points) {
 | 
						|
        my $d = $points->[$i]->distance_to(Slic3r::Line->new($points->[0], $points->[-1]));
 | 
						|
        if ($d > $dmax) {
 | 
						|
            $index = $i;
 | 
						|
            $dmax = $d;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if ($dmax >= $tolerance) {
 | 
						|
        my $dp1 = douglas_peucker([ @$points[0..$index] ], $tolerance);
 | 
						|
        $results = [
 | 
						|
            @$dp1[0..($#$dp1-1)],
 | 
						|
            @{douglas_peucker([ @$points[$index..$#$points] ], $tolerance)},
 | 
						|
        ];
 | 
						|
    } else {
 | 
						|
        $results = [ $points->[0], $points->[-1] ];
 | 
						|
    }
 | 
						|
    return $results;
 | 
						|
}
 | 
						|
 | 
						|
sub douglas_peucker2 {
 | 
						|
    my ($points, $tolerance) = @_;
 | 
						|
    
 | 
						|
    my $anchor = 0;
 | 
						|
    my $floater = $#$points;
 | 
						|
    my @stack = ();
 | 
						|
    my %keep = ();
 | 
						|
    
 | 
						|
    push @stack, [$anchor, $floater];
 | 
						|
    while (@stack) {
 | 
						|
        ($anchor, $floater) = @{pop @stack};
 | 
						|
        
 | 
						|
        # initialize line segment
 | 
						|
        my ($anchor_x, $anchor_y, $seg_len);
 | 
						|
        if (grep $points->[$floater][$_] != $points->[$anchor][$_], X, Y) {
 | 
						|
            $anchor_x = $points->[$floater][X] - $points->[$anchor][X];
 | 
						|
            $anchor_y = $points->[$floater][Y] - $points->[$anchor][Y];
 | 
						|
            $seg_len = sqrt(($anchor_x ** 2) + ($anchor_y ** 2));
 | 
						|
            # get the unit vector
 | 
						|
            $anchor_x /= $seg_len;
 | 
						|
            $anchor_y /= $seg_len;
 | 
						|
        } else {
 | 
						|
            $anchor_x = $anchor_y = $seg_len = 0;
 | 
						|
        }
 | 
						|
        
 | 
						|
        # inner loop:
 | 
						|
        my $max_dist = 0;
 | 
						|
        my $farthest = $anchor + 1;
 | 
						|
        for my $i (($anchor + 1) .. $floater) {
 | 
						|
            my $dist_to_seg = 0;
 | 
						|
            # compare to anchor
 | 
						|
            my $vecX = $points->[$i][X] - $points->[$anchor][X];
 | 
						|
            my $vecY = $points->[$i][Y] - $points->[$anchor][Y];
 | 
						|
            $seg_len = sqrt(($vecX ** 2) + ($vecY ** 2));
 | 
						|
            # dot product:
 | 
						|
            my $proj = $vecX * $anchor_x + $vecY * $anchor_y;
 | 
						|
            if ($proj < 0) {
 | 
						|
                $dist_to_seg = $seg_len;
 | 
						|
            } else {
 | 
						|
                # compare to floater
 | 
						|
                $vecX = $points->[$i][X] - $points->[$floater][X];
 | 
						|
                $vecY = $points->[$i][Y] - $points->[$floater][Y];
 | 
						|
                $seg_len = sqrt(($vecX ** 2) + ($vecY ** 2));
 | 
						|
                # dot product:
 | 
						|
                $proj = $vecX * (-$anchor_x) + $vecY * (-$anchor_y);
 | 
						|
                if ($proj < 0) {
 | 
						|
                    $dist_to_seg = $seg_len
 | 
						|
                } else {  # calculate perpendicular distance to line (pythagorean theorem):
 | 
						|
                    $dist_to_seg = sqrt(abs(($seg_len ** 2) - ($proj ** 2)));
 | 
						|
                }
 | 
						|
                if ($max_dist < $dist_to_seg) {
 | 
						|
                    $max_dist = $dist_to_seg;
 | 
						|
                    $farthest = $i;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        if ($max_dist <= $tolerance) { # use line segment
 | 
						|
            $keep{$_} = 1 for $anchor, $floater;
 | 
						|
        } else {
 | 
						|
            push @stack, [$anchor, $farthest];
 | 
						|
            push @stack, [$farthest, $floater];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    return [ map $points->[$_], sort keys %keep ];
 | 
						|
}
 | 
						|
 | 
						|
sub arrange {
 | 
						|
    my ($total_parts, $partx, $party, $areax, $areay, $dist, $Config) = @_;
 | 
						|
    
 | 
						|
    my $linint = sub {
 | 
						|
        my ($value, $oldmin, $oldmax, $newmin, $newmax) = @_;
 | 
						|
        return ($value - $oldmin) * ($newmax - $newmin) / ($oldmax - $oldmin) + $newmin;
 | 
						|
    };
 | 
						|
    
 | 
						|
    # use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
 | 
						|
    $partx += $dist;
 | 
						|
    $party += $dist;
 | 
						|
    
 | 
						|
    # margin needed for the skirt
 | 
						|
    my $skirt_margin;		
 | 
						|
    if ($Config->skirts > 0) {
 | 
						|
        my $flow = Slic3r::Flow->new(
 | 
						|
            layer_height    => $Config->get_value('first_layer_height'),
 | 
						|
            nozzle_diameter => $Config->nozzle_diameter->[0],  # TODO: actually look for the extruder used for skirt
 | 
						|
            width           => $Config->get_value('first_layer_extrusion_width'),
 | 
						|
        );
 | 
						|
        $skirt_margin = ($flow->spacing * $Config->skirts + $Config->skirt_distance) * 2;
 | 
						|
    } else {
 | 
						|
        $skirt_margin = 0;		
 | 
						|
    }
 | 
						|
    
 | 
						|
    # this is how many cells we have available into which to put parts
 | 
						|
    my $cellw = int(($areax - $skirt_margin + $dist) / $partx);
 | 
						|
    my $cellh = int(($areay - $skirt_margin + $dist) / $party);
 | 
						|
    
 | 
						|
    die "$total_parts parts won't fit in your print area!\n" if $total_parts > ($cellw * $cellh);
 | 
						|
    
 | 
						|
    # width and height of space used by cells
 | 
						|
    my $w = $cellw * $partx;
 | 
						|
    my $h = $cellh * $party;
 | 
						|
    
 | 
						|
    # left and right border positions of space used by cells
 | 
						|
    my $l = ($areax - $w) / 2;
 | 
						|
    my $r = $l + $w;
 | 
						|
    
 | 
						|
    # top and bottom border positions
 | 
						|
    my $t = ($areay - $h) / 2;
 | 
						|
    my $b = $t + $h;
 | 
						|
    
 | 
						|
    # list of cells, sorted by distance from center
 | 
						|
    my @cellsorder;
 | 
						|
    
 | 
						|
    # work out distance for all cells, sort into list
 | 
						|
    for my $i (0..$cellw-1) {
 | 
						|
        for my $j (0..$cellh-1) {
 | 
						|
            my $cx = $linint->($i + 0.5, 0, $cellw, $l, $r);
 | 
						|
            my $cy = $linint->($j + 0.5, 0, $cellh, $t, $b);
 | 
						|
            
 | 
						|
            my $xd = abs(($areax / 2) - $cx);
 | 
						|
            my $yd = abs(($areay / 2) - $cy);
 | 
						|
            
 | 
						|
            my $c = {
 | 
						|
                location => [$cx, $cy],
 | 
						|
                index => [$i, $j],
 | 
						|
                distance => $xd * $xd + $yd * $yd - abs(($cellw / 2) - ($i + 0.5)),
 | 
						|
            };
 | 
						|
            
 | 
						|
            BINARYINSERTIONSORT: {
 | 
						|
                my $index = $c->{distance};
 | 
						|
                my $low = 0;
 | 
						|
                my $high = @cellsorder;
 | 
						|
                while ($low < $high) {
 | 
						|
                    my $mid = ($low + (($high - $low) / 2)) | 0;
 | 
						|
                    my $midval = $cellsorder[$mid]->[0];
 | 
						|
                    
 | 
						|
                    if ($midval < $index) {
 | 
						|
                        $low = $mid + 1;
 | 
						|
                    } elsif ($midval > $index) {
 | 
						|
                        $high = $mid;
 | 
						|
                    } else {
 | 
						|
                        splice @cellsorder, $mid, 0, [$index, $c];
 | 
						|
                        last BINARYINSERTIONSORT;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                splice @cellsorder, $low, 0, [$index, $c];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    # the extents of cells actually used by objects
 | 
						|
    my ($lx, $ty, $rx, $by) = (0, 0, 0, 0);
 | 
						|
 | 
						|
    # now find cells actually used by objects, map out the extents so we can position correctly
 | 
						|
    for my $i (1..$total_parts) {
 | 
						|
        my $c = $cellsorder[$i - 1];
 | 
						|
        my $cx = $c->[1]->{index}->[0];
 | 
						|
        my $cy = $c->[1]->{index}->[1];
 | 
						|
        if ($i == 1) {
 | 
						|
            $lx = $rx = $cx;
 | 
						|
            $ty = $by = $cy;
 | 
						|
        } else {
 | 
						|
            $rx = $cx if $cx > $rx;
 | 
						|
            $lx = $cx if $cx < $lx;
 | 
						|
            $by = $cy if $cy > $by;
 | 
						|
            $ty = $cy if $cy < $ty;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    # now we actually place objects into cells, positioned such that the left and bottom borders are at 0
 | 
						|
    my @positions = ();
 | 
						|
    for (1..$total_parts) {
 | 
						|
        my $c = shift @cellsorder;
 | 
						|
        my $cx = $c->[1]->{index}->[0] - $lx;
 | 
						|
        my $cy = $c->[1]->{index}->[1] - $ty;
 | 
						|
 | 
						|
        push @positions, [$cx * $partx, $cy * $party];
 | 
						|
    }
 | 
						|
    return @positions;
 | 
						|
}
 | 
						|
 | 
						|
1;
 |