mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-11-02 20:51:23 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			128 lines
		
	
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			128 lines
		
	
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// This file is part of libigl, a simple c++ geometry processing library.
 | 
						|
// 
 | 
						|
// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
 | 
						|
// 
 | 
						|
// This Source Code Form is subject to the terms of the Mozilla Public License 
 | 
						|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can 
 | 
						|
// obtain one at http://mozilla.org/MPL/2.0/.
 | 
						|
#include <igl/parallel_transport_angles.h>
 | 
						|
#include <Eigen/Geometry>
 | 
						|
 | 
						|
template <typename DerivedV, typename DerivedF, typename DerivedK>
 | 
						|
IGL_INLINE void igl::parallel_transport_angles(
 | 
						|
const Eigen::PlainObjectBase<DerivedV>& V,
 | 
						|
const Eigen::PlainObjectBase<DerivedF>& F,
 | 
						|
const Eigen::PlainObjectBase<DerivedV>& FN,
 | 
						|
const Eigen::MatrixXi &E2F,
 | 
						|
const Eigen::MatrixXi &F2E,
 | 
						|
Eigen::PlainObjectBase<DerivedK> &K)
 | 
						|
{
 | 
						|
  int numE = E2F.rows();
 | 
						|
 | 
						|
  Eigen::VectorXi isBorderEdge;
 | 
						|
  isBorderEdge.setZero(numE,1);
 | 
						|
  for(unsigned i=0; i<numE; ++i)
 | 
						|
  {
 | 
						|
    if ((E2F(i,0) == -1) || ((E2F(i,1) == -1)))
 | 
						|
      isBorderEdge[i] = 1;
 | 
						|
  }
 | 
						|
 | 
						|
  K.setZero(numE);
 | 
						|
  // For every non-border edge
 | 
						|
  for (unsigned eid=0; eid<numE; ++eid)
 | 
						|
  {
 | 
						|
    if (!isBorderEdge[eid])
 | 
						|
    {
 | 
						|
      int fid0 = E2F(eid,0);
 | 
						|
      int fid1 = E2F(eid,1);
 | 
						|
 | 
						|
      Eigen::Matrix<typename DerivedV::Scalar, 1, 3> N0 = FN.row(fid0);
 | 
						|
//      Eigen::Matrix<typename DerivedV::Scalar, 1, 3> N1 = FN.row(fid1);
 | 
						|
 | 
						|
      // find common edge on triangle 0 and 1
 | 
						|
      int fid0_vc = -1;
 | 
						|
      int fid1_vc = -1;
 | 
						|
      for (unsigned i=0;i<3;++i)
 | 
						|
      {
 | 
						|
        if (F2E(fid0,i) == eid)
 | 
						|
          fid0_vc = i;
 | 
						|
        if (F2E(fid1,i) == eid)
 | 
						|
          fid1_vc = i;
 | 
						|
      }
 | 
						|
      assert(fid0_vc != -1);
 | 
						|
      assert(fid1_vc != -1);
 | 
						|
 | 
						|
      Eigen::Matrix<typename DerivedV::Scalar, 1, 3> common_edge = V.row(F(fid0,(fid0_vc+1)%3)) - V.row(F(fid0,fid0_vc));
 | 
						|
      common_edge.normalize();
 | 
						|
 | 
						|
      // Map the two triangles in a new space where the common edge is the x axis and the N0 the z axis
 | 
						|
      Eigen::Matrix<typename DerivedV::Scalar, 3, 3> P;
 | 
						|
      Eigen::Matrix<typename DerivedV::Scalar, 1, 3> o = V.row(F(fid0,fid0_vc));
 | 
						|
      Eigen::Matrix<typename DerivedV::Scalar, 1, 3> tmp = -N0.cross(common_edge);
 | 
						|
      P << common_edge, tmp, N0;
 | 
						|
      //      P.transposeInPlace();
 | 
						|
 | 
						|
 | 
						|
      Eigen::Matrix<typename DerivedV::Scalar, 3, 3> V0;
 | 
						|
      V0.row(0) = V.row(F(fid0,0)) -o;
 | 
						|
      V0.row(1) = V.row(F(fid0,1)) -o;
 | 
						|
      V0.row(2) = V.row(F(fid0,2)) -o;
 | 
						|
 | 
						|
      V0 = (P*V0.transpose()).transpose();
 | 
						|
 | 
						|
      //      assert(V0(0,2) < 1e-10);
 | 
						|
      //      assert(V0(1,2) < 1e-10);
 | 
						|
      //      assert(V0(2,2) < 1e-10);
 | 
						|
 | 
						|
      Eigen::Matrix<typename DerivedV::Scalar, 3, 3> V1;
 | 
						|
      V1.row(0) = V.row(F(fid1,0)) -o;
 | 
						|
      V1.row(1) = V.row(F(fid1,1)) -o;
 | 
						|
      V1.row(2) = V.row(F(fid1,2)) -o;
 | 
						|
      V1 = (P*V1.transpose()).transpose();
 | 
						|
 | 
						|
      //      assert(V1(fid1_vc,2) < 10e-10);
 | 
						|
      //      assert(V1((fid1_vc+1)%3,2) < 10e-10);
 | 
						|
 | 
						|
      // compute rotation R such that R * N1 = N0
 | 
						|
      // i.e. map both triangles to the same plane
 | 
						|
      double alpha = -atan2(V1((fid1_vc+2)%3,2),V1((fid1_vc+2)%3,1));
 | 
						|
 | 
						|
      Eigen::Matrix<typename DerivedV::Scalar, 3, 3> R;
 | 
						|
      R << 1,          0,            0,
 | 
						|
      0, cos(alpha), -sin(alpha) ,
 | 
						|
      0, sin(alpha),  cos(alpha);
 | 
						|
      V1 = (R*V1.transpose()).transpose();
 | 
						|
 | 
						|
      //      assert(V1(0,2) < 1e-10);
 | 
						|
      //      assert(V1(1,2) < 1e-10);
 | 
						|
      //      assert(V1(2,2) < 1e-10);
 | 
						|
 | 
						|
      // measure the angle between the reference frames
 | 
						|
      // k_ij is the angle between the triangle on the left and the one on the right
 | 
						|
      Eigen::Matrix<typename DerivedV::Scalar, 1, 3> ref0 = V0.row(1) - V0.row(0);
 | 
						|
      Eigen::Matrix<typename DerivedV::Scalar, 1, 3> ref1 = V1.row(1) - V1.row(0);
 | 
						|
 | 
						|
      ref0.normalize();
 | 
						|
      ref1.normalize();
 | 
						|
 | 
						|
      double ktemp = atan2(ref1(1),ref1(0)) - atan2(ref0(1),ref0(0));
 | 
						|
 | 
						|
      // just to be sure, rotate ref0 using angle ktemp...
 | 
						|
      Eigen::Matrix<typename DerivedV::Scalar,2,2> R2;
 | 
						|
      R2 << cos(ktemp), -sin(ktemp), sin(ktemp), cos(ktemp);
 | 
						|
 | 
						|
//      Eigen::Matrix<typename DerivedV::Scalar, 1, 2> tmp1 = R2*(ref0.head(2)).transpose();
 | 
						|
 | 
						|
      //      assert(tmp1(0) - ref1(0) < 1e-10);
 | 
						|
      //      assert(tmp1(1) - ref1(1) < 1e-10);
 | 
						|
 | 
						|
      K[eid] = ktemp;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#ifdef IGL_STATIC_LIBRARY
 | 
						|
// Explicit template instantiation
 | 
						|
template void igl::parallel_transport_angles<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
 | 
						|
#endif
 |