mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-11-02 20:51:23 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			188 lines
		
	
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			188 lines
		
	
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// This file is part of libigl, a simple c++ geometry processing library.
 | 
						|
// 
 | 
						|
// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
 | 
						|
// 
 | 
						|
// This Source Code Form is subject to the terms of the Mozilla Public License 
 | 
						|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can 
 | 
						|
// obtain one at http://mozilla.org/MPL/2.0/.
 | 
						|
#ifndef IGL_PARALLEL_FOR_H
 | 
						|
#define IGL_PARALLEL_FOR_H
 | 
						|
#include "igl_inline.h"
 | 
						|
#include <functional>
 | 
						|
 | 
						|
//#warning "Defining IGL_PARALLEL_FOR_FORCE_SERIAL"
 | 
						|
//#define IGL_PARALLEL_FOR_FORCE_SERIAL
 | 
						|
 | 
						|
namespace igl
 | 
						|
{
 | 
						|
  // PARALLEL_FOR Functional implementation of a basic, open-mp style, parallel
 | 
						|
  // for loop. If the inner block of a for-loop can be rewritten/encapsulated in
 | 
						|
  // a single (anonymous/lambda) function call `func` so that the serial code
 | 
						|
  // looks like:
 | 
						|
  // 
 | 
						|
  //     for(int i = 0;i<loop_size;i++)
 | 
						|
  //     {
 | 
						|
  //       func(i);
 | 
						|
  //     }
 | 
						|
  //
 | 
						|
  // then `parallel_for(loop_size,func,min_parallel)` will use as many threads as
 | 
						|
  // available on the current hardware to parallelize this for loop so long as
 | 
						|
  // loop_size<min_parallel, otherwise it will just use a serial for loop.
 | 
						|
  //
 | 
						|
  // Inputs:
 | 
						|
  //   loop_size  number of iterations. I.e. for(int i = 0;i<loop_size;i++) ...
 | 
						|
  //   func  function handle taking iteration index as only argument to compute
 | 
						|
  //     inner block of for loop I.e. for(int i ...){ func(i); }
 | 
						|
  //   min_parallel  min size of loop_size such that parallel (non-serial)
 | 
						|
  //     thread pooling should be attempted {0}
 | 
						|
  // Returns true iff thread pool was invoked
 | 
						|
  template<typename Index, typename FunctionType >
 | 
						|
  inline bool parallel_for(
 | 
						|
    const Index loop_size, 
 | 
						|
    const FunctionType & func,
 | 
						|
    const size_t min_parallel=0);
 | 
						|
  // PARALLEL_FOR Functional implementation of an open-mp style, parallel for
 | 
						|
  // loop with accumulation. For example, serial code separated into n chunks
 | 
						|
  // (each to be parallelized with a thread) might look like:
 | 
						|
  //     
 | 
						|
  //     Eigen::VectorXd S;
 | 
						|
  //     const auto & prep_func = [&S](int n){ S = Eigen:VectorXd::Zero(n); };
 | 
						|
  //     const auto & func = [&X,&S](int i, int t){ S(t) += X(i); };
 | 
						|
  //     const auto & accum_func = [&S,&sum](int t){ sum += S(t); };
 | 
						|
  //     prep_func(n);
 | 
						|
  //     for(int i = 0;i<loop_size;i++)
 | 
						|
  //     {
 | 
						|
  //       func(i,i%n);
 | 
						|
  //     }
 | 
						|
  //     double sum = 0;
 | 
						|
  //     for(int t = 0;t<n;t++)
 | 
						|
  //     {
 | 
						|
  //       accum_func(t);
 | 
						|
  //     }
 | 
						|
  // 
 | 
						|
  // Inputs:
 | 
						|
  //   loop_size  number of iterations. I.e. for(int i = 0;i<loop_size;i++) ...
 | 
						|
  //   prep_func function handle taking n >= number of threads as only
 | 
						|
  //     argument 
 | 
						|
  //   func  function handle taking iteration index i and thread id t as only
 | 
						|
  //     arguments to compute inner block of for loop I.e. 
 | 
						|
  //     for(int i ...){ func(i,t); }
 | 
						|
  //   accum_func  function handle taking thread index as only argument, to be
 | 
						|
  //     called after all calls of func, e.g., for serial accumulation across
 | 
						|
  //     all n (potential) threads, see n in description of prep_func.
 | 
						|
  //   min_parallel  min size of loop_size such that parallel (non-serial)
 | 
						|
  //     thread pooling should be attempted {0}
 | 
						|
  // Returns true iff thread pool was invoked
 | 
						|
  template<
 | 
						|
    typename Index, 
 | 
						|
    typename PrepFunctionType, 
 | 
						|
    typename FunctionType, 
 | 
						|
    typename AccumFunctionType 
 | 
						|
    >
 | 
						|
  inline bool parallel_for(
 | 
						|
    const Index loop_size, 
 | 
						|
    const PrepFunctionType & prep_func,
 | 
						|
    const FunctionType & func,
 | 
						|
    const AccumFunctionType & accum_func,
 | 
						|
    const size_t min_parallel=0);
 | 
						|
}
 | 
						|
 | 
						|
// Implementation
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include <cassert>
 | 
						|
#include <thread>
 | 
						|
#include <vector>
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
template<typename Index, typename FunctionType >
 | 
						|
inline bool igl::parallel_for(
 | 
						|
  const Index loop_size, 
 | 
						|
  const FunctionType & func,
 | 
						|
  const size_t min_parallel)
 | 
						|
{
 | 
						|
  using namespace std;
 | 
						|
  // no op preparation/accumulation
 | 
						|
  const auto & no_op = [](const size_t /*n/t*/){};
 | 
						|
  // two-parameter wrapper ignoring thread id
 | 
						|
  const auto & wrapper = [&func](Index i,size_t /*t*/){ func(i); };
 | 
						|
  return parallel_for(loop_size,no_op,wrapper,no_op,min_parallel);
 | 
						|
}
 | 
						|
 | 
						|
template<
 | 
						|
  typename Index, 
 | 
						|
  typename PreFunctionType,
 | 
						|
  typename FunctionType, 
 | 
						|
  typename AccumFunctionType>
 | 
						|
inline bool igl::parallel_for(
 | 
						|
  const Index loop_size, 
 | 
						|
  const PreFunctionType & prep_func,
 | 
						|
  const FunctionType & func,
 | 
						|
  const AccumFunctionType & accum_func,
 | 
						|
  const size_t min_parallel)
 | 
						|
{
 | 
						|
  assert(loop_size>=0);
 | 
						|
  if(loop_size==0) return false;
 | 
						|
  // Estimate number of threads in the pool
 | 
						|
  // http://ideone.com/Z7zldb
 | 
						|
  const static size_t sthc = std::thread::hardware_concurrency();
 | 
						|
  const size_t nthreads = 
 | 
						|
#ifdef IGL_PARALLEL_FOR_FORCE_SERIAL
 | 
						|
    0;
 | 
						|
#else
 | 
						|
    loop_size<min_parallel?0:(sthc==0?8:sthc);
 | 
						|
#endif
 | 
						|
  if(nthreads==0)
 | 
						|
  {
 | 
						|
    // serial
 | 
						|
    prep_func(1);
 | 
						|
    for(Index i = 0;i<loop_size;i++) func(i,0);
 | 
						|
    accum_func(0);
 | 
						|
    return false;
 | 
						|
  }else
 | 
						|
  {
 | 
						|
    // Size of a slice for the range functions
 | 
						|
    Index slice = 
 | 
						|
      std::max(
 | 
						|
        (Index)std::round((loop_size+1)/static_cast<double>(nthreads)),(Index)1);
 | 
						|
 
 | 
						|
    // [Helper] Inner loop
 | 
						|
    const auto & range = [&func](const Index k1, const Index k2, const size_t t)
 | 
						|
    {
 | 
						|
      for(Index k = k1; k < k2; k++) func(k,t);
 | 
						|
    };
 | 
						|
    prep_func(nthreads);
 | 
						|
    // Create pool and launch jobs
 | 
						|
    std::vector<std::thread> pool;
 | 
						|
    pool.reserve(nthreads);
 | 
						|
    // Inner range extents
 | 
						|
    Index i1 = 0;
 | 
						|
    Index i2 = std::min(0 + slice, loop_size);
 | 
						|
    {
 | 
						|
      size_t t = 0;
 | 
						|
      for (; t+1 < nthreads && i1 < loop_size; ++t)
 | 
						|
      {
 | 
						|
        pool.emplace_back(range, i1, i2, t);
 | 
						|
        i1 = i2;
 | 
						|
        i2 = std::min(i2 + slice, loop_size);
 | 
						|
      }
 | 
						|
      if (i1 < loop_size)
 | 
						|
      {
 | 
						|
        pool.emplace_back(range, i1, loop_size, t);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Wait for jobs to finish
 | 
						|
    for (std::thread &t : pool) if (t.joinable()) t.join();
 | 
						|
    // Accumulate across threads
 | 
						|
    for(size_t t = 0;t<nthreads;t++)
 | 
						|
    {
 | 
						|
      accum_func(t);
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 
 | 
						|
//#ifndef IGL_STATIC_LIBRARY
 | 
						|
//#include "parallel_for.cpp"
 | 
						|
//#endif
 | 
						|
#endif
 |