mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-25 15:44:12 -06:00

* SPE-2486: Refactor function apply_mm_segmentation() to prepare support for fuzzy skin painting. (cherry picked from commit 2c06c81159f7aadd6ac20c7a7583c8f4959a5601) * SPE-2585: Fix empty layers when multi-material painting and modifiers are used. (cherry picked from commit 4b3da02ec26d43bfad91897cb34779fb21419e3e) * Update project structure to match Prusa * SPE-2486: Add a new gizmo for fuzzy skin painting. (cherry picked from commit 886faac74ebe6978b828f51be62d26176e2900e5) * Fix render * Remove duplicated painting gizmo `render_triangles` code * SPE-2486: Extend multi-material segmentation to allow segmentation of any painted faces. (cherry picked from commit 519f5eea8e3be0d7c2cd5d030323ff264727e3d0) --------- Co-authored-by: Lukáš Hejl <hejl.lukas@gmail.com> * SPE-2486: Implement segmentation of layers based on fuzzy skin painting. (cherry picked from commit 800b742b950438c5ed8323693074b6171300131c) * SPE-2486: Separate fuzzy skin implementation into the separate file. (cherry picked from commit efd95c1c66dc09fca7695fb82405056c687c2291) * Move more fuzzy code to separate file * Don't hide fuzzy skin option, so it can be applied to paint on fuzzy * Fix build * Add option group for fuzzy skin * Update icon color * Fix reset painting * Update UI style * Store fuzzy painting in bbs_3mf * Add missing fuzzy paint code * SPE-2486: Limit the depth of the painted fuzzy skin regions to make regions cover just external perimeters. This reduces the possibility of artifacts that could happen during regions merging. (cherry picked from commit fa2663f02647f80b239da4f45d92ef66f5ce048a) * Update icons --------- Co-authored-by: yw4z <ywsyildiz@gmail.com> * Make the region compatible check a separate function * Only warn about multi-material if it's truly multi-perimeters * Improve gizmo UI & tooltips --------- Co-authored-by: Lukáš Hejl <hejl.lukas@gmail.com> Co-authored-by: yw4z <ywsyildiz@gmail.com>
341 lines
16 KiB
C++
341 lines
16 KiB
C++
#ifndef slic3r_Layer_hpp_
|
|
#define slic3r_Layer_hpp_
|
|
|
|
#include "libslic3r.h"
|
|
#include "BoundingBox.hpp"
|
|
#include "Flow.hpp"
|
|
#include "SurfaceCollection.hpp"
|
|
#include "ExtrusionEntityCollection.hpp"
|
|
#include "BoundingBox.hpp"
|
|
namespace Slic3r {
|
|
|
|
class ExPolygon;
|
|
using ExPolygons = std::vector<ExPolygon>;
|
|
class Layer;
|
|
using LayerPtrs = std::vector<Layer*>;
|
|
class LayerRegion;
|
|
using LayerRegionPtrs = std::vector<LayerRegion*>;
|
|
class PrintRegion;
|
|
class PrintObject;
|
|
|
|
namespace FillAdaptive {
|
|
struct Octree;
|
|
};
|
|
|
|
namespace FillLightning {
|
|
class Generator;
|
|
};
|
|
|
|
class LayerRegion
|
|
{
|
|
public:
|
|
Layer* layer() { return m_layer; }
|
|
const Layer* layer() const { return m_layer; }
|
|
const PrintRegion& region() const { return *m_region; }
|
|
|
|
const SurfaceCollection& get_slices() const { return slices; }
|
|
|
|
// collection of surfaces generated by slicing the original geometry
|
|
// divided by type top/bottom/internal
|
|
SurfaceCollection slices;
|
|
// Backed up slices before they are split into top/bottom/internal.
|
|
// Only backed up for multi-region layers or layers with elephant foot compensation.
|
|
//FIXME Review whether not to simplify the code by keeping the raw_slices all the time.
|
|
ExPolygons raw_slices;
|
|
|
|
// collection of extrusion paths/loops filling gaps
|
|
// These fills are generated by the perimeter generator.
|
|
// They are not printed on their own, but they are copied to this->fills during infill generation.
|
|
ExtrusionEntityCollection thin_fills;
|
|
|
|
// Unspecified fill polygons, used for overhang detection ("ensure vertical wall thickness feature")
|
|
// and for re-starting of infills.
|
|
ExPolygons fill_expolygons;
|
|
// collection of surfaces for infill generation
|
|
SurfaceCollection fill_surfaces;
|
|
// BBS: Unspecified fill polygons, used for interecting when we don't want the infill/perimeter overlap
|
|
ExPolygons fill_no_overlap_expolygons;
|
|
|
|
// collection of expolygons representing the bridged areas (thus not
|
|
// needing support material)
|
|
// Polygons bridged;
|
|
|
|
// collection of polylines representing the unsupported bridge edges
|
|
Polylines unsupported_bridge_edges;
|
|
|
|
// ordered collection of extrusion paths/loops to build all perimeters
|
|
// (this collection contains only ExtrusionEntityCollection objects)
|
|
ExtrusionEntityCollection perimeters;
|
|
|
|
// ordered collection of extrusion paths to fill surfaces
|
|
// (this collection contains only ExtrusionEntityCollection objects)
|
|
ExtrusionEntityCollection fills;
|
|
|
|
Flow flow(FlowRole role) const;
|
|
Flow flow(FlowRole role, double layer_height) const;
|
|
Flow bridging_flow(FlowRole role, bool thick_bridge = false) const;
|
|
|
|
void slices_to_fill_surfaces_clipped();
|
|
void prepare_fill_surfaces();
|
|
//BBS
|
|
void make_perimeters(const SurfaceCollection &slices, const LayerRegionPtrs &compatible_regions, SurfaceCollection* fill_surfaces, ExPolygons* fill_no_overlap);
|
|
void process_external_surfaces(const Layer *lower_layer, const Polygons *lower_layer_covered);
|
|
double infill_area_threshold() const;
|
|
// Trim surfaces by trimming polygons. Used by the elephant foot compensation at the 1st layer.
|
|
void trim_surfaces(const Polygons &trimming_polygons);
|
|
// Single elephant foot compensation step, used by the elephant foor compensation at the 1st layer.
|
|
// Trim surfaces by trimming polygons (shrunk by an elephant foot compensation step), but don't shrink narrow parts so much that no perimeter would fit.
|
|
void elephant_foot_compensation_step(const float elephant_foot_compensation_perimeter_step, const Polygons &trimming_polygons);
|
|
|
|
void export_region_slices_to_svg(const char *path) const;
|
|
void export_region_fill_surfaces_to_svg(const char *path) const;
|
|
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
|
|
void export_region_slices_to_svg_debug(const char *name) const;
|
|
void export_region_fill_surfaces_to_svg_debug(const char *name) const;
|
|
|
|
// Is there any valid extrusion assigned to this LayerRegion?
|
|
bool has_extrusions() const { return ! this->perimeters.entities.empty() || ! this->fills.entities.empty(); }
|
|
//BBS
|
|
void simplify_infill_extrusion_entity() { simplify_entity_collection(&fills); }
|
|
void simplify_wall_extrusion_entity() { simplify_entity_collection(&perimeters); }
|
|
private:
|
|
void simplify_entity_collection(ExtrusionEntityCollection* entity_collection);
|
|
void simplify_path(ExtrusionPath* path);
|
|
void simplify_multi_path(ExtrusionMultiPath* multipath);
|
|
void simplify_loop(ExtrusionLoop* loop);
|
|
|
|
protected:
|
|
friend class Layer;
|
|
friend class PrintObject;
|
|
|
|
LayerRegion(Layer *layer, const PrintRegion *region) : m_layer(layer), m_region(region) {}
|
|
~LayerRegion() {}
|
|
|
|
private:
|
|
Layer *m_layer;
|
|
const PrintRegion *m_region;
|
|
};
|
|
|
|
class Layer
|
|
{
|
|
public:
|
|
// Sequential index of this layer in PrintObject::m_layers, offsetted by the number of raft layers.
|
|
size_t id() const { return m_id; }
|
|
void set_id(size_t id) { m_id = id; }
|
|
PrintObject* object() { return m_object; }
|
|
const PrintObject* object() const { return m_object; }
|
|
|
|
Layer *upper_layer;
|
|
Layer *lower_layer;
|
|
bool slicing_errors;
|
|
coordf_t slice_z; // Z used for slicing in unscaled coordinates
|
|
coordf_t print_z; // Z used for printing in unscaled coordinates
|
|
coordf_t height; // layer height in unscaled coordinates
|
|
coordf_t bottom_z() const { return this->print_z - this->height; }
|
|
|
|
//Extrusions estimated to be seriously malformed, estimated during "Estimating curled extrusions" step. These lines should be avoided during fast travels.
|
|
CurledLines curled_lines;
|
|
|
|
// BBS
|
|
mutable ExPolygons sharp_tails;
|
|
mutable ExPolygons cantilevers;
|
|
mutable std::vector<float> sharp_tails_height;
|
|
|
|
// Collection of expolygons generated by slicing the possibly multiple meshes of the source geometry
|
|
// (with possibly differing extruder ID and slicing parameters) and merged.
|
|
// For the first layer, if the Elephant foot compensation is applied, this lslice is uncompensated, therefore
|
|
// it includes the Elephant foot effect, thus it corresponds to the shape of the printed 1st layer.
|
|
// These lslices aka islands are chained by the shortest traverse distance and this traversal
|
|
// order will be applied by the G-code generator to the extrusions fitting into these lslices.
|
|
// These lslices are also used to detect overhangs and overlaps between successive layers, therefore it is important
|
|
// that the 1st lslice is not compensated by the Elephant foot compensation algorithm.
|
|
ExPolygons lslices;
|
|
ExPolygons lslices_extrudable; // BBS: the extrudable part of lslices used for tree support
|
|
std::vector<BoundingBox> lslices_bboxes;
|
|
|
|
// BBS
|
|
ExPolygons loverhangs;
|
|
BoundingBox loverhangs_bbox;
|
|
size_t region_count() const { return m_regions.size(); }
|
|
const LayerRegion* get_region(int idx) const { return m_regions[idx]; }
|
|
LayerRegion* get_region(int idx) { return m_regions[idx]; }
|
|
LayerRegion* add_region(const PrintRegion *print_region);
|
|
const LayerRegionPtrs& regions() const { return m_regions; }
|
|
// Test whether whether there are any slices assigned to this layer.
|
|
bool empty() const;
|
|
void make_slices();
|
|
// Backup and restore raw sliced regions if needed.
|
|
//FIXME Review whether not to simplify the code by keeping the raw_slices all the time.
|
|
void backup_untyped_slices();
|
|
void restore_untyped_slices();
|
|
// To improve robustness of detect_surfaces_type() when reslicing (working with typed slices), see GH issue #7442.
|
|
void restore_untyped_slices_no_extra_perimeters();
|
|
// Slices merged into islands, to be used by the elephant foot compensation to trim the individual surfaces with the shrunk merged slices.
|
|
ExPolygons merged(float offset) const;
|
|
template <class T> bool any_internal_region_slice_contains(const T &item) const {
|
|
for (const LayerRegion *layerm : m_regions) if (layerm->slices.any_internal_contains(item)) return true;
|
|
return false;
|
|
}
|
|
template <class T> bool any_bottom_region_slice_contains(const T &item) const {
|
|
for (const LayerRegion *layerm : m_regions) if (layerm->slices.any_bottom_contains(item)) return true;
|
|
return false;
|
|
}
|
|
|
|
// Whether two regions can be printed in a continues perimeter
|
|
static bool is_perimeter_compatible(const PrintRegion& a, const PrintRegion& b);
|
|
void make_perimeters();
|
|
// Phony version of make_fills() without parameters for Perl integration only.
|
|
void make_fills() { this->make_fills(nullptr, nullptr); }
|
|
void make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive::Octree* support_fill_octree, FillLightning::Generator* lightning_generator = nullptr);
|
|
Polylines generate_sparse_infill_polylines_for_anchoring(FillAdaptive::Octree *adaptive_fill_octree,
|
|
FillAdaptive::Octree *support_fill_octree,
|
|
FillLightning::Generator* lightning_generator) const;
|
|
void make_ironing();
|
|
|
|
void export_region_slices_to_svg(const char *path) const;
|
|
void export_region_fill_surfaces_to_svg(const char *path) const;
|
|
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
|
|
void export_region_slices_to_svg_debug(const char *name) const;
|
|
void export_region_fill_surfaces_to_svg_debug(const char *name) const;
|
|
|
|
// Is there any valid extrusion assigned to this LayerRegion?
|
|
virtual bool has_extrusions() const { for (auto layerm : m_regions) if (layerm->has_extrusions()) return true; return false; }
|
|
|
|
//BBS
|
|
void simplify_wall_extrusion_path() { for (auto layerm : m_regions) layerm->simplify_wall_extrusion_entity();}
|
|
void simplify_infill_extrusion_path() { for (auto layerm : m_regions) layerm->simplify_infill_extrusion_entity(); }
|
|
//BBS: this function calculate the maximum void grid area of sparse infill of this layer. Just estimated value
|
|
coordf_t get_sparse_infill_max_void_area();
|
|
|
|
// FN_HIGHER_EQUAL: the provided object pointer has a Z value >= of an internal threshold.
|
|
// Find the first item with Z value >= of an internal threshold of fn_higher_equal.
|
|
// If no vec item with Z value >= of an internal threshold of fn_higher_equal is found, return vec.size()
|
|
// If the initial idx is size_t(-1), then use binary search.
|
|
// Otherwise search linearly upwards.
|
|
template<typename IteratorType, typename IndexType, typename FN_HIGHER_EQUAL>
|
|
static IndexType idx_higher_or_equal(IteratorType begin, IteratorType end, IndexType idx, FN_HIGHER_EQUAL fn_higher_equal)
|
|
{
|
|
auto size = int(end - begin);
|
|
if (size == 0) {
|
|
idx = 0;
|
|
}
|
|
else if (idx == IndexType(-1)) {
|
|
// First of the batch of layers per thread pool invocation. Use binary search.
|
|
int idx_low = 0;
|
|
int idx_high = std::max(0, size - 1);
|
|
while (idx_low + 1 < idx_high) {
|
|
int idx_mid = (idx_low + idx_high) / 2;
|
|
if (fn_higher_equal(begin[idx_mid]))
|
|
idx_high = idx_mid;
|
|
else
|
|
idx_low = idx_mid;
|
|
}
|
|
idx = fn_higher_equal(begin[idx_low]) ? idx_low :
|
|
(fn_higher_equal(begin[idx_high]) ? idx_high : size);
|
|
}
|
|
else {
|
|
// For the other layers of this batch of layers, search incrementally, which is cheaper than the binary search.
|
|
while (int(idx) < size && !fn_higher_equal(begin[idx]))
|
|
++idx;
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
protected:
|
|
friend class PrintObject;
|
|
friend std::vector<Layer*> new_layers(PrintObject*, const std::vector<coordf_t>&);
|
|
friend std::string fix_slicing_errors(PrintObject* object, LayerPtrs&, const std::function<void()>&, int &);
|
|
|
|
Layer(size_t id, PrintObject *object, coordf_t height, coordf_t print_z, coordf_t slice_z) :
|
|
upper_layer(nullptr), lower_layer(nullptr), slicing_errors(false),
|
|
slice_z(slice_z), print_z(print_z), height(height),
|
|
m_id(id), m_object(object) {}
|
|
virtual ~Layer();
|
|
|
|
//BBS: method to simplify support path
|
|
void simplify_support_entity_collection(ExtrusionEntityCollection* entity_collection);
|
|
void simplify_support_path(ExtrusionPath* path);
|
|
void simplify_support_multi_path(ExtrusionMultiPath* multipath);
|
|
void simplify_support_loop(ExtrusionLoop* loop);
|
|
|
|
private:
|
|
// Sequential index of layer, 0-based, offsetted by number of raft layers.
|
|
size_t m_id;
|
|
PrintObject *m_object;
|
|
LayerRegionPtrs m_regions;
|
|
};
|
|
|
|
enum SupportInnerType {
|
|
stInnerNormal,
|
|
stInnerTree
|
|
};
|
|
|
|
class SupportLayer : public Layer
|
|
{
|
|
public:
|
|
// Polygons covered by the supports: base, interface and contact areas.
|
|
// Used to suppress retraction if moving for a support extrusion over these support_islands.
|
|
ExPolygons support_islands;
|
|
// Extrusion paths for the support base and for the support interface and contacts.
|
|
ExtrusionEntityCollection support_fills;
|
|
SupportInnerType support_type = stInnerNormal;
|
|
|
|
// for tree supports
|
|
ExPolygons base_areas;
|
|
|
|
|
|
// Is there any valid extrusion assigned to this LayerRegion?
|
|
virtual bool has_extrusions() const { return ! support_fills.empty(); }
|
|
|
|
// Zero based index of an interface layer, used for alternating direction of interface / contact layers.
|
|
size_t interface_id() const { return m_interface_id; }
|
|
|
|
void simplify_support_extrusion_path() { this->simplify_support_entity_collection(&support_fills); }
|
|
|
|
protected:
|
|
friend class PrintObject;
|
|
friend class TreeSupport;
|
|
|
|
// The constructor has been made public to be able to insert additional support layers for the skirt or a wipe tower
|
|
// between the raft and the object first layer.
|
|
SupportLayer(size_t id, size_t interface_id, PrintObject *object, coordf_t height, coordf_t print_z, coordf_t slice_z) :
|
|
Layer(id, object, height, print_z, slice_z), m_interface_id(interface_id), support_type(stInnerNormal) {}
|
|
virtual ~SupportLayer() = default;
|
|
|
|
size_t m_interface_id;
|
|
|
|
// for tree support
|
|
ExPolygons roof_areas;
|
|
ExPolygons roof_1st_layer; // the layer just below roof. When working with PolySupport, this layer should be printed with regular material
|
|
ExPolygons floor_areas;
|
|
ExPolygons roof_gap_areas; // the areas in the gap between support roof and overhang
|
|
enum AreaType { BaseType = 0, RoofType = 1, FloorType = 2, Roof1stLayer = 3 };
|
|
struct AreaGroup
|
|
{
|
|
ExPolygon *area;
|
|
int type;
|
|
int interface_id = 0;
|
|
coordf_t dist_to_top; // mm dist to top
|
|
bool need_infill = false;
|
|
bool need_extra_wall = false;
|
|
AreaGroup(ExPolygon *a, int t, coordf_t d) : area(a), type(t), dist_to_top(d) {}
|
|
};
|
|
std::vector<AreaGroup> area_groups;
|
|
};
|
|
|
|
template<typename LayerContainer>
|
|
inline std::vector<float> zs_from_layers(const LayerContainer &layers)
|
|
{
|
|
std::vector<float> zs;
|
|
zs.reserve(layers.size());
|
|
for (const Layer *l : layers)
|
|
zs.emplace_back((float)l->slice_z);
|
|
return zs;
|
|
}
|
|
|
|
extern BoundingBox get_extents(const LayerRegion &layer_region);
|
|
extern BoundingBox get_extents(const LayerRegionPtrs &layer_regions);
|
|
|
|
}
|
|
|
|
#endif
|