mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	 d73142c2f9
			
		
	
	
		d73142c2f9
		
	
	
	
	
		
			
			As title. Thanks @Prusa Signed-off-by: salt.wei <salt.wei@bambulab.com> Change-Id: I2fa177e27ac53211952ea9b6c62e98182b8f05ce
		
			
				
	
	
		
			504 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			504 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef slic3r_ExtrusionEntity_hpp_
 | |
| #define slic3r_ExtrusionEntity_hpp_
 | |
| 
 | |
| #include "libslic3r.h"
 | |
| #include "Polygon.hpp"
 | |
| #include "Polyline.hpp"
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <string_view>
 | |
| #include <numeric>
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| class ExPolygonCollection;
 | |
| class ExtrusionEntityCollection;
 | |
| class Extruder;
 | |
| 
 | |
| // Each ExtrusionRole value identifies a distinct set of { extruder, speed }
 | |
| enum ExtrusionRole : uint8_t {
 | |
|     erNone,
 | |
|     erPerimeter,
 | |
|     erExternalPerimeter,
 | |
|     erOverhangPerimeter,
 | |
|     erInternalInfill,
 | |
|     erSolidInfill,
 | |
|     erTopSolidInfill,
 | |
|     erBottomSurface,
 | |
|     erIroning,
 | |
|     erBridgeInfill,
 | |
|     erGapFill,
 | |
|     erSkirt,
 | |
|     erBrim,
 | |
|     erSupportMaterial,
 | |
|     erSupportMaterialInterface,
 | |
|     erSupportTransition,
 | |
|     erWipeTower,
 | |
|     erCustom,
 | |
|     // Extrusion role for a collection with multiple extrusion roles.
 | |
|     erMixed,
 | |
|     erCount
 | |
| };
 | |
| 
 | |
| // Special flags describing loop
 | |
| enum ExtrusionLoopRole {
 | |
|     elrDefault,
 | |
|     elrContourInternalPerimeter,
 | |
|     elrSkirt,
 | |
| };
 | |
| 
 | |
| 
 | |
| inline bool is_perimeter(ExtrusionRole role)
 | |
| {
 | |
|     return role == erPerimeter
 | |
|         || role == erExternalPerimeter
 | |
|         || role == erOverhangPerimeter;
 | |
| }
 | |
| 
 | |
| inline bool is_infill(ExtrusionRole role)
 | |
| {
 | |
|     return role == erBridgeInfill
 | |
|         || role == erInternalInfill
 | |
|         || role == erSolidInfill
 | |
|         || role == erTopSolidInfill
 | |
|         || role == erBottomSurface
 | |
|         || role == erIroning;
 | |
| }
 | |
| 
 | |
| inline bool is_top_surface(ExtrusionRole role)
 | |
| {
 | |
|     return role == erTopSolidInfill;
 | |
| }
 | |
| 
 | |
| inline bool is_solid_infill(ExtrusionRole role)
 | |
| {
 | |
|     return role == erBridgeInfill
 | |
|         || role == erSolidInfill
 | |
|         || role == erTopSolidInfill
 | |
|         || role == erBottomSurface
 | |
|         || role == erIroning;
 | |
| }
 | |
| 
 | |
| inline bool is_bridge(ExtrusionRole role) {
 | |
|     return role == erBridgeInfill
 | |
|         || role == erOverhangPerimeter;
 | |
| }
 | |
| 
 | |
| class ExtrusionEntity
 | |
| {
 | |
| public:
 | |
|     virtual ExtrusionRole role() const = 0;
 | |
|     virtual bool is_collection() const { return false; }
 | |
|     virtual bool is_loop() const { return false; }
 | |
|     virtual bool can_reverse() const { return true; }
 | |
|     virtual ExtrusionEntity* clone() const = 0;
 | |
|     // Create a new object, initialize it with this object using the move semantics.
 | |
|     virtual ExtrusionEntity* clone_move() = 0;
 | |
|     virtual ~ExtrusionEntity() {}
 | |
|     virtual void reverse() = 0;
 | |
|     virtual const Point& first_point() const = 0;
 | |
|     virtual const Point& last_point() const = 0;
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     virtual void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const = 0;
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
 | |
|     virtual void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const = 0;
 | |
|     Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
 | |
|     Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
 | |
|     // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
 | |
|     virtual double min_mm3_per_mm() const = 0;
 | |
|     virtual Polyline as_polyline() const = 0;
 | |
|     virtual void   collect_polylines(Polylines &dst) const = 0;
 | |
|     virtual void   collect_points(Points &dst) const = 0;
 | |
|     virtual Polylines as_polylines() const { Polylines dst; this->collect_polylines(dst); return dst; }
 | |
|     virtual double length() const = 0;
 | |
|     virtual double total_volume() const = 0;
 | |
| 
 | |
|     static std::string role_to_string(ExtrusionRole role);
 | |
|     static ExtrusionRole string_to_role(const std::string_view role);
 | |
| };
 | |
| 
 | |
| typedef std::vector<ExtrusionEntity*> ExtrusionEntitiesPtr;
 | |
| 
 | |
| class ExtrusionPath : public ExtrusionEntity
 | |
| {
 | |
| public:
 | |
|     Polyline polyline;
 | |
|     int overhang_degree = 0;
 | |
|     int curve_degree = 0;
 | |
|     // Volumetric velocity. mm^3 of plastic per mm of linear head motion. Used by the G-code generator.
 | |
|     double mm3_per_mm;
 | |
|     // Width of the extrusion, used for visualization purposes.
 | |
|     float width;
 | |
|     // Height of the extrusion, used for visualization purposes.
 | |
|     float height;
 | |
| 
 | |
|     ExtrusionPath(ExtrusionRole role) : mm3_per_mm(-1), width(-1), height(-1), m_role(role), m_no_extrusion(false) {}
 | |
|     ExtrusionPath(ExtrusionRole role, double mm3_per_mm, float width, float height, bool no_extrusion = false) : mm3_per_mm(mm3_per_mm), width(width), height(height), m_role(role), m_no_extrusion(no_extrusion) {}
 | |
|     ExtrusionPath(int overhang_degree, int curve_degree, ExtrusionRole role, double mm3_per_mm, float width, float height) : overhang_degree(overhang_degree), curve_degree(curve_degree), mm3_per_mm(mm3_per_mm), width(width), height(height), m_role(role) {}
 | |
|     ExtrusionPath(const ExtrusionPath& rhs) : polyline(rhs.polyline), overhang_degree(rhs.overhang_degree), curve_degree(rhs.curve_degree), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), m_role(rhs.m_role), m_no_extrusion(rhs.m_no_extrusion) {}
 | |
|     ExtrusionPath(ExtrusionPath&& rhs) : polyline(std::move(rhs.polyline)), overhang_degree(rhs.overhang_degree), curve_degree(rhs.curve_degree), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), m_role(rhs.m_role), m_no_extrusion(rhs.m_no_extrusion) {}
 | |
|     ExtrusionPath(const Polyline &polyline, const ExtrusionPath &rhs) : polyline(polyline), overhang_degree(rhs.overhang_degree), curve_degree(rhs.curve_degree), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), m_role(rhs.m_role), m_no_extrusion(rhs.m_no_extrusion) {}
 | |
|     ExtrusionPath(Polyline &&polyline, const ExtrusionPath &rhs) : polyline(std::move(polyline)), overhang_degree(rhs.overhang_degree), curve_degree(rhs.curve_degree), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), m_role(rhs.m_role), m_no_extrusion(rhs.m_no_extrusion) {}
 | |
| 
 | |
|     ExtrusionPath& operator=(const ExtrusionPath& rhs) {
 | |
|         m_role = rhs.m_role;
 | |
|         m_no_extrusion = rhs.m_no_extrusion;
 | |
|         this->mm3_per_mm = rhs.mm3_per_mm;
 | |
|         this->width = rhs.width;
 | |
|         this->height = rhs.height;
 | |
|         this->overhang_degree = rhs.overhang_degree;
 | |
|         this->curve_degree = rhs.curve_degree;
 | |
|         this->polyline = rhs.polyline;
 | |
|         return *this;
 | |
|     }
 | |
|     ExtrusionPath& operator=(ExtrusionPath&& rhs) {
 | |
|         m_role = rhs.m_role;
 | |
|         m_no_extrusion = rhs.m_no_extrusion;
 | |
|         this->mm3_per_mm = rhs.mm3_per_mm;
 | |
|         this->width = rhs.width;
 | |
|         this->height = rhs.height;
 | |
|         this->overhang_degree = rhs.overhang_degree;
 | |
|         this->curve_degree = rhs.curve_degree;
 | |
|         this->polyline = std::move(rhs.polyline);
 | |
|         return *this;
 | |
|     }
 | |
| 
 | |
| 	ExtrusionEntity* clone() const override { return new ExtrusionPath(*this); }
 | |
|     // Create a new object, initialize it with this object using the move semantics.
 | |
| 	ExtrusionEntity* clone_move() override { return new ExtrusionPath(std::move(*this)); }
 | |
|     void reverse() override { this->polyline.reverse(); }
 | |
|     const Point& first_point() const override { return this->polyline.points.front(); }
 | |
|     const Point& last_point() const override { return this->polyline.points.back(); }
 | |
|     size_t size() const { return this->polyline.size(); }
 | |
|     bool empty() const { return this->polyline.empty(); }
 | |
|     bool is_closed() const { return ! this->empty() && this->polyline.points.front() == this->polyline.points.back(); }
 | |
|     // Produce a list of extrusion paths into retval by clipping this path by ExPolygonCollection.
 | |
|     // Currently not used.
 | |
|     void intersect_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const;
 | |
|     // Produce a list of extrusion paths into retval by removing parts of this path by ExPolygonCollection.
 | |
|     // Currently not used.
 | |
|     void subtract_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const;
 | |
|     void clip_end(double distance);
 | |
|     void simplify(double tolerance);
 | |
|     double length() const override;
 | |
|     ExtrusionRole role() const override { return m_role; }
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override;
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
 | |
|     void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override;
 | |
|     Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
 | |
|     Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
 | |
|     // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
 | |
|     double min_mm3_per_mm() const override { return this->mm3_per_mm; }
 | |
|     Polyline as_polyline() const override { return this->polyline; }
 | |
|     void   collect_polylines(Polylines &dst) const override { if (! this->polyline.empty()) dst.emplace_back(this->polyline); }
 | |
|     void   collect_points(Points &dst) const override { append(dst, this->polyline.points); }
 | |
|     double total_volume() const override { return mm3_per_mm * unscale<double>(length()); }
 | |
| 
 | |
|     void set_overhang_degree(int overhang) {
 | |
|         if (is_perimeter(m_role))
 | |
|             overhang_degree = (overhang < 0)?0:(overhang > 10 ? 10 : overhang);
 | |
|     };
 | |
|     int get_overhang_degree() const {
 | |
|         // only perimeter has overhang degree. Other return 0;
 | |
|         if (is_perimeter(m_role))
 | |
|             return overhang_degree;
 | |
|         return 0;
 | |
|     };
 | |
|     void set_curve_degree(int curve) {
 | |
|         curve_degree = (curve < 0)?0:(curve > 10 ? 10 : curve);
 | |
|     };
 | |
|     int get_curve_degree() const {
 | |
|         return curve_degree;
 | |
|     };
 | |
|     //BBS: add new simplifing method by fitting arc
 | |
|     void simplify_by_fitting_arc(double tolerance);
 | |
|     //BBS:
 | |
|     bool is_force_no_extrusion() const { return m_no_extrusion; }
 | |
| 
 | |
| private:
 | |
|     void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const;
 | |
| 
 | |
|     ExtrusionRole m_role;
 | |
|     //BBS
 | |
|     bool m_no_extrusion = false;
 | |
| };
 | |
| 
 | |
| typedef std::vector<ExtrusionPath> ExtrusionPaths;
 | |
| 
 | |
| // Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
 | |
| class ExtrusionMultiPath : public ExtrusionEntity
 | |
| {
 | |
| public:
 | |
|     ExtrusionPaths paths;
 | |
|     
 | |
|     ExtrusionMultiPath() {}
 | |
|     ExtrusionMultiPath(const ExtrusionMultiPath &rhs) : paths(rhs.paths) {}
 | |
|     ExtrusionMultiPath(ExtrusionMultiPath &&rhs) : paths(std::move(rhs.paths)) {}
 | |
|     ExtrusionMultiPath(const ExtrusionPaths &paths) : paths(paths) {}
 | |
|     ExtrusionMultiPath(const ExtrusionPath &path) { this->paths.push_back(path); }
 | |
| 
 | |
|     ExtrusionMultiPath& operator=(const ExtrusionMultiPath &rhs) { this->paths = rhs.paths; return *this; }
 | |
|     ExtrusionMultiPath& operator=(ExtrusionMultiPath &&rhs) { this->paths = std::move(rhs.paths); return *this; }
 | |
| 
 | |
|     bool is_loop() const override { return false; }
 | |
|     bool can_reverse() const override { return true; }
 | |
| 	ExtrusionEntity* clone() const override { return new ExtrusionMultiPath(*this); }
 | |
|     // Create a new object, initialize it with this object using the move semantics.
 | |
| 	ExtrusionEntity* clone_move() override { return new ExtrusionMultiPath(std::move(*this)); }
 | |
|     void reverse() override;
 | |
|     const Point& first_point() const override { return this->paths.front().polyline.points.front(); }
 | |
|     const Point& last_point() const override { return this->paths.back().polyline.points.back(); }
 | |
|     size_t size() const { return this->paths.size(); }
 | |
|     bool empty() const { return this->paths.empty(); }
 | |
|     double length() const override;
 | |
|     ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); }
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override;
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
 | |
|     void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override;
 | |
|     Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
 | |
|     Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
 | |
|     // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
 | |
|     double min_mm3_per_mm() const override;
 | |
|     Polyline as_polyline() const override;
 | |
|     void   collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); }
 | |
|     void   collect_points(Points &dst) const override { 
 | |
|         size_t n = std::accumulate(paths.begin(), paths.end(), 0, [](const size_t n, const ExtrusionPath &p){ return n + p.polyline.size(); });
 | |
|         dst.reserve(dst.size() + n);
 | |
|         for (const ExtrusionPath &p : this->paths)
 | |
|             append(dst, p.polyline.points);
 | |
|     }
 | |
|     double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
 | |
| };
 | |
| 
 | |
| // Single continuous extrusion loop, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
 | |
| class ExtrusionLoop : public ExtrusionEntity
 | |
| {
 | |
| public:
 | |
|     ExtrusionPaths paths;
 | |
|     
 | |
|     ExtrusionLoop(ExtrusionLoopRole role = elrDefault) : m_loop_role(role) {}
 | |
|     ExtrusionLoop(const ExtrusionPaths &paths, ExtrusionLoopRole role = elrDefault) : paths(paths), m_loop_role(role) {}
 | |
|     ExtrusionLoop(ExtrusionPaths &&paths, ExtrusionLoopRole role = elrDefault) : paths(std::move(paths)), m_loop_role(role) {}
 | |
|     ExtrusionLoop(const ExtrusionPath &path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role) 
 | |
|         { this->paths.push_back(path); }
 | |
|     ExtrusionLoop(const ExtrusionPath &&path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role)
 | |
|         { this->paths.emplace_back(std::move(path)); }
 | |
|     bool is_loop() const override{ return true; }
 | |
|     bool can_reverse() const override { return false; }
 | |
| 	ExtrusionEntity* clone() const override{ return new ExtrusionLoop (*this); }
 | |
|     // Create a new object, initialize it with this object using the move semantics.
 | |
| 	ExtrusionEntity* clone_move() override { return new ExtrusionLoop(std::move(*this)); }
 | |
|     bool make_clockwise();
 | |
|     bool make_counter_clockwise();
 | |
|     bool is_clockwise() { return this->polygon().is_clockwise(); }
 | |
|     bool is_counter_clockwise() { return this->polygon().is_counter_clockwise(); }
 | |
|     void reverse() override;
 | |
|     const Point& first_point() const override { return this->paths.front().polyline.points.front(); }
 | |
|     const Point& last_point() const override { assert(this->first_point() == this->paths.back().polyline.points.back()); return this->first_point(); }
 | |
|     Polygon polygon() const;
 | |
|     double length() const override;
 | |
|     bool split_at_vertex(const Point &point, const double scaled_epsilon = scaled<double>(0.001));
 | |
|     void split_at(const Point &point, bool prefer_non_overhang, const double scaled_epsilon = scaled<double>(0.001));
 | |
|     struct ClosestPathPoint
 | |
|     {
 | |
|         size_t path_idx;
 | |
|         size_t segment_idx;
 | |
|         Point  foot_pt;
 | |
|     };
 | |
|     ClosestPathPoint         get_closest_path_and_point(const Point &point, bool prefer_non_overhang) const;
 | |
|     void clip_end(double distance, ExtrusionPaths* paths) const;
 | |
|     // Test, whether the point is extruded by a bridging flow.
 | |
|     // This used to be used to avoid placing seams on overhangs, but now the EdgeGrid is used instead.
 | |
|     bool has_overhang_point(const Point &point) const;
 | |
|     ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); }
 | |
|     ExtrusionLoopRole loop_role() const { return m_loop_role; }
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override;
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
 | |
|     void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const  override;
 | |
|     Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
 | |
|     Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
 | |
|     // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
 | |
|     double min_mm3_per_mm() const override;
 | |
|     Polyline as_polyline() const override { return this->polygon().split_at_first_point(); }
 | |
|     void   collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); }
 | |
|     void   collect_points(Points &dst) const override { 
 | |
|         size_t n = std::accumulate(paths.begin(), paths.end(), 0, [](const size_t n, const ExtrusionPath &p){ return n + p.polyline.size(); });
 | |
|         dst.reserve(dst.size() + n);
 | |
|         for (const ExtrusionPath &p : this->paths)
 | |
|             append(dst, p.polyline.points);
 | |
|     }
 | |
|     double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
 | |
| 
 | |
|     //static inline std::string role_to_string(ExtrusionLoopRole role);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| 	bool validate() const {
 | |
| 		assert(this->first_point() == this->paths.back().polyline.points.back());
 | |
| 		for (size_t i = 1; i < paths.size(); ++ i)
 | |
| 			assert(this->paths[i - 1].polyline.points.back() == this->paths[i].polyline.points.front());
 | |
| 		return true;
 | |
| 	}
 | |
| #endif /* NDEBUG */
 | |
| 
 | |
| private:
 | |
|     ExtrusionLoopRole m_loop_role;
 | |
| };
 | |
| 
 | |
| inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
 | |
| {
 | |
|     dst.reserve(dst.size() + polylines.size());
 | |
|     for (Polyline &polyline : polylines)
 | |
|         if (polyline.is_valid()) {
 | |
|             dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
 | |
|             dst.back().polyline = polyline;
 | |
|         }
 | |
| }
 | |
| 
 | |
| inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &polylines, int overhang_degree, int curva_degree, ExtrusionRole role, double mm3_per_mm, float width, float height)
 | |
| {
 | |
|     dst.reserve(dst.size() + polylines.size());
 | |
|     for (Polyline &polyline : polylines)
 | |
|         if (polyline.is_valid()) {
 | |
|             dst.push_back(ExtrusionPath(overhang_degree, curva_degree, role, mm3_per_mm, width, height));
 | |
|             dst.back().polyline = polyline;
 | |
|         }
 | |
| }
 | |
| 
 | |
| inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
 | |
| {
 | |
|     dst.reserve(dst.size() + polylines.size());
 | |
|     for (Polyline &polyline : polylines)
 | |
|         if (polyline.is_valid()) {
 | |
|             dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
 | |
|             dst.back().polyline = std::move(polyline);
 | |
|         }
 | |
|     polylines.clear();
 | |
| }
 | |
| 
 | |
| inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &&polylines, int overhang_degree, int curva_degree, ExtrusionRole role, double mm3_per_mm, float width, float height)
 | |
| {
 | |
|     dst.reserve(dst.size() + polylines.size());
 | |
|     for (Polyline &polyline : polylines)
 | |
|         if (polyline.is_valid()) {
 | |
|             dst.push_back(ExtrusionPath(overhang_degree, curva_degree, role, mm3_per_mm, width, height));
 | |
|             dst.back().polyline = std::move(polyline);
 | |
|         }
 | |
|     polylines.clear();
 | |
| }
 | |
| 
 | |
| inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
 | |
| {
 | |
|     dst.reserve(dst.size() + polylines.size());
 | |
|     for (Polyline &polyline : polylines)
 | |
|         if (polyline.is_valid()) {
 | |
|             ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
 | |
|             dst.push_back(extrusion_path);
 | |
|             extrusion_path->polyline = polyline;
 | |
|         }
 | |
| }
 | |
| 
 | |
| inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
 | |
| {
 | |
|     dst.reserve(dst.size() + polylines.size());
 | |
|     for (Polyline &polyline : polylines)
 | |
|         if (polyline.is_valid()) {
 | |
|             ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
 | |
|             dst.push_back(extrusion_path);
 | |
|             extrusion_path->polyline = std::move(polyline);
 | |
|         }
 | |
|     polylines.clear();
 | |
| }
 | |
| 
 | |
| //BBS: a kind of special extrusion path has start and end wiping for half spacing
 | |
| inline void extrusion_entities_append_paths_with_wipe(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
 | |
| {
 | |
|     dst.reserve(dst.size() + polylines.size());
 | |
|     Point new_start, new_end, last_end_point;
 | |
|     bool last_end_point_valid = false;
 | |
|     Vec2d temp;
 | |
|     ExtrusionMultiPath* multi_path = new ExtrusionMultiPath();
 | |
|     for (Polyline& polyline : polylines) {
 | |
|         if (polyline.is_valid()) {
 | |
| 
 | |
|             if (last_end_point_valid) {
 | |
|                 Point temp = polyline.first_point() - last_end_point;
 | |
|                 if (Vec2d(temp.x(), temp.y()).norm() <= 3 * scaled(width)) {
 | |
|                     multi_path->paths.push_back(ExtrusionPath(role, mm3_per_mm, width, height, true));
 | |
|                     multi_path->paths.back().polyline = std::move(Polyline(last_end_point, polyline.first_point()));
 | |
|                 } else {
 | |
|                     dst.push_back(multi_path);
 | |
|                     multi_path = new ExtrusionMultiPath();
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             multi_path->paths.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
 | |
|             multi_path->paths.back().polyline = std::move(polyline);
 | |
|             last_end_point_valid = true;
 | |
|             last_end_point = multi_path->paths.back().polyline.last_point();
 | |
|         }
 | |
|     }
 | |
|     if (!multi_path->empty())
 | |
|         dst.push_back(multi_path);
 | |
|     polylines.clear();
 | |
|     dst.shrink_to_fit();
 | |
| }
 | |
| 
 | |
| inline void extrusion_entities_append_loops(ExtrusionEntitiesPtr &dst, Polygons &&loops, ExtrusionRole role, double mm3_per_mm, float width, float height)
 | |
| {
 | |
|     dst.reserve(dst.size() + loops.size());
 | |
|     for (Polygon &poly : loops) {
 | |
|         if (poly.is_valid()) {
 | |
|             ExtrusionPath path(role, mm3_per_mm, width, height);
 | |
|             path.polyline.points = std::move(poly.points);
 | |
|             path.polyline.points.push_back(path.polyline.points.front());
 | |
|             dst.emplace_back(new ExtrusionLoop(std::move(path)));
 | |
|         }
 | |
|     }
 | |
|     loops.clear();
 | |
| }
 | |
| 
 | |
| inline void extrusion_entities_append_loops_and_paths(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
 | |
| {
 | |
|     dst.reserve(dst.size() + polylines.size());
 | |
|     for (Polyline &polyline : polylines) {
 | |
|         if (polyline.is_valid()) {
 | |
|             if (polyline.is_closed()) {
 | |
|                 ExtrusionPath extrusion_path(role, mm3_per_mm, width, height);
 | |
|                 extrusion_path.polyline = std::move(polyline);
 | |
|                 dst.emplace_back(new ExtrusionLoop(std::move(extrusion_path)));
 | |
|             } else {
 | |
|                 ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
 | |
|                 extrusion_path->polyline      = std::move(polyline);
 | |
|                 dst.emplace_back(extrusion_path);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     polylines.clear();
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 |