mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			264 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			264 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef slic3r_TriangleMesh_hpp_
 | |
| #define slic3r_TriangleMesh_hpp_
 | |
| 
 | |
| #include "libslic3r.h"
 | |
| #include <admesh/stl.h>
 | |
| #include <functional>
 | |
| #include <vector>
 | |
| #include <boost/thread.hpp>
 | |
| #include "BoundingBox.hpp"
 | |
| #include "Line.hpp"
 | |
| #include "Point.hpp"
 | |
| #include "Polygon.hpp"
 | |
| #include "ExPolygon.hpp"
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| class TriangleMesh;
 | |
| class TriangleMeshSlicer;
 | |
| typedef std::vector<TriangleMesh*> TriangleMeshPtrs;
 | |
| 
 | |
| class TriangleMesh
 | |
| {
 | |
| public:
 | |
|     TriangleMesh() : repaired(false) {}
 | |
|     TriangleMesh(const Pointf3s &points, const std::vector<Vec3i> &facets);
 | |
|     explicit TriangleMesh(const indexed_triangle_set &M);
 | |
| 	void clear() { this->stl.clear(); this->its.clear(); this->repaired = false; }
 | |
|     bool ReadSTLFile(const char* input_file) { return stl_open(&stl, input_file); }
 | |
|     bool write_ascii(const char* output_file) { return stl_write_ascii(&this->stl, output_file, ""); }
 | |
|     bool write_binary(const char* output_file) { return stl_write_binary(&this->stl, output_file, ""); }
 | |
|     void repair(bool update_shared_vertices = true);
 | |
|     float volume();
 | |
|     void check_topology();
 | |
|     bool is_manifold() const { return this->stl.stats.connected_facets_3_edge == (int)this->stl.stats.number_of_facets; }
 | |
|     void WriteOBJFile(const char* output_file) const;
 | |
|     void scale(float factor);
 | |
|     void scale(const Vec3d &versor);
 | |
|     void translate(float x, float y, float z);
 | |
|     void translate(const Vec3f &displacement);
 | |
|     void rotate(float angle, const Axis &axis);
 | |
|     void rotate(float angle, const Vec3d& axis);
 | |
|     void rotate_x(float angle) { this->rotate(angle, X); }
 | |
|     void rotate_y(float angle) { this->rotate(angle, Y); }
 | |
|     void rotate_z(float angle) { this->rotate(angle, Z); }
 | |
|     void mirror(const Axis &axis);
 | |
|     void mirror_x() { this->mirror(X); }
 | |
|     void mirror_y() { this->mirror(Y); }
 | |
|     void mirror_z() { this->mirror(Z); }
 | |
|     void transform(const Transform3d& t, bool fix_left_handed = false);
 | |
| 	void transform(const Matrix3d& t, bool fix_left_handed = false);
 | |
|     void align_to_origin();
 | |
|     void rotate(double angle, Point* center);
 | |
|     TriangleMeshPtrs split() const;
 | |
|     void merge(const TriangleMesh &mesh);
 | |
|     ExPolygons horizontal_projection() const;
 | |
|     const float* first_vertex() const { return this->stl.facet_start.empty() ? nullptr : &this->stl.facet_start.front().vertex[0](0); }
 | |
|     // 2D convex hull of a 3D mesh projected into the Z=0 plane.
 | |
|     Polygon convex_hull();
 | |
|     BoundingBoxf3 bounding_box() const;
 | |
|     // Returns the bbox of this TriangleMesh transformed by the given transformation
 | |
|     BoundingBoxf3 transformed_bounding_box(const Transform3d &trafo) const;
 | |
|     // Return the size of the mesh in coordinates.
 | |
|     Vec3d size() const { return stl.stats.size.cast<double>(); }
 | |
|     /// Return the center of the related bounding box.
 | |
| 	Vec3d center() const { return this->bounding_box().center(); }
 | |
|     // Returns the convex hull of this TriangleMesh
 | |
|     TriangleMesh convex_hull_3d() const;
 | |
|     // Slice this mesh at the provided Z levels and return the vector
 | |
|     std::vector<ExPolygons> slice(const std::vector<double>& z);
 | |
|     void reset_repair_stats();
 | |
|     bool needed_repair() const;
 | |
|     void require_shared_vertices();
 | |
|     bool   has_shared_vertices() const { return ! this->its.vertices.empty(); }
 | |
|     size_t facets_count() const { return this->stl.stats.number_of_facets; }
 | |
|     bool   empty() const { return this->facets_count() == 0; }
 | |
|     bool is_splittable() const;
 | |
|     // Estimate of the memory occupied by this structure, important for keeping an eye on the Undo / Redo stack allocation.
 | |
|     size_t memsize() const;
 | |
|     // Release optional data from the mesh if the object is on the Undo / Redo stack only. Returns the amount of memory released.
 | |
|     size_t release_optional();
 | |
| 	// Restore optional data possibly released by release_optional().
 | |
| 	void restore_optional();
 | |
| 
 | |
|     stl_file stl;
 | |
|     indexed_triangle_set its;
 | |
|     bool repaired;
 | |
| 
 | |
| private:
 | |
|     std::deque<uint32_t> find_unvisited_neighbors(std::vector<unsigned char> &facet_visited) const;
 | |
| };
 | |
| 
 | |
| enum FacetEdgeType { 
 | |
|     // A general case, the cutting plane intersect a face at two different edges.
 | |
|     feGeneral,
 | |
|     // Two vertices are aligned with the cutting plane, the third vertex is below the cutting plane.
 | |
|     feTop,
 | |
|     // Two vertices are aligned with the cutting plane, the third vertex is above the cutting plane.
 | |
|     feBottom,
 | |
|     // All three vertices of a face are aligned with the cutting plane.
 | |
|     feHorizontal
 | |
| };
 | |
| 
 | |
| class IntersectionReference
 | |
| {
 | |
| public:
 | |
|     IntersectionReference() : point_id(-1), edge_id(-1) {};
 | |
|     IntersectionReference(int point_id, int edge_id) : point_id(point_id), edge_id(edge_id) {}
 | |
|     // Where is this intersection point located? On mesh vertex or mesh edge?
 | |
|     // Only one of the following will be set, the other will remain set to -1.
 | |
|     // Index of the mesh vertex.
 | |
|     int point_id;
 | |
|     // Index of the mesh edge.
 | |
|     int edge_id;
 | |
| };
 | |
| 
 | |
| class IntersectionPoint : public Point, public IntersectionReference
 | |
| {
 | |
| public:
 | |
|     IntersectionPoint() {};
 | |
|     IntersectionPoint(int point_id, int edge_id, const Point &pt) : IntersectionReference(point_id, edge_id), Point(pt) {}
 | |
|     IntersectionPoint(const IntersectionReference &ir, const Point &pt) : IntersectionReference(ir), Point(pt) {}
 | |
|     // Inherits coord_t x, y
 | |
| };
 | |
| 
 | |
| class IntersectionLine : public Line
 | |
| {
 | |
| public:
 | |
|     IntersectionLine() : a_id(-1), b_id(-1), edge_a_id(-1), edge_b_id(-1), edge_type(feGeneral), flags(0) {}
 | |
| 
 | |
|     bool skip() const { return (this->flags & SKIP) != 0; }
 | |
|     void set_skip() { this->flags |= SKIP; }
 | |
| 
 | |
|     bool is_seed_candidate() const { return (this->flags & NO_SEED) == 0 && ! this->skip(); }
 | |
|     void set_no_seed(bool set) { if (set) this->flags |= NO_SEED; else this->flags &= ~NO_SEED; }
 | |
|     
 | |
|     // Inherits Point a, b
 | |
|     // For each line end point, either {a,b}_id or {a,b}edge_a_id is set, the other is left to -1.
 | |
|     // Vertex indices of the line end points.
 | |
|     int             a_id;
 | |
|     int             b_id;
 | |
|     // Source mesh edges of the line end points.
 | |
|     int             edge_a_id;
 | |
|     int             edge_b_id;
 | |
|     // feGeneral, feTop, feBottom, feHorizontal
 | |
|     FacetEdgeType   edge_type;
 | |
|     // Used by TriangleMeshSlicer::slice() to skip duplicate edges.
 | |
|     enum {
 | |
|         // Triangle edge added, because it has no neighbor.
 | |
|         EDGE0_NO_NEIGHBOR   = 0x001,
 | |
|         EDGE1_NO_NEIGHBOR   = 0x002,
 | |
|         EDGE2_NO_NEIGHBOR   = 0x004,
 | |
|         // Triangle edge added, because it makes a fold with another horizontal edge.
 | |
|         EDGE0_FOLD          = 0x010,
 | |
|         EDGE1_FOLD          = 0x020,
 | |
|         EDGE2_FOLD          = 0x040,
 | |
|         // The edge cannot be a seed of a greedy loop extraction (folds are not safe to become seeds).
 | |
|         NO_SEED             = 0x100,
 | |
|         SKIP                = 0x200,
 | |
|     };
 | |
|     uint32_t        flags;
 | |
| };
 | |
| typedef std::vector<IntersectionLine> IntersectionLines;
 | |
| typedef std::vector<IntersectionLine*> IntersectionLinePtrs;
 | |
| 
 | |
| enum class SlicingMode : uint32_t {
 | |
| 	// Regular slicing, maintain all contours and their orientation.
 | |
| 	Regular,
 | |
| 	// Maintain all contours, orient all contours CCW, therefore all holes are being closed.
 | |
| 	Positive,
 | |
| 	// Orient all contours CCW and keep only the contour with the largest area.
 | |
| 	// This mode is useful for slicing complex objects in vase mode.
 | |
| 	PositiveLargestContour,
 | |
| };
 | |
| 
 | |
| class TriangleMeshSlicer
 | |
| {
 | |
| public:
 | |
|     typedef std::function<void()> throw_on_cancel_callback_type;
 | |
|     TriangleMeshSlicer() : mesh(nullptr) {}
 | |
| 	TriangleMeshSlicer(const TriangleMesh* mesh) { this->init(mesh, [](){}); }
 | |
|     void init(const TriangleMesh *mesh, throw_on_cancel_callback_type throw_on_cancel);
 | |
|     void slice(const std::vector<float> &z, SlicingMode mode, std::vector<Polygons>* layers, throw_on_cancel_callback_type throw_on_cancel) const;
 | |
|     void slice(const std::vector<float> &z, SlicingMode mode, const float closing_radius, std::vector<ExPolygons>* layers, throw_on_cancel_callback_type throw_on_cancel) const;
 | |
|     enum FacetSliceType {
 | |
|         NoSlice = 0,
 | |
|         Slicing = 1,
 | |
|         Cutting = 2
 | |
|     };
 | |
|     FacetSliceType slice_facet(float slice_z, const stl_facet &facet, const int facet_idx,
 | |
|         const float min_z, const float max_z, IntersectionLine *line_out) const;
 | |
|     void cut(float z, TriangleMesh* upper, TriangleMesh* lower) const;
 | |
|     void set_up_direction(const Vec3f& up);
 | |
|     
 | |
| private:
 | |
|     const TriangleMesh      *mesh;
 | |
|     // Map from a facet to an edge index.
 | |
|     std::vector<int>         facets_edges;
 | |
|     // Scaled copy of this->mesh->stl.v_shared
 | |
|     std::vector<stl_vertex>  v_scaled_shared;
 | |
|     // Quaternion that will be used to rotate every facet before the slicing
 | |
|     Eigen::Quaternion<float, Eigen::DontAlign> m_quaternion;
 | |
|     // Whether or not the above quaterion should be used
 | |
|     bool                     m_use_quaternion = false;
 | |
| 
 | |
|     void _slice_do(size_t facet_idx, std::vector<IntersectionLines>* lines, boost::mutex* lines_mutex, const std::vector<float> &z) const;
 | |
|     void make_loops(std::vector<IntersectionLine> &lines, Polygons* loops) const;
 | |
|     void make_expolygons(const Polygons &loops, const float closing_radius, ExPolygons* slices) const;
 | |
|     void make_expolygons_simple(std::vector<IntersectionLine> &lines, ExPolygons* slices) const;
 | |
|     void make_expolygons(std::vector<IntersectionLine> &lines, const float closing_radius, ExPolygons* slices) const;
 | |
| };
 | |
| 
 | |
| inline void slice_mesh(
 | |
|     const TriangleMesh &                              mesh,
 | |
|     const std::vector<float> &                        z,
 | |
|     std::vector<Polygons> &                           layers,
 | |
|     TriangleMeshSlicer::throw_on_cancel_callback_type thr = nullptr)
 | |
| {
 | |
|     if (mesh.empty()) return;
 | |
|     TriangleMeshSlicer slicer(&mesh);
 | |
|     slicer.slice(z, SlicingMode::Regular, &layers, thr);
 | |
| }
 | |
| 
 | |
| inline void slice_mesh(
 | |
|     const TriangleMesh &                              mesh,
 | |
|     const std::vector<float> &                        z,
 | |
|     std::vector<ExPolygons> &                         layers,
 | |
|     float                                             closing_radius,
 | |
|     TriangleMeshSlicer::throw_on_cancel_callback_type thr = nullptr)
 | |
| {
 | |
|     if (mesh.empty()) return;
 | |
|     TriangleMeshSlicer slicer(&mesh);
 | |
|     slicer.slice(z, SlicingMode::Regular, closing_radius, &layers, thr);
 | |
| }
 | |
| 
 | |
| TriangleMesh make_cube(double x, double y, double z);
 | |
| 
 | |
| // Generate a TriangleMesh of a cylinder
 | |
| TriangleMesh make_cylinder(double r, double h, double fa=(2*PI/360));
 | |
| 
 | |
| TriangleMesh make_sphere(double rho, double fa=(2*PI/360));
 | |
| 
 | |
| }
 | |
| 
 | |
| // Serialization through the Cereal library
 | |
| #include <cereal/access.hpp>
 | |
| namespace cereal {
 | |
| 	template <class Archive> struct specialize<Archive, Slic3r::TriangleMesh, cereal::specialization::non_member_load_save> {};
 | |
| 	template<class Archive> void load(Archive &archive, Slic3r::TriangleMesh &mesh) {
 | |
|         stl_file &stl = mesh.stl;
 | |
|         stl.stats.type = inmemory;
 | |
| 		archive(stl.stats.number_of_facets, stl.stats.original_num_facets);
 | |
|         stl_allocate(&stl);
 | |
| 		archive.loadBinary((char*)stl.facet_start.data(), stl.facet_start.size() * 50);
 | |
|         stl_get_size(&stl);
 | |
|         mesh.repair();
 | |
| 	}
 | |
| 	template<class Archive> void save(Archive &archive, const Slic3r::TriangleMesh &mesh) {
 | |
| 		const stl_file& stl = mesh.stl;
 | |
| 		archive(stl.stats.number_of_facets, stl.stats.original_num_facets);
 | |
| 		archive.saveBinary((char*)stl.facet_start.data(), stl.facet_start.size() * 50);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif
 | 
