mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-11-02 20:51:23 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			362 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			362 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "BoundingBox.hpp"
 | 
						|
#include "MotionPlanner.hpp"
 | 
						|
#include "MutablePriorityQueue.hpp"
 | 
						|
#include "Utils.hpp"
 | 
						|
 | 
						|
#include <limits> // for numeric_limits
 | 
						|
#include <assert.h>
 | 
						|
 | 
						|
#include "boost/polygon/voronoi.hpp"
 | 
						|
using boost::polygon::voronoi_builder;
 | 
						|
using boost::polygon::voronoi_diagram;
 | 
						|
 | 
						|
namespace Slic3r {
 | 
						|
 | 
						|
MotionPlanner::MotionPlanner(const ExPolygons &islands) : m_initialized(false)
 | 
						|
{
 | 
						|
    ExPolygons expp;
 | 
						|
    for (const ExPolygon &island : islands) {
 | 
						|
        island.simplify(SCALED_EPSILON, &expp);
 | 
						|
        for (ExPolygon &island : expp)
 | 
						|
            m_islands.emplace_back(MotionPlannerEnv(island));
 | 
						|
        expp.clear();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void MotionPlanner::initialize()
 | 
						|
{
 | 
						|
    // prevent initialization of empty BoundingBox
 | 
						|
    if (m_initialized || m_islands.empty())
 | 
						|
        return;
 | 
						|
 | 
						|
    // loop through islands in order to create inner expolygons and collect their contours.
 | 
						|
    Polygons outer_holes;
 | 
						|
    for (MotionPlannerEnv &island : m_islands) {
 | 
						|
        // Generate the internal env boundaries by shrinking the island
 | 
						|
        // we'll use these inner rings for motion planning (endpoints of the Voronoi-based
 | 
						|
        // graph, visibility check) in order to avoid moving too close to the boundaries.
 | 
						|
        island.m_env = ExPolygonCollection(offset_ex(island.m_island, -MP_INNER_MARGIN));
 | 
						|
        // Island contours are holes of our external environment.
 | 
						|
        outer_holes.push_back(island.m_island.contour);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Generate a box contour around everyting.
 | 
						|
    Polygons contour = offset(get_extents(outer_holes).polygon(), +MP_OUTER_MARGIN*2);
 | 
						|
    assert(contour.size() == 1);
 | 
						|
    // make expolygon for outer environment
 | 
						|
    ExPolygons outer = diff_ex(contour, outer_holes);
 | 
						|
    assert(outer.size() == 1);
 | 
						|
    // If some of the islands are nested, then the 0th contour is the outer contour due to the order of conversion
 | 
						|
    // from Clipper data structure into the Slic3r expolygons inside diff_ex().
 | 
						|
    m_outer = MotionPlannerEnv(outer.front());
 | 
						|
    m_outer.m_env = ExPolygonCollection(diff_ex(contour, offset(outer_holes, +MP_OUTER_MARGIN)));
 | 
						|
    m_graphs.resize(m_islands.size() + 1);
 | 
						|
    m_initialized = true;
 | 
						|
}
 | 
						|
 | 
						|
Polyline MotionPlanner::shortest_path(const Point &from, const Point &to)
 | 
						|
{
 | 
						|
    // If we have an empty configuration space, return a straight move.
 | 
						|
    if (m_islands.empty())
 | 
						|
        return Polyline(from, to);
 | 
						|
    
 | 
						|
    // Are both points in the same island?
 | 
						|
    int island_idx_from = -1;
 | 
						|
    int island_idx_to   = -1;
 | 
						|
    int island_idx      = -1;
 | 
						|
    for (MotionPlannerEnv &island : m_islands) {
 | 
						|
        int idx = &island - m_islands.data();
 | 
						|
        if (island.island_contains(from))
 | 
						|
            island_idx_from = idx;
 | 
						|
        if (island.island_contains(to))
 | 
						|
            island_idx_to   = idx;
 | 
						|
        if (island_idx_from == idx && island_idx_to == idx) {
 | 
						|
            // Since both points are in the same island, is a direct move possible?
 | 
						|
            // If so, we avoid generating the visibility environment.
 | 
						|
            if (island.m_island.contains(Line(from, to)))
 | 
						|
                return Polyline(from, to);
 | 
						|
            // Both points are inside a single island, but the straight line crosses the island boundary.
 | 
						|
            island_idx = idx;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // lazy generation of configuration space.
 | 
						|
    this->initialize();
 | 
						|
 | 
						|
    // Get environment. If the from / to points do not share an island, then they cross an open space,
 | 
						|
    // therefore island_idx == -1 and env will be set to the environment of the empty space.
 | 
						|
    const MotionPlannerEnv &env = this->get_env(island_idx);
 | 
						|
    if (env.m_env.expolygons.empty()) {
 | 
						|
        // if this environment is empty (probably because it's too small), perform straight move
 | 
						|
        // and avoid running the algorithms on empty dataset
 | 
						|
        return Polyline(from, to);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Now check whether points are inside the environment.
 | 
						|
    Point inner_from = from;
 | 
						|
    Point inner_to   = to;
 | 
						|
    
 | 
						|
    if (island_idx == -1) {
 | 
						|
        // The end points do not share the same island. In that case some of the travel
 | 
						|
        // will be likely performed inside the empty space.
 | 
						|
        // TODO: instead of using the nearest_env_point() logic, we should
 | 
						|
        // create a temporary graph where we connect 'from' and 'to' to the
 | 
						|
        // nodes which don't require more than one crossing, and let Dijkstra
 | 
						|
        // figure out the entire path - this should also replace the call to
 | 
						|
        // find_node() below
 | 
						|
        if (island_idx_from != -1)
 | 
						|
            // The start point is inside some island. Find the closest point at the empty space to start from.
 | 
						|
            inner_from = env.nearest_env_point(from, to);
 | 
						|
        if (island_idx_to != -1)
 | 
						|
            // The start point is inside some island. Find the closest point at the empty space to start from.
 | 
						|
            inner_to = env.nearest_env_point(to, inner_from);
 | 
						|
    }
 | 
						|
 | 
						|
    // Perform a path search either in the open space, or in a common island of from/to.
 | 
						|
    const MotionPlannerGraph &graph = this->init_graph(island_idx);
 | 
						|
    // If no path exists without crossing perimeters, returns a straight segment.
 | 
						|
    Polyline polyline = graph.shortest_path(inner_from, inner_to);
 | 
						|
    polyline.points.insert(polyline.points.begin(), from);
 | 
						|
    polyline.points.emplace_back(to);
 | 
						|
    
 | 
						|
    {
 | 
						|
        // grow our environment slightly in order for simplify_by_visibility()
 | 
						|
        // to work best by considering moves on boundaries valid as well
 | 
						|
        ExPolygonCollection grown_env(offset_ex(env.m_env.expolygons, float(+SCALED_EPSILON)));
 | 
						|
        
 | 
						|
        if (island_idx == -1) {
 | 
						|
            /*  If 'from' or 'to' are not inside our env, they were connected using the 
 | 
						|
                nearest_env_point() search which maybe produce ugly paths since it does not
 | 
						|
                include the endpoint in the Dijkstra search; the simplify_by_visibility() 
 | 
						|
                call below will not work in many cases where the endpoint is not contained in
 | 
						|
                grown_env (whose contour was arbitrarily constructed with MP_OUTER_MARGIN,
 | 
						|
                which may not be enough for, say, including a skirt point). So we prune
 | 
						|
                the extra points manually. */
 | 
						|
            if (! grown_env.contains(from)) {
 | 
						|
                // delete second point while the line connecting first to third crosses the
 | 
						|
                // boundaries as many times as the current first to second
 | 
						|
                while (polyline.points.size() > 2 && intersection_ln(Line(from, polyline.points[2]), grown_env).size() == 1)
 | 
						|
                    polyline.points.erase(polyline.points.begin() + 1);
 | 
						|
            }
 | 
						|
            if (! grown_env.contains(to))
 | 
						|
                while (polyline.points.size() > 2 && intersection_ln(Line(*(polyline.points.end() - 3), to), grown_env).size() == 1)
 | 
						|
                    polyline.points.erase(polyline.points.end() - 2);
 | 
						|
        }
 | 
						|
 | 
						|
        // Perform some quick simplification (simplify_by_visibility() would make this
 | 
						|
        // unnecessary, but this is much faster)
 | 
						|
        polyline.simplify(MP_INNER_MARGIN/10);
 | 
						|
        
 | 
						|
        // remove unnecessary vertices
 | 
						|
        // Note: this is computationally intensive and does not look very necessary
 | 
						|
        // now that we prune the endpoints with the logic above,
 | 
						|
        // so we comment it for now until a good test case arises
 | 
						|
        //polyline.simplify_by_visibility(grown_env);
 | 
						|
    
 | 
						|
        /*
 | 
						|
        SVG svg("shortest_path.svg");
 | 
						|
        svg.draw(grown_env.expolygons);
 | 
						|
        svg.arrows = false;
 | 
						|
        for (MotionPlannerGraph::adjacency_list_t::const_iterator it = graph->adjacency_list.begin(); it != graph->adjacency_list.end(); ++it) {
 | 
						|
            Point a = graph->nodes[it - graph->adjacency_list.begin()];
 | 
						|
            for (std::vector<MotionPlannerGraph::Neighbor>::const_iterator n = it->begin(); n != it->end(); ++n) {
 | 
						|
                Point b = graph->nodes[n->target];
 | 
						|
                svg.draw(Line(a, b));
 | 
						|
            }
 | 
						|
        }
 | 
						|
        svg.arrows = true;
 | 
						|
        svg.draw(from);
 | 
						|
        svg.draw(inner_from, "red");
 | 
						|
        svg.draw(to);
 | 
						|
        svg.draw(inner_to, "red");
 | 
						|
        svg.draw(polyline, "red");
 | 
						|
        svg.Close();
 | 
						|
        */
 | 
						|
    }
 | 
						|
    
 | 
						|
    return polyline;
 | 
						|
}
 | 
						|
 | 
						|
const MotionPlannerGraph& MotionPlanner::init_graph(int island_idx)
 | 
						|
{
 | 
						|
    // 0th graph is the graph for m_outer. Other graphs are 1 indexed.
 | 
						|
    MotionPlannerGraph *graph = m_graphs[island_idx + 1].get();
 | 
						|
    if (graph == nullptr) {
 | 
						|
        // If this graph doesn't exist, initialize it.
 | 
						|
        m_graphs[island_idx + 1] = make_unique<MotionPlannerGraph>();
 | 
						|
        graph = m_graphs[island_idx + 1].get();
 | 
						|
        
 | 
						|
        /*  We don't add polygon boundaries as graph edges, because we'd need to connect
 | 
						|
            them to the Voronoi-generated edges by recognizing coinciding nodes. */
 | 
						|
        
 | 
						|
        typedef voronoi_diagram<double> VD;
 | 
						|
        VD vd;
 | 
						|
        // Mapping between Voronoi vertices and graph nodes.
 | 
						|
        std::map<const VD::vertex_type*, size_t> vd_vertices;
 | 
						|
        // get boundaries as lines
 | 
						|
        const MotionPlannerEnv &env = this->get_env(island_idx);
 | 
						|
        Lines lines = env.m_env.lines();
 | 
						|
        boost::polygon::construct_voronoi(lines.begin(), lines.end(), &vd);
 | 
						|
        // traverse the Voronoi diagram and generate graph nodes and edges
 | 
						|
        for (const VD::edge_type &edge : vd.edges()) {
 | 
						|
            if (edge.is_infinite())
 | 
						|
                continue;
 | 
						|
            const VD::vertex_type* v0 = edge.vertex0();
 | 
						|
            const VD::vertex_type* v1 = edge.vertex1();
 | 
						|
            Point p0(v0->x(), v0->y());
 | 
						|
            Point p1(v1->x(), v1->y());
 | 
						|
            // Insert only Voronoi edges fully contained in the island.
 | 
						|
            //FIXME This test has a terrible O(n^2) time complexity.
 | 
						|
            if (env.island_contains_b(p0) && env.island_contains_b(p1)) {
 | 
						|
                // Find v0 in the graph, allocate a new node if v0 does not exist in the graph yet.
 | 
						|
                auto i_v0 = vd_vertices.find(v0);
 | 
						|
                size_t v0_idx;
 | 
						|
                if (i_v0 == vd_vertices.end())
 | 
						|
                    vd_vertices[v0] = v0_idx = graph->add_node(p0);
 | 
						|
                else
 | 
						|
                    v0_idx = i_v0->second;
 | 
						|
                // Find v1 in the graph, allocate a new node if v0 does not exist in the graph yet.
 | 
						|
                auto i_v1 = vd_vertices.find(v1);
 | 
						|
                size_t v1_idx;
 | 
						|
                if (i_v1 == vd_vertices.end())
 | 
						|
                    vd_vertices[v1] = v1_idx = graph->add_node(p1);
 | 
						|
                else
 | 
						|
                    v1_idx = i_v1->second;
 | 
						|
                // Euclidean distance is used as weight for the graph edge
 | 
						|
                graph->add_edge(v0_idx, v1_idx, (p1 - p0).cast<double>().norm());
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return *graph;
 | 
						|
}
 | 
						|
 | 
						|
// Find a middle point on the path from start_point to end_point with the shortest path.
 | 
						|
static inline size_t nearest_waypoint_index(const Point &start_point, const Points &middle_points, const Point &end_point)
 | 
						|
{
 | 
						|
    size_t idx = size_t(-1);
 | 
						|
    double dmin = std::numeric_limits<double>::infinity();
 | 
						|
    for (const Point &p : middle_points) {
 | 
						|
        double d = (p - start_point).cast<double>().norm() + (end_point - p).cast<double>().norm();
 | 
						|
        if (d < dmin) {
 | 
						|
            idx  = &p - middle_points.data();
 | 
						|
            dmin = d;
 | 
						|
            if (dmin < EPSILON)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return idx;
 | 
						|
}
 | 
						|
 | 
						|
Point MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) const
 | 
						|
{
 | 
						|
    /*  In order to ensure that the move between 'from' and the initial env point does
 | 
						|
        not violate any of the configuration space boundaries, we limit our search to
 | 
						|
        the points that satisfy this condition. */
 | 
						|
    
 | 
						|
    /*  Assume that this method is never called when 'env' contains 'from';
 | 
						|
        so 'from' is either inside a hole or outside all contours */
 | 
						|
    
 | 
						|
    // get the points of the hole containing 'from', if any
 | 
						|
    Points pp;
 | 
						|
    for (const ExPolygon &ex : m_env.expolygons) {
 | 
						|
        for (const Polygon &hole : ex.holes)
 | 
						|
            if (hole.contains(from))
 | 
						|
                pp = hole;
 | 
						|
        if (! pp.empty())
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If 'from' is not inside a hole, it's outside of all contours, so take all contours' points.
 | 
						|
    if (pp.empty())
 | 
						|
        for (const ExPolygon &ex : m_env.expolygons)
 | 
						|
            append(pp, ex.contour.points);
 | 
						|
    
 | 
						|
    // Find the candidate result and check that it doesn't cross too many boundaries.
 | 
						|
    while (pp.size() > 1) {
 | 
						|
        // find the point in pp that is closest to both 'from' and 'to'
 | 
						|
        size_t result = nearest_waypoint_index(from, pp, to);
 | 
						|
        // as we assume 'from' is outside env, any node will require at least one crossing
 | 
						|
        if (intersection_ln(Line(from, pp[result]), m_island).size() > 1) {
 | 
						|
            // discard result
 | 
						|
            pp.erase(pp.begin() + result);
 | 
						|
        } else
 | 
						|
            return pp[result];
 | 
						|
    }
 | 
						|
    
 | 
						|
    // if we're here, return last point if any (better than nothing)
 | 
						|
    // if we have no points at all, then we have an empty environment and we
 | 
						|
    // make this method behave as a no-op (we shouldn't get here by the way)
 | 
						|
    return pp.empty() ? from : pp.front();
 | 
						|
}
 | 
						|
 | 
						|
// Add a new directed edge to the adjacency graph.
 | 
						|
void MotionPlannerGraph::add_edge(size_t from, size_t to, double weight)
 | 
						|
{
 | 
						|
    // Extend adjacency list until this start node.
 | 
						|
    if (m_adjacency_list.size() < from + 1) {
 | 
						|
        // Reserve in powers of two to avoid repeated reallocation.
 | 
						|
        m_adjacency_list.reserve(std::max<uint32_t>(8, next_highest_power_of_2((uint32_t)(from + 1))));
 | 
						|
        // Allocate new empty adjacency vectors.
 | 
						|
        m_adjacency_list.resize(from + 1);
 | 
						|
    }
 | 
						|
    m_adjacency_list[from].emplace_back(Neighbor(node_t(to), weight));
 | 
						|
}
 | 
						|
 | 
						|
// Dijkstra's shortest path in a weighted graph from node_start to node_end.
 | 
						|
// The returned path contains the end points.
 | 
						|
// If no path exists from node_start to node_end, a straight segment is returned.
 | 
						|
Polyline MotionPlannerGraph::shortest_path(size_t node_start, size_t node_end) const
 | 
						|
{
 | 
						|
    // This prevents a crash in case for some reason we got here with an empty adjacency list.
 | 
						|
    if (this->empty())
 | 
						|
        return Polyline();
 | 
						|
 | 
						|
    // Dijkstra algorithm, previous node of the current node 'u' in the shortest path towards node_start.
 | 
						|
    std::vector<node_t>   previous(m_adjacency_list.size(), -1);
 | 
						|
    std::vector<weight_t> distance(m_adjacency_list.size(), std::numeric_limits<weight_t>::infinity());
 | 
						|
    std::vector<size_t>   map_node_to_queue_id(m_adjacency_list.size(), size_t(-1));
 | 
						|
    distance[node_start] = 0.;
 | 
						|
 | 
						|
    auto queue = make_mutable_priority_queue<node_t>(
 | 
						|
        [&map_node_to_queue_id](const node_t node, size_t idx) { map_node_to_queue_id[node] = idx; },
 | 
						|
        [&distance](const node_t node1, const node_t node2) { return distance[node1] < distance[node2]; });
 | 
						|
    queue.reserve(m_adjacency_list.size());
 | 
						|
    for (size_t i = 0; i < m_adjacency_list.size(); ++ i)
 | 
						|
        queue.push(node_t(i));
 | 
						|
 | 
						|
    while (! queue.empty()) {
 | 
						|
        // Get the next node with the lowest distance to node_start.
 | 
						|
        node_t u = node_t(queue.top());
 | 
						|
        queue.pop();
 | 
						|
        map_node_to_queue_id[u] = size_t(-1);
 | 
						|
        // Stop searching if we reached our destination.
 | 
						|
        if (u == node_end)
 | 
						|
            break;
 | 
						|
        // Visit each edge starting at node u.
 | 
						|
        for (const Neighbor& neighbor : m_adjacency_list[u])
 | 
						|
            if (map_node_to_queue_id[neighbor.target] != size_t(-1)) {
 | 
						|
                weight_t alt = distance[u] + neighbor.weight;
 | 
						|
                // If total distance through u is shorter than the previous
 | 
						|
                // distance (if any) between node_start and neighbor.target, replace it.
 | 
						|
                if (alt < distance[neighbor.target]) {
 | 
						|
                    distance[neighbor.target] = alt;
 | 
						|
                    previous[neighbor.target] = u;
 | 
						|
                    queue.update(map_node_to_queue_id[neighbor.target]);
 | 
						|
                }
 | 
						|
            }
 | 
						|
    }
 | 
						|
 | 
						|
    // In case the end point was not reached, previous[node_end] contains -1
 | 
						|
    // and a straight line from node_start to node_end is returned.
 | 
						|
    Polyline polyline;
 | 
						|
    polyline.points.reserve(m_adjacency_list.size());
 | 
						|
    for (node_t vertex = node_t(node_end); vertex != -1; vertex = previous[vertex])
 | 
						|
        polyline.points.emplace_back(m_nodes[vertex]);
 | 
						|
    polyline.points.emplace_back(m_nodes[node_start]);
 | 
						|
    polyline.reverse();
 | 
						|
    return polyline;
 | 
						|
}
 | 
						|
 | 
						|
}
 |