mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	 15c8b579b2
			
		
	
	
		15c8b579b2
		
	
	
	
	
		
			
			Iterator loops replaced with C++11 loops. Fixed clone() methods to return an ExtrusionEntity*. PerimeterGenerator now uses move semantics on ExtrusionEntity a little bit more.
		
			
				
	
	
		
			503 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			503 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "PerimeterGenerator.hpp"
 | ||
| #include "ClipperUtils.hpp"
 | ||
| #include "ExtrusionEntityCollection.hpp"
 | ||
| #include <cmath>
 | ||
| #include <cassert>
 | ||
| 
 | ||
| namespace Slic3r {
 | ||
| 
 | ||
| static ExtrusionPaths thick_polyline_to_extrusion_paths(const ThickPolyline &thick_polyline, ExtrusionRole role, Flow &flow, const float tolerance)
 | ||
| {
 | ||
|     ExtrusionPaths paths;
 | ||
|     ExtrusionPath path(role);
 | ||
|     ThickLines lines = thick_polyline.thicklines();
 | ||
|     
 | ||
|     for (int i = 0; i < (int)lines.size(); ++i) {
 | ||
|         const ThickLine& line = lines[i];
 | ||
|         
 | ||
|         const coordf_t line_len = line.length();
 | ||
|         if (line_len < SCALED_EPSILON) continue;
 | ||
|         
 | ||
|         double thickness_delta = fabs(line.a_width - line.b_width);
 | ||
|         if (thickness_delta > tolerance) {
 | ||
|             const unsigned int segments = (unsigned int)ceil(thickness_delta / tolerance);
 | ||
|             const coordf_t seg_len = line_len / segments;
 | ||
|             Points pp;
 | ||
|             std::vector<coordf_t> width;
 | ||
|             {
 | ||
|                 pp.push_back(line.a);
 | ||
|                 width.push_back(line.a_width);
 | ||
|                 for (size_t j = 1; j < segments; ++j) {
 | ||
|                     pp.push_back((line.a.cast<double>() + (line.b - line.a).cast<double>().normalized() * (j * seg_len)).cast<coord_t>());
 | ||
|                     
 | ||
|                     coordf_t w = line.a_width + (j*seg_len) * (line.b_width-line.a_width) / line_len;
 | ||
|                     width.push_back(w);
 | ||
|                     width.push_back(w);
 | ||
|                 }
 | ||
|                 pp.push_back(line.b);
 | ||
|                 width.push_back(line.b_width);
 | ||
|                 
 | ||
|                 assert(pp.size() == segments + 1u);
 | ||
|                 assert(width.size() == segments*2);
 | ||
|             }
 | ||
|             
 | ||
|             // delete this line and insert new ones
 | ||
|             lines.erase(lines.begin() + i);
 | ||
|             for (size_t j = 0; j < segments; ++j) {
 | ||
|                 ThickLine new_line(pp[j], pp[j+1]);
 | ||
|                 new_line.a_width = width[2*j];
 | ||
|                 new_line.b_width = width[2*j+1];
 | ||
|                 lines.insert(lines.begin() + i + j, new_line);
 | ||
|             }
 | ||
|             
 | ||
|             -- i;
 | ||
|             continue;
 | ||
|         }
 | ||
|         
 | ||
|         const double w = fmax(line.a_width, line.b_width);
 | ||
|         if (path.polyline.points.empty()) {
 | ||
|             path.polyline.append(line.a);
 | ||
|             path.polyline.append(line.b);
 | ||
|             // Convert from spacing to extrusion width based on the extrusion model
 | ||
|             // of a square extrusion ended with semi circles.
 | ||
|             flow.width = unscale<float>(w) + flow.height * float(1. - 0.25 * PI);
 | ||
|             #ifdef SLIC3R_DEBUG
 | ||
|             printf("  filling %f gap\n", flow.width);
 | ||
|             #endif
 | ||
|             path.mm3_per_mm  = flow.mm3_per_mm();
 | ||
|             path.width       = flow.width;
 | ||
|             path.height      = flow.height;
 | ||
|         } else {
 | ||
|             thickness_delta = fabs(scale_(flow.width) - w);
 | ||
|             if (thickness_delta <= tolerance) {
 | ||
|                 // the width difference between this line and the current flow width is 
 | ||
|                 // within the accepted tolerance
 | ||
|                 path.polyline.append(line.b);
 | ||
|             } else {
 | ||
|                 // we need to initialize a new line
 | ||
|                 paths.emplace_back(std::move(path));
 | ||
|                 path = ExtrusionPath(role);
 | ||
|                 -- i;
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
|     if (path.polyline.is_valid())
 | ||
|         paths.emplace_back(std::move(path));
 | ||
|     return paths;
 | ||
| }
 | ||
| 
 | ||
| static ExtrusionEntityCollection variable_width(const ThickPolylines& polylines, ExtrusionRole role, Flow flow)
 | ||
| {
 | ||
| 	// This value determines granularity of adaptive width, as G-code does not allow
 | ||
| 	// variable extrusion within a single move; this value shall only affect the amount
 | ||
| 	// of segments, and any pruning shall be performed before we apply this tolerance.
 | ||
| 	ExtrusionEntityCollection coll;
 | ||
| 	const float tolerance = float(scale_(0.05));
 | ||
| 	for (const ThickPolyline &p : polylines) {
 | ||
| 		ExtrusionPaths paths = thick_polyline_to_extrusion_paths(p, role, flow, tolerance);
 | ||
| 		// Append paths to collection.
 | ||
| 		if (! paths.empty()) {
 | ||
| 			if (paths.front().first_point() == paths.back().last_point())
 | ||
| 				coll.append(ExtrusionLoop(std::move(paths)));
 | ||
| 			else
 | ||
| 				coll.append(std::move(paths));
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return coll;
 | ||
| }
 | ||
| 
 | ||
| // Hierarchy of perimeters.
 | ||
| class PerimeterGeneratorLoop {
 | ||
| public:
 | ||
|     // Polygon of this contour.
 | ||
|     Polygon polygon;
 | ||
|     // Is it a contour or a hole?
 | ||
|     // Contours are CCW oriented, holes are CW oriented.
 | ||
|     bool is_contour;
 | ||
|     // Depth in the hierarchy. External perimeter has depth = 0. An external perimeter could be both a contour and a hole.
 | ||
|     unsigned short depth;
 | ||
|     // Children contour, may be both CCW and CW oriented (outer contours or holes).
 | ||
|     std::vector<PerimeterGeneratorLoop> children;
 | ||
|     
 | ||
|     PerimeterGeneratorLoop(Polygon polygon, unsigned short depth, bool is_contour) : 
 | ||
|         polygon(polygon), is_contour(is_contour), depth(depth) {}
 | ||
|     // External perimeter. It may be CCW or CW oriented (outer contour or hole contour).
 | ||
|     bool is_external() const { return this->depth == 0; }
 | ||
|     // An island, which may have holes, but it does not have another internal island.
 | ||
|     bool is_internal_contour() const;
 | ||
| };
 | ||
| 
 | ||
| typedef std::vector<PerimeterGeneratorLoop> PerimeterGeneratorLoops;
 | ||
| 
 | ||
| static ExtrusionEntityCollection traverse_loops(const PerimeterGenerator &perimeter_generator, const PerimeterGeneratorLoops &loops, ThickPolylines &thin_walls)
 | ||
| {
 | ||
|     // loops is an arrayref of ::Loop objects
 | ||
|     // turn each one into an ExtrusionLoop object
 | ||
|     ExtrusionEntityCollection coll;
 | ||
|     for (const PerimeterGeneratorLoop &loop : loops) {
 | ||
|         bool is_external = loop.is_external();
 | ||
|         
 | ||
|         ExtrusionRole role;
 | ||
|         ExtrusionLoopRole loop_role;
 | ||
|         role = is_external ? erExternalPerimeter : erPerimeter;
 | ||
|         if (loop.is_internal_contour()) {
 | ||
|             // Note that we set loop role to ContourInternalPerimeter
 | ||
|             // also when loop is both internal and external (i.e.
 | ||
|             // there's only one contour loop).
 | ||
|             loop_role = elrContourInternalPerimeter;
 | ||
|         } else {
 | ||
|             loop_role = elrDefault;
 | ||
|         }
 | ||
|         
 | ||
|         // detect overhanging/bridging perimeters
 | ||
|         ExtrusionPaths paths;
 | ||
|         if (perimeter_generator.config->overhangs && perimeter_generator.layer_id > 0
 | ||
|             && !(perimeter_generator.object_config->support_material && perimeter_generator.object_config->support_material_contact_distance.value == 0)) {
 | ||
|             // get non-overhang paths by intersecting this loop with the grown lower slices
 | ||
|             extrusion_paths_append(
 | ||
|                 paths,
 | ||
|                 intersection_pl(loop.polygon, perimeter_generator.lower_slices_polygons()),
 | ||
|                 role,
 | ||
|                 is_external ? perimeter_generator.ext_mm3_per_mm()          : perimeter_generator.mm3_per_mm(),
 | ||
|                 is_external ? perimeter_generator.ext_perimeter_flow.width  : perimeter_generator.perimeter_flow.width,
 | ||
|                 (float)perimeter_generator.layer_height);
 | ||
|             
 | ||
|             // get overhang paths by checking what parts of this loop fall 
 | ||
|             // outside the grown lower slices (thus where the distance between
 | ||
|             // the loop centerline and original lower slices is >= half nozzle diameter
 | ||
|             extrusion_paths_append(
 | ||
|                 paths,
 | ||
|                 diff_pl(loop.polygon, perimeter_generator.lower_slices_polygons()),
 | ||
|                 erOverhangPerimeter,
 | ||
|                 perimeter_generator.mm3_per_mm_overhang(),
 | ||
|                 perimeter_generator.overhang_flow.width,
 | ||
|                 perimeter_generator.overhang_flow.height);
 | ||
|             
 | ||
|             // reapply the nearest point search for starting point
 | ||
|             // We allow polyline reversal because Clipper may have randomly
 | ||
|             // reversed polylines during clipping.
 | ||
|             paths = (ExtrusionPaths)ExtrusionEntityCollection(paths).chained_path();
 | ||
|         } else {
 | ||
|             ExtrusionPath path(role);
 | ||
|             path.polyline   = loop.polygon.split_at_first_point();
 | ||
|             path.mm3_per_mm = is_external ? perimeter_generator.ext_mm3_per_mm()          : perimeter_generator.mm3_per_mm();
 | ||
|             path.width      = is_external ? perimeter_generator.ext_perimeter_flow.width  : perimeter_generator.perimeter_flow.width;
 | ||
|             path.height     = (float)perimeter_generator.layer_height;
 | ||
|             paths.push_back(path);
 | ||
|         }
 | ||
|         
 | ||
|         coll.append(ExtrusionLoop(paths, loop_role));
 | ||
|     }
 | ||
|     
 | ||
|     // Append thin walls to the nearest-neighbor search (only for first iteration)
 | ||
|     if (! thin_walls.empty()) {
 | ||
|         ExtrusionEntityCollection tw = variable_width(thin_walls, erExternalPerimeter, perimeter_generator.ext_perimeter_flow);
 | ||
|         coll.append(tw.entities);
 | ||
|         thin_walls.clear();
 | ||
|     }
 | ||
|     
 | ||
|     // Sort entities into a new collection using a nearest-neighbor search,
 | ||
|     // preserving the original indices which are useful for detecting thin walls.
 | ||
|     ExtrusionEntityCollection sorted_coll;
 | ||
|     coll.chained_path(&sorted_coll, false, erMixed, &sorted_coll.orig_indices);
 | ||
|     
 | ||
|     // traverse children and build the final collection
 | ||
|     ExtrusionEntityCollection entities;
 | ||
|     for (const size_t &idx : sorted_coll.orig_indices) {
 | ||
|         if (idx >= loops.size()) {
 | ||
|             // This is a thin wall. Let's get it from the sorted collection as it might have been reversed.
 | ||
|             entities.append(std::move(*sorted_coll.entities[&idx - &sorted_coll.orig_indices.front()]));
 | ||
|         } else {
 | ||
|             const PerimeterGeneratorLoop &loop = loops[idx];
 | ||
|             ExtrusionLoop eloop = *dynamic_cast<ExtrusionLoop*>(coll.entities[idx]);
 | ||
|             ExtrusionEntityCollection children = traverse_loops(perimeter_generator, loop.children, thin_walls);
 | ||
|             if (loop.is_contour) {
 | ||
|                 eloop.make_counter_clockwise();
 | ||
|                 entities.append(std::move(children.entities));
 | ||
|                 entities.append(std::move(eloop));
 | ||
|             } else {
 | ||
|                 eloop.make_clockwise();
 | ||
|                 entities.append(std::move(eloop));
 | ||
|                 entities.append(std::move(children.entities));
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
|     return entities;
 | ||
| }
 | ||
| 
 | ||
| void PerimeterGenerator::process()
 | ||
| {
 | ||
|     // other perimeters
 | ||
|     m_mm3_per_mm               		= this->perimeter_flow.mm3_per_mm();
 | ||
|     coord_t perimeter_width         = this->perimeter_flow.scaled_width();
 | ||
|     coord_t perimeter_spacing       = this->perimeter_flow.scaled_spacing();
 | ||
|     
 | ||
|     // external perimeters
 | ||
|     m_ext_mm3_per_mm           		= this->ext_perimeter_flow.mm3_per_mm();
 | ||
|     coord_t ext_perimeter_width     = this->ext_perimeter_flow.scaled_width();
 | ||
|     coord_t ext_perimeter_spacing   = this->ext_perimeter_flow.scaled_spacing();
 | ||
|     coord_t ext_perimeter_spacing2  = this->ext_perimeter_flow.scaled_spacing(this->perimeter_flow);
 | ||
|     
 | ||
|     // overhang perimeters
 | ||
|     m_mm3_per_mm_overhang      		= this->overhang_flow.mm3_per_mm();
 | ||
|     
 | ||
|     // solid infill
 | ||
|     coord_t solid_infill_spacing    = this->solid_infill_flow.scaled_spacing();
 | ||
|     
 | ||
|     // Calculate the minimum required spacing between two adjacent traces.
 | ||
|     // This should be equal to the nominal flow spacing but we experiment
 | ||
|     // with some tolerance in order to avoid triggering medial axis when
 | ||
|     // some squishing might work. Loops are still spaced by the entire
 | ||
|     // flow spacing; this only applies to collapsing parts.
 | ||
|     // For ext_min_spacing we use the ext_perimeter_spacing calculated for two adjacent
 | ||
|     // external loops (which is the correct way) instead of using ext_perimeter_spacing2
 | ||
|     // which is the spacing between external and internal, which is not correct
 | ||
|     // and would make the collapsing (thus the details resolution) dependent on 
 | ||
|     // internal flow which is unrelated.
 | ||
|     coord_t min_spacing         = coord_t(perimeter_spacing      * (1 - INSET_OVERLAP_TOLERANCE));
 | ||
|     coord_t ext_min_spacing     = coord_t(ext_perimeter_spacing  * (1 - INSET_OVERLAP_TOLERANCE));
 | ||
|     bool    has_gap_fill 		= this->config->gap_fill_speed.value > 0;
 | ||
| 
 | ||
|     // prepare grown lower layer slices for overhang detection
 | ||
|     if (this->lower_slices != NULL && this->config->overhangs) {
 | ||
|         // We consider overhang any part where the entire nozzle diameter is not supported by the
 | ||
|         // lower layer, so we take lower slices and offset them by half the nozzle diameter used 
 | ||
|         // in the current layer
 | ||
|         double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
 | ||
|         m_lower_slices_polygons = offset(*this->lower_slices, float(scale_(+nozzle_diameter/2)));
 | ||
|     }
 | ||
|     
 | ||
|     // we need to process each island separately because we might have different
 | ||
|     // extra perimeters for each one
 | ||
|     for (const Surface &surface : this->slices->surfaces) {
 | ||
|         // detect how many perimeters must be generated for this island
 | ||
|         int        loop_number = this->config->perimeters + surface.extra_perimeters - 1;  // 0-indexed loops
 | ||
|         ExPolygons last        = union_ex(surface.expolygon.simplify_p(SCALED_RESOLUTION));
 | ||
|         ExPolygons gaps;
 | ||
|         if (loop_number >= 0) {
 | ||
|             // In case no perimeters are to be generated, loop_number will equal to -1.
 | ||
|             std::vector<PerimeterGeneratorLoops> contours(loop_number+1);    // depth => loops
 | ||
|             std::vector<PerimeterGeneratorLoops> holes(loop_number+1);       // depth => loops
 | ||
|             ThickPolylines thin_walls;
 | ||
|             // we loop one time more than needed in order to find gaps after the last perimeter was applied
 | ||
|             for (int i = 0;; ++ i) {  // outer loop is 0
 | ||
|                 // Calculate next onion shell of perimeters.
 | ||
|                 ExPolygons offsets;
 | ||
|                 if (i == 0) {
 | ||
|                     // the minimum thickness of a single loop is:
 | ||
|                     // ext_width/2 + ext_spacing/2 + spacing/2 + width/2
 | ||
|                     offsets = this->config->thin_walls ? 
 | ||
|                         offset2_ex(
 | ||
|                             last,
 | ||
|                             - float(ext_perimeter_width / 2. + ext_min_spacing / 2. - 1),
 | ||
|                             + float(ext_min_spacing / 2. - 1)) :
 | ||
|                         offset_ex(last, - float(ext_perimeter_width / 2.));
 | ||
|                     // look for thin walls
 | ||
|                     if (this->config->thin_walls) {
 | ||
|                         // the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
 | ||
|                         // (actually, something larger than that still may exist due to mitering or other causes)
 | ||
|                         coord_t min_width = coord_t(scale_(this->ext_perimeter_flow.nozzle_diameter / 3));
 | ||
|                         ExPolygons expp = offset2_ex(
 | ||
|                             // medial axis requires non-overlapping geometry
 | ||
|                             diff_ex(to_polygons(last),
 | ||
|                                     offset(offsets, float(ext_perimeter_width / 2.)),
 | ||
|                                     true),
 | ||
|                             - float(min_width / 2.), float(min_width / 2.));
 | ||
|                         // the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
 | ||
|                         for (ExPolygon &ex : expp)
 | ||
|                             ex.medial_axis(ext_perimeter_width + ext_perimeter_spacing2, min_width, &thin_walls);
 | ||
|                     }
 | ||
|                 } else {
 | ||
|                     //FIXME Is this offset correct if the line width of the inner perimeters differs
 | ||
|                     // from the line width of the infill?
 | ||
|                     coord_t distance = (i == 1) ? ext_perimeter_spacing2 : perimeter_spacing;
 | ||
|                     offsets = this->config->thin_walls ?
 | ||
|                         // This path will ensure, that the perimeters do not overfill, as in 
 | ||
|                         // prusa3d/Slic3r GH #32, but with the cost of rounding the perimeters
 | ||
|                         // excessively, creating gaps, which then need to be filled in by the not very 
 | ||
|                         // reliable gap fill algorithm.
 | ||
|                         // Also the offset2(perimeter, -x, x) may sometimes lead to a perimeter, which is larger than
 | ||
|                         // the original.
 | ||
|                         offset2_ex(last,
 | ||
|                                 - float(distance + min_spacing / 2. - 1.),
 | ||
|                                 float(min_spacing / 2. - 1.)) :
 | ||
|                         // If "detect thin walls" is not enabled, this paths will be entered, which 
 | ||
|                         // leads to overflows, as in prusa3d/Slic3r GH #32
 | ||
|                         offset_ex(last, - float(distance));
 | ||
|                     // look for gaps
 | ||
|                     if (has_gap_fill)
 | ||
|                         // not using safety offset here would "detect" very narrow gaps
 | ||
|                         // (but still long enough to escape the area threshold) that gap fill
 | ||
|                         // won't be able to fill but we'd still remove from infill area
 | ||
|                         append(gaps, diff_ex(
 | ||
|                             offset(last,    - float(0.5 * distance)),
 | ||
|                             offset(offsets,   float(0.5 * distance + 10))));  // safety offset
 | ||
|                 }
 | ||
|                 if (offsets.empty()) {
 | ||
|                     // Store the number of loops actually generated.
 | ||
|                     loop_number = i - 1;
 | ||
|                     // No region left to be filled in.
 | ||
|                     last.clear();
 | ||
|                     break;
 | ||
|                 } else if (i > loop_number) {
 | ||
|                     // If i > loop_number, we were looking just for gaps.
 | ||
|                     break;
 | ||
|                 }
 | ||
|                 for (const ExPolygon &expolygon : offsets) {
 | ||
| 	                // Outer contour may overlap with an inner contour,
 | ||
| 	                // inner contour may overlap with another inner contour,
 | ||
| 	                // outer contour may overlap with itself.
 | ||
| 	                //FIXME evaluate the overlaps, annotate each point with an overlap depth,
 | ||
| 	                // compensate for the depth of intersection.
 | ||
|                     contours[i].emplace_back(PerimeterGeneratorLoop(expolygon.contour, i, true));
 | ||
|                     if (! expolygon.holes.empty()) {
 | ||
|                         holes[i].reserve(holes[i].size() + expolygon.holes.size());
 | ||
|                         for (const Polygon &hole : expolygon.holes)
 | ||
|                             holes[i].emplace_back(PerimeterGeneratorLoop(hole, i, false));
 | ||
|                     }
 | ||
|                 }
 | ||
|                 last = std::move(offsets);
 | ||
|                 if (i == loop_number && (! has_gap_fill || this->config->fill_density.value == 0)) {
 | ||
|                 	// The last run of this loop is executed to collect gaps for gap fill.
 | ||
|                 	// As the gap fill is either disabled or not 
 | ||
|                 	break;
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             // nest loops: holes first
 | ||
|             for (int d = 0; d <= loop_number; ++ d) {
 | ||
|                 PerimeterGeneratorLoops &holes_d = holes[d];
 | ||
|                 // loop through all holes having depth == d
 | ||
|                 for (int i = 0; i < (int)holes_d.size(); ++ i) {
 | ||
|                     const PerimeterGeneratorLoop &loop = holes_d[i];
 | ||
|                     // find the hole loop that contains this one, if any
 | ||
|                     for (int t = d + 1; t <= loop_number; ++ t) {
 | ||
|                         for (int j = 0; j < (int)holes[t].size(); ++ j) {
 | ||
|                             PerimeterGeneratorLoop &candidate_parent = holes[t][j];
 | ||
|                             if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
 | ||
|                                 candidate_parent.children.push_back(loop);
 | ||
|                                 holes_d.erase(holes_d.begin() + i);
 | ||
|                                 -- i;
 | ||
|                                 goto NEXT_LOOP;
 | ||
|                             }
 | ||
|                         }
 | ||
|                     }
 | ||
|                     // if no hole contains this hole, find the contour loop that contains it
 | ||
|                     for (int t = loop_number; t >= 0; -- t) {
 | ||
|                         for (int j = 0; j < (int)contours[t].size(); ++ j) {
 | ||
|                             PerimeterGeneratorLoop &candidate_parent = contours[t][j];
 | ||
|                             if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
 | ||
|                                 candidate_parent.children.push_back(loop);
 | ||
|                                 holes_d.erase(holes_d.begin() + i);
 | ||
|                                 -- i;
 | ||
|                                 goto NEXT_LOOP;
 | ||
|                             }
 | ||
|                         }
 | ||
|                     }
 | ||
|                     NEXT_LOOP: ;
 | ||
|                 }
 | ||
|             }
 | ||
|             // nest contour loops
 | ||
|             for (int d = loop_number; d >= 1; -- d) {
 | ||
|                 PerimeterGeneratorLoops &contours_d = contours[d];
 | ||
|                 // loop through all contours having depth == d
 | ||
|                 for (int i = 0; i < (int)contours_d.size(); ++ i) {
 | ||
|                     const PerimeterGeneratorLoop &loop = contours_d[i];
 | ||
|                     // find the contour loop that contains it
 | ||
|                     for (int t = d - 1; t >= 0; -- t) {
 | ||
|                         for (size_t j = 0; j < contours[t].size(); ++ j) {
 | ||
|                             PerimeterGeneratorLoop &candidate_parent = contours[t][j];
 | ||
|                             if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
 | ||
|                                 candidate_parent.children.push_back(loop);
 | ||
|                                 contours_d.erase(contours_d.begin() + i);
 | ||
|                                 -- i;
 | ||
|                                 goto NEXT_CONTOUR;
 | ||
|                             }
 | ||
|                         }
 | ||
|                     }
 | ||
|                     NEXT_CONTOUR: ;
 | ||
|                 }
 | ||
|             }
 | ||
|             // at this point, all loops should be in contours[0]
 | ||
|             ExtrusionEntityCollection entities = traverse_loops(*this, contours.front(), thin_walls);
 | ||
|             // if brim will be printed, reverse the order of perimeters so that
 | ||
|             // we continue inwards after having finished the brim
 | ||
|             // TODO: add test for perimeter order
 | ||
|             if (this->config->external_perimeters_first || 
 | ||
|                 (this->layer_id == 0 && this->print_config->brim_width.value > 0))
 | ||
|                 entities.reverse();
 | ||
|             // append perimeters for this slice as a collection
 | ||
|             if (! entities.empty())
 | ||
|                 this->loops->append(entities);
 | ||
|         } // for each loop of an island
 | ||
| 
 | ||
|         // fill gaps
 | ||
|         if (! gaps.empty()) {
 | ||
|             // collapse 
 | ||
|             double min = 0.2 * perimeter_width * (1 - INSET_OVERLAP_TOLERANCE);
 | ||
|             double max = 2. * perimeter_spacing;
 | ||
|             ExPolygons gaps_ex = diff_ex(
 | ||
|                 //FIXME offset2 would be enough and cheaper.
 | ||
|                 offset2_ex(gaps, - float(min / 2.), float(min / 2.)),
 | ||
|                 offset2_ex(gaps, - float(max / 2.), float(max / 2.)),
 | ||
|                 true);
 | ||
|             ThickPolylines polylines;
 | ||
|             for (const ExPolygon &ex : gaps_ex)
 | ||
|                 ex.medial_axis(max, min, &polylines);
 | ||
|             if (! polylines.empty()) {
 | ||
|                 ExtrusionEntityCollection gap_fill = variable_width(polylines, erGapFill, this->solid_infill_flow);
 | ||
|                 this->gap_fill->append(gap_fill.entities);
 | ||
|                 /*  Make sure we don't infill narrow parts that are already gap-filled
 | ||
|                     (we only consider this surface's gaps to reduce the diff() complexity).
 | ||
|                     Growing actual extrusions ensures that gaps not filled by medial axis
 | ||
|                     are not subtracted from fill surfaces (they might be too short gaps
 | ||
|                     that medial axis skips but infill might join with other infill regions
 | ||
|                     and use zigzag).  */
 | ||
|                 //FIXME Vojtech: This grows by a rounded extrusion width, not by line spacing,
 | ||
|                 // therefore it may cover the area, but no the volume.
 | ||
|                 last = diff_ex(to_polygons(last), gap_fill.polygons_covered_by_width(10.f));
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // create one more offset to be used as boundary for fill
 | ||
|         // we offset by half the perimeter spacing (to get to the actual infill boundary)
 | ||
|         // and then we offset back and forth by half the infill spacing to only consider the
 | ||
|         // non-collapsing regions
 | ||
|         coord_t inset = 
 | ||
|             (loop_number < 0) ? 0 :
 | ||
|             (loop_number == 0) ?
 | ||
|                 // one loop
 | ||
|                 ext_perimeter_spacing / 2 :
 | ||
|                 // two or more loops?
 | ||
|                 perimeter_spacing / 2;
 | ||
|         // only apply infill overlap if we actually have one perimeter
 | ||
|         if (inset > 0)
 | ||
|             inset -= coord_t(scale_(this->config->get_abs_value("infill_overlap", unscale<double>(inset + solid_infill_spacing / 2))));
 | ||
|         // simplify infill contours according to resolution
 | ||
|         Polygons pp;
 | ||
|         for (ExPolygon &ex : last)
 | ||
|             ex.simplify_p(SCALED_RESOLUTION, &pp);
 | ||
|         // collapse too narrow infill areas
 | ||
|         coord_t min_perimeter_infill_spacing = coord_t(solid_infill_spacing * (1. - INSET_OVERLAP_TOLERANCE));
 | ||
|         // append infill areas to fill_surfaces
 | ||
|         this->fill_surfaces->append(
 | ||
|             offset2_ex(
 | ||
|                 union_ex(pp),
 | ||
|                 float(- inset - min_perimeter_infill_spacing / 2.),
 | ||
|                 float(min_perimeter_infill_spacing / 2.)),
 | ||
|             stInternal);
 | ||
|     } // for each island
 | ||
| }
 | ||
| 
 | ||
| bool PerimeterGeneratorLoop::is_internal_contour() const
 | ||
| {
 | ||
|     // An internal contour is a contour containing no other contours
 | ||
|     if (! this->is_contour)
 | ||
|         return false;
 | ||
|     for (const PerimeterGeneratorLoop &loop : this->children)
 | ||
|         if (loop.is_contour)
 | ||
|             return false;
 | ||
|     return true;
 | ||
| }
 | ||
| 
 | ||
| }
 |