mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			271 lines
		
	
	
	
		
			7.7 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
			
		
		
	
	
			271 lines
		
	
	
	
		
			7.7 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
| package Slic3r::Geometry;
 | |
| use strict;
 | |
| use warnings;
 | |
| 
 | |
| require Exporter;
 | |
| our @ISA = qw(Exporter);
 | |
| 
 | |
| # Exported by this module. The last section starting with convex_hull is exported by Geometry.xsp
 | |
| our @EXPORT_OK = qw(
 | |
|     PI epsilon 
 | |
| 
 | |
|     angle3points
 | |
|     collinear
 | |
|     dot
 | |
|     line_intersection
 | |
|     normalize
 | |
|     point_in_segment
 | |
|     polyline_lines
 | |
|     polygon_is_convex
 | |
|     polygon_segment_having_point
 | |
|     scale
 | |
|     unscale
 | |
|     scaled_epsilon
 | |
|     size_2D
 | |
| 
 | |
|     X Y Z
 | |
|     convex_hull
 | |
|     chained_path_from
 | |
|     deg2rad
 | |
|     rad2deg
 | |
|     rad2deg_dir
 | |
| );
 | |
| 
 | |
| use constant PI => 4 * atan2(1, 1);
 | |
| use constant A => 0;
 | |
| use constant B => 1;
 | |
| use constant X1 => 0;
 | |
| use constant Y1 => 1;
 | |
| use constant X2 => 2;
 | |
| use constant Y2 => 3;
 | |
| 
 | |
| sub epsilon () { 1E-4 }
 | |
| sub scaled_epsilon () { epsilon / &Slic3r::SCALING_FACTOR }
 | |
| 
 | |
| sub scale   ($) { $_[0] / &Slic3r::SCALING_FACTOR }
 | |
| sub unscale ($) { $_[0] * &Slic3r::SCALING_FACTOR }
 | |
| 
 | |
| # used by geometry.t, polygon_segment_having_point
 | |
| sub point_in_segment {
 | |
|     my ($point, $line) = @_;
 | |
|     
 | |
|     my ($x, $y) = @$point;
 | |
|     my $line_p = $line->pp;
 | |
|     my @line_x = sort { $a <=> $b } $line_p->[A][X], $line_p->[B][X];
 | |
|     my @line_y = sort { $a <=> $b } $line_p->[A][Y], $line_p->[B][Y];
 | |
|     
 | |
|     # check whether the point is in the segment bounding box
 | |
|     return 0 unless $x >= ($line_x[0] - epsilon) && $x <= ($line_x[1] + epsilon)
 | |
|         && $y >= ($line_y[0] - epsilon) && $y <= ($line_y[1] + epsilon);
 | |
|     
 | |
|     # if line is vertical, check whether point's X is the same as the line
 | |
|     if ($line_p->[A][X] == $line_p->[B][X]) {
 | |
|         return abs($x - $line_p->[A][X]) < epsilon ? 1 : 0;
 | |
|     }
 | |
|     
 | |
|     # calculate the Y in line at X of the point
 | |
|     my $y3 = $line_p->[A][Y] + ($line_p->[B][Y] - $line_p->[A][Y])
 | |
|         * ($x - $line_p->[A][X]) / ($line_p->[B][X] - $line_p->[A][X]);
 | |
|     return abs($y3 - $y) < epsilon ? 1 : 0;
 | |
| }
 | |
| 
 | |
| # used by geometry.t
 | |
| sub polyline_lines {
 | |
|     my ($polyline) = @_;
 | |
|     my @points = @$polyline;
 | |
|     return map Slic3r::Line->new(@points[$_, $_+1]), 0 .. $#points-1;
 | |
| }
 | |
| 
 | |
| # given a $polygon, return the (first) segment having $point
 | |
| # used by geometry.t
 | |
| sub polygon_segment_having_point {
 | |
|     my ($polygon, $point) = @_;
 | |
|     
 | |
|     foreach my $line (@{ $polygon->lines }) {
 | |
|         return $line if point_in_segment($point, $line);
 | |
|     }
 | |
|     return undef;
 | |
| }
 | |
| 
 | |
| # polygon must be simple (non complex) and ccw
 | |
| sub polygon_is_convex {
 | |
|     my ($points) = @_;
 | |
|     for (my $i = 0; $i <= $#$points; $i++) {
 | |
|         my $angle = angle3points($points->[$i-1], $points->[$i-2], $points->[$i]);
 | |
|         return 0 if $angle < PI;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| sub normalize {
 | |
|     my ($line) = @_;
 | |
|     
 | |
|     my $len = sqrt( ($line->[X]**2) + ($line->[Y]**2) + ($line->[Z]**2) )
 | |
|         or return [0, 0, 0];  # to avoid illegal division by zero
 | |
|     return [ map $_ / $len, @$line ];
 | |
| }
 | |
| 
 | |
| # 2D dot product
 | |
| # used by 3DScene.pm
 | |
| sub dot {
 | |
|     my ($u, $v) = @_;
 | |
|     return $u->[X] * $v->[X] + $u->[Y] * $v->[Y];
 | |
| }
 | |
| 
 | |
| sub line_intersection {
 | |
|     my ($line1, $line2, $require_crossing) = @_;
 | |
|     $require_crossing ||= 0;
 | |
|     
 | |
|     my $intersection = _line_intersection(map @$_, @$line1, @$line2);
 | |
|     return (ref $intersection && $intersection->[1] == $require_crossing) 
 | |
|         ? $intersection->[0] 
 | |
|         : undef;
 | |
| }
 | |
| 
 | |
| # Used by test cases.
 | |
| sub collinear {
 | |
|     my ($line1, $line2, $require_overlapping) = @_;
 | |
|     my $intersection = _line_intersection(map @$_, @$line1, @$line2);
 | |
|     return 0 unless !ref($intersection) 
 | |
|         && ($intersection eq 'parallel collinear'
 | |
|             || ($intersection eq 'parallel vertical' && abs($line1->[A][X] - $line2->[A][X]) < epsilon));
 | |
|     
 | |
|     if ($require_overlapping) {
 | |
|         my @box_a = bounding_box([ $line1->[0], $line1->[1] ]);
 | |
|         my @box_b = bounding_box([ $line2->[0], $line2->[1] ]);
 | |
|         return 0 unless bounding_box_intersect( 2, @box_a, @box_b );
 | |
|     }
 | |
|     
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| sub _line_intersection {
 | |
|   my ( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 ) = @_;
 | |
| 
 | |
|   my ($x, $y);  # The as-yet-undetermined intersection point.
 | |
| 
 | |
|   my $dy10 = $y1 - $y0; # dyPQ, dxPQ are the coordinate differences
 | |
|   my $dx10 = $x1 - $x0; # between the points P and Q.
 | |
|   my $dy32 = $y3 - $y2;
 | |
|   my $dx32 = $x3 - $x2;
 | |
| 
 | |
|   my $dy10z = abs( $dy10 ) < epsilon; # Is the difference $dy10 "zero"?
 | |
|   my $dx10z = abs( $dx10 ) < epsilon;
 | |
|   my $dy32z = abs( $dy32 ) < epsilon;
 | |
|   my $dx32z = abs( $dx32 ) < epsilon;
 | |
| 
 | |
|   my $dyx10;                            # The slopes.
 | |
|   my $dyx32;
 | |
|   
 | |
|   $dyx10 = $dy10 / $dx10 unless $dx10z;
 | |
|   $dyx32 = $dy32 / $dx32 unless $dx32z;
 | |
| 
 | |
|   # Now we know all differences and the slopes;
 | |
|   # we can detect horizontal/vertical special cases.
 | |
|   # E.g., slope = 0 means a horizontal line.
 | |
| 
 | |
|   unless ( defined $dyx10 or defined $dyx32 ) {
 | |
|     return "parallel vertical";
 | |
|   }
 | |
|   elsif ( $dy10z and not $dy32z ) { # First line horizontal.
 | |
|     $y = $y0;
 | |
|     $x = $x2 + ( $y - $y2 ) * $dx32 / $dy32;
 | |
|   }
 | |
|   elsif ( not $dy10z and $dy32z ) { # Second line horizontal.
 | |
|     $y = $y2;
 | |
|     $x = $x0 + ( $y - $y0 ) * $dx10 / $dy10;
 | |
|   }
 | |
|   elsif ( $dx10z and not $dx32z ) { # First line vertical.
 | |
|     $x = $x0;
 | |
|     $y = $y2 + $dyx32 * ( $x - $x2 );
 | |
|   }
 | |
|   elsif ( not $dx10z and $dx32z ) { # Second line vertical.
 | |
|     $x = $x2;
 | |
|     $y = $y0 + $dyx10 * ( $x - $x0 );
 | |
|   }
 | |
|   elsif ( abs( $dyx10 - $dyx32 ) < epsilon ) {
 | |
|     # The slopes are suspiciously close to each other.
 | |
|     # Either we have parallel collinear or just parallel lines.
 | |
| 
 | |
|     # The bounding box checks have already weeded the cases
 | |
|     # "parallel horizontal" and "parallel vertical" away.
 | |
| 
 | |
|     my $ya = $y0 - $dyx10 * $x0;
 | |
|     my $yb = $y2 - $dyx32 * $x2;
 | |
|     
 | |
|     return "parallel collinear" if abs( $ya - $yb ) < epsilon;
 | |
|     return "parallel";
 | |
|   }
 | |
|   else {
 | |
|     # None of the special cases matched.
 | |
|     # We have a "honest" line intersection.
 | |
| 
 | |
|     $x = ($y2 - $y0 + $dyx10*$x0 - $dyx32*$x2)/($dyx10 - $dyx32);
 | |
|     $y = $y0 + $dyx10 * ($x - $x0);
 | |
|   }
 | |
| 
 | |
|   my $h10 = $dx10 ? ($x - $x0) / $dx10 : ($dy10 ? ($y - $y0) / $dy10 : 1);
 | |
|   my $h32 = $dx32 ? ($x - $x2) / $dx32 : ($dy32 ? ($y - $y2) / $dy32 : 1);
 | |
| 
 | |
|   return [Slic3r::Point->new($x, $y), $h10 >= 0 && $h10 <= 1 && $h32 >= 0 && $h32 <= 1];
 | |
| }
 | |
| 
 | |
| # 2D
 | |
| sub bounding_box {
 | |
|     my ($points) = @_;
 | |
|     
 | |
|     my @x = map $_->x, @$points;
 | |
|     my @y = map $_->y, @$points;    #,,
 | |
|     my @bb = (undef, undef, undef, undef);
 | |
|     for (0..$#x) {
 | |
|         $bb[X1] = $x[$_] if !defined $bb[X1] || $x[$_] < $bb[X1];
 | |
|         $bb[X2] = $x[$_] if !defined $bb[X2] || $x[$_] > $bb[X2];
 | |
|         $bb[Y1] = $y[$_] if !defined $bb[Y1] || $y[$_] < $bb[Y1];
 | |
|         $bb[Y2] = $y[$_] if !defined $bb[Y2] || $y[$_] > $bb[Y2];
 | |
|     }
 | |
|     
 | |
|     return @bb[X1,Y1,X2,Y2];
 | |
| }
 | |
| 
 | |
| # used by ExPolygon::size
 | |
| sub size_2D {
 | |
|     my @bounding_box = bounding_box(@_);
 | |
|     return (
 | |
|         ($bounding_box[X2] - $bounding_box[X1]),
 | |
|         ($bounding_box[Y2] - $bounding_box[Y1]),
 | |
|     );
 | |
| }
 | |
| 
 | |
| # Used by sub collinear, which is used by test cases.
 | |
| # bounding_box_intersect($d, @a, @b)
 | |
| #   Return true if the given bounding boxes @a and @b intersect
 | |
| #   in $d dimensions.  Used by sub collinear.
 | |
| sub bounding_box_intersect {
 | |
|     my ( $d, @bb ) = @_; # Number of dimensions and box coordinates.
 | |
|     my @aa = splice( @bb, 0, 2 * $d ); # The first box.
 | |
|     # (@bb is the second one.)
 | |
|     
 | |
|     # Must intersect in all dimensions.
 | |
|     for ( my $i_min = 0; $i_min < $d; $i_min++ ) {
 | |
|         my $i_max = $i_min + $d; # The index for the maximum.
 | |
|         return 0 if ( $aa[ $i_max ] + epsilon ) < $bb[ $i_min ];
 | |
|         return 0 if ( $bb[ $i_max ] + epsilon ) < $aa[ $i_min ];
 | |
|     }
 | |
|     
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| # Used by test cases.
 | |
| # this assumes a CCW rotation from $p2 to $p3 around $p1
 | |
| sub angle3points {
 | |
|     my ($p1, $p2, $p3) = @_;
 | |
|     # p1 is the center
 | |
|     
 | |
|     my $angle = atan2($p2->[X] - $p1->[X], $p2->[Y] - $p1->[Y])
 | |
|               - atan2($p3->[X] - $p1->[X], $p3->[Y] - $p1->[Y]);
 | |
|     
 | |
|     # we only want to return only positive angles
 | |
|     return $angle <= 0 ? $angle + 2*PI() : $angle;
 | |
| }
 | |
| 
 | |
| 1;
 | 
