mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	 b101a8e266
			
		
	
	
		b101a8e266
		
	
	
	
	
		
			
			The offset curve extractor is already quite usable, though singular cases are still not covered yet when the offset curve intersects or nearly intersects a Voronoi vertex. Removal of the PRINTF_ZU "%zu" Visual Studio printf compatibility macro. Fixes of a contours self intersection test for collinear segments. SVG exporter now exports white background, so that the GNOME Eye viewer is usable.
		
			
				
	
	
		
			479 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			479 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef slic3r_Geometry_hpp_
 | |
| #define slic3r_Geometry_hpp_
 | |
| 
 | |
| #include "libslic3r.h"
 | |
| #include "BoundingBox.hpp"
 | |
| #include "ExPolygon.hpp"
 | |
| #include "Polygon.hpp"
 | |
| #include "Polyline.hpp"
 | |
| 
 | |
| // Serialization through the Cereal library
 | |
| #include <cereal/access.hpp>
 | |
| 
 | |
| #define BOOST_VORONOI_USE_GMP 1
 | |
| #include "boost/polygon/voronoi.hpp"
 | |
| 
 | |
| namespace ClipperLib {
 | |
| class PolyNode;
 | |
| using PolyNodes = std::vector<PolyNode*>;
 | |
| }
 | |
| 
 | |
| namespace Slic3r { namespace Geometry {
 | |
| 
 | |
| // Generic result of an orientation predicate.
 | |
| enum Orientation
 | |
| {
 | |
|     ORIENTATION_CCW = 1,
 | |
|     ORIENTATION_CW = -1,
 | |
|     ORIENTATION_COLINEAR = 0
 | |
| };
 | |
| 
 | |
| // Return orientation of the three points (clockwise, counter-clockwise, colinear)
 | |
| // The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries.
 | |
| // which means, the coord_t types must not have some of the topmost bits utilized.
 | |
| // As the points are limited to 30 bits + signum,
 | |
| // the temporaries u, v, w are limited to 61 bits + signum,
 | |
| // and d is limited to 63 bits + signum and we are good.
 | |
| static inline Orientation orient(const Point &a, const Point &b, const Point &c)
 | |
| {
 | |
|     // BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
 | |
|     int64_t u = int64_t(b(0)) * int64_t(c(1)) - int64_t(b(1)) * int64_t(c(0));
 | |
|     int64_t v = int64_t(a(0)) * int64_t(c(1)) - int64_t(a(1)) * int64_t(c(0));
 | |
|     int64_t w = int64_t(a(0)) * int64_t(b(1)) - int64_t(a(1)) * int64_t(b(0));
 | |
|     int64_t d = u - v + w;
 | |
|     return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW);
 | |
| }
 | |
| 
 | |
| // Return orientation of the polygon by checking orientation of the left bottom corner of the polygon
 | |
| // using exact arithmetics. The input polygon must not contain duplicate points
 | |
| // (or at least the left bottom corner point must not have duplicates).
 | |
| static inline bool is_ccw(const Polygon &poly)
 | |
| {
 | |
|     // The polygon shall be at least a triangle.
 | |
|     assert(poly.points.size() >= 3);
 | |
|     if (poly.points.size() < 3)
 | |
|         return true;
 | |
| 
 | |
|     // 1) Find the lowest lexicographical point.
 | |
|     unsigned int imin = 0;
 | |
|     for (unsigned int i = 1; i < poly.points.size(); ++ i) {
 | |
|         const Point &pmin = poly.points[imin];
 | |
|         const Point &p    = poly.points[i];
 | |
|         if (p(0) < pmin(0) || (p(0) == pmin(0) && p(1) < pmin(1)))
 | |
|             imin = i;
 | |
|     }
 | |
| 
 | |
|     // 2) Detect the orientation of the corner imin.
 | |
|     size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1;
 | |
|     size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1);
 | |
|     Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
 | |
|     // The lowest bottom point must not be collinear if the polygon does not contain duplicate points
 | |
|     // or overlapping segments.
 | |
|     assert(o != ORIENTATION_COLINEAR);
 | |
|     return o == ORIENTATION_CCW;
 | |
| }
 | |
| 
 | |
| inline bool ray_ray_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
 | |
| {
 | |
|     double denom = v1(0) * v2(1) - v2(0) * v1(1);
 | |
|     if (std::abs(denom) < EPSILON)
 | |
|         return false;
 | |
|     double t = (v2(0) * (p1(1) - p2(1)) - v2(1) * (p1(0) - p2(0))) / denom;
 | |
|     res(0) = p1(0) + t * v1(0);
 | |
|     res(1) = p1(1) + t * v1(1);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| inline bool segment_segment_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
 | |
| {
 | |
|     double denom = v1(0) * v2(1) - v2(0) * v1(1);
 | |
|     if (std::abs(denom) < EPSILON)
 | |
|         // Lines are collinear.
 | |
|         return false;
 | |
|     double s12_x = p1(0) - p2(0);
 | |
|     double s12_y = p1(1) - p2(1);
 | |
|     double s_numer = v1(0) * s12_y - v1(1) * s12_x;
 | |
|     bool   denom_is_positive = false;
 | |
|     if (denom < 0.) {
 | |
|         denom_is_positive = true;
 | |
|         denom   = - denom;
 | |
|         s_numer = - s_numer;
 | |
|     }
 | |
|     if (s_numer < 0.)
 | |
|         // Intersection outside of the 1st segment.
 | |
|         return false;
 | |
|     double t_numer = v2(0) * s12_y - v2(1) * s12_x;
 | |
|     if (! denom_is_positive)
 | |
|         t_numer = - t_numer;
 | |
|     if (t_numer < 0. || s_numer > denom || t_numer > denom)
 | |
|         // Intersection outside of the 1st or 2nd segment.
 | |
|         return false;
 | |
|     // Intersection inside both of the segments.
 | |
|     double t = t_numer / denom;
 | |
|     res(0) = p1(0) + t * v1(0);
 | |
|     res(1) = p1(1) + t * v1(1);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| inline bool segments_intersect(
 | |
| 	const Slic3r::Point &ip1, const Slic3r::Point &ip2, 
 | |
| 	const Slic3r::Point &jp1, const Slic3r::Point &jp2)
 | |
| {    
 | |
|     assert(ip1 != ip2);
 | |
|     assert(jp1 != jp2);
 | |
| 
 | |
|     auto segments_could_intersect = [](
 | |
|         const Slic3r::Point &ip1, const Slic3r::Point &ip2,
 | |
|         const Slic3r::Point &jp1, const Slic3r::Point &jp2) -> std::pair<int, int>
 | |
|     {
 | |
|         Vec2i64 iv   = (ip2 - ip1).cast<int64_t>();
 | |
|         Vec2i64 vij1 = (jp1 - ip1).cast<int64_t>();
 | |
|         Vec2i64 vij2 = (jp2 - ip1).cast<int64_t>();
 | |
|         int64_t tij1 = cross2(iv, vij1);
 | |
|         int64_t tij2 = cross2(iv, vij2);
 | |
|         return std::make_pair(
 | |
|             // signum
 | |
|             (tij1 > 0) ? 1 : ((tij1 < 0) ? -1 : 0),
 | |
|             (tij2 > 0) ? 1 : ((tij2 < 0) ? -1 : 0));
 | |
|     };
 | |
| 
 | |
|     std::pair<int, int> sign1 = segments_could_intersect(ip1, ip2, jp1, jp2);
 | |
|     std::pair<int, int> sign2 = segments_could_intersect(jp1, jp2, ip1, ip2);
 | |
|     int                 test1 = sign1.first * sign1.second;
 | |
|     int                 test2 = sign2.first * sign2.second;
 | |
|     if (test1 <= 0 && test2 <= 0) {
 | |
|         // The segments possibly intersect. They may also be collinear, but not intersect.
 | |
|         if (test1 != 0 || test2 != 0)
 | |
|             // Certainly not collinear, then the segments intersect.
 | |
|             return true;
 | |
|         // If the first segment is collinear with the other, the other is collinear with the first segment.
 | |
|         assert((sign1.first == 0 && sign1.second == 0) == (sign2.first == 0 && sign2.second == 0));
 | |
|         if (sign1.first == 0 && sign1.second == 0) {
 | |
|             // The segments are certainly collinear. Now verify whether they overlap.
 | |
|             Slic3r::Point vi = ip2 - ip1;
 | |
|             // Project both on the longer coordinate of vi.
 | |
|             int axis = std::abs(vi.x()) > std::abs(vi.y()) ? 0 : 1;
 | |
|             coord_t i = ip1(axis);
 | |
|             coord_t j = ip2(axis);
 | |
|             coord_t k = jp1(axis);
 | |
|             coord_t l = jp2(axis);
 | |
|             if (i > j)
 | |
|                 std::swap(i, j);
 | |
|             if (k > l)
 | |
|                 std::swap(k, l);
 | |
|             return (k >= i && k <= j) || (i >= k && i <= l);
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| template<typename T> inline T foot_pt(const T &line_pt, const T &line_dir, const T &pt)
 | |
| {
 | |
|     T      v   = pt - line_pt;
 | |
|     auto   l2  = line_dir.squaredNorm();
 | |
|     auto   t   = (l2 == 0) ? 0 : v.dot(line_dir) / l2;
 | |
|     return line_pt + line_dir * t;
 | |
| }
 | |
| 
 | |
| inline Vec2d foot_pt(const Line &iline, const Point &ipt)
 | |
| {
 | |
|     return foot_pt<Vec2d>(iline.a.cast<double>(), (iline.b - iline.a).cast<double>(), ipt.cast<double>());
 | |
| }
 | |
| 
 | |
| template<typename T> inline auto ray_point_distance_squared(const T &ray_pt, const T &ray_dir, const T &pt)
 | |
| {
 | |
|     return (foot_pt(ray_pt, ray_dir, pt) - pt).squaredNorm();
 | |
| }
 | |
| 
 | |
| template<typename T> inline auto ray_point_distance(const T &ray_pt, const T &ray_dir, const T &pt)
 | |
| {
 | |
|     return (foot_pt(ray_pt, ray_dir, pt) - pt).norm();
 | |
| }
 | |
| 
 | |
| inline double ray_point_distance_squared(const Line &iline, const Point &ipt)
 | |
| {
 | |
|     return (foot_pt(iline, ipt) - ipt.cast<double>()).squaredNorm();
 | |
| }
 | |
| 
 | |
| inline double ray_point_distance(const Line &iline, const Point &ipt)
 | |
| {
 | |
|     return (foot_pt(iline, ipt) - ipt.cast<double>()).norm();
 | |
| }
 | |
| 
 | |
| // Based on Liang-Barsky function by Daniel White @ http://www.skytopia.com/project/articles/compsci/clipping.html
 | |
| template<typename T>
 | |
| inline bool liang_barsky_line_clipping(
 | |
| 	// Start and end points of the source line, result will be stored there as well.
 | |
| 	Eigen::Matrix<T, 2, 1, Eigen::DontAlign> 						&x0,
 | |
| 	Eigen::Matrix<T, 2, 1, Eigen::DontAlign> 						&x1,
 | |
| 	// Bounding box to clip with.
 | |
| 	const BoundingBoxBase<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &bbox)
 | |
| {
 | |
|     Eigen::Matrix<T, 2, 1, Eigen::DontAlign> v = x1 - x0;
 | |
|     double t0 = 0.0;
 | |
|     double t1 = 1.0;
 | |
| 
 | |
| 	// Traverse through left, right, bottom, top edges.
 | |
|     for (int edge = 0; edge < 4; ++ edge)
 | |
|     {
 | |
| 		double p, q;
 | |
|     	switch (edge) {
 | |
|     	case 0:	 p = - v.x();    q = - bbox.min.x() + x0.x();	break;
 | |
|         case 1:  p =   v.x();    q =   bbox.max.x() - x0.x();	break;
 | |
|         case 2:  p = - v.y();    q = - bbox.min.y() + x0.y();	break;
 | |
|         default: p =   v.y();    q =   bbox.max.y() - x0.y();   break;
 | |
|     	}
 | |
|         
 | |
| 		if (p == 0) {
 | |
| 			if (q < 0)
 | |
| 				// Line parallel to the bounding box edge is fully outside of the bounding box.
 | |
| 				return false;
 | |
| 			// else don't clip
 | |
| 		} else {
 | |
| 	        double r = q / p;
 | |
| 			if (p < 0) {
 | |
| 				if (r > t1)
 | |
|             		// Fully clipped.
 | |
|             		return false;
 | |
| 				if (r > t0)
 | |
|             		// Partially clipped.
 | |
|             		t0 = r;
 | |
| 			} else {
 | |
| 				assert(p > 0);
 | |
| 				if (r < t0)
 | |
|             		// Fully clipped.
 | |
|             		return false;
 | |
| 				if (r < t1)
 | |
|             		// Partially clipped.
 | |
|             		t1 = r;
 | |
| 			}
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Clipped successfully.
 | |
|     x1  = x0 + t1 * v;
 | |
|     x0 += t0 * v;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // Based on Liang-Barsky function by Daniel White @ http://www.skytopia.com/project/articles/compsci/clipping.html
 | |
| template<typename T>
 | |
| bool liang_barsky_line_clipping(
 | |
| 	// Start and end points of the source line.
 | |
| 	const Eigen::Matrix<T, 2, 1, Eigen::DontAlign> 					&x0src,
 | |
| 	const Eigen::Matrix<T, 2, 1, Eigen::DontAlign> 					&x1src,
 | |
| 	// Bounding box to clip with.
 | |
| 	const BoundingBoxBase<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &bbox,
 | |
| 	// Start and end points of the clipped line.
 | |
| 	Eigen::Matrix<T, 2, 1, Eigen::DontAlign> 						&x0clip,
 | |
| 	Eigen::Matrix<T, 2, 1, Eigen::DontAlign> 						&x1clip)
 | |
| {
 | |
| 	x0clip = x0src;
 | |
| 	x1clip = x1src;
 | |
| 	return liang_barsky_line_clipping(x0clip, x1clip, bbox);
 | |
| }
 | |
| 
 | |
| Pointf3s convex_hull(Pointf3s points);
 | |
| Polygon convex_hull(Points points);
 | |
| Polygon convex_hull(const Polygons &polygons);
 | |
| 
 | |
| bool directions_parallel(double angle1, double angle2, double max_diff = 0);
 | |
| template<class T> bool contains(const std::vector<T> &vector, const Point &point);
 | |
| template<typename T> T rad2deg(T angle) { return T(180.0) * angle / T(PI); }
 | |
| double rad2deg_dir(double angle);
 | |
| template<typename T> T deg2rad(T angle) { return T(PI) * angle / T(180.0); }
 | |
| template<typename T> T angle_to_0_2PI(T angle)
 | |
| {
 | |
|     static const T TWO_PI = T(2) * T(PI);
 | |
|     while (angle < T(0))
 | |
|     {
 | |
|         angle += TWO_PI;
 | |
|     }
 | |
|     while (TWO_PI < angle)
 | |
|     {
 | |
|         angle -= TWO_PI;
 | |
|     }
 | |
| 
 | |
|     return angle;
 | |
| }
 | |
| 
 | |
| /// Find the center of the circle corresponding to the vector of Points as an arc.
 | |
| Point circle_taubin_newton(const Points::const_iterator& input_start, const Points::const_iterator& input_end, size_t cycles = 20);
 | |
| inline Point circle_taubin_newton(const Points& input, size_t cycles = 20) { return circle_taubin_newton(input.cbegin(), input.cend(), cycles); }
 | |
| 
 | |
| /// Find the center of the circle corresponding to the vector of Pointfs as an arc.
 | |
| Vec2d circle_taubin_newton(const Vec2ds::const_iterator& input_start, const Vec2ds::const_iterator& input_end, size_t cycles = 20);
 | |
| inline Vec2d circle_taubin_newton(const Vec2ds& input, size_t cycles = 20) { return circle_taubin_newton(input.cbegin(), input.cend(), cycles); }
 | |
| 
 | |
| void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval);
 | |
| 
 | |
| double linint(double value, double oldmin, double oldmax, double newmin, double newmax);
 | |
| bool arrange(
 | |
|     // input
 | |
|     size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box, 
 | |
|     // output
 | |
|     Pointfs &positions);
 | |
| 
 | |
| class VoronoiDiagram : public boost::polygon::voronoi_diagram<double> {
 | |
| public:
 | |
|     typedef double                                          coord_type;
 | |
|     typedef boost::polygon::point_data<coordinate_type>     point_type;
 | |
|     typedef boost::polygon::segment_data<coordinate_type>   segment_type;
 | |
|     typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
 | |
| };
 | |
| 
 | |
| class MedialAxis {
 | |
| public:
 | |
|     Lines lines;
 | |
|     const ExPolygon* expolygon;
 | |
|     double max_width;
 | |
|     double min_width;
 | |
|     MedialAxis(double _max_width, double _min_width, const ExPolygon* _expolygon = NULL)
 | |
|         : expolygon(_expolygon), max_width(_max_width), min_width(_min_width) {};
 | |
|     void build(ThickPolylines* polylines);
 | |
|     void build(Polylines* polylines);
 | |
|     
 | |
| private:
 | |
|     using VD = VoronoiDiagram;
 | |
|     VD vd;
 | |
|     std::set<const VD::edge_type*> edges, valid_edges;
 | |
|     std::map<const VD::edge_type*, std::pair<coordf_t,coordf_t> > thickness;
 | |
|     void process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline);
 | |
|     bool validate_edge(const VD::edge_type* edge);
 | |
|     const Line& retrieve_segment(const VD::cell_type* cell) const;
 | |
|     const Point& retrieve_endpoint(const VD::cell_type* cell) const;
 | |
| };
 | |
| 
 | |
| // Sets the given transform by assembling the given transformations in the following order:
 | |
| // 1) mirror
 | |
| // 2) scale
 | |
| // 3) rotate X
 | |
| // 4) rotate Y
 | |
| // 5) rotate Z
 | |
| // 6) translate
 | |
| void assemble_transform(Transform3d& transform, const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones());
 | |
| 
 | |
| // Returns the transform obtained by assembling the given transformations in the following order:
 | |
| // 1) mirror
 | |
| // 2) scale
 | |
| // 3) rotate X
 | |
| // 4) rotate Y
 | |
| // 5) rotate Z
 | |
| // 6) translate
 | |
| Transform3d assemble_transform(const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones());
 | |
| 
 | |
| // Returns the euler angles extracted from the given rotation matrix
 | |
| // Warning -> The matrix should not contain any scale or shear !!!
 | |
| Vec3d extract_euler_angles(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>& rotation_matrix);
 | |
| 
 | |
| // Returns the euler angles extracted from the given affine transform
 | |
| // Warning -> The transform should not contain any shear !!!
 | |
| Vec3d extract_euler_angles(const Transform3d& transform);
 | |
| 
 | |
| class Transformation
 | |
| {
 | |
|     struct Flags
 | |
|     {
 | |
|         bool dont_translate;
 | |
|         bool dont_rotate;
 | |
|         bool dont_scale;
 | |
|         bool dont_mirror;
 | |
| 
 | |
|         Flags();
 | |
| 
 | |
|         bool needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const;
 | |
|         void set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror);
 | |
|     };
 | |
| 
 | |
|     Vec3d m_offset;              // In unscaled coordinates
 | |
|     Vec3d m_rotation;            // Rotation around the three axes, in radians around mesh center point
 | |
|     Vec3d m_scaling_factor;      // Scaling factors along the three axes
 | |
|     Vec3d m_mirror;              // Mirroring along the three axes
 | |
| 
 | |
|     mutable Transform3d m_matrix;
 | |
|     mutable Flags m_flags;
 | |
|     mutable bool m_dirty;
 | |
| 
 | |
| public:
 | |
|     Transformation();
 | |
|     explicit Transformation(const Transform3d& transform);
 | |
| 
 | |
|     const Vec3d& get_offset() const { return m_offset; }
 | |
|     double get_offset(Axis axis) const { return m_offset(axis); }
 | |
| 
 | |
|     void set_offset(const Vec3d& offset);
 | |
|     void set_offset(Axis axis, double offset);
 | |
| 
 | |
|     const Vec3d& get_rotation() const { return m_rotation; }
 | |
|     double get_rotation(Axis axis) const { return m_rotation(axis); }
 | |
| 
 | |
|     void set_rotation(const Vec3d& rotation);
 | |
|     void set_rotation(Axis axis, double rotation);
 | |
| 
 | |
|     const Vec3d& get_scaling_factor() const { return m_scaling_factor; }
 | |
|     double get_scaling_factor(Axis axis) const { return m_scaling_factor(axis); }
 | |
| 
 | |
|     void set_scaling_factor(const Vec3d& scaling_factor);
 | |
|     void set_scaling_factor(Axis axis, double scaling_factor);
 | |
|     bool is_scaling_uniform() const { return std::abs(m_scaling_factor.x() - m_scaling_factor.y()) < 1e-8 && std::abs(m_scaling_factor.x() - m_scaling_factor.z()) < 1e-8; }
 | |
| 
 | |
|     const Vec3d& get_mirror() const { return m_mirror; }
 | |
|     double get_mirror(Axis axis) const { return m_mirror(axis); }
 | |
|     bool is_left_handed() const { return m_mirror.x() * m_mirror.y() * m_mirror.z() < 0.; }
 | |
| 
 | |
|     void set_mirror(const Vec3d& mirror);
 | |
|     void set_mirror(Axis axis, double mirror);
 | |
| 
 | |
|     void set_from_transform(const Transform3d& transform);
 | |
| 
 | |
|     void reset();
 | |
| 
 | |
|     const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const;
 | |
| 
 | |
|     Transformation operator * (const Transformation& other) const;
 | |
| 
 | |
|     // Find volume transformation, so that the chained (instance_trafo * volume_trafo) will be as close to identity
 | |
|     // as possible in least squares norm in regard to the 8 corners of bbox.
 | |
|     // Bounding box is expected to be centered around zero in all axes.
 | |
|     static Transformation volume_to_bed_transformation(const Transformation& instance_transformation, const BoundingBoxf3& bbox);
 | |
| 
 | |
| private:
 | |
| 	friend class cereal::access;
 | |
| 	template<class Archive> void serialize(Archive & ar) { ar(m_offset, m_rotation, m_scaling_factor, m_mirror); }
 | |
| 	explicit Transformation(int) : m_dirty(true) {}
 | |
| 	template <class Archive> static void load_and_construct(Archive &ar, cereal::construct<Transformation> &construct)
 | |
| 	{
 | |
| 		// Calling a private constructor with special "int" parameter to indicate that no construction is necessary.
 | |
| 		construct(1);
 | |
| 		ar(construct.ptr()->m_offset, construct.ptr()->m_rotation, construct.ptr()->m_scaling_factor, construct.ptr()->m_mirror);
 | |
| 	}
 | |
| };
 | |
| 
 | |
| // For parsing a transformation matrix from 3MF / AMF.
 | |
| extern Transform3d transform3d_from_string(const std::string& transform_str);
 | |
| 
 | |
| // Rotation when going from the first coordinate system with rotation rot_xyz_from applied
 | |
| // to a coordinate system with rot_xyz_to applied.
 | |
| extern Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to);
 | |
| // Rotation by Z to align rot_xyz_from to rot_xyz_to.
 | |
| // This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
 | |
| extern double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to);
 | |
| 
 | |
| // Is the angle close to a multiple of 90 degrees?
 | |
| inline bool is_rotation_ninety_degrees(double a)
 | |
| {
 | |
|     a = fmod(std::abs(a), 0.5 * M_PI);
 | |
|     if (a > 0.25 * PI)
 | |
|         a = 0.5 * PI - a;
 | |
|     return a < 0.001;
 | |
| }
 | |
| 
 | |
| // Is the angle close to a multiple of 90 degrees?
 | |
| inline bool is_rotation_ninety_degrees(const Vec3d &rotation)
 | |
| {
 | |
|     return is_rotation_ninety_degrees(rotation.x()) && is_rotation_ninety_degrees(rotation.y()) && is_rotation_ninety_degrees(rotation.z());
 | |
| }
 | |
| 
 | |
| } }
 | |
| 
 | |
| #endif
 |