mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			306 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			306 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef slic3r_EdgeGrid_hpp_
 | |
| #define slic3r_EdgeGrid_hpp_
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #include "Point.hpp"
 | |
| #include "BoundingBox.hpp"
 | |
| #include "ExPolygon.hpp"
 | |
| #include "ExPolygonCollection.hpp"
 | |
| 
 | |
| namespace Slic3r {
 | |
| namespace EdgeGrid {
 | |
| 
 | |
| class Grid
 | |
| {
 | |
| public:
 | |
| 	Grid();
 | |
| 	~Grid();
 | |
| 
 | |
| 	void set_bbox(const BoundingBox &bbox) { m_bbox = bbox; }
 | |
| 
 | |
| 	void create(const Polygons &polygons, coord_t resolution);
 | |
| 	void create(const std::vector<Points> &polygons, coord_t resolution);
 | |
| 	void create(const ExPolygon &expoly, coord_t resolution);
 | |
| 	void create(const ExPolygons &expolygons, coord_t resolution);
 | |
| 	void create(const ExPolygonCollection &expolygons, coord_t resolution);
 | |
| 
 | |
| 	const std::vector<const Slic3r::Points*>& contours() const { return m_contours; }
 | |
| 
 | |
| #if 0
 | |
| 	// Test, whether the edges inside the grid intersect with the polygons provided.
 | |
| 	bool intersect(const MultiPoint &polyline, bool closed);
 | |
| 	bool intersect(const Polygon &polygon) { return intersect(static_cast<const MultiPoint&>(polygon), true); }
 | |
| 	bool intersect(const Polygons &polygons) { for (size_t i = 0; i < polygons.size(); ++ i) if (intersect(polygons[i])) return true; return false; }
 | |
| 	bool intersect(const ExPolygon &expoly) { if (intersect(expoly.contour)) return true; for (size_t i = 0; i < expoly.holes.size(); ++ i) if (intersect(expoly.holes[i])) return true; return false; }
 | |
| 	bool intersect(const ExPolygons &expolygons) { for (size_t i = 0; i < expolygons.size(); ++ i) if (intersect(expolygons[i])) return true; return false; }
 | |
| 	bool intersect(const ExPolygonCollection &expolygons) { return intersect(expolygons.expolygons); }
 | |
| 
 | |
| 	// Test, whether a point is inside a contour.
 | |
| 	bool inside(const Point &pt);
 | |
| #endif
 | |
| 
 | |
| 	// Fill in a rough m_signed_distance_field from the edge grid.
 | |
| 	// The rough SDF is used by signed_distance() for distances outside of the search_radius.
 | |
| 	void calculate_sdf();
 | |
| 
 | |
| 	// Return an estimate of the signed distance based on m_signed_distance_field grid.
 | |
| 	float signed_distance_bilinear(const Point &pt) const;
 | |
| 
 | |
| 	// Calculate a signed distance to the contours in search_radius from the point.
 | |
| 	struct ClosestPointResult {
 | |
| 		size_t contour_idx  	= size_t(-1);
 | |
| 		size_t start_point_idx  = size_t(-1);
 | |
| 		// Signed distance to the closest point.
 | |
| 		double distance 		= std::numeric_limits<double>::max();
 | |
| 		// Parameter of the closest point on edge starting with start_point_idx <0, 1)
 | |
| 		double t 				= 0.;
 | |
| 
 | |
| 		bool valid() const { return contour_idx != size_t(-1); }
 | |
| 	};
 | |
| 	ClosestPointResult closest_point(const Point &pt, coord_t search_radius) const;
 | |
| 
 | |
| 	bool signed_distance_edges(const Point &pt, coord_t search_radius, coordf_t &result_min_dist, bool *pon_segment = nullptr) const;
 | |
| 
 | |
| 	// Calculate a signed distance to the contours in search_radius from the point. If no edge is found in search_radius,
 | |
| 	// return an interpolated value from m_signed_distance_field, if it exists.
 | |
| 	bool signed_distance(const Point &pt, coord_t search_radius, coordf_t &result_min_dist) const;
 | |
| 
 | |
| 	const BoundingBox& 	bbox() const { return m_bbox; }
 | |
| 	const coord_t 		resolution() const { return m_resolution; }
 | |
| 	const size_t		rows() const { return m_rows; }
 | |
| 	const size_t		cols() const { return m_cols; }
 | |
| 
 | |
| 	// For supports: Contours enclosing the rasterized edges.
 | |
| 	Polygons 			contours_simplified(coord_t offset, bool fill_holes) const;
 | |
| 
 | |
| 	typedef std::pair<const Slic3r::Points*, size_t> ContourPoint;
 | |
| 	typedef std::pair<const Slic3r::Points*, size_t> ContourEdge;
 | |
| 	std::vector<std::pair<ContourEdge, ContourEdge>> intersecting_edges() const;
 | |
| 	bool 											 has_intersecting_edges() const;
 | |
| 
 | |
| 	template<typename VISITOR> void visit_cells_intersecting_line(Slic3r::Point p1, Slic3r::Point p2, VISITOR &visitor) const
 | |
| 	{
 | |
| 		// End points of the line segment.
 | |
| 		p1(0) -= m_bbox.min(0);
 | |
| 		p1(1) -= m_bbox.min(1);
 | |
| 		p2(0) -= m_bbox.min(0);
 | |
| 		p2(1) -= m_bbox.min(1);
 | |
| 		// Get the cells of the end points.
 | |
| 		coord_t ix = p1(0) / m_resolution;
 | |
| 		coord_t iy = p1(1) / m_resolution;
 | |
| 		coord_t ixb = p2(0) / m_resolution;
 | |
| 		coord_t iyb = p2(1) / m_resolution;
 | |
| 		assert(ix >= 0 && size_t(ix) < m_cols);
 | |
| 		assert(iy >= 0 && size_t(iy) < m_rows);
 | |
| 		assert(ixb >= 0 && size_t(ixb) < m_cols);
 | |
| 		assert(iyb >= 0 && size_t(iyb) < m_rows);
 | |
| 		// Account for the end points.
 | |
| 		if (! visitor(iy, ix) || (ix == ixb && iy == iyb))
 | |
| 			// Both ends fall into the same cell.
 | |
| 			return;
 | |
| 		// Raster the centeral part of the line.
 | |
| 		coord_t dx = std::abs(p2(0) - p1(0));
 | |
| 		coord_t dy = std::abs(p2(1) - p1(1));
 | |
| 		if (p1(0) < p2(0)) {
 | |
| 			int64_t ex = int64_t((ix + 1)*m_resolution - p1(0)) * int64_t(dy);
 | |
| 			if (p1(1) < p2(1)) {
 | |
| 				// x positive, y positive
 | |
| 				int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx);
 | |
| 				do {
 | |
| 					assert(ix <= ixb && iy <= iyb);
 | |
| 					if (ex < ey) {
 | |
| 						ey -= ex;
 | |
| 						ex = int64_t(dy) * m_resolution;
 | |
| 						ix += 1;
 | |
| 					}
 | |
| 					else if (ex == ey) {
 | |
| 						ex = int64_t(dy) * m_resolution;
 | |
| 						ey = int64_t(dx) * m_resolution;
 | |
| 						ix += 1;
 | |
| 						iy += 1;
 | |
| 					}
 | |
| 					else {
 | |
| 						assert(ex > ey);
 | |
| 						ex -= ey;
 | |
| 						ey = int64_t(dx) * m_resolution;
 | |
| 						iy += 1;
 | |
| 					}
 | |
| 					if (! visitor(iy, ix))
 | |
| 						return;
 | |
| 				} while (ix != ixb || iy != iyb);
 | |
| 			}
 | |
| 			else {
 | |
| 				// x positive, y non positive
 | |
| 				int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx);
 | |
| 				do {
 | |
| 					assert(ix <= ixb && iy >= iyb);
 | |
| 					if (ex <= ey) {
 | |
| 						ey -= ex;
 | |
| 						ex = int64_t(dy) * m_resolution;
 | |
| 						ix += 1;
 | |
| 					}
 | |
| 					else {
 | |
| 						ex -= ey;
 | |
| 						ey = int64_t(dx) * m_resolution;
 | |
| 						iy -= 1;
 | |
| 					}
 | |
| 					if (! visitor(iy, ix))
 | |
| 						return;
 | |
| 				} while (ix != ixb || iy != iyb);
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			int64_t ex = int64_t(p1(0) - ix*m_resolution) * int64_t(dy);
 | |
| 			if (p1(1) < p2(1)) {
 | |
| 				// x non positive, y positive
 | |
| 				int64_t ey = int64_t((iy + 1)*m_resolution - p1(1)) * int64_t(dx);
 | |
| 				do {
 | |
| 					assert(ix >= ixb && iy <= iyb);
 | |
| 					if (ex < ey) {
 | |
| 						ey -= ex;
 | |
| 						ex = int64_t(dy) * m_resolution;
 | |
| 						ix -= 1;
 | |
| 					}
 | |
| 					else {
 | |
| 						assert(ex >= ey);
 | |
| 						ex -= ey;
 | |
| 						ey = int64_t(dx) * m_resolution;
 | |
| 						iy += 1;
 | |
| 					}
 | |
| 					if (! visitor(iy, ix))
 | |
| 						return;
 | |
| 				} while (ix != ixb || iy != iyb);
 | |
| 			}
 | |
| 			else {
 | |
| 				// x non positive, y non positive
 | |
| 				int64_t ey = int64_t(p1(1) - iy*m_resolution) * int64_t(dx);
 | |
| 				do {
 | |
| 					assert(ix >= ixb && iy >= iyb);
 | |
| 					if (ex < ey) {
 | |
| 						ey -= ex;
 | |
| 						ex = int64_t(dy) * m_resolution;
 | |
| 						ix -= 1;
 | |
| 					}
 | |
| 					else if (ex == ey) {
 | |
| 						// The lower edge of a grid cell belongs to the cell.
 | |
| 						// Handle the case where the ray may cross the lower left corner of a cell in a general case,
 | |
| 						// or a left or lower edge in a degenerate case (horizontal or vertical line).
 | |
| 						if (dx > 0) {
 | |
| 							ex = int64_t(dy) * m_resolution;
 | |
| 							ix -= 1;
 | |
| 						}
 | |
| 						if (dy > 0) {
 | |
| 							ey = int64_t(dx) * m_resolution;
 | |
| 							iy -= 1;
 | |
| 						}
 | |
| 					}
 | |
| 					else {
 | |
| 						assert(ex > ey);
 | |
| 						ex -= ey;
 | |
| 						ey = int64_t(dx) * m_resolution;
 | |
| 						iy -= 1;
 | |
| 					}
 | |
| 					if (! visitor(iy, ix))
 | |
| 						return;
 | |
| 				} while (ix != ixb || iy != iyb);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	template<typename VISITOR> void visit_cells_intersecting_box(BoundingBox bbox, VISITOR &visitor) const
 | |
| 	{
 | |
| 		// End points of the line segment.
 | |
| 		bbox.min -= m_bbox.min;
 | |
| 		bbox.max -= m_bbox.min + Point(1, 1);
 | |
| 		// Get the cells of the end points.
 | |
| 		bbox.min /= m_resolution;
 | |
| 		bbox.max /= m_resolution;
 | |
| 		// Trim with the cells.
 | |
| 		bbox.min.x() = std::max<coord_t>(bbox.min.x(), 0);
 | |
| 		bbox.min.y() = std::max<coord_t>(bbox.min.y(), 0);
 | |
| 		bbox.max.x() = std::min<coord_t>(bbox.max.x(), (coord_t)m_cols - 1);
 | |
| 		bbox.max.y() = std::min<coord_t>(bbox.max.y(), (coord_t)m_rows - 1);
 | |
| 		for (coord_t iy = bbox.min.y(); iy <= bbox.max.y(); ++ iy)
 | |
| 			for (coord_t ix = bbox.min.x(); ix <= bbox.max.x(); ++ ix)
 | |
| 				if (! visitor(iy, ix))
 | |
| 					return;
 | |
| 	}
 | |
| 
 | |
| 	std::pair<std::vector<std::pair<size_t, size_t>>::const_iterator, std::vector<std::pair<size_t, size_t>>::const_iterator> cell_data_range(coord_t row, coord_t col) const
 | |
| 	{
 | |
| 		const EdgeGrid::Grid::Cell &cell = m_cells[row * m_cols + col];
 | |
| 		return std::make_pair(m_cell_data.begin() + cell.begin, m_cell_data.begin() + cell.end);
 | |
| 	}
 | |
| 
 | |
| 	std::pair<const Slic3r::Point&, const Slic3r::Point&> segment(const std::pair<size_t, size_t> &contour_and_segment_idx) const
 | |
| 	{
 | |
| 		const Slic3r::Points &ipts = *m_contours[contour_and_segment_idx.first];
 | |
| 		size_t ipt = contour_and_segment_idx.second;
 | |
| 		return std::pair<const Slic3r::Point&, const Slic3r::Point&>(ipts[ipt], ipts[(ipt + 1 == ipts.size()) ? 0 : ipt + 1]);
 | |
| 	}
 | |
| 
 | |
| protected:
 | |
| 	struct Cell {
 | |
| 		Cell() : begin(0), end(0) {}
 | |
| 		size_t begin;
 | |
| 		size_t end;
 | |
| 	};
 | |
| 
 | |
| 	void create_from_m_contours(coord_t resolution);
 | |
| #if 0
 | |
| 	bool line_cell_intersect(const Point &p1, const Point &p2, const Cell &cell);
 | |
| #endif
 | |
| 	bool cell_inside_or_crossing(int r, int c) const
 | |
| 	{
 | |
| 		if (r < 0 || (size_t)r >= m_rows ||
 | |
| 			c < 0 || (size_t)c >= m_cols)
 | |
| 			// The cell is outside the domain. Hoping that the contours were correctly oriented, so
 | |
| 			// there is a CCW outmost contour so the out of domain cells are outside.
 | |
| 			return false;
 | |
| 		const Cell &cell = m_cells[r * m_cols + c];
 | |
| 		return 
 | |
| 			(cell.begin < cell.end) || 
 | |
| 			(! m_signed_distance_field.empty() && m_signed_distance_field[r * (m_cols + 1) + c] <= 0.f);
 | |
| 	}
 | |
| 
 | |
| 	// Bounding box around the contours.
 | |
| 	BoundingBox 								m_bbox;
 | |
| 	// Grid dimensions.
 | |
| 	coord_t										m_resolution;
 | |
| 	size_t										m_rows;
 | |
| 	size_t										m_cols;
 | |
| 
 | |
| 	// Referencing the source contours.
 | |
| 	// This format allows one to work with any Slic3r fixed point contour format
 | |
| 	// (Polygon, ExPolygon, ExPolygonCollection etc).
 | |
| 	std::vector<const Slic3r::Points*>			m_contours;
 | |
| 
 | |
| 	// Referencing a contour and a line segment of m_contours.
 | |
| 	std::vector<std::pair<size_t, size_t> >		m_cell_data;
 | |
| 
 | |
| 	// Full grid of cells.
 | |
| 	std::vector<Cell> 							m_cells;
 | |
| 
 | |
| 	// Distance field derived from the edge grid, seed filled by the Danielsson chamfer metric.
 | |
| 	// May be empty.
 | |
| 	std::vector<float>							m_signed_distance_field;
 | |
| };
 | |
| 
 | |
| #if 0
 | |
| // Debugging utility. Save the signed distance field.
 | |
| extern void save_png(const Grid &grid, const BoundingBox &bbox, coord_t resolution, const char *path);
 | |
| #endif /* SLIC3R_GUI */
 | |
| 
 | |
| } // namespace EdgeGrid
 | |
| 
 | |
| // Find all pairs of intersectiong edges from the set of polygons.
 | |
| extern std::vector<std::pair<EdgeGrid::Grid::ContourEdge, EdgeGrid::Grid::ContourEdge>> intersecting_edges(const Polygons &polygons);
 | |
| 
 | |
| // Find all pairs of intersectiong edges from the set of polygons, highlight them in an SVG.
 | |
| extern void export_intersections_to_svg(const std::string &filename, const Polygons &polygons);
 | |
| 
 | |
| } // namespace Slic3r
 | |
| 
 | |
| #endif /* slic3r_EdgeGrid_hpp_ */
 | 
