OrcaSlicer/xs/src/admesh/util.c

404 lines
9.7 KiB
C

/* ADMesh -- process triangulated solid meshes
* Copyright (C) 1995, 1996 Anthony D. Martin
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Questions, comments, suggestions, etc to <amartin@engr.csulb.edu>
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "stl.h"
static void stl_rotate(float *x, float *y, float angle);
static float get_area(stl_facet *facet);
static float get_volume(stl_file *stl);
void
stl_verify_neighbors(stl_file *stl)
{
int i;
int j;
stl_edge edge_a;
stl_edge edge_b;
int neighbor;
int vnot;
stl->stats.backwards_edges = 0;
for(i = 0; i < stl->stats.number_of_facets; i++)
{
for(j = 0; j < 3; j++)
{
edge_a.p1 = stl->facet_start[i].vertex[j];
edge_a.p2 = stl->facet_start[i].vertex[(j + 1) % 3];
neighbor = stl->neighbors_start[i].neighbor[j];
vnot = stl->neighbors_start[i].which_vertex_not[j];
if(neighbor == -1)
continue; /* this edge has no neighbor... Continue. */
if(vnot < 3)
{
edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3];
edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3];
}
else
{
stl->stats.backwards_edges += 1;
edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3];
edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3];
}
if(memcmp(&edge_a, &edge_b, SIZEOF_EDGE_SORT) != 0)
{
/* These edges should match but they don't. Print results. */
printf("edge %d of facet %d doesn't match edge %d of facet %d\n",
j, i, vnot + 1, neighbor);
stl_write_facet(stl, (char*)"first facet", i);
stl_write_facet(stl, (char*)"second facet", neighbor);
}
}
}
}
void
stl_translate_relative(stl_file *stl, float x, float y, float z)
{
int i;
int j;
for(i = 0; i < stl->stats.number_of_facets; i++)
{
for(j = 0; j < 3; j++)
{
stl->facet_start[i].vertex[j].x += x;
stl->facet_start[i].vertex[j].y += y;
stl->facet_start[i].vertex[j].z += z;
}
}
stl->stats.min.x += x;
stl->stats.min.y += y;
stl->stats.min.z += z;
stl->stats.max.x += x;
stl->stats.max.y += y;
stl->stats.max.z += z;
stl_invalidate_shared_vertices(stl);
}
void
stl_scale_versor(stl_file *stl, float versor[3])
{
int i;
int j;
// scale extents
stl->stats.min.x *= versor[0];
stl->stats.min.y *= versor[1];
stl->stats.min.z *= versor[2];
stl->stats.max.x *= versor[0];
stl->stats.max.y *= versor[1];
stl->stats.max.z *= versor[2];
// scale size
stl->stats.size.x *= versor[0];
stl->stats.size.y *= versor[1];
stl->stats.size.z *= versor[2];
// scale volume
if (stl->stats.volume > 0.0) {
stl->stats.volume *= (versor[0] * versor[1] * versor[2]);
}
for(i = 0; i < stl->stats.number_of_facets; i++)
{
for(j = 0; j < 3; j++)
{
stl->facet_start[i].vertex[j].x *= versor[0];
stl->facet_start[i].vertex[j].y *= versor[1];
stl->facet_start[i].vertex[j].z *= versor[2];
}
}
stl_invalidate_shared_vertices(stl);
}
void
stl_scale(stl_file *stl, float factor)
{
float versor[3];
versor[0] = factor;
versor[1] = factor;
versor[2] = factor;
stl_scale_versor(stl, versor);
}
static void calculate_normals(stl_file *stl)
{
long i;
float normal[3];
for(i = 0; i < stl->stats.number_of_facets; i++){
stl_calculate_normal(normal, &stl->facet_start[i]);
stl_normalize_vector(normal);
stl->facet_start[i].normal.x = normal[0];
stl->facet_start[i].normal.y = normal[1];
stl->facet_start[i].normal.z = normal[2];
}
}
void
stl_rotate_x(stl_file *stl, float angle)
{
int i;
int j;
for(i = 0; i < stl->stats.number_of_facets; i++)
{
for(j = 0; j < 3; j++)
{
stl_rotate(&stl->facet_start[i].vertex[j].y,
&stl->facet_start[i].vertex[j].z, angle);
}
}
stl_get_size(stl);
calculate_normals(stl);
}
void
stl_rotate_y(stl_file *stl, float angle)
{
int i;
int j;
for(i = 0; i < stl->stats.number_of_facets; i++)
{
for(j = 0; j < 3; j++)
{
stl_rotate(&stl->facet_start[i].vertex[j].z,
&stl->facet_start[i].vertex[j].x, angle);
}
}
stl_get_size(stl);
calculate_normals(stl);
}
void
stl_rotate_z(stl_file *stl, float angle)
{
int i;
int j;
for(i = 0; i < stl->stats.number_of_facets; i++)
{
for(j = 0; j < 3; j++)
{
stl_rotate(&stl->facet_start[i].vertex[j].x,
&stl->facet_start[i].vertex[j].y, angle);
}
}
stl_get_size(stl);
calculate_normals(stl);
}
static void
stl_rotate(float *x, float *y, float angle)
{
double r;
double theta;
double radian_angle;
radian_angle = (angle / 180.0) * M_PI;
r = sqrt((*x * *x) + (*y * *y));
theta = atan2(*y, *x);
*x = r * cos(theta + radian_angle);
*y = r * sin(theta + radian_angle);
}
extern void
stl_get_size(stl_file *stl)
{
int i;
int j;
stl->stats.min.x = stl->facet_start[0].vertex[0].x;
stl->stats.min.y = stl->facet_start[0].vertex[0].y;
stl->stats.min.z = stl->facet_start[0].vertex[0].z;
stl->stats.max.x = stl->facet_start[0].vertex[0].x;
stl->stats.max.y = stl->facet_start[0].vertex[0].y;
stl->stats.max.z = stl->facet_start[0].vertex[0].z;
for(i = 0; i < stl->stats.number_of_facets; i++)
{
for(j = 0; j < 3; j++)
{
stl->stats.min.x = STL_MIN(stl->stats.min.x,
stl->facet_start[i].vertex[j].x);
stl->stats.min.y = STL_MIN(stl->stats.min.y,
stl->facet_start[i].vertex[j].y);
stl->stats.min.z = STL_MIN(stl->stats.min.z,
stl->facet_start[i].vertex[j].z);
stl->stats.max.x = STL_MAX(stl->stats.max.x,
stl->facet_start[i].vertex[j].x);
stl->stats.max.y = STL_MAX(stl->stats.max.y,
stl->facet_start[i].vertex[j].y);
stl->stats.max.z = STL_MAX(stl->stats.max.z,
stl->facet_start[i].vertex[j].z);
}
}
stl->stats.size.x = stl->stats.max.x - stl->stats.min.x;
stl->stats.size.y = stl->stats.max.y - stl->stats.min.y;
stl->stats.size.z = stl->stats.max.z - stl->stats.min.z;
stl->stats.bounding_diameter = sqrt(
stl->stats.size.x * stl->stats.size.x +
stl->stats.size.y * stl->stats.size.y +
stl->stats.size.z * stl->stats.size.z
);
}
void
stl_mirror_xy(stl_file *stl)
{
int i;
int j;
float temp_size;
for(i = 0; i < stl->stats.number_of_facets; i++)
{
for(j = 0; j < 3; j++)
{
stl->facet_start[i].vertex[j].z *= -1.0;
}
}
temp_size = stl->stats.min.z;
stl->stats.min.z = stl->stats.max.z;
stl->stats.max.z = temp_size;
stl->stats.min.z *= -1.0;
stl->stats.max.z *= -1.0;
}
void
stl_mirror_yz(stl_file *stl)
{
int i;
int j;
float temp_size;
for(i = 0; i < stl->stats.number_of_facets; i++)
{
for(j = 0; j < 3; j++)
{
stl->facet_start[i].vertex[j].x *= -1.0;
}
}
temp_size = stl->stats.min.x;
stl->stats.min.x = stl->stats.max.x;
stl->stats.max.x = temp_size;
stl->stats.min.x *= -1.0;
stl->stats.max.x *= -1.0;
}
void
stl_mirror_xz(stl_file *stl)
{
int i;
int j;
float temp_size;
for(i = 0; i < stl->stats.number_of_facets; i++)
{
for(j = 0; j < 3; j++)
{
stl->facet_start[i].vertex[j].y *= -1.0;
}
}
temp_size = stl->stats.min.y;
stl->stats.min.y = stl->stats.max.y;
stl->stats.max.y = temp_size;
stl->stats.min.y *= -1.0;
stl->stats.max.y *= -1.0;
}
static float get_volume(stl_file *stl)
{
long i;
stl_vertex p0;
stl_vertex p;
stl_normal n;
float height;
float area;
float volume = 0.0;
/* Choose a point, any point as the reference */
p0.x = stl->facet_start[0].vertex[0].x;
p0.y = stl->facet_start[0].vertex[0].y;
p0.z = stl->facet_start[0].vertex[0].z;
for(i = 0; i < stl->stats.number_of_facets; i++){
p.x = stl->facet_start[i].vertex[0].x - p0.x;
p.y = stl->facet_start[i].vertex[0].y - p0.y;
p.z = stl->facet_start[i].vertex[0].z - p0.z;
/* Do dot product to get distance from point to plane */
n = stl->facet_start[i].normal;
height = (n.x * p.x) + (n.y * p.y) + (n.z * p.z);
area = get_area(&stl->facet_start[i]);
volume += (area * height) / 3.0;
}
return volume;
}
void stl_calculate_volume(stl_file *stl)
{
stl->stats.volume = get_volume(stl);
if(stl->stats.volume < 0.0){
stl_reverse_all_facets(stl);
stl->stats.volume = -stl->stats.volume;
}
}
static float get_area(stl_facet *facet)
{
float cross[3][3];
float sum[3];
float n[3];
float area;
int i;
for(i = 0; i < 3; i++){
cross[i][0]=((facet->vertex[i].y * facet->vertex[(i + 1) % 3].z) -
(facet->vertex[i].z * facet->vertex[(i + 1) % 3].y));
cross[i][1]=((facet->vertex[i].z * facet->vertex[(i + 1) % 3].x) -
(facet->vertex[i].x * facet->vertex[(i + 1) % 3].z));
cross[i][2]=((facet->vertex[i].x * facet->vertex[(i + 1) % 3].y) -
(facet->vertex[i].y * facet->vertex[(i + 1) % 3].x));
}
sum[0] = cross[0][0] + cross[1][0] + cross[2][0];
sum[1] = cross[0][1] + cross[1][1] + cross[2][1];
sum[2] = cross[0][2] + cross[1][2] + cross[2][2];
/* This should already be done. But just in case, let's do it again */
stl_calculate_normal(n, facet);
stl_normalize_vector(n);
area = 0.5 * (n[0] * sum[0] + n[1] * sum[1] + n[2] * sum[2]);
return area;
}