OrcaSlicer/src/slic3r/GUI/GLModel.cpp
enricoturri1966 35899b96ba Tech ENABLE_GLBEGIN_GLEND_REMOVAL - Layers editing profile's background texture rendering
Tech ENABLE_GLBEGIN_GLEND_REMOVAL - A few fixes in layers editing profile rendering

(cherry picked from commit prusa3d/PrusaSlicer@a939d8e4c0)
(cherry picked from commit prusa3d/PrusaSlicer@8c807dbcc4)
2023-11-04 11:41:01 +08:00

1071 lines
40 KiB
C++

#include "libslic3r/libslic3r.h"
#include "GLModel.hpp"
#include "3DScene.hpp"
#include "GUI_App.hpp"
#include "GLShader.hpp"
#include "libslic3r/TriangleMesh.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/Polygon.hpp"
#include <boost/filesystem/operations.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <GL/glew.h>
namespace Slic3r {
namespace GUI {
void GLModel::Geometry::add_vertex(const Vec2f& position)
{
assert(format.vertex_layout == EVertexLayout::P2);
vertices.emplace_back(position.x());
vertices.emplace_back(position.y());
}
void GLModel::Geometry::add_vertex(const Vec2f& position, const Vec2f& tex_coord)
{
assert(format.vertex_layout == EVertexLayout::P2T2);
vertices.emplace_back(position.x());
vertices.emplace_back(position.y());
vertices.emplace_back(tex_coord.x());
vertices.emplace_back(tex_coord.y());
}
void GLModel::Geometry::add_vertex(const Vec3f& position)
{
assert(format.vertex_layout == EVertexLayout::P3);
vertices.emplace_back(position.x());
vertices.emplace_back(position.y());
vertices.emplace_back(position.z());
}
void GLModel::Geometry::add_vertex(const Vec3f& position, const Vec3f& normal)
{
assert(format.vertex_layout == EVertexLayout::P3N3);
vertices.emplace_back(position.x());
vertices.emplace_back(position.y());
vertices.emplace_back(position.z());
vertices.emplace_back(normal.x());
vertices.emplace_back(normal.y());
vertices.emplace_back(normal.z());
}
void GLModel::Geometry::add_ushort_index(unsigned short id)
{
if (format.index_type != EIndexType::USHORT) {
assert(false);
return;
}
indices.resize(indices.size() + sizeof(unsigned short));
::memcpy(indices.data() + indices.size() - sizeof(unsigned short), &id, sizeof(unsigned short));
}
void GLModel::Geometry::add_uint_index(unsigned int id)
{
if (format.index_type != EIndexType::UINT) {
assert(false);
return;
}
indices.resize(indices.size() + sizeof(unsigned int));
::memcpy(indices.data() + indices.size() - sizeof(unsigned int), &id, sizeof(unsigned int));
}
void GLModel::Geometry::add_ushort_line(unsigned short id1, unsigned short id2)
{
if (format.index_type != EIndexType::USHORT) {
assert(false);
return;
}
indices.resize(indices.size() + 2 * sizeof(unsigned short));
::memcpy(indices.data() + indices.size() - 2 * sizeof(unsigned short), &id1, sizeof(unsigned short));
::memcpy(indices.data() + indices.size() - sizeof(unsigned short), &id2, sizeof(unsigned short));
}
void GLModel::Geometry::add_uint_line(unsigned int id1, unsigned int id2)
{
if (format.index_type != EIndexType::UINT) {
assert(false);
return;
}
indices.resize(indices.size() + 2 * sizeof(unsigned int));
::memcpy(indices.data() + indices.size() - 2 * sizeof(unsigned int), &id1, sizeof(unsigned int));
::memcpy(indices.data() + indices.size() - sizeof(unsigned int), &id2, sizeof(unsigned int));
}
void GLModel::Geometry::add_ushort_triangle(unsigned short id1, unsigned short id2, unsigned short id3)
{
if (format.index_type != EIndexType::USHORT) {
assert(false);
return;
}
indices.resize(indices.size() + 3 * sizeof(unsigned short));
::memcpy(indices.data() + indices.size() - 3 * sizeof(unsigned short), &id1, sizeof(unsigned short));
::memcpy(indices.data() + indices.size() - 2 * sizeof(unsigned short), &id2, sizeof(unsigned short));
::memcpy(indices.data() + indices.size() - sizeof(unsigned short), &id3, sizeof(unsigned short));
}
void GLModel::Geometry::add_uint_triangle(unsigned int id1, unsigned int id2, unsigned int id3)
{
if (format.index_type != EIndexType::UINT) {
assert(false);
return;
}
indices.resize(indices.size() + 3 * sizeof(unsigned int));
::memcpy(indices.data() + indices.size() - 3 * sizeof(unsigned int), &id1, sizeof(unsigned int));
::memcpy(indices.data() + indices.size() - 2 * sizeof(unsigned int), &id2, sizeof(unsigned int));
::memcpy(indices.data() + indices.size() - sizeof(unsigned int), &id3, sizeof(unsigned int));
}
Vec2f GLModel::Geometry::extract_position_2(size_t id) const
{
const size_t p_stride = position_stride_floats(format);
if (p_stride != 2) {
assert(false);
return { FLT_MAX, FLT_MAX };
}
if (vertices_count() <= id) {
assert(false);
return { FLT_MAX, FLT_MAX };
}
const float* start = &vertices[id * vertex_stride_floats(format) + position_offset_floats(format)];
return { *(start + 0), *(start + 1) };
}
Vec3f GLModel::Geometry::extract_position_3(size_t id) const
{
const size_t p_stride = position_stride_floats(format);
if (p_stride != 3) {
assert(false);
return { FLT_MAX, FLT_MAX, FLT_MAX };
}
if (vertices_count() <= id) {
assert(false);
return { FLT_MAX, FLT_MAX, FLT_MAX };
}
const float* start = &vertices[id * vertex_stride_floats(format) + position_offset_floats(format)];
return { *(start + 0), *(start + 1), *(start + 2) };
}
Vec3f GLModel::Geometry::extract_normal_3(size_t id) const
{
const size_t n_stride = normal_stride_floats(format);
if (n_stride != 3) {
assert(false);
return { FLT_MAX, FLT_MAX, FLT_MAX };
}
if (vertices_count() <= id) {
assert(false);
return { FLT_MAX, FLT_MAX, FLT_MAX };
}
const float* start = &vertices[id * vertex_stride_floats(format) + normal_offset_floats(format)];
return { *(start + 0), *(start + 1), *(start + 2) };
}
Vec2f GLModel::Geometry::extract_tex_coord_2(size_t id) const
{
const size_t t_stride = tex_coord_stride_floats(format);
if (t_stride != 2) {
assert(false);
return { FLT_MAX, FLT_MAX };
}
if (vertices_count() <= id) {
assert(false);
return { FLT_MAX, FLT_MAX };
}
const float* start = &vertices[id * vertex_stride_floats(format) + tex_coord_offset_floats(format)];
return { *(start + 0), *(start + 1) };
}
unsigned int GLModel::Geometry::extract_uint_index(size_t id) const
{
if (format.index_type != EIndexType::UINT) {
assert(false);
return -1;
}
if (indices_count() <= id) {
assert(false);
return -1;
}
unsigned int ret = -1;
::memcpy(&ret, indices.data() + id * index_stride_bytes(format), sizeof(unsigned int));
return ret;
}
unsigned short GLModel::Geometry::extract_ushort_index(size_t id) const
{
if (format.index_type != EIndexType::USHORT) {
assert(false);
return -1;
}
if (indices_count() <= id) {
assert(false);
return -1;
}
unsigned short ret = -1;
::memcpy(&ret, indices.data() + id * index_stride_bytes(format), sizeof(unsigned short));
return ret;
}
size_t GLModel::Geometry::vertex_stride_floats(const Format& format)
{
switch (format.vertex_layout)
{
case EVertexLayout::P2: { return 2; }
case EVertexLayout::P2T2: { return 4; }
case EVertexLayout::P3: { return 3; }
case EVertexLayout::P3N3: { return 6; }
default: { assert(false); return 0; }
};
}
size_t GLModel::Geometry::position_stride_floats(const Format& format)
{
switch (format.vertex_layout)
{
case EVertexLayout::P2:
case EVertexLayout::P2T2: { return 2; }
case EVertexLayout::P3:
case EVertexLayout::P3N3: { return 3; }
default: { assert(false); return 0; }
};
}
size_t GLModel::Geometry::position_offset_floats(const Format& format)
{
switch (format.vertex_layout)
{
case EVertexLayout::P2:
case EVertexLayout::P2T2:
case EVertexLayout::P3:
case EVertexLayout::P3N3: { return 0; }
default: { assert(false); return 0; }
};
}
size_t GLModel::Geometry::normal_stride_floats(const Format& format)
{
switch (format.vertex_layout)
{
case EVertexLayout::P3N3: { return 3; }
default: { assert(false); return 0; }
};
}
size_t GLModel::Geometry::normal_offset_floats(const Format& format)
{
switch (format.vertex_layout)
{
case EVertexLayout::P3N3: { return 3; }
default: { assert(false); return 0; }
};
}
size_t GLModel::Geometry::tex_coord_stride_floats(const Format& format)
{
switch (format.vertex_layout)
{
case EVertexLayout::P2T2: { return 2; }
default: { assert(false); return 0; }
};
}
size_t GLModel::Geometry::tex_coord_offset_floats(const Format& format)
{
switch (format.vertex_layout)
{
case EVertexLayout::P2T2: { return 2; }
default: { assert(false); return 0; }
};
}
size_t GLModel::Geometry::index_stride_bytes(const Format& format)
{
switch (format.index_type)
{
case EIndexType::UINT: { return sizeof(unsigned int); }
case EIndexType::USHORT: { return sizeof(unsigned short); }
default: { assert(false); return 0; }
};
}
bool GLModel::Geometry::has_position(const Format& format)
{
switch (format.vertex_layout)
{
case EVertexLayout::P2:
case EVertexLayout::P2T2:
case EVertexLayout::P3:
case EVertexLayout::P3N3: { return true; }
default: { assert(false); return false; }
};
}
bool GLModel::Geometry::has_normal(const Format& format)
{
switch (format.vertex_layout)
{
case EVertexLayout::P2:
case EVertexLayout::P2T2:
case EVertexLayout::P3: { return false; }
case EVertexLayout::P3N3: { return true; }
default: { assert(false); return false; }
};
}
bool GLModel::Geometry::has_tex_coord(const Format& format)
{
switch (format.vertex_layout)
{
case EVertexLayout::P2T2: { return true; }
case EVertexLayout::P2:
case EVertexLayout::P3:
case EVertexLayout::P3N3: { return false; }
default: { assert(false); return false; }
};
}
void GLModel::init_from(Geometry&& data)
{
if (is_initialized()) {
// call reset() if you want to reuse this model
assert(false);
return;
}
if (data.vertices.empty() || data.indices.empty()) {
assert(false);
return;
}
m_render_data.geometry = std::move(data);
// update bounding box
for (size_t i = 0; i < vertices_count(); ++i) {
const size_t position_stride = Geometry::position_stride_floats(data.format);
if (position_stride == 3)
m_bounding_box.merge(m_render_data.geometry.extract_position_3(i).cast<double>());
else if (position_stride == 2) {
const Vec2f position = m_render_data.geometry.extract_position_2(i);
m_bounding_box.merge(Vec3f(position.x(), position.y(), 0.0f).cast<double>());
}
}
}
void GLModel::init_from(const TriangleMesh& mesh)
{
init_from(mesh.its);
}
void GLModel::init_from(const indexed_triangle_set& its)
{
if (is_initialized()) {
// call reset() if you want to reuse this model
assert(false);
return;
}
if (its.vertices.empty() || its.indices.empty()){
assert(false);
return;
}
Geometry& data = m_render_data.geometry;
data.format = { Geometry::EPrimitiveType::Triangles, Geometry::EVertexLayout::P3N3, Geometry::EIndexType::UINT };
data.vertices.reserve(3 * its.indices.size() * Geometry::vertex_stride_floats(data.format));
data.indices.reserve(3 * its.indices.size() * Geometry::index_stride_bytes(data.format));
// vertices + indices
unsigned int vertices_counter = 0;
for (uint32_t i = 0; i < its.indices.size(); ++i) {
stl_triangle_vertex_indices face = its.indices[i];
stl_vertex vertex[3] = { its.vertices[face[0]], its.vertices[face[1]], its.vertices[face[2]] };
stl_vertex n = face_normal_normalized(vertex);
for (size_t j = 0; j < 3; ++j) {
data.add_vertex(vertex[j], n);
}
vertices_counter += 3;
data.add_uint_triangle(vertices_counter - 3, vertices_counter - 2, vertices_counter - 1);
}
// update bounding box
for (size_t i = 0; i < vertices_count(); ++i) {
m_bounding_box.merge(m_render_data.geometry.extract_position_3(i).cast<double>());
}
}
void GLModel::init_from(const Polygons& polygons, float z)
{
if (is_initialized()) {
// call reset() if you want to reuse this model
assert(false);
return;
}
if (polygons.empty()) {
assert(false);
return;
}
Geometry& data = m_render_data.geometry;
data.format = { Geometry::EPrimitiveType::Lines, Geometry::EVertexLayout::P3, Geometry::EIndexType::UINT };
size_t segments_count = 0;
for (const Polygon& polygon : polygons) {
segments_count += polygon.points.size();
}
data.vertices.reserve(2 * segments_count * Geometry::vertex_stride_floats(data.format));
data.indices.reserve(2 * segments_count * Geometry::index_stride_bytes(data.format));
// vertices + indices
unsigned int vertices_counter = 0;
for (const Polygon& poly : polygons) {
for (size_t i = 0; i < poly.points.size(); ++i) {
const Point& p0 = poly.points[i];
const Point& p1 = (i == poly.points.size() - 1) ? poly.points.front() : poly.points[i + 1];
data.add_vertex(Vec3f(unscale<float>(p0.x()), unscale<float>(p0.y()), z));
data.add_vertex(Vec3f(unscale<float>(p1.x()), unscale<float>(p1.y()), z));
vertices_counter += 2;
data.add_uint_line(vertices_counter - 2, vertices_counter - 1);
}
}
// update bounding box
for (size_t i = 0; i < vertices_count(); ++i) {
m_bounding_box.merge(m_render_data.geometry.extract_position_3(i).cast<double>());
}
}
bool GLModel::init_from_file(const std::string& filename)
{
if (!boost::filesystem::exists(filename))
return false;
if (!boost::algorithm::iends_with(filename, ".stl"))
return false;
Model model;
try {
model = Model::read_from_file(filename);
}
catch (std::exception&) {
return false;
}
init_from(model.mesh());
m_filename = filename;
return true;
}
void GLModel::reset()
{
// release gpu memory
if (m_render_data.ibo_id > 0) {
glsafe(::glDeleteBuffers(1, &m_render_data.ibo_id));
m_render_data.ibo_id = 0;
}
if (m_render_data.vbo_id > 0) {
glsafe(::glDeleteBuffers(1, &m_render_data.vbo_id));
m_render_data.vbo_id = 0;
}
m_render_data.vertices_count = 0;
m_render_data.indices_count = 0;
m_render_data.geometry.vertices = std::vector<float>();
m_render_data.geometry.indices = std::vector<unsigned char>();
m_bounding_box = BoundingBoxf3();
m_filename = std::string();
}
static GLenum get_primitive_mode(const GLModel::Geometry::Format& format)
{
switch (format.type)
{
case GLModel::Geometry::EPrimitiveType::Points: { return GL_POINTS; }
default:
case GLModel::Geometry::EPrimitiveType::Triangles: { return GL_TRIANGLES; }
case GLModel::Geometry::EPrimitiveType::TriangleStrip: { return GL_TRIANGLE_STRIP; }
case GLModel::Geometry::EPrimitiveType::TriangleFan: { return GL_TRIANGLE_FAN; }
case GLModel::Geometry::EPrimitiveType::Lines: { return GL_LINES; }
case GLModel::Geometry::EPrimitiveType::LineStrip: { return GL_LINE_STRIP; }
case GLModel::Geometry::EPrimitiveType::LineLoop: { return GL_LINE_LOOP; }
}
}
static GLenum get_index_type(const GLModel::Geometry::Format& format)
{
switch (format.index_type)
{
default:
case GLModel::Geometry::EIndexType::UINT: { return GL_UNSIGNED_INT; }
case GLModel::Geometry::EIndexType::USHORT: { return GL_UNSIGNED_SHORT; }
}
}
void GLModel::render()
{
GLShaderProgram* shader = wxGetApp().get_current_shader();
if (shader == nullptr)
return;
// sends data to gpu if not done yet
if (m_render_data.vbo_id == 0 || m_render_data.ibo_id == 0) {
if (m_render_data.geometry.vertices_count() > 0 && m_render_data.geometry.indices_count() > 0 && !send_to_gpu())
return;
}
const Geometry& data = m_render_data.geometry;
GLenum mode = get_primitive_mode(data.format);
GLenum index_type = get_index_type(data.format);
const size_t vertex_stride_bytes = Geometry::vertex_stride_bytes(data.format);
const bool position = Geometry::has_position(data.format);
const bool normal = Geometry::has_normal(data.format);
const bool tex_coord = Geometry::has_tex_coord(data.format);
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, m_render_data.vbo_id));
if (position) {
glsafe(::glVertexPointer(Geometry::position_stride_floats(data.format), GL_FLOAT, vertex_stride_bytes, (const void*)Geometry::position_offset_bytes(data.format)));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
}
if (normal) {
glsafe(::glNormalPointer(GL_FLOAT, vertex_stride_bytes, (const void*)Geometry::normal_offset_bytes(data.format)));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
}
if (tex_coord) {
glsafe(::glTexCoordPointer(Geometry::tex_coord_stride_floats(data.format), GL_FLOAT, vertex_stride_bytes, (const void*)Geometry::tex_coord_offset_bytes(data.format)));
glsafe(::glEnableClientState(GL_TEXTURE_COORD_ARRAY));
}
shader->set_uniform("uniform_color", data.color);
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_render_data.ibo_id));
glsafe(::glDrawElements(mode, indices_count(), index_type, nullptr));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
if (tex_coord)
glsafe(::glDisableClientState(GL_TEXTURE_COORD_ARRAY));
if (normal)
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
if (position)
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
}
void GLModel::render_instanced(unsigned int instances_vbo, unsigned int instances_count)
{
if (instances_vbo == 0)
return;
GLShaderProgram* shader = wxGetApp().get_current_shader();
if (shader == nullptr || !boost::algorithm::iends_with(shader->get_name(), "_instanced"))
return;
// vertex attributes
GLint position_id = shader->get_attrib_location("v_position");
GLint normal_id = shader->get_attrib_location("v_normal");
if (position_id == -1 || normal_id == -1)
return;
// instance attributes
GLint offset_id = shader->get_attrib_location("i_offset");
GLint scales_id = shader->get_attrib_location("i_scales");
if (offset_id == -1 || scales_id == -1)
return;
if (m_render_data.vbo_id == 0 || m_render_data.ibo_id == 0) {
if (!send_to_gpu())
return;
}
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, instances_vbo));
glsafe(::glVertexAttribPointer(offset_id, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (GLvoid*)0));
glsafe(::glEnableVertexAttribArray(offset_id));
glsafe(::glVertexAttribDivisor(offset_id, 1));
glsafe(::glVertexAttribPointer(scales_id, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (GLvoid*)(3 * sizeof(float))));
glsafe(::glEnableVertexAttribArray(scales_id));
glsafe(::glVertexAttribDivisor(scales_id, 1));
const Geometry& data = m_render_data.geometry;
GLenum mode = get_primitive_mode(data.format);
GLenum index_type = get_index_type(data.format);
shader->set_uniform("uniform_color", data.color);
const size_t vertex_stride_bytes = Geometry::vertex_stride_bytes(data.format);
const bool position = Geometry::has_position(data.format);
const bool normal = Geometry::has_normal(data.format);
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, m_render_data.vbo_id));
if (position) {
glsafe(::glVertexAttribPointer(position_id, Geometry::position_stride_floats(data.format), GL_FLOAT, GL_FALSE, vertex_stride_bytes, (GLvoid*)Geometry::position_offset_bytes(data.format)));
glsafe(::glEnableVertexAttribArray(position_id));
}
if (normal) {
glsafe(::glVertexAttribPointer(normal_id, Geometry::normal_stride_floats(data.format), GL_FLOAT, GL_FALSE, vertex_stride_bytes, (GLvoid*)Geometry::normal_offset_bytes(data.format)));
glsafe(::glEnableVertexAttribArray(normal_id));
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_render_data.ibo_id));
glsafe(::glDrawElementsInstanced(mode, indices_count(), index_type, (const void*)0, instances_count));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
if (normal)
glsafe(::glDisableVertexAttribArray(normal_id));
if (position)
glsafe(::glDisableVertexAttribArray(position_id));
glsafe(::glDisableVertexAttribArray(scales_id));
glsafe(::glDisableVertexAttribArray(offset_id));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
}
bool GLModel::send_to_gpu()
{
if (m_render_data.vbo_id > 0 || m_render_data.ibo_id > 0) {
assert(false);
return false;
}
Geometry& data = m_render_data.geometry;
if (data.vertices.empty() || data.indices.empty()) {
assert(false);
return false;
}
// vertices
glsafe(::glGenBuffers(1, &m_render_data.vbo_id));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, m_render_data.vbo_id));
glsafe(::glBufferData(GL_ARRAY_BUFFER, data.vertices_size_bytes(), data.vertices.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
m_render_data.vertices_count = vertices_count();
data.vertices = std::vector<float>();
// indices
glsafe(::glGenBuffers(1, &m_render_data.ibo_id));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_render_data.ibo_id));
glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, data.indices_size_bytes(), data.indices.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
m_render_data.indices_count = indices_count();
data.indices = std::vector<unsigned char>();
return true;
}
static void append_vertex(GLModel::Geometry& data, const Vec3f& position, const Vec3f& normal)
{
data.add_vertex(position, normal);
}
static void append_triangle(GLModel::Geometry& data, unsigned short v1, unsigned short v2, unsigned short v3)
{
data.add_ushort_index(v1);
data.add_ushort_index(v2);
data.add_ushort_index(v3);
}
GLModel::Geometry stilized_arrow(unsigned short resolution, float tip_radius, float tip_height, float stem_radius, float stem_height)
{
resolution = std::max<unsigned short>(4, resolution);
resolution = std::min<unsigned short>(10922, resolution); // ensure no unsigned short overflow of indices
GLModel::Geometry data;
data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3, GLModel::Geometry::EIndexType::USHORT };
data.vertices.reserve((6 * resolution + 2) * GLModel::Geometry::vertex_stride_floats(data.format));
data.indices.reserve((6 * resolution * 3) * GLModel::Geometry::index_stride_bytes(data.format));
const float angle_step = 2.0f * float(PI) / float(resolution);
std::vector<float> cosines(resolution);
std::vector<float> sines(resolution);
for (unsigned short i = 0; i < resolution; ++i) {
const float angle = angle_step * float(i);
cosines[i] = ::cos(angle);
sines[i] = -::sin(angle);
}
const float total_height = tip_height + stem_height;
// tip vertices/normals
append_vertex(data, { 0.0f, 0.0f, total_height }, Vec3f::UnitZ());
for (unsigned short i = 0; i < resolution; ++i) {
append_vertex(data, { tip_radius * sines[i], tip_radius * cosines[i], stem_height }, { sines[i], cosines[i], 0.0f });
}
// tip triangles
for (unsigned short i = 0; i < resolution; ++i) {
const unsigned short v3 = (i < resolution - 1) ? i + 2 : 1;
append_triangle(data, 0, i + 1, v3);
}
// tip cap outer perimeter vertices
for (unsigned short i = 0; i < resolution; ++i) {
append_vertex(data, { tip_radius * sines[i], tip_radius * cosines[i], stem_height }, -Vec3f::UnitZ());
}
// tip cap inner perimeter vertices
for (unsigned short i = 0; i < resolution; ++i) {
append_vertex(data, { stem_radius * sines[i], stem_radius * cosines[i], stem_height }, -Vec3f::UnitZ());
}
// tip cap triangles
for (unsigned short i = 0; i < resolution; ++i) {
const unsigned short v2 = (i < resolution - 1) ? i + resolution + 2 : resolution + 1;
const unsigned short v3 = (i < resolution - 1) ? i + 2 * resolution + 2 : 2 * resolution + 1;
append_triangle(data, i + resolution + 1, v3, v2);
append_triangle(data, i + resolution + 1, i + 2 * resolution + 1, v3);
}
// stem bottom vertices
for (unsigned short i = 0; i < resolution; ++i) {
append_vertex(data, { stem_radius * sines[i], stem_radius * cosines[i], stem_height }, { sines[i], cosines[i], 0.0f });
}
// stem top vertices
for (unsigned short i = 0; i < resolution; ++i) {
append_vertex(data, { stem_radius * sines[i], stem_radius * cosines[i], 0.0f }, { sines[i], cosines[i], 0.0f });
}
// stem triangles
for (unsigned short i = 0; i < resolution; ++i) {
const unsigned short v2 = (i < resolution - 1) ? i + 3 * resolution + 2 : 3 * resolution + 1;
const unsigned short v3 = (i < resolution - 1) ? i + 4 * resolution + 2 : 4 * resolution + 1;
append_triangle(data, i + 3 * resolution + 1, v3, v2);
append_triangle(data, i + 3 * resolution + 1, i + 4 * resolution + 1, v3);
}
// stem cap vertices
append_vertex(data, Vec3f::Zero(), -Vec3f::UnitZ());
for (unsigned short i = 0; i < resolution; ++i) {
append_vertex(data, { stem_radius * sines[i], stem_radius * cosines[i], 0.0f }, -Vec3f::UnitZ());
}
// stem cap triangles
for (unsigned short i = 0; i < resolution; ++i) {
const unsigned short v3 = (i < resolution - 1) ? i + 5 * resolution + 3 : 5 * resolution + 2;
append_triangle(data, 5 * resolution + 1, v3, i + 5 * resolution + 2);
}
return data;
}
GLModel::Geometry circular_arrow(unsigned short resolution, float radius, float tip_height, float tip_width, float stem_width, float thickness)
{
resolution = std::max<unsigned short>(2, resolution);
resolution = std::min<unsigned short>(8188, resolution); // ensure no unsigned short overflow of indices
GLModel::Geometry data;
data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3, GLModel::Geometry::EIndexType::USHORT };
data.vertices.reserve((8 * (resolution + 1) + 30) * GLModel::Geometry::vertex_stride_floats(data.format));
data.indices.reserve(((8 * resolution + 16) * 3) * GLModel::Geometry::index_stride_bytes(data.format));
const float half_thickness = 0.5f * thickness;
const float half_stem_width = 0.5f * stem_width;
const float half_tip_width = 0.5f * tip_width;
const float outer_radius = radius + half_stem_width;
const float inner_radius = radius - half_stem_width;
const float step_angle = 0.5f * float(PI) / float(resolution);
// tip
// top face vertices
append_vertex(data, { 0.0f, outer_radius, half_thickness }, Vec3f::UnitZ());
append_vertex(data, { 0.0f, radius + half_tip_width, half_thickness }, Vec3f::UnitZ());
append_vertex(data, { -tip_height, radius, half_thickness }, Vec3f::UnitZ());
append_vertex(data, { 0.0f, radius - half_tip_width, half_thickness }, Vec3f::UnitZ());
append_vertex(data, { 0.0f, inner_radius, half_thickness }, Vec3f::UnitZ());
// top face triangles
append_triangle(data, 0, 1, 2);
append_triangle(data, 0, 2, 4);
append_triangle(data, 4, 2, 3);
// bottom face vertices
append_vertex(data, { 0.0f, outer_radius, -half_thickness }, -Vec3f::UnitZ());
append_vertex(data, { 0.0f, radius + half_tip_width, -half_thickness }, -Vec3f::UnitZ());
append_vertex(data, { -tip_height, radius, -half_thickness }, -Vec3f::UnitZ());
append_vertex(data, { 0.0f, radius - half_tip_width, -half_thickness }, -Vec3f::UnitZ());
append_vertex(data, { 0.0f, inner_radius, -half_thickness }, -Vec3f::UnitZ());
// bottom face triangles
append_triangle(data, 5, 7, 6);
append_triangle(data, 5, 9, 7);
append_triangle(data, 9, 8, 7);
// side faces vertices
append_vertex(data, { 0.0f, outer_radius, -half_thickness }, Vec3f::UnitX());
append_vertex(data, { 0.0f, radius + half_tip_width, -half_thickness }, Vec3f::UnitX());
append_vertex(data, { 0.0f, outer_radius, half_thickness }, Vec3f::UnitX());
append_vertex(data, { 0.0f, radius + half_tip_width, half_thickness }, Vec3f::UnitX());
Vec3f normal(-half_tip_width, tip_height, 0.0f);
normal.normalize();
append_vertex(data, { 0.0f, radius + half_tip_width, -half_thickness }, normal);
append_vertex(data, { -tip_height, radius, -half_thickness }, normal);
append_vertex(data, { 0.0f, radius + half_tip_width, half_thickness }, normal);
append_vertex(data, { -tip_height, radius, half_thickness }, normal);
normal = { -half_tip_width, -tip_height, 0.0f };
normal.normalize();
append_vertex(data, { -tip_height, radius, -half_thickness }, normal);
append_vertex(data, { 0.0f, radius - half_tip_width, -half_thickness }, normal);
append_vertex(data, { -tip_height, radius, half_thickness }, normal);
append_vertex(data, { 0.0f, radius - half_tip_width, half_thickness }, normal);
append_vertex(data, { 0.0f, radius - half_tip_width, -half_thickness }, Vec3f::UnitX());
append_vertex(data, { 0.0f, inner_radius, -half_thickness }, Vec3f::UnitX());
append_vertex(data, { 0.0f, radius - half_tip_width, half_thickness }, Vec3f::UnitX());
append_vertex(data, { 0.0f, inner_radius, half_thickness }, Vec3f::UnitX());
// side face triangles
for (unsigned short i = 0; i < 4; ++i) {
const unsigned short ii = i * 4;
append_triangle(data, 10 + ii, 11 + ii, 13 + ii);
append_triangle(data, 10 + ii, 13 + ii, 12 + ii);
}
// stem
// top face vertices
for (unsigned short i = 0; i <= resolution; ++i) {
const float angle = float(i) * step_angle;
append_vertex(data, { inner_radius * ::sin(angle), inner_radius * ::cos(angle), half_thickness }, Vec3f::UnitZ());
}
for (unsigned short i = 0; i <= resolution; ++i) {
const float angle = float(i) * step_angle;
append_vertex(data, { outer_radius * ::sin(angle), outer_radius * ::cos(angle), half_thickness }, Vec3f::UnitZ());
}
// top face triangles
for (unsigned short i = 0; i < resolution; ++i) {
append_triangle(data, 26 + i, 27 + i, 27 + resolution + i);
append_triangle(data, 27 + i, 28 + resolution + i, 27 + resolution + i);
}
// bottom face vertices
for (unsigned short i = 0; i <= resolution; ++i) {
const float angle = float(i) * step_angle;
append_vertex(data, { inner_radius * ::sin(angle), inner_radius * ::cos(angle), -half_thickness }, -Vec3f::UnitZ());
}
for (unsigned short i = 0; i <= resolution; ++i) {
const float angle = float(i) * step_angle;
append_vertex(data, { outer_radius * ::sin(angle), outer_radius * ::cos(angle), -half_thickness }, -Vec3f::UnitZ());
}
// bottom face triangles
for (unsigned short i = 0; i < resolution; ++i) {
append_triangle(data, 28 + 2 * resolution + i, 29 + 3 * resolution + i, 29 + 2 * resolution + i);
append_triangle(data, 29 + 2 * resolution + i, 29 + 3 * resolution + i, 30 + 3 * resolution + i);
}
// side faces vertices and triangles
for (unsigned short i = 0; i <= resolution; ++i) {
const float angle = float(i) * step_angle;
const float c = ::cos(angle);
const float s = ::sin(angle);
append_vertex(data, { inner_radius * s, inner_radius * c, -half_thickness }, { -s, -c, 0.0f });
}
for (unsigned short i = 0; i <= resolution; ++i) {
const float angle = float(i) * step_angle;
const float c = ::cos(angle);
const float s = ::sin(angle);
append_vertex(data, { inner_radius * s, inner_radius * c, half_thickness }, { -s, -c, 0.0f });
}
unsigned short first_id = 26 + 4 * (resolution + 1);
for (unsigned short i = 0; i < resolution; ++i) {
const unsigned short ii = first_id + i;
append_triangle(data, ii, ii + 1, ii + resolution + 2);
append_triangle(data, ii, ii + resolution + 2, ii + resolution + 1);
}
append_vertex(data, { inner_radius, 0.0f, -half_thickness }, -Vec3f::UnitY());
append_vertex(data, { outer_radius, 0.0f, -half_thickness }, -Vec3f::UnitY());
append_vertex(data, { inner_radius, 0.0f, half_thickness }, -Vec3f::UnitY());
append_vertex(data, { outer_radius, 0.0f, half_thickness }, -Vec3f::UnitY());
first_id = 26 + 6 * (resolution + 1);
append_triangle(data, first_id, first_id + 1, first_id + 3);
append_triangle(data, first_id, first_id + 3, first_id + 2);
for (short i = resolution; i >= 0; --i) {
const float angle = float(i) * step_angle;
const float c = ::cos(angle);
const float s = ::sin(angle);
append_vertex(data, { outer_radius * s, outer_radius * c, -half_thickness }, { s, c, 0.0f });
}
for (short i = resolution; i >= 0; --i) {
const float angle = float(i) * step_angle;
const float c = ::cos(angle);
const float s = ::sin(angle);
append_vertex(data, { outer_radius * s, outer_radius * c, +half_thickness }, { s, c, 0.0f });
}
first_id = 30 + 6 * (resolution + 1);
for (unsigned short i = 0; i < resolution; ++i) {
const unsigned short ii = first_id + i;
append_triangle(data, ii, ii + 1, ii + resolution + 2);
append_triangle(data, ii, ii + resolution + 2, ii + resolution + 1);
}
return data;
}
GLModel::Geometry straight_arrow(float tip_width, float tip_height, float stem_width, float stem_height, float thickness)
{
GLModel::Geometry data;
data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3, GLModel::Geometry::EIndexType::USHORT };
data.vertices.reserve(42 * GLModel::Geometry::vertex_stride_floats(data.format));
data.indices.reserve((24 * 3) * GLModel::Geometry::index_stride_bytes(data.format));
const float half_thickness = 0.5f * thickness;
const float half_stem_width = 0.5f * stem_width;
const float half_tip_width = 0.5f * tip_width;
const float total_height = tip_height + stem_height;
// top face vertices
append_vertex(data, { half_stem_width, 0.0, half_thickness }, Vec3f::UnitZ());
append_vertex(data, { half_stem_width, stem_height, half_thickness }, Vec3f::UnitZ());
append_vertex(data, { half_tip_width, stem_height, half_thickness }, Vec3f::UnitZ());
append_vertex(data, { 0.0, total_height, half_thickness }, Vec3f::UnitZ());
append_vertex(data, { -half_tip_width, stem_height, half_thickness }, Vec3f::UnitZ());
append_vertex(data, { -half_stem_width, stem_height, half_thickness }, Vec3f::UnitZ());
append_vertex(data, { -half_stem_width, 0.0, half_thickness }, Vec3f::UnitZ());
// top face triangles
append_triangle(data, 0, 1, 6);
append_triangle(data, 6, 1, 5);
append_triangle(data, 4, 5, 3);
append_triangle(data, 5, 1, 3);
append_triangle(data, 1, 2, 3);
// bottom face vertices
append_vertex(data, { half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitZ());
append_vertex(data, { half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitZ());
append_vertex(data, { half_tip_width, stem_height, -half_thickness }, -Vec3f::UnitZ());
append_vertex(data, { 0.0, total_height, -half_thickness }, -Vec3f::UnitZ());
append_vertex(data, { -half_tip_width, stem_height, -half_thickness }, -Vec3f::UnitZ());
append_vertex(data, { -half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitZ());
append_vertex(data, { -half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitZ());
// bottom face triangles
append_triangle(data, 7, 13, 8);
append_triangle(data, 13, 12, 8);
append_triangle(data, 12, 11, 10);
append_triangle(data, 8, 12, 10);
append_triangle(data, 9, 8, 10);
// side faces vertices
append_vertex(data, { half_stem_width, 0.0, -half_thickness }, Vec3f::UnitX());
append_vertex(data, { half_stem_width, stem_height, -half_thickness }, Vec3f::UnitX());
append_vertex(data, { half_stem_width, 0.0, half_thickness }, Vec3f::UnitX());
append_vertex(data, { half_stem_width, stem_height, half_thickness }, Vec3f::UnitX());
append_vertex(data, { half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitY());
append_vertex(data, { half_tip_width, stem_height, -half_thickness }, -Vec3f::UnitY());
append_vertex(data, { half_stem_width, stem_height, half_thickness }, -Vec3f::UnitY());
append_vertex(data, { half_tip_width, stem_height, half_thickness }, -Vec3f::UnitY());
Vec3f normal(tip_height, half_tip_width, 0.0f);
normal.normalize();
append_vertex(data, { half_tip_width, stem_height, -half_thickness }, normal);
append_vertex(data, { 0.0, total_height, -half_thickness }, normal);
append_vertex(data, { half_tip_width, stem_height, half_thickness }, normal);
append_vertex(data, { 0.0, total_height, half_thickness }, normal);
normal = { -tip_height, half_tip_width, 0.0f };
normal.normalize();
append_vertex(data, { 0.0, total_height, -half_thickness }, normal);
append_vertex(data, { -half_tip_width, stem_height, -half_thickness }, normal);
append_vertex(data, { 0.0, total_height, half_thickness }, normal);
append_vertex(data, { -half_tip_width, stem_height, half_thickness }, normal);
append_vertex(data, { -half_tip_width, stem_height, -half_thickness }, -Vec3f::UnitY());
append_vertex(data, { -half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitY());
append_vertex(data, { -half_tip_width, stem_height, half_thickness }, -Vec3f::UnitY());
append_vertex(data, { -half_stem_width, stem_height, half_thickness }, -Vec3f::UnitY());
append_vertex(data, { -half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitX());
append_vertex(data, { -half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitX());
append_vertex(data, { -half_stem_width, stem_height, half_thickness }, -Vec3f::UnitX());
append_vertex(data, { -half_stem_width, 0.0, half_thickness }, -Vec3f::UnitX());
append_vertex(data, { -half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitY());
append_vertex(data, { half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitY());
append_vertex(data, { -half_stem_width, 0.0, half_thickness }, -Vec3f::UnitY());
append_vertex(data, { half_stem_width, 0.0, half_thickness }, -Vec3f::UnitY());
// side face triangles
for (unsigned short i = 0; i < 7; ++i) {
const unsigned short ii = i * 4;
append_triangle(data, 14 + ii, 15 + ii, 17 + ii);
append_triangle(data, 14 + ii, 17 + ii, 16 + ii);
}
return data;
}
GLModel::Geometry diamond(unsigned short resolution)
{
resolution = std::max<unsigned short>(4, resolution);
resolution = std::min<unsigned short>(65534, resolution); // ensure no unsigned short overflow of indices
GLModel::Geometry data;
data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3, GLModel::Geometry::EIndexType::USHORT };
data.vertices.reserve((resolution + 2) * GLModel::Geometry::vertex_stride_floats(data.format));
data.indices.reserve(((2 * (resolution + 1)) * 3) * GLModel::Geometry::index_stride_bytes(data.format));
const float step = 2.0f * float(PI) / float(resolution);
// vertices
for (unsigned short i = 0; i < resolution; ++i) {
float ii = float(i) * step;
const Vec3f p = { 0.5f * ::cos(ii), 0.5f * ::sin(ii), 0.0f };
append_vertex(data, p, p.normalized());
}
Vec3f p = { 0.0f, 0.0f, 0.5f };
append_vertex(data, p, p.normalized());
p = { 0.0f, 0.0f, -0.5f };
append_vertex(data, p, p.normalized());
// triangles
// top
for (unsigned short i = 0; i < resolution; ++i) {
append_triangle(data, i + 0, i + 1, resolution);
}
append_triangle(data, resolution - 1, 0, resolution);
// bottom
for (unsigned short i = 0; i < resolution; ++i) {
append_triangle(data, i + 0, resolution + 1, i + 1);
}
append_triangle(data, resolution - 1, resolution + 1, 0);
return data;
}
} // namespace GUI
} // namespace Slic3r