mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-10 08:17:51 -06:00
397 lines
16 KiB
C++
397 lines
16 KiB
C++
// Include GLGizmoBase.hpp before I18N.hpp as it includes some libigl code, which overrides our localization "L" macro.
|
|
#include "GLGizmoFlatten.hpp"
|
|
#include "slic3r/GUI/GLCanvas3D.hpp"
|
|
#include "slic3r/GUI/GUI_App.hpp"
|
|
#include "slic3r/GUI/Plater.hpp"
|
|
#include "slic3r/GUI/Gizmos/GLGizmosCommon.hpp"
|
|
|
|
#include "libslic3r/Geometry/ConvexHull.hpp"
|
|
#include "libslic3r/Model.hpp"
|
|
|
|
#include <numeric>
|
|
|
|
#include <GL/glew.h>
|
|
|
|
namespace Slic3r {
|
|
namespace GUI {
|
|
|
|
|
|
GLGizmoFlatten::GLGizmoFlatten(GLCanvas3D& parent, const std::string& icon_filename, unsigned int sprite_id)
|
|
: GLGizmoBase(parent, icon_filename, sprite_id)
|
|
{}
|
|
|
|
bool GLGizmoFlatten::on_mouse(const wxMouseEvent &mouse_event)
|
|
{
|
|
if (mouse_event.Moving()) {
|
|
// only for sure
|
|
m_mouse_left_down = false;
|
|
|
|
if (m_hover_id != -1) m_parent.set_as_dirty();
|
|
return false;
|
|
}
|
|
if (mouse_event.LeftDown() && m_hover_id != -1) {
|
|
Selection &selection = m_parent.get_selection();
|
|
if (selection.is_single_full_instance()) {
|
|
// Rotate the object so the normal points downward:
|
|
selection.flattening_rotate(m_planes[m_hover_id].normal);
|
|
m_parent.do_rotate(L("Gizmo-Place on Face"));
|
|
}
|
|
m_mouse_left_down = true;
|
|
return true;
|
|
} else if (m_mouse_left_down && mouse_event.LeftUp()) {
|
|
// responsible for mouse left up
|
|
m_mouse_left_down = false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool GLGizmoFlatten::on_init()
|
|
{
|
|
// BBS
|
|
m_shortcut_key = WXK_CONTROL_F;
|
|
return true;
|
|
}
|
|
|
|
void GLGizmoFlatten::on_set_state()
|
|
{
|
|
}
|
|
|
|
CommonGizmosDataID GLGizmoFlatten::on_get_requirements() const
|
|
{
|
|
return CommonGizmosDataID::SelectionInfo;
|
|
}
|
|
|
|
std::string GLGizmoFlatten::on_get_name() const
|
|
{
|
|
return _u8L("Lay on face");
|
|
}
|
|
|
|
bool GLGizmoFlatten::on_is_activable() const
|
|
{
|
|
// This is assumed in GLCanvas3D::do_rotate, do not change this
|
|
// without updating that function too.
|
|
return m_parent.get_selection().is_single_full_instance();
|
|
}
|
|
|
|
void GLGizmoFlatten::on_render()
|
|
{
|
|
const Selection& selection = m_parent.get_selection();
|
|
|
|
GLShaderProgram* shader = wxGetApp().get_shader("flat");
|
|
if (shader == nullptr)
|
|
return;
|
|
|
|
shader->start_using();
|
|
glsafe(::glClear(GL_DEPTH_BUFFER_BIT));
|
|
|
|
glsafe(::glEnable(GL_DEPTH_TEST));
|
|
glsafe(::glEnable(GL_BLEND));
|
|
|
|
if (selection.is_single_full_instance()) {
|
|
const Transform3d& inst_matrix = selection.get_first_volume()->get_instance_transformation().get_matrix();
|
|
const Camera& camera = wxGetApp().plater()->get_camera();
|
|
const Transform3d model_matrix = Geometry::assemble_transform(selection.get_first_volume()->get_sla_shift_z() * Vec3d::UnitZ()) * inst_matrix;
|
|
const Transform3d view_model_matrix = camera.get_view_matrix() * model_matrix;
|
|
|
|
shader->set_uniform("view_model_matrix", view_model_matrix);
|
|
shader->set_uniform("projection_matrix", camera.get_projection_matrix());
|
|
if (this->is_plane_update_necessary())
|
|
update_planes();
|
|
for (int i = 0; i < (int)m_planes.size(); ++i) {
|
|
m_planes_casters[i]->set_transform(model_matrix);
|
|
m_planes[i].vbo.model.set_color(i == m_hover_id ? GLGizmoBase::FLATTEN_HOVER_COLOR : GLGizmoBase::FLATTEN_COLOR);
|
|
m_planes[i].vbo.model.render();
|
|
}
|
|
}
|
|
|
|
glsafe(::glEnable(GL_CULL_FACE));
|
|
glsafe(::glDisable(GL_BLEND));
|
|
shader->stop_using();
|
|
}
|
|
|
|
void GLGizmoFlatten::on_register_raycasters_for_picking()
|
|
{
|
|
// the gizmo grabbers are rendered on top of the scene, so the raytraced picker should take it into account
|
|
m_parent.set_raycaster_gizmos_on_top(true);
|
|
|
|
assert(m_planes_casters.empty());
|
|
|
|
if (!m_planes.empty()) {
|
|
const Selection& selection = m_parent.get_selection();
|
|
const Transform3d matrix = Geometry::assemble_transform(selection.get_first_volume()->get_sla_shift_z() * Vec3d::UnitZ()) *
|
|
selection.get_first_volume()->get_instance_transformation().get_matrix();
|
|
|
|
for (int i = 0; i < (int)m_planes.size(); ++i) {
|
|
m_planes_casters.emplace_back(m_parent.add_raycaster_for_picking(SceneRaycaster::EType::Gizmo, i, *m_planes[i].vbo.mesh_raycaster, matrix));
|
|
}
|
|
}
|
|
}
|
|
|
|
void GLGizmoFlatten::on_unregister_raycasters_for_picking()
|
|
{
|
|
m_parent.remove_raycasters_for_picking(SceneRaycaster::EType::Gizmo);
|
|
m_parent.set_raycaster_gizmos_on_top(false);
|
|
m_planes_casters.clear();
|
|
}
|
|
|
|
void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object)
|
|
{
|
|
if (model_object != m_old_model_object) {
|
|
m_planes.clear();
|
|
on_unregister_raycasters_for_picking();
|
|
}
|
|
}
|
|
|
|
void GLGizmoFlatten::update_planes()
|
|
{
|
|
const ModelObject* mo = m_c->selection_info()->model_object();
|
|
TriangleMesh ch;
|
|
for (const ModelVolume* vol : mo->volumes) {
|
|
if (vol->type() != ModelVolumeType::MODEL_PART)
|
|
continue;
|
|
TriangleMesh vol_ch = vol->get_convex_hull();
|
|
vol_ch.transform(vol->get_matrix());
|
|
ch.merge(vol_ch);
|
|
}
|
|
ch = ch.convex_hull_3d();
|
|
m_planes.clear();
|
|
on_unregister_raycasters_for_picking();
|
|
const Transform3d& inst_matrix = mo->instances.front()->get_matrix(true);
|
|
|
|
// Following constants are used for discarding too small polygons.
|
|
const float minimal_area = 5.f; // in square mm (world coordinates)
|
|
const float minimal_side = 1.f; // mm
|
|
const float minimal_angle = 1.f; // degree, initial value was 10, but cause bugs
|
|
|
|
// Now we'll go through all the facets and append Points of facets sharing the same normal.
|
|
// This part is still performed in mesh coordinate system.
|
|
const int num_of_facets = ch.facets_count();
|
|
const std::vector<Vec3f> face_normals = its_face_normals(ch.its);
|
|
const std::vector<Vec3i> face_neighbors = its_face_neighbors(ch.its);
|
|
std::vector<int> facet_queue(num_of_facets, 0);
|
|
std::vector<bool> facet_visited(num_of_facets, false);
|
|
int facet_queue_cnt = 0;
|
|
const stl_normal* normal_ptr = nullptr;
|
|
int facet_idx = 0;
|
|
while (1) {
|
|
// Find next unvisited triangle:
|
|
for (; facet_idx < num_of_facets; ++ facet_idx)
|
|
if (!facet_visited[facet_idx]) {
|
|
facet_queue[facet_queue_cnt ++] = facet_idx;
|
|
facet_visited[facet_idx] = true;
|
|
normal_ptr = &face_normals[facet_idx];
|
|
m_planes.emplace_back();
|
|
break;
|
|
}
|
|
if (facet_idx == num_of_facets)
|
|
break; // Everything was visited already
|
|
|
|
while (facet_queue_cnt > 0) {
|
|
int facet_idx = facet_queue[-- facet_queue_cnt];
|
|
const stl_normal& this_normal = face_normals[facet_idx];
|
|
if (std::abs(this_normal(0) - (*normal_ptr)(0)) < 0.001 && std::abs(this_normal(1) - (*normal_ptr)(1)) < 0.001 && std::abs(this_normal(2) - (*normal_ptr)(2)) < 0.001) {
|
|
const Vec3i face = ch.its.indices[facet_idx];
|
|
for (int j=0; j<3; ++j)
|
|
m_planes.back().vertices.emplace_back(ch.its.vertices[face[j]].cast<double>());
|
|
|
|
facet_visited[facet_idx] = true;
|
|
for (int j = 0; j < 3; ++ j)
|
|
if (int neighbor_idx = face_neighbors[facet_idx][j]; neighbor_idx >= 0 && ! facet_visited[neighbor_idx])
|
|
facet_queue[facet_queue_cnt ++] = neighbor_idx;
|
|
}
|
|
}
|
|
m_planes.back().normal = normal_ptr->cast<double>();
|
|
|
|
Pointf3s& verts = m_planes.back().vertices;
|
|
// Now we'll transform all the points into world coordinates, so that the areas, angles and distances
|
|
// make real sense.
|
|
verts = transform(verts, inst_matrix);
|
|
|
|
// if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected later anyway):
|
|
if (verts.size() == 3 &&
|
|
((verts[0] - verts[1]).norm() < minimal_side
|
|
|| (verts[0] - verts[2]).norm() < minimal_side
|
|
|| (verts[1] - verts[2]).norm() < minimal_side))
|
|
m_planes.pop_back();
|
|
}
|
|
|
|
// Let's prepare transformation of the normal vector from mesh to instance coordinates.
|
|
Geometry::Transformation t(inst_matrix);
|
|
Vec3d scaling = t.get_scaling_factor();
|
|
t.set_scaling_factor(Vec3d(1./scaling(0), 1./scaling(1), 1./scaling(2)));
|
|
|
|
// Now we'll go through all the polygons, transform the points into xy plane to process them:
|
|
for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) {
|
|
Pointf3s& polygon = m_planes[polygon_id].vertices;
|
|
const Vec3d& normal = m_planes[polygon_id].normal;
|
|
|
|
// transform the normal according to the instance matrix:
|
|
Vec3d normal_transformed = t.get_matrix() * normal;
|
|
|
|
// We are going to rotate about z and y to flatten the plane
|
|
Eigen::Quaterniond q;
|
|
Transform3d m = Transform3d::Identity();
|
|
m.matrix().block(0, 0, 3, 3) = q.setFromTwoVectors(normal_transformed, Vec3d::UnitZ()).toRotationMatrix();
|
|
polygon = transform(polygon, m);
|
|
|
|
// Now to remove the inner points. We'll misuse Geometry::convex_hull for that, but since
|
|
// it works in fixed point representation, we will rescale the polygon to avoid overflows.
|
|
// And yes, it is a nasty thing to do. Whoever has time is free to refactor.
|
|
Vec3d bb_size = BoundingBoxf3(polygon).size();
|
|
float sf = std::min(1./bb_size(0), 1./bb_size(1));
|
|
Transform3d tr = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), Vec3d(sf, sf, 1.f));
|
|
polygon = transform(polygon, tr);
|
|
polygon = Slic3r::Geometry::convex_hull(polygon);
|
|
polygon = transform(polygon, tr.inverse());
|
|
|
|
// Calculate area of the polygons and discard ones that are too small
|
|
float& area = m_planes[polygon_id].area;
|
|
area = 0.f;
|
|
for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula
|
|
area += polygon[i](0)*polygon[i + 1 < polygon.size() ? i + 1 : 0](1) - polygon[i + 1 < polygon.size() ? i + 1 : 0](0)*polygon[i](1);
|
|
area = 0.5f * std::abs(area);
|
|
|
|
bool discard = false;
|
|
if (area < minimal_area)
|
|
discard = true;
|
|
else {
|
|
// We also check the inner angles and discard polygons with angles smaller than the following threshold
|
|
const double angle_threshold = ::cos(minimal_angle * (double)PI / 180.0);
|
|
|
|
for (unsigned int i = 0; i < polygon.size(); ++i) {
|
|
const Vec3d& prec = polygon[(i == 0) ? polygon.size() - 1 : i - 1];
|
|
const Vec3d& curr = polygon[i];
|
|
const Vec3d& next = polygon[(i == polygon.size() - 1) ? 0 : i + 1];
|
|
|
|
if ((prec - curr).normalized().dot((next - curr).normalized()) > angle_threshold) {
|
|
discard = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (discard) {
|
|
m_planes[polygon_id--] = std::move(m_planes.back());
|
|
m_planes.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// We will shrink the polygon a little bit so it does not touch the object edges:
|
|
Vec3d centroid = std::accumulate(polygon.begin(), polygon.end(), Vec3d(0.0, 0.0, 0.0));
|
|
centroid /= (double)polygon.size();
|
|
for (auto& vertex : polygon)
|
|
vertex = 0.9f*vertex + 0.1f*centroid;
|
|
|
|
// Polygon is now simple and convex, we'll round the corners to make them look nicer.
|
|
// The algorithm takes a vertex, calculates middles of respective sides and moves the vertex
|
|
// towards their average (controlled by 'aggressivity'). This is repeated k times.
|
|
// In next iterations, the neighbours are not always taken at the middle (to increase the
|
|
// rounding effect at the corners, where we need it most).
|
|
const unsigned int k = 10; // number of iterations
|
|
const float aggressivity = 0.2f; // agressivity
|
|
const unsigned int N = polygon.size();
|
|
std::vector<std::pair<unsigned int, unsigned int>> neighbours;
|
|
if (k != 0) {
|
|
Pointf3s points_out(2*k*N); // vector long enough to store the future vertices
|
|
for (unsigned int j=0; j<N; ++j) {
|
|
points_out[j*2*k] = polygon[j];
|
|
neighbours.push_back(std::make_pair((int)(j*2*k-k) < 0 ? (N-1)*2*k+k : j*2*k-k, j*2*k+k));
|
|
}
|
|
|
|
for (unsigned int i=0; i<k; ++i) {
|
|
// Calculate middle of each edge so that neighbours points to something useful:
|
|
for (unsigned int j=0; j<N; ++j)
|
|
if (i==0)
|
|
points_out[j*2*k+k] = 0.5f * (points_out[j*2*k] + points_out[j==N-1 ? 0 : (j+1)*2*k]);
|
|
else {
|
|
float r = 0.2+0.3/(k-1)*i; // the neighbours are not always taken in the middle
|
|
points_out[neighbours[j].first] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].first-1];
|
|
points_out[neighbours[j].second] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].second+1];
|
|
}
|
|
// Now we have a triangle and valid neighbours, we can do an iteration:
|
|
for (unsigned int j=0; j<N; ++j)
|
|
points_out[2*k*j] = (1-aggressivity) * points_out[2*k*j] +
|
|
aggressivity*0.5f*(points_out[neighbours[j].first] + points_out[neighbours[j].second]);
|
|
|
|
for (auto& n : neighbours) {
|
|
++n.first;
|
|
--n.second;
|
|
}
|
|
}
|
|
polygon = points_out; // replace the coarse polygon with the smooth one that we just created
|
|
}
|
|
|
|
|
|
// Raise a bit above the object surface to avoid flickering:
|
|
for (auto& b : polygon)
|
|
b(2) += 0.1f;
|
|
|
|
// Transform back to 3D (and also back to mesh coordinates)
|
|
polygon = transform(polygon, inst_matrix.inverse() * m.inverse());
|
|
}
|
|
|
|
// We'll sort the planes by area and only keep the 254 largest ones (because of the picking pass limitations):
|
|
std::sort(m_planes.rbegin(), m_planes.rend(), [](const PlaneData& a, const PlaneData& b) { return a.area < b.area; });
|
|
m_planes.resize(std::min((int)m_planes.size(), 254));
|
|
|
|
// Planes are finished - let's save what we calculated it from:
|
|
m_volumes_matrices.clear();
|
|
m_volumes_types.clear();
|
|
for (const ModelVolume* vol : mo->volumes) {
|
|
m_volumes_matrices.push_back(vol->get_matrix());
|
|
m_volumes_types.push_back(vol->type());
|
|
}
|
|
m_first_instance_scale = mo->instances.front()->get_scaling_factor();
|
|
m_first_instance_mirror = mo->instances.front()->get_mirror();
|
|
m_old_model_object = mo;
|
|
|
|
// And finally create respective VBOs. The polygon is convex with
|
|
// the vertices in order, so triangulation is trivial.
|
|
for (auto& plane : m_planes) {
|
|
indexed_triangle_set its;
|
|
its.vertices.reserve(plane.vertices.size());
|
|
its.indices.reserve(plane.vertices.size() / 3);
|
|
for (size_t i = 0; i < plane.vertices.size(); ++i) {
|
|
its.vertices.emplace_back((Vec3f)plane.vertices[i].cast<float>());
|
|
}
|
|
for (size_t i = 1; i < plane.vertices.size() - 1; ++i) {
|
|
its.indices.emplace_back(0, i, i + 1); // triangle fan
|
|
}
|
|
plane.vbo.model.init_from(its);
|
|
plane.vbo.mesh_raycaster = std::make_unique<MeshRaycaster>(std::make_shared<const TriangleMesh>(std::move(its)));
|
|
// FIXME: vertices should really be local, they need not
|
|
// persist now when we use VBOs
|
|
plane.vertices.clear();
|
|
plane.vertices.shrink_to_fit();
|
|
}
|
|
|
|
on_register_raycasters_for_picking();
|
|
}
|
|
|
|
|
|
bool GLGizmoFlatten::is_plane_update_necessary() const
|
|
{
|
|
const ModelObject* mo = m_c->selection_info()->model_object();
|
|
if (m_state != On || ! mo || mo->instances.empty())
|
|
return false;
|
|
|
|
if (m_planes.empty() || mo != m_old_model_object
|
|
|| mo->volumes.size() != m_volumes_matrices.size())
|
|
return true;
|
|
|
|
// We want to recalculate when the scale changes - some planes could (dis)appear.
|
|
if (! mo->instances.front()->get_scaling_factor().isApprox(m_first_instance_scale)
|
|
|| ! mo->instances.front()->get_mirror().isApprox(m_first_instance_mirror))
|
|
return true;
|
|
|
|
for (unsigned int i=0; i < mo->volumes.size(); ++i)
|
|
if (! mo->volumes[i]->get_matrix().isApprox(m_volumes_matrices[i])
|
|
|| mo->volumes[i]->type() != m_volumes_types[i])
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
} // namespace GUI
|
|
} // namespace Slic3r
|