mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-08 07:27:41 -06:00
2646 lines
144 KiB
C++
2646 lines
144 KiB
C++
///|/ Copyright (c) Prusa Research 2016 - 2023 Vojtěch Bubník @bubnikv, Pavel Mikuš @Godrak, Lukáš Hejl @hejllukas, Lukáš Matěna @lukasmatena
|
|
///|/ Copyright (c) SuperSlicer 2023 Remi Durand @supermerill
|
|
///|/ Copyright (c) 2021 Ilya @xorza
|
|
///|/ Copyright (c) Slic3r 2015 - 2016 Alessandro Ranellucci @alranel
|
|
///|/
|
|
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
|
|
///|/
|
|
#include "PerimeterGenerator.hpp"
|
|
#include "AABBTreeLines.hpp"
|
|
#include "BridgeDetector.hpp"
|
|
#include "ClipperUtils.hpp"
|
|
#include "ExtrusionEntity.hpp"
|
|
#include "ExtrusionEntityCollection.hpp"
|
|
#include "PrintConfig.hpp"
|
|
#include "ShortestPath.hpp"
|
|
#include "VariableWidth.hpp"
|
|
#include "CurveAnalyzer.hpp"
|
|
#include "Clipper2Utils.hpp"
|
|
#include "Arachne/WallToolPaths.hpp"
|
|
#include "Geometry/ConvexHull.hpp"
|
|
#include "ExPolygonCollection.hpp"
|
|
#include "Geometry.hpp"
|
|
|
|
#include <cmath>
|
|
#include <cassert>
|
|
#include <unordered_set>
|
|
|
|
static const int overhang_sampling_number = 6;
|
|
static const double narrow_loop_length_threshold = 10;
|
|
//BBS: when the width of expolygon is smaller than
|
|
//ext_perimeter_width + ext_perimeter_spacing * (1 - SMALLER_EXT_INSET_OVERLAP_TOLERANCE),
|
|
//we think it's small detail area and will generate smaller line width for it
|
|
static constexpr double SMALLER_EXT_INSET_OVERLAP_TOLERANCE = 0.22;
|
|
|
|
namespace Slic3r {
|
|
|
|
// Hierarchy of perimeters.
|
|
class PerimeterGeneratorLoop {
|
|
public:
|
|
// Polygon of this contour.
|
|
Polygon polygon;
|
|
// Is it a contour or a hole?
|
|
bool is_contour;
|
|
// BBS: is perimeter using smaller width
|
|
bool is_smaller_width_perimeter;
|
|
// Depth in the hierarchy. External perimeter has depth = 0. An external perimeter could be both a contour and a hole.
|
|
unsigned short depth;
|
|
// Should this contur be fuzzyfied on path generation?
|
|
bool fuzzify;
|
|
// Children contour, may be both CCW and CW oriented (outer contours or holes).
|
|
std::vector<PerimeterGeneratorLoop> children;
|
|
|
|
PerimeterGeneratorLoop(const Polygon &polygon, unsigned short depth, bool is_contour, bool fuzzify, bool is_small_width_perimeter = false) :
|
|
polygon(polygon), is_contour(is_contour), is_smaller_width_perimeter(is_small_width_perimeter), depth(depth), fuzzify(fuzzify) {}
|
|
// External perimeter. It may be CCW or CW oriented (outer contour or hole contour).
|
|
bool is_external() const { return this->depth == 0; }
|
|
// An island, which may have holes, but it does not have another internal island.
|
|
bool is_internal_contour() const;
|
|
};
|
|
|
|
// Thanks Cura developers for this function.
|
|
static void fuzzy_polygon(Polygon &poly, double fuzzy_skin_thickness, double fuzzy_skin_point_distance)
|
|
{
|
|
const double min_dist_between_points = fuzzy_skin_point_distance * 3. / 4.; // hardcoded: the point distance may vary between 3/4 and 5/4 the supplied value
|
|
const double range_random_point_dist = fuzzy_skin_point_distance / 2.;
|
|
double dist_left_over = double(rand()) * (min_dist_between_points / 2) / double(RAND_MAX); // the distance to be traversed on the line before making the first new point
|
|
Point* p0 = &poly.points.back();
|
|
Points out;
|
|
out.reserve(poly.points.size());
|
|
for (Point &p1 : poly.points)
|
|
{ // 'a' is the (next) new point between p0 and p1
|
|
Vec2d p0p1 = (p1 - *p0).cast<double>();
|
|
double p0p1_size = p0p1.norm();
|
|
double p0pa_dist = dist_left_over;
|
|
for (; p0pa_dist < p0p1_size;
|
|
p0pa_dist += min_dist_between_points + double(rand()) * range_random_point_dist / double(RAND_MAX))
|
|
{
|
|
double r = double(rand()) * (fuzzy_skin_thickness * 2.) / double(RAND_MAX) - fuzzy_skin_thickness;
|
|
out.emplace_back(*p0 + (p0p1 * (p0pa_dist / p0p1_size) + perp(p0p1).cast<double>().normalized() * r).cast<coord_t>());
|
|
}
|
|
dist_left_over = p0pa_dist - p0p1_size;
|
|
p0 = &p1;
|
|
}
|
|
while (out.size() < 3) {
|
|
size_t point_idx = poly.size() - 2;
|
|
out.emplace_back(poly[point_idx]);
|
|
if (point_idx == 0)
|
|
break;
|
|
-- point_idx;
|
|
}
|
|
if (out.size() >= 3)
|
|
poly.points = std::move(out);
|
|
}
|
|
|
|
// Thanks Cura developers for this function.
|
|
static void fuzzy_extrusion_line(Arachne::ExtrusionLine& ext_lines, double fuzzy_skin_thickness, double fuzzy_skin_point_dist)
|
|
{
|
|
const double min_dist_between_points = fuzzy_skin_point_dist * 3. / 4.; // hardcoded: the point distance may vary between 3/4 and 5/4 the supplied value
|
|
const double range_random_point_dist = fuzzy_skin_point_dist / 2.;
|
|
double dist_left_over = double(rand()) * (min_dist_between_points / 2) / double(RAND_MAX); // the distance to be traversed on the line before making the first new point
|
|
|
|
auto* p0 = &ext_lines.front();
|
|
std::vector<Arachne::ExtrusionJunction> out;
|
|
out.reserve(ext_lines.size());
|
|
for (auto& p1 : ext_lines) {
|
|
if (p0->p == p1.p) { // Connect endpoints.
|
|
out.emplace_back(p1.p, p1.w, p1.perimeter_index);
|
|
continue;
|
|
}
|
|
|
|
// 'a' is the (next) new point between p0 and p1
|
|
Vec2d p0p1 = (p1.p - p0->p).cast<double>();
|
|
double p0p1_size = p0p1.norm();
|
|
double p0pa_dist = dist_left_over;
|
|
for (; p0pa_dist < p0p1_size; p0pa_dist += min_dist_between_points + double(rand()) * range_random_point_dist / double(RAND_MAX)) {
|
|
double r = double(rand()) * (fuzzy_skin_thickness * 2.) / double(RAND_MAX) - fuzzy_skin_thickness;
|
|
out.emplace_back(p0->p + (p0p1 * (p0pa_dist / p0p1_size) + perp(p0p1).cast<double>().normalized() * r).cast<coord_t>(), p1.w, p1.perimeter_index);
|
|
}
|
|
dist_left_over = p0pa_dist - p0p1_size;
|
|
p0 = &p1;
|
|
}
|
|
|
|
while (out.size() < 3) {
|
|
size_t point_idx = ext_lines.size() - 2;
|
|
out.emplace_back(ext_lines[point_idx].p, ext_lines[point_idx].w, ext_lines[point_idx].perimeter_index);
|
|
if (point_idx == 0)
|
|
break;
|
|
--point_idx;
|
|
}
|
|
|
|
if (ext_lines.back().p == ext_lines.front().p) // Connect endpoints.
|
|
out.front().p = out.back().p;
|
|
|
|
if (out.size() >= 3)
|
|
ext_lines.junctions = std::move(out);
|
|
}
|
|
|
|
using PerimeterGeneratorLoops = std::vector<PerimeterGeneratorLoop>;
|
|
|
|
static void lowpass_filter_by_paths_overhang_degree(ExtrusionPaths& paths) {
|
|
const double filter_range = scale_(6.5);
|
|
const double threshold_length = scale_(1.2);
|
|
|
|
//0.save old overhang series first which is input of filter
|
|
const int path_num = paths.size();
|
|
if (path_num < 2)
|
|
//don't need to do filting if only has one path in vector
|
|
return;
|
|
std::vector<int> old_overhang_series;
|
|
old_overhang_series.reserve(path_num);
|
|
for (int i = 0; i < path_num; i++)
|
|
old_overhang_series.push_back(paths[i].get_overhang_degree());
|
|
|
|
//1.lowpass filter
|
|
for (int i = 0; i < path_num; i++) {
|
|
double current_length = paths[i].length();
|
|
int current_overhang_degree = old_overhang_series[i];
|
|
if (current_length < threshold_length &&
|
|
(paths[i].role() == erPerimeter || paths[i].role() == erExternalPerimeter)) {
|
|
double left_total_length = (filter_range - current_length) / 2;
|
|
double right_total_length = left_total_length;
|
|
|
|
double temp_length;
|
|
int j = i - 1;
|
|
int index;
|
|
std::vector<std::pair<double, int>> neighbor_path;
|
|
while (left_total_length > 0) {
|
|
index = (j < 0) ? path_num - 1 : j;
|
|
if (paths[index].role() == erOverhangPerimeter)
|
|
break;
|
|
temp_length = paths[index].length();
|
|
if (temp_length > left_total_length)
|
|
neighbor_path.emplace_back(std::pair<double, int>(left_total_length, old_overhang_series[index]));
|
|
else
|
|
neighbor_path.emplace_back(std::pair<double, int>(temp_length, old_overhang_series[index]));
|
|
left_total_length -= temp_length;
|
|
j = index;
|
|
j--;
|
|
}
|
|
|
|
j = i + 1;
|
|
while (right_total_length > 0) {
|
|
index = j % path_num;
|
|
if (paths[index].role() == erOverhangPerimeter)
|
|
break;
|
|
temp_length = paths[index].length();
|
|
if (temp_length > right_total_length)
|
|
neighbor_path.emplace_back(std::pair<double, int>(right_total_length, old_overhang_series[index]));
|
|
else
|
|
neighbor_path.emplace_back(std::pair<double, int>(temp_length, old_overhang_series[index]));
|
|
right_total_length -= temp_length;
|
|
j++;
|
|
}
|
|
|
|
double sum = 0;
|
|
double length_sum = 0;
|
|
for (auto it = neighbor_path.begin(); it != neighbor_path.end(); it++) {
|
|
sum += (it->first * it->second);
|
|
length_sum += it->first;
|
|
}
|
|
|
|
double average_overhang = (double)(current_length * current_overhang_degree + sum) / (length_sum + current_length);
|
|
paths[i].set_overhang_degree((int)average_overhang);
|
|
}
|
|
}
|
|
|
|
//2.merge path if have same overhang degree. from back to front to avoid data copy
|
|
int last_overhang = paths[0].get_overhang_degree();
|
|
auto it = paths.begin() + 1;
|
|
while (it != paths.end())
|
|
{
|
|
if (last_overhang == it->get_overhang_degree()) {
|
|
//BBS: don't need to append duplicated points, remove the last point
|
|
if ((it-1)->polyline.last_point() == it->polyline.first_point())
|
|
(it-1)->polyline.points.pop_back();
|
|
(it-1)->polyline.append(std::move(it->polyline));
|
|
it = paths.erase(it);
|
|
} else {
|
|
last_overhang = it->get_overhang_degree();
|
|
it++;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class _T>
|
|
static bool detect_steep_overhang(const PrintRegionConfig *config,
|
|
bool is_contour,
|
|
const BoundingBox &extrusion_bboxs,
|
|
double extrusion_width,
|
|
const _T extrusion,
|
|
const ExPolygons *lower_slices,
|
|
bool &steep_overhang_contour,
|
|
bool &steep_overhang_hole)
|
|
{
|
|
double threshold = config->overhang_reverse_threshold.get_abs_value(extrusion_width);
|
|
// Special case: reverse on every odd layer
|
|
if (threshold < EPSILON) {
|
|
if (is_contour) {
|
|
steep_overhang_contour = true;
|
|
} else {
|
|
steep_overhang_hole = true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Polygons lower_slcier_chopped = ClipperUtils::clip_clipper_polygons_with_subject_bbox(*lower_slices, extrusion_bboxs, true);
|
|
|
|
// All we need to check is whether we have lines outside `threshold`
|
|
double off = threshold - 0.5 * extrusion_width;
|
|
|
|
auto limiton_polygons = offset(lower_slcier_chopped, float(scale_(off)));
|
|
|
|
auto remain_polylines = diff_pl(extrusion, limiton_polygons);
|
|
if (!remain_polylines.empty()) {
|
|
if (is_contour) {
|
|
steep_overhang_contour = true;
|
|
} else {
|
|
steep_overhang_hole = true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static ExtrusionEntityCollection traverse_loops(const PerimeterGenerator &perimeter_generator, const PerimeterGeneratorLoops &loops, ThickPolylines &thin_walls,
|
|
bool &steep_overhang_contour, bool &steep_overhang_hole)
|
|
{
|
|
// loops is an arrayref of ::Loop objects
|
|
// turn each one into an ExtrusionLoop object
|
|
ExtrusionEntityCollection coll;
|
|
Polygon fuzzified;
|
|
|
|
// Detect steep overhangs
|
|
bool overhangs_reverse = perimeter_generator.config->overhang_reverse &&
|
|
perimeter_generator.layer_id % 2 == 1; // Only calculate overhang degree on odd layers
|
|
|
|
for (const PerimeterGeneratorLoop &loop : loops) {
|
|
bool is_external = loop.is_external();
|
|
bool is_small_width = loop.is_smaller_width_perimeter;
|
|
|
|
ExtrusionRole role;
|
|
ExtrusionLoopRole loop_role;
|
|
role = is_external ? erExternalPerimeter : erPerimeter;
|
|
if (loop.is_internal_contour()) {
|
|
// Note that we set loop role to ContourInternalPerimeter
|
|
// also when loop is both internal and external (i.e.
|
|
// there's only one contour loop).
|
|
loop_role = elrInternal;
|
|
} else {
|
|
loop_role = loop.is_contour? elrDefault : elrHole;
|
|
}
|
|
|
|
// detect overhanging/bridging perimeters
|
|
ExtrusionPaths paths;
|
|
|
|
// BBS: get lower polygons series, width, mm3_per_mm
|
|
const std::map<int, Polygons> *lower_polygons_series;
|
|
double extrusion_mm3_per_mm;
|
|
double extrusion_width;
|
|
if (is_external) {
|
|
if (is_small_width) {
|
|
//BBS: smaller width external perimeter
|
|
lower_polygons_series = &perimeter_generator.m_smaller_external_lower_polygons_series;
|
|
extrusion_mm3_per_mm = perimeter_generator.smaller_width_ext_mm3_per_mm();
|
|
extrusion_width = perimeter_generator.smaller_ext_perimeter_flow.width();
|
|
} else {
|
|
//BBS: normal external perimeter
|
|
lower_polygons_series = &perimeter_generator.m_external_lower_polygons_series;
|
|
extrusion_mm3_per_mm = perimeter_generator.ext_mm3_per_mm();
|
|
extrusion_width = perimeter_generator.ext_perimeter_flow.width();
|
|
}
|
|
} else {
|
|
//BBS: normal perimeter
|
|
lower_polygons_series = &perimeter_generator.m_lower_polygons_series;
|
|
extrusion_mm3_per_mm = perimeter_generator.mm3_per_mm();
|
|
extrusion_width = perimeter_generator.perimeter_flow.width();
|
|
}
|
|
|
|
|
|
const Polygon &polygon = loop.fuzzify ? fuzzified : loop.polygon;
|
|
if (loop.fuzzify) {
|
|
fuzzified = loop.polygon;
|
|
fuzzy_polygon(fuzzified, scaled<float>(perimeter_generator.config->fuzzy_skin_thickness.value), scaled<float>(perimeter_generator.config->fuzzy_skin_point_distance.value));
|
|
}
|
|
if (perimeter_generator.config->detect_overhang_wall && perimeter_generator.layer_id > perimeter_generator.object_config->raft_layers) {
|
|
// get non 100% overhang paths by intersecting this loop with the grown lower slices
|
|
// prepare grown lower layer slices for overhang detection
|
|
BoundingBox bbox(polygon.points);
|
|
bbox.offset(SCALED_EPSILON);
|
|
|
|
// Always reverse extrusion if use fuzzy skin: https://github.com/SoftFever/OrcaSlicer/pull/2413#issuecomment-1769735357
|
|
if (overhangs_reverse && perimeter_generator.config->fuzzy_skin != FuzzySkinType::None) {
|
|
if (loop.is_contour) {
|
|
steep_overhang_contour = true;
|
|
} else if (perimeter_generator.config->fuzzy_skin != FuzzySkinType::External) {
|
|
steep_overhang_hole = true;
|
|
}
|
|
}
|
|
// Detect steep overhang
|
|
// Skip the check if we already found steep overhangs
|
|
bool found_steep_overhang = (loop.is_contour && steep_overhang_contour) || (!loop.is_contour && steep_overhang_hole);
|
|
if (overhangs_reverse && !found_steep_overhang) {
|
|
detect_steep_overhang(perimeter_generator.config, loop.is_contour, bbox, extrusion_width, Polygons{polygon}, perimeter_generator.lower_slices,
|
|
steep_overhang_contour, steep_overhang_hole);
|
|
}
|
|
|
|
Polylines remain_polines;
|
|
|
|
//BBS: don't calculate overhang degree when enable fuzzy skin. It's unmeaning
|
|
if (perimeter_generator.config->overhang_speed_classic && perimeter_generator.config->enable_overhang_speed && perimeter_generator.config->fuzzy_skin == FuzzySkinType::None) {
|
|
for (auto it = lower_polygons_series->begin();
|
|
it != lower_polygons_series->end(); it++)
|
|
{
|
|
Polygons lower_polygons_series_clipped = ClipperUtils::clip_clipper_polygons_with_subject_bbox(it->second, bbox);
|
|
|
|
Polylines inside_polines = (it == lower_polygons_series->begin()) ? intersection_pl({polygon}, lower_polygons_series_clipped) :
|
|
intersection_pl(remain_polines, lower_polygons_series_clipped);
|
|
extrusion_paths_append(
|
|
paths,
|
|
std::move(inside_polines),
|
|
it->first,
|
|
int(0),
|
|
role,
|
|
extrusion_mm3_per_mm,
|
|
extrusion_width,
|
|
(float)perimeter_generator.layer_height);
|
|
|
|
remain_polines = (it == lower_polygons_series->begin()) ? diff_pl({polygon}, lower_polygons_series_clipped) :
|
|
diff_pl(remain_polines, lower_polygons_series_clipped);
|
|
|
|
if (remain_polines.size() == 0)
|
|
break;
|
|
}
|
|
} else {
|
|
auto it = lower_polygons_series->end();
|
|
it--;
|
|
Polygons lower_polygons_series_clipped = ClipperUtils::clip_clipper_polygons_with_subject_bbox(it->second, bbox);
|
|
|
|
Polylines inside_polines = intersection_pl({polygon}, lower_polygons_series_clipped);
|
|
extrusion_paths_append(
|
|
paths,
|
|
std::move(inside_polines),
|
|
int(0),
|
|
int(0),
|
|
role,
|
|
extrusion_mm3_per_mm,
|
|
extrusion_width,
|
|
(float)perimeter_generator.layer_height);
|
|
|
|
remain_polines = diff_pl({polygon}, lower_polygons_series_clipped);
|
|
}
|
|
|
|
// get 100% overhang paths by checking what parts of this loop fall
|
|
// outside the grown lower slices (thus where the distance between
|
|
// the loop centerline and original lower slices is >= half nozzle diameter
|
|
if (remain_polines.size() != 0) {
|
|
extrusion_paths_append(paths, std::move(remain_polines), overhang_sampling_number - 1, int(0),
|
|
erOverhangPerimeter, perimeter_generator.mm3_per_mm_overhang(),
|
|
perimeter_generator.overhang_flow.width(),
|
|
perimeter_generator.overhang_flow.height());
|
|
}
|
|
|
|
// Reapply the nearest point search for starting point.
|
|
// We allow polyline reversal because Clipper may have randomly reversed polylines during clipping.
|
|
if(paths.empty()) continue;
|
|
chain_and_reorder_extrusion_paths(paths, &paths.front().first_point());
|
|
// smothing the overhang degree
|
|
// merge small path between paths which have same overhang degree
|
|
lowpass_filter_by_paths_overhang_degree(paths);
|
|
} else {
|
|
ExtrusionPath path(role);
|
|
//BBS.
|
|
path.polyline = polygon.split_at_first_point();
|
|
path.overhang_degree = 0;
|
|
path.curve_degree = 0;
|
|
path.mm3_per_mm = extrusion_mm3_per_mm;
|
|
path.width = extrusion_width;
|
|
path.height = (float)perimeter_generator.layer_height;
|
|
paths.emplace_back(std::move(path));
|
|
}
|
|
|
|
coll.append(ExtrusionLoop(std::move(paths), loop_role));
|
|
}
|
|
|
|
// Append thin walls to the nearest-neighbor search (only for first iteration)
|
|
if (! thin_walls.empty()) {
|
|
variable_width(thin_walls, erExternalPerimeter, perimeter_generator.ext_perimeter_flow, coll.entities);
|
|
thin_walls.clear();
|
|
}
|
|
|
|
// Traverse children and build the final collection.
|
|
Point zero_point(0, 0);
|
|
std::vector<std::pair<size_t, bool>> chain = chain_extrusion_entities(coll.entities, &zero_point);
|
|
ExtrusionEntityCollection out;
|
|
for (const std::pair<size_t, bool> &idx : chain) {
|
|
assert(coll.entities[idx.first] != nullptr);
|
|
if (idx.first >= loops.size()) {
|
|
// This is a thin wall.
|
|
out.entities.reserve(out.entities.size() + 1);
|
|
out.entities.emplace_back(coll.entities[idx.first]);
|
|
coll.entities[idx.first] = nullptr;
|
|
if (idx.second)
|
|
out.entities.back()->reverse();
|
|
} else {
|
|
const PerimeterGeneratorLoop &loop = loops[idx.first];
|
|
assert(thin_walls.empty());
|
|
ExtrusionEntityCollection children = traverse_loops(perimeter_generator, loop.children, thin_walls, steep_overhang_contour, steep_overhang_hole);
|
|
out.entities.reserve(out.entities.size() + children.entities.size() + 1);
|
|
ExtrusionLoop *eloop = static_cast<ExtrusionLoop*>(coll.entities[idx.first]);
|
|
coll.entities[idx.first] = nullptr;
|
|
|
|
eloop->make_counter_clockwise();
|
|
if (loop.is_contour) {
|
|
out.append(std::move(children.entities));
|
|
out.entities.emplace_back(eloop);
|
|
} else {
|
|
out.entities.emplace_back(eloop);
|
|
out.append(std::move(children.entities));
|
|
}
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
|
|
static ClipperLib_Z::Paths clip_extrusion(const ClipperLib_Z::Path& subject, const ClipperLib_Z::Paths& clip, ClipperLib_Z::ClipType clipType)
|
|
{
|
|
ClipperLib_Z::Clipper clipper;
|
|
clipper.ZFillFunction([](const ClipperLib_Z::IntPoint& e1bot, const ClipperLib_Z::IntPoint& e1top, const ClipperLib_Z::IntPoint& e2bot,
|
|
const ClipperLib_Z::IntPoint& e2top, ClipperLib_Z::IntPoint& pt) {
|
|
ClipperLib_Z::IntPoint start = e1bot;
|
|
ClipperLib_Z::IntPoint end = e1top;
|
|
|
|
if (start.z() <= 0 && end.z() <= 0) {
|
|
start = e2bot;
|
|
end = e2top;
|
|
}
|
|
|
|
assert(start.z() >= 0 && end.z() >= 0);
|
|
|
|
// Interpolate extrusion line width.
|
|
double length_sqr = (end - start).cast<double>().squaredNorm();
|
|
double dist_sqr = (pt - start).cast<double>().squaredNorm();
|
|
double t = std::sqrt(dist_sqr / length_sqr);
|
|
|
|
pt.z() = start.z() + coord_t((end.z() - start.z()) * t);
|
|
});
|
|
|
|
clipper.AddPath(subject, ClipperLib_Z::ptSubject, false);
|
|
clipper.AddPaths(clip, ClipperLib_Z::ptClip, true);
|
|
|
|
ClipperLib_Z::Paths clipped_paths;
|
|
{
|
|
ClipperLib_Z::PolyTree clipped_polytree;
|
|
clipper.Execute(clipType, clipped_polytree, ClipperLib_Z::pftNonZero, ClipperLib_Z::pftNonZero);
|
|
ClipperLib_Z::PolyTreeToPaths(std::move(clipped_polytree), clipped_paths);
|
|
}
|
|
|
|
// Clipped path could contain vertices from the clip with a Z coordinate equal to zero.
|
|
// For those vertices, we must assign value based on the subject.
|
|
// This happens only in sporadic cases.
|
|
for (ClipperLib_Z::Path& path : clipped_paths)
|
|
for (ClipperLib_Z::IntPoint& c_pt : path)
|
|
if (c_pt.z() == 0) {
|
|
// Now we must find the corresponding line on with this point is located and compute line width (Z coordinate).
|
|
if (subject.size() <= 2)
|
|
continue;
|
|
|
|
const Point pt(c_pt.x(), c_pt.y());
|
|
Point projected_pt_min;
|
|
auto it_min = subject.begin();
|
|
auto dist_sqr_min = std::numeric_limits<double>::max();
|
|
Point prev(subject.front().x(), subject.front().y());
|
|
for (auto it = std::next(subject.begin()); it != subject.end(); ++it) {
|
|
Point curr(it->x(), it->y());
|
|
Point projected_pt = pt.projection_onto(Line(prev, curr));
|
|
if (double dist_sqr = (projected_pt - pt).cast<double>().squaredNorm(); dist_sqr < dist_sqr_min) {
|
|
dist_sqr_min = dist_sqr;
|
|
projected_pt_min = projected_pt;
|
|
it_min = std::prev(it);
|
|
}
|
|
prev = curr;
|
|
}
|
|
|
|
assert(dist_sqr_min <= SCALED_EPSILON);
|
|
assert(std::next(it_min) != subject.end());
|
|
|
|
const Point pt_a(it_min->x(), it_min->y());
|
|
const Point pt_b(std::next(it_min)->x(), std::next(it_min)->y());
|
|
const double line_len = (pt_b - pt_a).cast<double>().norm();
|
|
const double dist = (projected_pt_min - pt_a).cast<double>().norm();
|
|
c_pt.z() = coord_t(double(it_min->z()) + (dist / line_len) * double(std::next(it_min)->z() - it_min->z()));
|
|
}
|
|
|
|
assert([&clipped_paths = std::as_const(clipped_paths)]() -> bool {
|
|
for (const ClipperLib_Z::Path& path : clipped_paths)
|
|
for (const ClipperLib_Z::IntPoint& pt : path)
|
|
if (pt.z() <= 0)
|
|
return false;
|
|
return true;
|
|
}());
|
|
|
|
return clipped_paths;
|
|
}
|
|
|
|
struct PerimeterGeneratorArachneExtrusion
|
|
{
|
|
Arachne::ExtrusionLine* extrusion = nullptr;
|
|
// Indicates if closed ExtrusionLine is a contour or a hole. Used it only when ExtrusionLine is a closed loop.
|
|
bool is_contour = false;
|
|
// Should this extrusion be fuzzyfied on path generation?
|
|
bool fuzzify = false;
|
|
};
|
|
|
|
|
|
static void smooth_overhang_level(ExtrusionPaths &paths)
|
|
{
|
|
const double threshold_length = scale_(0.8);
|
|
const double filter_range = scale_(6.5);
|
|
|
|
// 0.save old overhang series first which is input of filter
|
|
const int path_num = paths.size();
|
|
if (path_num < 2)
|
|
// don't need to do filting if only has one path in vector
|
|
return;
|
|
std::vector<int> old_overhang_series;
|
|
old_overhang_series.reserve(path_num);
|
|
for (int i = 0; i < path_num; i++) old_overhang_series.push_back(paths[i].get_overhang_degree());
|
|
|
|
for (int i = 0; i < path_num;) {
|
|
if ((paths[i].role() != erPerimeter && paths[i].role() != erExternalPerimeter)) {
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
double current_length = paths[i].length();
|
|
int current_overhang_degree = old_overhang_series[i];
|
|
double total_lens = current_length;
|
|
int pt = i + 1;
|
|
|
|
for (; pt < path_num; pt++) {
|
|
if (paths[pt].get_overhang_degree() != current_overhang_degree || (paths[pt].role() != erPerimeter && paths[pt].role() != erExternalPerimeter)) {
|
|
break;
|
|
}
|
|
total_lens += paths[pt].length();
|
|
}
|
|
|
|
if (total_lens < threshold_length) {
|
|
double left_total_length = (filter_range - total_lens) / 2;
|
|
double right_total_length = left_total_length;
|
|
|
|
double temp_length;
|
|
int j = i - 1;
|
|
int index;
|
|
std::vector<std::pair<double, int>> neighbor_path;
|
|
while (left_total_length > 0) {
|
|
index = (j < 0) ? path_num - 1 : j;
|
|
if (paths[index].role() == erOverhangPerimeter) break;
|
|
temp_length = paths[index].length();
|
|
if (temp_length > left_total_length)
|
|
neighbor_path.emplace_back(std::pair<double, int>(left_total_length, old_overhang_series[index]));
|
|
else
|
|
neighbor_path.emplace_back(std::pair<double, int>(temp_length, old_overhang_series[index]));
|
|
left_total_length -= temp_length;
|
|
j = index;
|
|
j--;
|
|
}
|
|
|
|
j = pt;
|
|
while (right_total_length > 0) {
|
|
index = j % path_num;
|
|
if (paths[index].role() == erOverhangPerimeter) break;
|
|
temp_length = paths[index].length();
|
|
if (temp_length > right_total_length)
|
|
neighbor_path.emplace_back(std::pair<double, int>(right_total_length, old_overhang_series[index]));
|
|
else
|
|
neighbor_path.emplace_back(std::pair<double, int>(temp_length, old_overhang_series[index]));
|
|
right_total_length -= temp_length;
|
|
j++;
|
|
}
|
|
|
|
double sum = 0;
|
|
double length_sum = 0;
|
|
for (auto it = neighbor_path.begin(); it != neighbor_path.end(); it++) {
|
|
sum += (it->first * it->second);
|
|
length_sum += it->first;
|
|
}
|
|
|
|
double average_overhang = (double) (total_lens * current_overhang_degree + sum) / (length_sum + total_lens);
|
|
|
|
for (int idx=i; idx<pt;idx++)
|
|
paths[idx].set_overhang_degree((int) average_overhang);
|
|
}
|
|
|
|
i = pt;
|
|
}
|
|
}
|
|
|
|
static ExtrusionEntityCollection traverse_extrusions(const PerimeterGenerator& perimeter_generator, std::vector<PerimeterGeneratorArachneExtrusion>& pg_extrusions,
|
|
bool &steep_overhang_contour, bool &steep_overhang_hole)
|
|
{
|
|
// Detect steep overhangs
|
|
bool overhangs_reverse = perimeter_generator.config->overhang_reverse &&
|
|
perimeter_generator.layer_id % 2 == 1; // Only calculate overhang degree on odd layers
|
|
|
|
ExtrusionEntityCollection extrusion_coll;
|
|
for (PerimeterGeneratorArachneExtrusion& pg_extrusion : pg_extrusions) {
|
|
Arachne::ExtrusionLine* extrusion = pg_extrusion.extrusion;
|
|
if (extrusion->empty())
|
|
continue;
|
|
|
|
const bool is_external = extrusion->inset_idx == 0;
|
|
ExtrusionRole role = is_external ? erExternalPerimeter : erPerimeter;
|
|
|
|
if (pg_extrusion.fuzzify)
|
|
fuzzy_extrusion_line(*extrusion, scaled<float>(perimeter_generator.config->fuzzy_skin_thickness.value), scaled<float>(perimeter_generator.config->fuzzy_skin_point_distance.value));
|
|
|
|
ExtrusionPaths paths;
|
|
// detect overhanging/bridging perimeters
|
|
if (perimeter_generator.config->detect_overhang_wall && perimeter_generator.layer_id > perimeter_generator.object_config->raft_layers) {
|
|
ClipperLib_Z::Path extrusion_path;
|
|
extrusion_path.reserve(extrusion->size());
|
|
BoundingBox extrusion_path_bbox;
|
|
for (const Arachne::ExtrusionJunction &ej : extrusion->junctions) {
|
|
extrusion_path.emplace_back(ej.p.x(), ej.p.y(), ej.w);
|
|
extrusion_path_bbox.merge(Point(ej.p.x(), ej.p.y()));
|
|
}
|
|
|
|
ClipperLib_Z::Paths lower_slices_paths;
|
|
{
|
|
lower_slices_paths.reserve(perimeter_generator.lower_slices_polygons().size());
|
|
Points clipped;
|
|
extrusion_path_bbox.offset(SCALED_EPSILON);
|
|
for (const Polygon &poly : perimeter_generator.lower_slices_polygons()) {
|
|
clipped.clear();
|
|
ClipperUtils::clip_clipper_polygon_with_subject_bbox(poly.points, extrusion_path_bbox, clipped);
|
|
if (!clipped.empty()) {
|
|
lower_slices_paths.emplace_back();
|
|
ClipperLib_Z::Path &out = lower_slices_paths.back();
|
|
out.reserve(clipped.size());
|
|
for (const Point &pt : clipped)
|
|
out.emplace_back(pt.x(), pt.y(), 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
ExtrusionPaths temp_paths;
|
|
// get non-overhang paths by intersecting this loop with the grown lower slices
|
|
extrusion_paths_append(temp_paths, clip_extrusion(extrusion_path, lower_slices_paths, ClipperLib_Z::ctIntersection), role,
|
|
is_external ? perimeter_generator.ext_perimeter_flow : perimeter_generator.perimeter_flow);
|
|
|
|
// Always reverse extrusion if use fuzzy skin: https://github.com/SoftFever/OrcaSlicer/pull/2413#issuecomment-1769735357
|
|
if (overhangs_reverse && perimeter_generator.config->fuzzy_skin != FuzzySkinType::None) {
|
|
if (pg_extrusion.is_contour) {
|
|
steep_overhang_contour = true;
|
|
} else if (perimeter_generator.config->fuzzy_skin != FuzzySkinType::External) {
|
|
steep_overhang_hole = true;
|
|
}
|
|
}
|
|
// Detect steep overhang
|
|
// Skip the check if we already found steep overhangs
|
|
bool found_steep_overhang = (pg_extrusion.is_contour && steep_overhang_contour) || (!pg_extrusion.is_contour && steep_overhang_hole);
|
|
if (overhangs_reverse && !found_steep_overhang) {
|
|
std::map<double, ExtrusionPaths> recognization_paths;
|
|
for (const ExtrusionPath &path : temp_paths) {
|
|
if (recognization_paths.count(path.width))
|
|
recognization_paths[path.width].emplace_back(std::move(path));
|
|
else
|
|
recognization_paths.insert(std::pair<double, ExtrusionPaths>(path.width, {std::move(path)}));
|
|
}
|
|
for (const auto &it : recognization_paths) {
|
|
Polylines be_clipped;
|
|
|
|
for (const ExtrusionPath &p : it.second) {
|
|
be_clipped.emplace_back(std::move(p.polyline));
|
|
}
|
|
|
|
BoundingBox extrusion_bboxs = get_extents(be_clipped);
|
|
|
|
if (detect_steep_overhang(perimeter_generator.config, pg_extrusion.is_contour, extrusion_bboxs, it.first, be_clipped, perimeter_generator.lower_slices,
|
|
steep_overhang_contour, steep_overhang_hole)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (perimeter_generator.config->overhang_speed_classic && perimeter_generator.config->enable_overhang_speed && perimeter_generator.config->fuzzy_skin == FuzzySkinType::None) {
|
|
|
|
Flow flow = is_external ? perimeter_generator.ext_perimeter_flow : perimeter_generator.perimeter_flow;
|
|
std::map<double, std::vector<Polygons>> clipper_serise;
|
|
|
|
std::map<double,ExtrusionPaths> recognization_paths;
|
|
for (const ExtrusionPath &path : temp_paths) {
|
|
if (recognization_paths.count(path.width))
|
|
recognization_paths[path.width].emplace_back(std::move(path));
|
|
else
|
|
recognization_paths.insert(std::pair<double, ExtrusionPaths>(path.width, {std::move(path)}));
|
|
}
|
|
|
|
for (const auto &it : recognization_paths) {
|
|
Polylines be_clipped;
|
|
|
|
for (const ExtrusionPath &p : it.second) {
|
|
be_clipped.emplace_back(std::move(p.polyline));
|
|
}
|
|
|
|
BoundingBox extrusion_bboxs = get_extents(be_clipped);
|
|
//ExPolygons lower_slcier_chopped = *perimeter_generator.lower_slices;
|
|
Polygons lower_slcier_chopped=ClipperUtils::clip_clipper_polygons_with_subject_bbox(*perimeter_generator.lower_slices, extrusion_bboxs, true);
|
|
|
|
double start_pos = -it.first * 0.5;
|
|
double end_pos = 0.5 * it.first;
|
|
|
|
Polylines remain_polylines;
|
|
std::vector<Polygons> degree_polygons;
|
|
for (int j = 0; j < overhang_sampling_number; j++) {
|
|
Polygons limiton_polygons = offset(lower_slcier_chopped, float(scale_(start_pos + (j + 0.5) * (end_pos - start_pos) / (overhang_sampling_number - 1))));
|
|
|
|
Polylines inside_polines = j == 0 ? intersection_pl(be_clipped, limiton_polygons) : intersection_pl(remain_polylines, limiton_polygons);
|
|
|
|
remain_polylines = j == 0 ? diff_pl(be_clipped, limiton_polygons) : diff_pl(remain_polylines, limiton_polygons);
|
|
|
|
extrusion_paths_append(paths, std::move(inside_polines), j, int(0), role, it.second.front().mm3_per_mm, it.second.front().width, it.second.front().height);
|
|
|
|
if (remain_polylines.size() == 0) break;
|
|
}
|
|
|
|
if (remain_polylines.size() != 0) {
|
|
extrusion_paths_append(paths, std::move(remain_polylines), overhang_sampling_number - 1, int(0), erOverhangPerimeter, it.second.front().mm3_per_mm, it.second.front().width, it.second.front().height);
|
|
}
|
|
}
|
|
|
|
} else {
|
|
paths = std::move(temp_paths);
|
|
|
|
}
|
|
// get overhang paths by checking what parts of this loop fall
|
|
// outside the grown lower slices (thus where the distance between
|
|
// the loop centerline and original lower slices is >= half nozzle diameter
|
|
extrusion_paths_append(paths, clip_extrusion(extrusion_path, lower_slices_paths, ClipperLib_Z::ctDifference), erOverhangPerimeter,
|
|
perimeter_generator.overhang_flow);
|
|
|
|
// Reapply the nearest point search for starting point.
|
|
// We allow polyline reversal because Clipper may have randomly reversed polylines during clipping.
|
|
// Arachne sometimes creates extrusion with zero-length (just two same endpoints);
|
|
if (!paths.empty()) {
|
|
Point start_point = paths.front().first_point();
|
|
if (!extrusion->is_closed) {
|
|
// Especially for open extrusion, we need to select a starting point that is at the start
|
|
// or the end of the extrusions to make one continuous line. Also, we prefer a non-overhang
|
|
// starting point.
|
|
struct PointInfo
|
|
{
|
|
size_t occurrence = 0;
|
|
bool is_overhang = false;
|
|
};
|
|
std::unordered_map<Point, PointInfo, PointHash> point_occurrence;
|
|
for (const ExtrusionPath& path : paths) {
|
|
++point_occurrence[path.polyline.first_point()].occurrence;
|
|
++point_occurrence[path.polyline.last_point()].occurrence;
|
|
if (path.role() == erOverhangPerimeter) {
|
|
point_occurrence[path.polyline.first_point()].is_overhang = true;
|
|
point_occurrence[path.polyline.last_point()].is_overhang = true;
|
|
}
|
|
}
|
|
|
|
// Prefer non-overhang point as a starting point.
|
|
for (const std::pair<Point, PointInfo> pt : point_occurrence)
|
|
if (pt.second.occurrence == 1) {
|
|
start_point = pt.first;
|
|
if (!pt.second.is_overhang) {
|
|
start_point = pt.first;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
chain_and_reorder_extrusion_paths(paths, &start_point);
|
|
|
|
if (perimeter_generator.config->enable_overhang_speed && perimeter_generator.config->fuzzy_skin == FuzzySkinType::None) {
|
|
// BBS: filter the speed
|
|
smooth_overhang_level(paths);
|
|
}
|
|
|
|
}
|
|
}
|
|
else {
|
|
extrusion_paths_append(paths, *extrusion, role, is_external ? perimeter_generator.ext_perimeter_flow : perimeter_generator.perimeter_flow);
|
|
}
|
|
|
|
// Append paths to collection.
|
|
if (!paths.empty()) {
|
|
if (extrusion->is_closed) {
|
|
ExtrusionLoop extrusion_loop(std::move(paths), pg_extrusion.is_contour ? elrDefault : elrHole);
|
|
extrusion_loop.make_counter_clockwise();
|
|
// TODO: it seems in practice that ExtrusionLoops occasionally have significantly disconnected paths,
|
|
// triggering the asserts below. Is this a problem?
|
|
for (auto it = std::next(extrusion_loop.paths.begin()); it != extrusion_loop.paths.end(); ++it) {
|
|
assert(it->polyline.points.size() >= 2);
|
|
assert(std::prev(it)->polyline.last_point() == it->polyline.first_point());
|
|
}
|
|
assert(extrusion_loop.paths.front().first_point() == extrusion_loop.paths.back().last_point());
|
|
|
|
extrusion_coll.append(std::move(extrusion_loop));
|
|
}
|
|
else {
|
|
// Because we are processing one ExtrusionLine all ExtrusionPaths should form one connected path.
|
|
// But there is possibility that due to numerical issue there is poss
|
|
// TODO: do we need some tolerance for disconnected paths below?
|
|
for (auto it = std::next(paths.begin()); it != paths.end(); ++it) {
|
|
assert(it->polyline.points.size() >= 2);
|
|
assert(std::prev(it)->polyline.last_point() == it->polyline.first_point());
|
|
}
|
|
ExtrusionMultiPath multi_path;
|
|
multi_path.paths.emplace_back(std::move(paths.front()));
|
|
|
|
for (auto it_path = std::next(paths.begin()); it_path != paths.end(); ++it_path) {
|
|
if (multi_path.paths.back().last_point() != it_path->first_point()) {
|
|
extrusion_coll.append(ExtrusionMultiPath(std::move(multi_path)));
|
|
multi_path = ExtrusionMultiPath();
|
|
}
|
|
multi_path.paths.emplace_back(std::move(*it_path));
|
|
}
|
|
|
|
extrusion_coll.append(ExtrusionMultiPath(std::move(multi_path)));
|
|
}
|
|
}
|
|
}
|
|
|
|
return extrusion_coll;
|
|
}
|
|
|
|
void PerimeterGenerator::split_top_surfaces(const ExPolygons &orig_polygons, ExPolygons &top_fills,
|
|
ExPolygons &non_top_polygons, ExPolygons &fill_clip) const {
|
|
// other perimeters
|
|
coord_t perimeter_width = this->perimeter_flow.scaled_width();
|
|
coord_t perimeter_spacing = this->perimeter_flow.scaled_spacing();
|
|
|
|
// external perimeters
|
|
coord_t ext_perimeter_width = this->ext_perimeter_flow.scaled_width();
|
|
coord_t ext_perimeter_spacing = this->ext_perimeter_flow.scaled_spacing();
|
|
|
|
bool has_gap_fill = this->config->gap_infill_speed.value > 0;
|
|
|
|
// split the polygons with top/not_top
|
|
// get the offset from solid surface anchor
|
|
coord_t offset_top_surface =
|
|
scale_(1.5 * (config->wall_loops.value == 0
|
|
? 0.
|
|
: unscaled(double(ext_perimeter_width +
|
|
perimeter_spacing * int(int(config->wall_loops.value) - int(1))))));
|
|
// if possible, try to not push the extra perimeters inside the sparse infill
|
|
if (offset_top_surface >
|
|
0.9 * (config->wall_loops.value <= 1 ? 0. : (perimeter_spacing * (config->wall_loops.value - 1))))
|
|
offset_top_surface -=
|
|
coord_t(0.9 * (config->wall_loops.value <= 1 ? 0. : (perimeter_spacing * (config->wall_loops.value - 1))));
|
|
else
|
|
offset_top_surface = 0;
|
|
// don't takes into account too thin areas
|
|
// get boungding box of last
|
|
BoundingBox last_box = get_extents(orig_polygons);
|
|
last_box.offset(SCALED_EPSILON);
|
|
|
|
// skip if the exposed area is smaller than "min_width_top_surface"
|
|
double min_width_top_surface = std::max(double(ext_perimeter_spacing / 2. + 10), scale_(config->min_width_top_surface.get_abs_value(unscale_(perimeter_width))));
|
|
|
|
// get the Polygons upper the polygon this layer
|
|
Polygons upper_polygons_series_clipped = ClipperUtils::clip_clipper_polygons_with_subject_bbox(*this->upper_slices, last_box);
|
|
upper_polygons_series_clipped = offset(upper_polygons_series_clipped, min_width_top_surface);
|
|
|
|
// set the clip to a virtual "second perimeter"
|
|
fill_clip = offset_ex(orig_polygons, -double(ext_perimeter_spacing));
|
|
// get the real top surface
|
|
ExPolygons grown_lower_slices;
|
|
ExPolygons bridge_checker;
|
|
auto nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->wall_filament - 1);
|
|
// Check whether surface be bridge or not
|
|
if (this->lower_slices != NULL) {
|
|
// BBS: get the Polygons below the polygon this layer
|
|
Polygons lower_polygons_series_clipped =
|
|
ClipperUtils::clip_clipper_polygons_with_subject_bbox(*this->lower_slices, last_box);
|
|
double bridge_offset = std::max(double(ext_perimeter_spacing), (double(perimeter_width)));
|
|
// SoftFever: improve bridging
|
|
const float bridge_margin =
|
|
std::min(float(scale_(BRIDGE_INFILL_MARGIN)), float(scale_(nozzle_diameter * BRIDGE_INFILL_MARGIN / 0.4)));
|
|
bridge_checker = offset_ex(diff_ex(orig_polygons, lower_polygons_series_clipped, ApplySafetyOffset::Yes),
|
|
1.5 * bridge_offset + bridge_margin + perimeter_spacing / 2.);
|
|
}
|
|
ExPolygons delete_bridge = diff_ex(orig_polygons, bridge_checker, ApplySafetyOffset::Yes);
|
|
|
|
ExPolygons top_polygons = diff_ex(delete_bridge, upper_polygons_series_clipped, ApplySafetyOffset::Yes);
|
|
// get the not-top surface, from the "real top" but enlarged by external_infill_margin (and the
|
|
// min_width_top_surface we removed a bit before)
|
|
ExPolygons temp_gap = diff_ex(top_polygons, fill_clip);
|
|
ExPolygons inner_polygons =
|
|
diff_ex(orig_polygons,
|
|
offset_ex(top_polygons, offset_top_surface + min_width_top_surface - double(ext_perimeter_spacing / 2.)),
|
|
ApplySafetyOffset::Yes);
|
|
// get the enlarged top surface, by using inner_polygons instead of upper_slices, and clip it for it to be exactly
|
|
// the polygons to fill.
|
|
top_polygons = diff_ex(fill_clip, inner_polygons, ApplySafetyOffset::Yes);
|
|
// increase by half peri the inner space to fill the frontier between last and stored.
|
|
top_fills = union_ex(top_fills, top_polygons);
|
|
//set the clip to the external wall but go back inside by infill_extrusion_width/2 to be sure the extrusion won't go outside even with a 100% overlap.
|
|
double infill_spacing_unscaled = this->config->sparse_infill_line_width.get_abs_value(nozzle_diameter);
|
|
if (infill_spacing_unscaled == 0) infill_spacing_unscaled = Flow::auto_extrusion_width(frInfill, nozzle_diameter);
|
|
fill_clip = offset_ex(orig_polygons, double(ext_perimeter_spacing / 2.) - scale_(infill_spacing_unscaled / 2.));
|
|
// ExPolygons oldLast = last;
|
|
|
|
non_top_polygons = intersection_ex(inner_polygons, orig_polygons);
|
|
if (has_gap_fill)
|
|
non_top_polygons = union_ex(non_top_polygons, temp_gap);
|
|
//{
|
|
// std::stringstream stri;
|
|
// stri << this->layer_id << "_1_"<< i <<"_only_one_peri"<< ".svg";
|
|
// SVG svg(stri.str());
|
|
// svg.draw(to_polylines(top_fills), "green");
|
|
// svg.draw(to_polylines(inner_polygons), "yellow");
|
|
// svg.draw(to_polylines(top_polygons), "cyan");
|
|
// svg.draw(to_polylines(oldLast), "orange");
|
|
// svg.draw(to_polylines(last), "red");
|
|
// svg.Close();
|
|
//}
|
|
}
|
|
|
|
// Port "extra perimeters on overhangs" from PrusaSlicer. Original author: PavelMikus pavel.mikus.mail@seznam.cz
|
|
// Based on: https://github.com/prusa3d/PrusaSlicer/blob/c05542590d7c2d73eb69bbf7a82a482a075815c1/src/libslic3r/PerimeterGenerator.cpp#L667-L1071
|
|
// find out if paths touch - at least one point of one path is within limit distance of second path
|
|
bool paths_touch(const ExtrusionPath &path_one, const ExtrusionPath &path_two, double limit_distance)
|
|
{
|
|
AABBTreeLines::LinesDistancer<Line> lines_two{path_two.as_polyline().lines()};
|
|
for (size_t pt_idx = 0; pt_idx < path_one.polyline.size(); pt_idx++) {
|
|
if (lines_two.distance_from_lines<false>(path_one.polyline.points[pt_idx]) < limit_distance) { return true; }
|
|
}
|
|
AABBTreeLines::LinesDistancer<Line> lines_one{path_one.as_polyline().lines()};
|
|
for (size_t pt_idx = 0; pt_idx < path_two.polyline.size(); pt_idx++) {
|
|
if (lines_one.distance_from_lines<false>(path_two.polyline.points[pt_idx]) < limit_distance) { return true; }
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Polylines reconnect_polylines(const Polylines &polylines, double limit_distance)
|
|
{
|
|
if (polylines.empty())
|
|
return polylines;
|
|
|
|
std::unordered_map<size_t, Polyline> connected;
|
|
connected.reserve(polylines.size());
|
|
for (size_t i = 0; i < polylines.size(); i++) {
|
|
if (!polylines[i].empty()) {
|
|
connected.emplace(i, polylines[i]);
|
|
}
|
|
}
|
|
|
|
for (size_t a = 0; a < polylines.size(); a++) {
|
|
if (connected.find(a) == connected.end()) {
|
|
continue;
|
|
}
|
|
Polyline &base = connected.at(a);
|
|
for (size_t b = a + 1; b < polylines.size(); b++) {
|
|
if (connected.find(b) == connected.end()) {
|
|
continue;
|
|
}
|
|
Polyline &next = connected.at(b);
|
|
if ((base.last_point() - next.first_point()).cast<double>().squaredNorm() < limit_distance * limit_distance) {
|
|
base.append(std::move(next));
|
|
connected.erase(b);
|
|
} else if ((base.last_point() - next.last_point()).cast<double>().squaredNorm() < limit_distance * limit_distance) {
|
|
base.points.insert(base.points.end(), next.points.rbegin(), next.points.rend());
|
|
connected.erase(b);
|
|
} else if ((base.first_point() - next.last_point()).cast<double>().squaredNorm() < limit_distance * limit_distance) {
|
|
next.append(std::move(base));
|
|
base = std::move(next);
|
|
base.reverse();
|
|
connected.erase(b);
|
|
} else if ((base.first_point() - next.first_point()).cast<double>().squaredNorm() < limit_distance * limit_distance) {
|
|
base.reverse();
|
|
base.append(std::move(next));
|
|
base.reverse();
|
|
connected.erase(b);
|
|
}
|
|
}
|
|
}
|
|
|
|
Polylines result;
|
|
for (auto &ext : connected) {
|
|
result.push_back(std::move(ext.second));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
ExtrusionPaths sort_extra_perimeters(const ExtrusionPaths& extra_perims, int index_of_first_unanchored, double extrusion_spacing)
|
|
{
|
|
if (extra_perims.empty()) return {};
|
|
|
|
std::vector<std::unordered_set<size_t>> dependencies(extra_perims.size());
|
|
for (size_t path_idx = 0; path_idx < extra_perims.size(); path_idx++) {
|
|
for (size_t prev_path_idx = 0; prev_path_idx < path_idx; prev_path_idx++) {
|
|
if (paths_touch(extra_perims[path_idx], extra_perims[prev_path_idx], extrusion_spacing * 1.5f)) {
|
|
dependencies[path_idx].insert(prev_path_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<bool> processed(extra_perims.size(), false);
|
|
for (int path_idx = 0; path_idx < index_of_first_unanchored; path_idx++) {
|
|
processed[path_idx] = true;
|
|
}
|
|
|
|
for (size_t i = index_of_first_unanchored; i < extra_perims.size(); i++) {
|
|
bool change = false;
|
|
for (size_t path_idx = index_of_first_unanchored; path_idx < extra_perims.size(); path_idx++) {
|
|
if (processed[path_idx])
|
|
continue;
|
|
auto processed_dep = std::find_if(dependencies[path_idx].begin(), dependencies[path_idx].end(),
|
|
[&](size_t dep) { return processed[dep]; });
|
|
if (processed_dep != dependencies[path_idx].end()) {
|
|
for (auto it = dependencies[path_idx].begin(); it != dependencies[path_idx].end();) {
|
|
if (!processed[*it]) {
|
|
dependencies[*it].insert(path_idx);
|
|
dependencies[path_idx].erase(it++);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
processed[path_idx] = true;
|
|
change = true;
|
|
}
|
|
}
|
|
if (!change) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
Point current_point = extra_perims.begin()->first_point();
|
|
|
|
ExtrusionPaths sorted_paths{};
|
|
size_t null_idx = size_t(-1);
|
|
size_t next_idx = null_idx;
|
|
bool reverse = false;
|
|
while (true) {
|
|
if (next_idx == null_idx) { // find next pidx to print
|
|
double dist = std::numeric_limits<double>::max();
|
|
for (size_t path_idx = 0; path_idx < extra_perims.size(); path_idx++) {
|
|
if (!dependencies[path_idx].empty())
|
|
continue;
|
|
const auto &path = extra_perims[path_idx];
|
|
double dist_a = (path.first_point() - current_point).cast<double>().squaredNorm();
|
|
if (dist_a < dist) {
|
|
dist = dist_a;
|
|
next_idx = path_idx;
|
|
reverse = false;
|
|
}
|
|
double dist_b = (path.last_point() - current_point).cast<double>().squaredNorm();
|
|
if (dist_b < dist) {
|
|
dist = dist_b;
|
|
next_idx = path_idx;
|
|
reverse = true;
|
|
}
|
|
}
|
|
if (next_idx == null_idx) {
|
|
break;
|
|
}
|
|
} else {
|
|
// we have valid next_idx, add it to the sorted paths, update dependencies, update current point and potentialy set new next_idx
|
|
ExtrusionPath path = extra_perims[next_idx];
|
|
if (reverse) {
|
|
path.reverse();
|
|
}
|
|
sorted_paths.push_back(path);
|
|
assert(dependencies[next_idx].empty());
|
|
dependencies[next_idx].insert(null_idx);
|
|
current_point = sorted_paths.back().last_point();
|
|
for (size_t path_idx = 0; path_idx < extra_perims.size(); path_idx++) {
|
|
dependencies[path_idx].erase(next_idx);
|
|
}
|
|
double dist = std::numeric_limits<double>::max();
|
|
next_idx = null_idx;
|
|
|
|
for (size_t path_idx = next_idx + 1; path_idx < extra_perims.size(); path_idx++) {
|
|
if (!dependencies[path_idx].empty()) {
|
|
continue;
|
|
}
|
|
const ExtrusionPath &next_path = extra_perims[path_idx];
|
|
double dist_a = (next_path.first_point() - current_point).cast<double>().squaredNorm();
|
|
if (dist_a < dist) {
|
|
dist = dist_a;
|
|
next_idx = path_idx;
|
|
reverse = false;
|
|
}
|
|
double dist_b = (next_path.last_point() - current_point).cast<double>().squaredNorm();
|
|
if (dist_b < dist) {
|
|
dist = dist_b;
|
|
next_idx = path_idx;
|
|
reverse = true;
|
|
}
|
|
}
|
|
if (dist > scaled(5.0)) {
|
|
next_idx = null_idx;
|
|
}
|
|
}
|
|
}
|
|
|
|
ExtrusionPaths reconnected;
|
|
reconnected.reserve(sorted_paths.size());
|
|
for (const ExtrusionPath &path : sorted_paths) {
|
|
if (!reconnected.empty() && (reconnected.back().last_point() - path.first_point()).cast<double>().squaredNorm() <
|
|
extrusion_spacing * extrusion_spacing * 4.0) {
|
|
reconnected.back().polyline.points.insert(reconnected.back().polyline.points.end(), path.polyline.points.begin(),
|
|
path.polyline.points.end());
|
|
} else {
|
|
reconnected.push_back(path);
|
|
}
|
|
}
|
|
|
|
ExtrusionPaths filtered;
|
|
filtered.reserve(reconnected.size());
|
|
for (ExtrusionPath &p : reconnected) {
|
|
if (p.length() > 3 * extrusion_spacing) {
|
|
filtered.push_back(p);
|
|
}
|
|
}
|
|
|
|
return filtered;
|
|
}
|
|
|
|
#define EXTRA_PERIMETER_OFFSET_PARAMETERS ClipperLib::jtSquare, 0.
|
|
// #define EXTRA_PERIM_DEBUG_FILES
|
|
// Function will generate extra perimeters clipped over nonbridgeable areas of the provided surface and returns both the new perimeters and
|
|
// Polygons filled by those clipped perimeters
|
|
std::tuple<std::vector<ExtrusionPaths>, Polygons> generate_extra_perimeters_over_overhangs(ExPolygons infill_area,
|
|
const Polygons &lower_slices_polygons,
|
|
int perimeter_count,
|
|
const Flow &overhang_flow,
|
|
double scaled_resolution,
|
|
const PrintObjectConfig &object_config,
|
|
const PrintConfig &print_config)
|
|
{
|
|
coord_t anchors_size = std::min(coord_t(scale_(EXTERNAL_INFILL_MARGIN)), overhang_flow.scaled_spacing() * (perimeter_count + 1));
|
|
|
|
BoundingBox infill_area_bb = get_extents(infill_area).inflated(SCALED_EPSILON);
|
|
Polygons optimized_lower_slices = ClipperUtils::clip_clipper_polygons_with_subject_bbox(lower_slices_polygons, infill_area_bb);
|
|
Polygons overhangs = diff(infill_area, optimized_lower_slices);
|
|
|
|
if (overhangs.empty()) { return {}; }
|
|
|
|
AABBTreeLines::LinesDistancer<Line> lower_layer_aabb_tree{to_lines(optimized_lower_slices)};
|
|
Polygons anchors = intersection(infill_area, optimized_lower_slices);
|
|
Polygons inset_anchors = diff(anchors,
|
|
expand(overhangs, anchors_size + 0.1 * overhang_flow.scaled_width(), EXTRA_PERIMETER_OFFSET_PARAMETERS));
|
|
Polygons inset_overhang_area = diff(infill_area, inset_anchors);
|
|
|
|
#ifdef EXTRA_PERIM_DEBUG_FILES
|
|
{
|
|
BoundingBox bbox = get_extents(inset_overhang_area);
|
|
bbox.offset(scale_(1.));
|
|
::Slic3r::SVG svg(debug_out_path("inset_overhang_area").c_str(), bbox);
|
|
for (const Line &line : to_lines(inset_anchors)) svg.draw(line, "purple", scale_(0.25));
|
|
for (const Line &line : to_lines(inset_overhang_area)) svg.draw(line, "red", scale_(0.15));
|
|
svg.Close();
|
|
}
|
|
#endif
|
|
|
|
Polygons inset_overhang_area_left_unfilled;
|
|
|
|
std::vector<ExtrusionPaths> extra_perims; // overhang region -> extrusion paths
|
|
for (const ExPolygon &overhang : union_ex(to_expolygons(inset_overhang_area))) {
|
|
Polygons overhang_to_cover = to_polygons(overhang);
|
|
Polygons expanded_overhang_to_cover = expand(overhang_to_cover, 1.1 * overhang_flow.scaled_spacing());
|
|
Polygons shrinked_overhang_to_cover = shrink(overhang_to_cover, 0.1 * overhang_flow.scaled_spacing());
|
|
|
|
Polygons real_overhang = intersection(overhang_to_cover, overhangs);
|
|
if (real_overhang.empty()) {
|
|
inset_overhang_area_left_unfilled.insert(inset_overhang_area_left_unfilled.end(), overhang_to_cover.begin(),
|
|
overhang_to_cover.end());
|
|
continue;
|
|
}
|
|
ExtrusionPaths &overhang_region = extra_perims.emplace_back();
|
|
|
|
Polygons anchoring = intersection(expanded_overhang_to_cover, inset_anchors);
|
|
Polygons perimeter_polygon = offset(union_(expand(overhang_to_cover, 0.1 * overhang_flow.scaled_spacing()), anchoring),
|
|
-overhang_flow.scaled_spacing() * 0.6);
|
|
|
|
Polygon anchoring_convex_hull = Geometry::convex_hull(anchoring);
|
|
double unbridgeable_area = area(diff(real_overhang, {anchoring_convex_hull}));
|
|
|
|
auto [dir, unsupp_dist] = detect_bridging_direction(real_overhang, anchors);
|
|
|
|
#ifdef EXTRA_PERIM_DEBUG_FILES
|
|
{
|
|
BoundingBox bbox = get_extents(anchoring_convex_hull);
|
|
bbox.offset(scale_(1.));
|
|
::Slic3r::SVG svg(debug_out_path("bridge_check").c_str(), bbox);
|
|
for (const Line &line : to_lines(perimeter_polygon)) svg.draw(line, "purple", scale_(0.25));
|
|
for (const Line &line : to_lines(real_overhang)) svg.draw(line, "red", scale_(0.20));
|
|
for (const Line &line : to_lines(anchoring_convex_hull)) svg.draw(line, "green", scale_(0.15));
|
|
for (const Line &line : to_lines(anchoring)) svg.draw(line, "yellow", scale_(0.10));
|
|
for (const Line &line : to_lines(diff_ex(perimeter_polygon, {anchoring_convex_hull}))) svg.draw(line, "black", scale_(0.10));
|
|
for (const Line &line : to_lines(diff_pl(to_polylines(diff(real_overhang, anchors)), expand(anchors, float(SCALED_EPSILON)))))
|
|
svg.draw(line, "blue", scale_(0.30));
|
|
svg.Close();
|
|
}
|
|
#endif
|
|
|
|
if (unbridgeable_area < 0.2 * area(real_overhang) && unsupp_dist < total_length(real_overhang) * 0.2) {
|
|
inset_overhang_area_left_unfilled.insert(inset_overhang_area_left_unfilled.end(),overhang_to_cover.begin(),overhang_to_cover.end());
|
|
perimeter_polygon.clear();
|
|
} else {
|
|
// fill the overhang with perimeters
|
|
int continuation_loops = 2;
|
|
while (continuation_loops >= 0) {
|
|
auto prev = perimeter_polygon;
|
|
// prepare next perimeter lines
|
|
Polylines perimeter = intersection_pl(to_polylines(perimeter_polygon), shrinked_overhang_to_cover);
|
|
|
|
// do not add the perimeter to result yet, first check if perimeter_polygon is not empty after shrinking - this would mean
|
|
// that the polygon was possibly too small for full perimeter loop and in that case try gap fill first
|
|
perimeter_polygon = union_(perimeter_polygon, anchoring);
|
|
perimeter_polygon = intersection(offset(perimeter_polygon, -overhang_flow.scaled_spacing()), expanded_overhang_to_cover);
|
|
|
|
if (perimeter_polygon.empty()) { // fill possible gaps of single extrusion width
|
|
Polygons shrinked = intersection(offset(prev, -0.3 * overhang_flow.scaled_spacing()), expanded_overhang_to_cover);
|
|
if (!shrinked.empty()) {
|
|
extrusion_paths_append(overhang_region, reconnect_polylines(perimeter, overhang_flow.scaled_spacing()),
|
|
ExtrusionRole::erOverhangPerimeter, overhang_flow.mm3_per_mm(), overhang_flow.width(),
|
|
overhang_flow.height());
|
|
}
|
|
|
|
Polylines fills;
|
|
ExPolygons gap = shrinked.empty() ? offset_ex(prev, overhang_flow.scaled_spacing() * 0.5) : to_expolygons(shrinked);
|
|
|
|
for (const ExPolygon &ep : gap) {
|
|
ep.medial_axis(0.75 * overhang_flow.scaled_width(), 3.0 * overhang_flow.scaled_spacing(), &fills);
|
|
}
|
|
if (!fills.empty()) {
|
|
fills = intersection_pl(fills, shrinked_overhang_to_cover);
|
|
extrusion_paths_append(overhang_region, reconnect_polylines(fills, overhang_flow.scaled_spacing()),
|
|
ExtrusionRole::erOverhangPerimeter, overhang_flow.mm3_per_mm(), overhang_flow.width(),
|
|
overhang_flow.height());
|
|
}
|
|
break;
|
|
} else {
|
|
extrusion_paths_append(overhang_region, reconnect_polylines(perimeter, overhang_flow.scaled_spacing()),
|
|
ExtrusionRole::erOverhangPerimeter, overhang_flow.mm3_per_mm(), overhang_flow.width(),
|
|
overhang_flow.height());
|
|
}
|
|
|
|
if (intersection(perimeter_polygon, real_overhang).empty()) { continuation_loops--; }
|
|
|
|
if (prev == perimeter_polygon) {
|
|
#ifdef EXTRA_PERIM_DEBUG_FILES
|
|
BoundingBox bbox = get_extents(perimeter_polygon);
|
|
bbox.offset(scale_(5.));
|
|
::Slic3r::SVG svg(debug_out_path("perimeter_polygon").c_str(), bbox);
|
|
for (const Line &line : to_lines(perimeter_polygon)) svg.draw(line, "blue", scale_(0.25));
|
|
for (const Line &line : to_lines(overhang_to_cover)) svg.draw(line, "red", scale_(0.20));
|
|
for (const Line &line : to_lines(real_overhang)) svg.draw(line, "green", scale_(0.15));
|
|
for (const Line &line : to_lines(anchoring)) svg.draw(line, "yellow", scale_(0.10));
|
|
svg.Close();
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
perimeter_polygon = expand(perimeter_polygon, 0.5 * overhang_flow.scaled_spacing());
|
|
perimeter_polygon = union_(perimeter_polygon, anchoring);
|
|
inset_overhang_area_left_unfilled.insert(inset_overhang_area_left_unfilled.end(), perimeter_polygon.begin(),perimeter_polygon.end());
|
|
|
|
#ifdef EXTRA_PERIM_DEBUG_FILES
|
|
BoundingBox bbox = get_extents(inset_overhang_area);
|
|
bbox.offset(scale_(2.));
|
|
::Slic3r::SVG svg(debug_out_path("pre_final").c_str(), bbox);
|
|
for (const Line &line : to_lines(perimeter_polygon)) svg.draw(line, "blue", scale_(0.05));
|
|
for (const Line &line : to_lines(anchoring)) svg.draw(line, "green", scale_(0.05));
|
|
for (const Line &line : to_lines(overhang_to_cover)) svg.draw(line, "yellow", scale_(0.05));
|
|
for (const Line &line : to_lines(inset_overhang_area_left_unfilled)) svg.draw(line, "red", scale_(0.05));
|
|
svg.Close();
|
|
#endif
|
|
overhang_region.erase(std::remove_if(overhang_region.begin(), overhang_region.end(),
|
|
[](const ExtrusionPath &p) { return p.empty(); }),
|
|
overhang_region.end());
|
|
|
|
if (!overhang_region.empty()) {
|
|
// there is a special case, where the first (or last) generated overhang perimeter eats all anchor space.
|
|
// When this happens, the first overhang perimeter is also a closed loop, and needs special check
|
|
// instead of the following simple is_anchored lambda, which checks only the first and last point (not very useful on closed
|
|
// polyline)
|
|
bool first_overhang_is_closed_and_anchored =
|
|
(overhang_region.front().first_point() == overhang_region.front().last_point() &&
|
|
!intersection_pl(overhang_region.front().polyline, optimized_lower_slices).empty());
|
|
|
|
auto is_anchored = [&lower_layer_aabb_tree](const ExtrusionPath &path) {
|
|
return lower_layer_aabb_tree.distance_from_lines<true>(path.first_point()) <= 0 ||
|
|
lower_layer_aabb_tree.distance_from_lines<true>(path.last_point()) <= 0;
|
|
};
|
|
if (!first_overhang_is_closed_and_anchored) {
|
|
std::reverse(overhang_region.begin(), overhang_region.end());
|
|
} else {
|
|
size_t min_dist_idx = 0;
|
|
double min_dist = std::numeric_limits<double>::max();
|
|
for (size_t i = 0; i < overhang_region.front().polyline.size(); i++) {
|
|
Point p = overhang_region.front().polyline[i];
|
|
if (double d = lower_layer_aabb_tree.distance_from_lines<true>(p) < min_dist) {
|
|
min_dist = d;
|
|
min_dist_idx = i;
|
|
}
|
|
}
|
|
std::rotate(overhang_region.front().polyline.begin(), overhang_region.front().polyline.begin() + min_dist_idx,
|
|
overhang_region.front().polyline.end());
|
|
}
|
|
auto first_unanchored = std::stable_partition(overhang_region.begin(), overhang_region.end(), is_anchored);
|
|
int index_of_first_unanchored = first_unanchored - overhang_region.begin();
|
|
overhang_region = sort_extra_perimeters(overhang_region, index_of_first_unanchored, overhang_flow.scaled_spacing());
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef EXTRA_PERIM_DEBUG_FILES
|
|
BoundingBox bbox = get_extents(inset_overhang_area);
|
|
bbox.offset(scale_(2.));
|
|
::Slic3r::SVG svg(debug_out_path(("final" + std::to_string(rand())).c_str()).c_str(), bbox);
|
|
for (const Line &line : to_lines(inset_overhang_area_left_unfilled)) svg.draw(line, "blue", scale_(0.05));
|
|
for (const Line &line : to_lines(inset_overhang_area)) svg.draw(line, "green", scale_(0.05));
|
|
for (const Line &line : to_lines(diff(inset_overhang_area, inset_overhang_area_left_unfilled))) svg.draw(line, "yellow", scale_(0.05));
|
|
svg.Close();
|
|
#endif
|
|
|
|
inset_overhang_area_left_unfilled = union_(inset_overhang_area_left_unfilled);
|
|
|
|
return {extra_perims, diff(inset_overhang_area, inset_overhang_area_left_unfilled)};
|
|
}
|
|
|
|
void PerimeterGenerator::apply_extra_perimeters(ExPolygons &infill_area)
|
|
{
|
|
if (!m_spiral_vase && this->lower_slices != nullptr && this->config->detect_overhang_wall && this->config->extra_perimeters_on_overhangs &&
|
|
this->config->wall_loops > 0 && this->layer_id > this->object_config->raft_layers) {
|
|
// Generate extra perimeters on overhang areas, and cut them to these parts only, to save print time and material
|
|
auto [extra_perimeters, filled_area] = generate_extra_perimeters_over_overhangs(infill_area, this->lower_slices_polygons(),
|
|
this->config->wall_loops, this->overhang_flow,
|
|
this->m_scaled_resolution, *this->object_config,
|
|
*this->print_config);
|
|
if (!extra_perimeters.empty()) {
|
|
ExtrusionEntityCollection *this_islands_perimeters = static_cast<ExtrusionEntityCollection *>(this->loops->entities.back());
|
|
ExtrusionEntityCollection new_perimeters{};
|
|
new_perimeters.no_sort = this_islands_perimeters->no_sort;
|
|
for (const ExtrusionPaths &paths : extra_perimeters) {
|
|
new_perimeters.append(paths);
|
|
}
|
|
new_perimeters.append(this_islands_perimeters->entities);
|
|
this_islands_perimeters->swap(new_perimeters);
|
|
|
|
SurfaceCollection orig_surfaces = *this->fill_surfaces;
|
|
this->fill_surfaces->clear();
|
|
for (const auto &surface : orig_surfaces.surfaces) {
|
|
auto new_surfaces = diff_ex({surface.expolygon}, filled_area);
|
|
this->fill_surfaces->append(new_surfaces, surface);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reorient loop direction
|
|
static void reorient_perimeters(ExtrusionEntityCollection &entities, bool steep_overhang_contour, bool steep_overhang_hole, bool reverse_internal_only)
|
|
{
|
|
if (steep_overhang_hole || steep_overhang_contour) {
|
|
for (auto entity : entities) {
|
|
if (entity->is_loop()) {
|
|
ExtrusionLoop *eloop = static_cast<ExtrusionLoop *>(entity);
|
|
// Only reverse when needed
|
|
bool need_reverse = ((eloop->loop_role() & elrHole) == elrHole) ? steep_overhang_hole : steep_overhang_contour;
|
|
|
|
bool isExternal = false;
|
|
if(reverse_internal_only){
|
|
for(auto path : eloop->paths){
|
|
if(path.role() == erExternalPerimeter){
|
|
isExternal = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (need_reverse && !isExternal) {
|
|
eloop->make_clockwise();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void PerimeterGenerator::process_classic()
|
|
{
|
|
// other perimeters
|
|
m_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
|
|
coord_t perimeter_width = this->perimeter_flow.scaled_width();
|
|
coord_t perimeter_spacing = this->perimeter_flow.scaled_spacing();
|
|
|
|
// external perimeters
|
|
m_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
|
|
coord_t ext_perimeter_width = this->ext_perimeter_flow.scaled_width();
|
|
|
|
coord_t ext_perimeter_spacing = this->ext_perimeter_flow.scaled_spacing();
|
|
coord_t ext_perimeter_spacing2;
|
|
// Orca: ignore precise_outer_wall if wall_sequence is not InnerOuter
|
|
if(config->precise_outer_wall && this->config->wall_sequence == WallSequence::InnerOuter)
|
|
ext_perimeter_spacing2 = scaled<coord_t>(0.5f * (this->ext_perimeter_flow.width() + this->perimeter_flow.width()));
|
|
else
|
|
ext_perimeter_spacing2 = scaled<coord_t>(0.5f * (this->ext_perimeter_flow.spacing() + this->perimeter_flow.spacing()));
|
|
|
|
// overhang perimeters
|
|
m_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
|
|
|
|
// solid infill
|
|
coord_t solid_infill_spacing = this->solid_infill_flow.scaled_spacing();
|
|
|
|
// prepare grown lower layer slices for overhang detection
|
|
if (this->lower_slices != nullptr && this->config->detect_overhang_wall) {
|
|
// We consider overhang any part where the entire nozzle diameter is not supported by the
|
|
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
|
|
// in the current layer
|
|
double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->wall_filament - 1);
|
|
m_lower_slices_polygons = offset(*this->lower_slices, float(scale_(+nozzle_diameter / 2)));
|
|
}
|
|
|
|
// Calculate the minimum required spacing between two adjacent traces.
|
|
// This should be equal to the nominal flow spacing but we experiment
|
|
// with some tolerance in order to avoid triggering medial axis when
|
|
// some squishing might work. Loops are still spaced by the entire
|
|
// flow spacing; this only applies to collapsing parts.
|
|
// For ext_min_spacing we use the ext_perimeter_spacing calculated for two adjacent
|
|
// external loops (which is the correct way) instead of using ext_perimeter_spacing2
|
|
// which is the spacing between external and internal, which is not correct
|
|
// and would make the collapsing (thus the details resolution) dependent on
|
|
// internal flow which is unrelated.
|
|
coord_t min_spacing = coord_t(perimeter_spacing * (1 - INSET_OVERLAP_TOLERANCE));
|
|
coord_t ext_min_spacing = coord_t(ext_perimeter_spacing * (1 - INSET_OVERLAP_TOLERANCE));
|
|
bool has_gap_fill = this->config->gap_infill_speed.value > 0;
|
|
|
|
// BBS: this flow is for smaller external perimeter for small area
|
|
coord_t ext_min_spacing_smaller = coord_t(ext_perimeter_spacing * (1 - SMALLER_EXT_INSET_OVERLAP_TOLERANCE));
|
|
this->smaller_ext_perimeter_flow = this->ext_perimeter_flow;
|
|
// BBS: to be checked
|
|
this->smaller_ext_perimeter_flow = this->smaller_ext_perimeter_flow.with_width(SCALING_FACTOR *
|
|
(ext_perimeter_width - 0.5 * SMALLER_EXT_INSET_OVERLAP_TOLERANCE * ext_perimeter_spacing));
|
|
m_ext_mm3_per_mm_smaller_width = this->smaller_ext_perimeter_flow.mm3_per_mm();
|
|
|
|
// prepare grown lower layer slices for overhang detection
|
|
m_lower_polygons_series = generate_lower_polygons_series(this->perimeter_flow.width());
|
|
if (ext_perimeter_width == perimeter_width)
|
|
m_external_lower_polygons_series = m_lower_polygons_series;
|
|
else
|
|
m_external_lower_polygons_series = generate_lower_polygons_series(this->ext_perimeter_flow.width());
|
|
m_smaller_external_lower_polygons_series = generate_lower_polygons_series(this->smaller_ext_perimeter_flow.width());
|
|
|
|
// we need to process each island separately because we might have different
|
|
// extra perimeters for each one
|
|
Surfaces all_surfaces = this->slices->surfaces;
|
|
|
|
process_no_bridge(all_surfaces, perimeter_spacing, ext_perimeter_width);
|
|
// BBS: don't simplify too much which influence arc fitting when export gcode if arc_fitting is enabled
|
|
double surface_simplify_resolution = (print_config->enable_arc_fitting && this->config->fuzzy_skin == FuzzySkinType::None) ? 0.2 * m_scaled_resolution : m_scaled_resolution;
|
|
//BBS: reorder the surface to reduce the travel time
|
|
ExPolygons surface_exp;
|
|
for (const Surface &surface : all_surfaces)
|
|
surface_exp.push_back(surface.expolygon);
|
|
std::vector<size_t> surface_order = chain_expolygons(surface_exp);
|
|
for (size_t order_idx = 0; order_idx < surface_order.size(); order_idx++) {
|
|
const Surface &surface = all_surfaces[surface_order[order_idx]];
|
|
// detect how many perimeters must be generated for this island
|
|
int loop_number = this->config->wall_loops + surface.extra_perimeters - 1; // 0-indexed loops
|
|
int sparse_infill_density = this->config->sparse_infill_density.value;
|
|
if (this->config->alternate_extra_wall && this->layer_id % 2 == 1 && !m_spiral_vase && sparse_infill_density > 0) // add alternating extra wall
|
|
loop_number++;
|
|
if (this->layer_id == 0 && this->config->only_one_wall_first_layer)
|
|
loop_number = 0;
|
|
// Set the topmost layer to be one wall
|
|
if (loop_number > 0 && config->only_one_wall_top && this->upper_slices == nullptr)
|
|
loop_number = 0;
|
|
|
|
ExPolygons last = union_ex(surface.expolygon.simplify_p(surface_simplify_resolution));
|
|
ExPolygons gaps;
|
|
ExPolygons top_fills;
|
|
ExPolygons fill_clip;
|
|
if (loop_number >= 0) {
|
|
// In case no perimeters are to be generated, loop_number will equal to -1.
|
|
std::vector<PerimeterGeneratorLoops> contours(loop_number+1); // depth => loops
|
|
std::vector<PerimeterGeneratorLoops> holes(loop_number+1); // depth => loops
|
|
ThickPolylines thin_walls;
|
|
// we loop one time more than needed in order to find gaps after the last perimeter was applied
|
|
for (int i = 0;; ++ i) { // outer loop is 0
|
|
// Calculate next onion shell of perimeters.
|
|
ExPolygons offsets;
|
|
ExPolygons offsets_with_smaller_width;
|
|
if (i == 0) {
|
|
// look for thin walls
|
|
if (this->config->detect_thin_wall) {
|
|
// the minimum thickness of a single loop is:
|
|
// ext_width/2 + ext_spacing/2 + spacing/2 + width/2
|
|
offsets = offset2_ex(last,
|
|
-float(ext_perimeter_width / 2. + ext_min_spacing / 2. - 1),
|
|
+float(ext_min_spacing / 2. - 1));
|
|
// the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
|
|
// (actually, something larger than that still may exist due to mitering or other causes)
|
|
coord_t min_width = coord_t(scale_(this->ext_perimeter_flow.nozzle_diameter() / 3));
|
|
ExPolygons expp = opening_ex(
|
|
// medial axis requires non-overlapping geometry
|
|
diff_ex(last, offset(offsets, float(ext_perimeter_width / 2.) + ClipperSafetyOffset)),
|
|
float(min_width / 2.));
|
|
// the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
|
|
for (ExPolygon &ex : expp)
|
|
ex.medial_axis(min_width, ext_perimeter_width + ext_perimeter_spacing2, &thin_walls);
|
|
} else {
|
|
coord_t ext_perimeter_smaller_width = this->smaller_ext_perimeter_flow.scaled_width();
|
|
for (const ExPolygon& expolygon : last) {
|
|
// BBS: judge whether it's narrow but not too long island which is hard to place two line
|
|
ExPolygons expolys;
|
|
expolys.push_back(expolygon);
|
|
ExPolygons offset_result = offset2_ex(expolys,
|
|
-float(ext_perimeter_width / 2. + ext_min_spacing_smaller / 2.),
|
|
+float(ext_min_spacing_smaller / 2.));
|
|
if (offset_result.empty() &&
|
|
expolygon.area() < (double)(ext_perimeter_width + ext_min_spacing_smaller) * scale_(narrow_loop_length_threshold)) {
|
|
// BBS: for narrow external loop, use smaller line width
|
|
ExPolygons temp_result = offset_ex(expolygon, -float(ext_perimeter_smaller_width / 2.));
|
|
offsets_with_smaller_width.insert(offsets_with_smaller_width.end(), temp_result.begin(), temp_result.end());
|
|
}
|
|
else {
|
|
//BBS: for not narrow loop, use normal external perimeter line width
|
|
ExPolygons temp_result = offset_ex(expolygon, -float(ext_perimeter_width / 2.));
|
|
offsets.insert(offsets.end(), temp_result.begin(), temp_result.end());
|
|
}
|
|
}
|
|
}
|
|
if (m_spiral_vase && (offsets.size() > 1 || offsets_with_smaller_width.size() > 1)) {
|
|
// Remove all but the largest area polygon.
|
|
keep_largest_contour_only(offsets);
|
|
//BBS
|
|
if (offsets.empty())
|
|
//BBS: only have small width loop, then keep the largest in spiral vase mode
|
|
keep_largest_contour_only(offsets_with_smaller_width);
|
|
else
|
|
//BBS: have large area, clean the small width loop
|
|
offsets_with_smaller_width.clear();
|
|
}
|
|
} else {
|
|
//FIXME Is this offset correct if the line width of the inner perimeters differs
|
|
// from the line width of the infill?
|
|
coord_t distance = (i == 1) ? ext_perimeter_spacing2 : perimeter_spacing;
|
|
//BBS
|
|
//offsets = this->config->thin_walls ?
|
|
// This path will ensure, that the perimeters do not overfill, as in
|
|
// prusa3d/Slic3r GH #32, but with the cost of rounding the perimeters
|
|
// excessively, creating gaps, which then need to be filled in by the not very
|
|
// reliable gap fill algorithm.
|
|
// Also the offset2(perimeter, -x, x) may sometimes lead to a perimeter, which is larger than
|
|
// the original.
|
|
//offset2_ex(last,
|
|
// - float(distance + min_spacing / 2. - 1.),
|
|
// float(min_spacing / 2. - 1.)) :
|
|
// If "detect thin walls" is not enabled, this paths will be entered, which
|
|
// leads to overflows, as in prusa3d/Slic3r GH #32
|
|
//offset_ex(last, - float(distance));
|
|
|
|
//BBS: For internal perimeter, we should "enable" thin wall strategy in which offset2 is used to
|
|
// remove too closed line, so that gap fill can be used for such internal narrow area in following
|
|
// handling.
|
|
offsets = offset2_ex(last,
|
|
-float(distance + min_spacing / 2. - 1.),
|
|
float(min_spacing / 2. - 1.));
|
|
// look for gaps
|
|
if (has_gap_fill)
|
|
// not using safety offset here would "detect" very narrow gaps
|
|
// (but still long enough to escape the area threshold) that gap fill
|
|
// won't be able to fill but we'd still remove from infill area
|
|
append(gaps, diff_ex(
|
|
offset(last, - float(0.5 * distance)),
|
|
offset(offsets, float(0.5 * distance + 10)))); // safety offset
|
|
}
|
|
if (offsets.empty() && offsets_with_smaller_width.empty()) {
|
|
// Store the number of loops actually generated.
|
|
loop_number = i - 1;
|
|
// No region left to be filled in.
|
|
last.clear();
|
|
break;
|
|
} else if (i > loop_number) {
|
|
// If i > loop_number, we were looking just for gaps.
|
|
break;
|
|
}
|
|
{
|
|
const bool fuzzify_contours = this->config->fuzzy_skin != FuzzySkinType::None && ((i == 0 && this->layer_id > 0) || this->config->fuzzy_skin == FuzzySkinType::AllWalls);
|
|
const bool fuzzify_holes = fuzzify_contours && (this->config->fuzzy_skin == FuzzySkinType::All || this->config->fuzzy_skin == FuzzySkinType::AllWalls);
|
|
for (const ExPolygon& expolygon : offsets) {
|
|
// Outer contour may overlap with an inner contour,
|
|
// inner contour may overlap with another inner contour,
|
|
// outer contour may overlap with itself.
|
|
//FIXME evaluate the overlaps, annotate each point with an overlap depth,
|
|
// compensate for the depth of intersection.
|
|
contours[i].emplace_back(expolygon.contour, i, true, fuzzify_contours);
|
|
|
|
if (!expolygon.holes.empty()) {
|
|
holes[i].reserve(holes[i].size() + expolygon.holes.size());
|
|
for (const Polygon& hole : expolygon.holes)
|
|
holes[i].emplace_back(hole, i, false, fuzzify_holes);
|
|
}
|
|
}
|
|
|
|
//BBS: save perimeter loop which use smaller width
|
|
if (i == 0) {
|
|
for (const ExPolygon& expolygon : offsets_with_smaller_width) {
|
|
contours[i].emplace_back(PerimeterGeneratorLoop(expolygon.contour, i, true, fuzzify_contours, true));
|
|
if (!expolygon.holes.empty()) {
|
|
holes[i].reserve(holes[i].size() + expolygon.holes.size());
|
|
for (const Polygon& hole : expolygon.holes)
|
|
holes[i].emplace_back(PerimeterGeneratorLoop(hole, i, false, fuzzify_contours, true));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
last = std::move(offsets);
|
|
|
|
//BBS: refer to superslicer
|
|
//store surface for top infill if only_one_wall_top
|
|
if (i == 0 && i!=loop_number && config->only_one_wall_top && !surface.is_bridge() && this->upper_slices != NULL) {
|
|
this->split_top_surfaces(last, top_fills, last, fill_clip);
|
|
}
|
|
|
|
if (i == loop_number && (! has_gap_fill || this->config->sparse_infill_density.value == 0)) {
|
|
// The last run of this loop is executed to collect gaps for gap fill.
|
|
// As the gap fill is either disabled or not
|
|
break;
|
|
}
|
|
}
|
|
|
|
// nest loops: holes first
|
|
for (int d = 0; d <= loop_number; ++ d) {
|
|
PerimeterGeneratorLoops &holes_d = holes[d];
|
|
// loop through all holes having depth == d
|
|
for (int i = 0; i < (int)holes_d.size(); ++ i) {
|
|
const PerimeterGeneratorLoop &loop = holes_d[i];
|
|
// find the hole loop that contains this one, if any
|
|
for (int t = d + 1; t <= loop_number; ++ t) {
|
|
for (int j = 0; j < (int)holes[t].size(); ++ j) {
|
|
PerimeterGeneratorLoop &candidate_parent = holes[t][j];
|
|
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
|
candidate_parent.children.push_back(loop);
|
|
holes_d.erase(holes_d.begin() + i);
|
|
-- i;
|
|
goto NEXT_LOOP;
|
|
}
|
|
}
|
|
}
|
|
// if no hole contains this hole, find the contour loop that contains it
|
|
for (int t = loop_number; t >= 0; -- t) {
|
|
for (int j = 0; j < (int)contours[t].size(); ++ j) {
|
|
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
|
|
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
|
candidate_parent.children.push_back(loop);
|
|
holes_d.erase(holes_d.begin() + i);
|
|
-- i;
|
|
goto NEXT_LOOP;
|
|
}
|
|
}
|
|
}
|
|
NEXT_LOOP: ;
|
|
}
|
|
}
|
|
// nest contour loops
|
|
for (int d = loop_number; d >= 1; -- d) {
|
|
PerimeterGeneratorLoops &contours_d = contours[d];
|
|
// loop through all contours having depth == d
|
|
for (int i = 0; i < (int)contours_d.size(); ++ i) {
|
|
const PerimeterGeneratorLoop &loop = contours_d[i];
|
|
// find the contour loop that contains it
|
|
for (int t = d - 1; t >= 0; -- t) {
|
|
for (size_t j = 0; j < contours[t].size(); ++ j) {
|
|
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
|
|
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
|
candidate_parent.children.push_back(loop);
|
|
contours_d.erase(contours_d.begin() + i);
|
|
-- i;
|
|
goto NEXT_CONTOUR;
|
|
}
|
|
}
|
|
}
|
|
NEXT_CONTOUR: ;
|
|
}
|
|
}
|
|
// at this point, all loops should be in contours[0]
|
|
bool steep_overhang_contour = false;
|
|
bool steep_overhang_hole = false;
|
|
const WallDirection wall_direction = config->wall_direction;
|
|
if (wall_direction != WallDirection::Auto) {
|
|
// Skip steep overhang detection if wall direction is specified
|
|
steep_overhang_contour = true;
|
|
steep_overhang_hole = true;
|
|
}
|
|
ExtrusionEntityCollection entities = traverse_loops(*this, contours.front(), thin_walls, steep_overhang_contour, steep_overhang_hole);
|
|
// All walls are counter-clockwise initially, so we don't need to reorient it if that's what we want
|
|
if (wall_direction != WallDirection::CounterClockwise) {
|
|
reorient_perimeters(entities, steep_overhang_contour, steep_overhang_hole,
|
|
// Reverse internal only if the wall direction is auto
|
|
this->config->overhang_reverse_internal_only && wall_direction == WallDirection::Auto);
|
|
}
|
|
|
|
// if brim will be printed, reverse the order of perimeters so that
|
|
// we continue inwards after having finished the brim
|
|
// TODO: add test for perimeter order
|
|
bool is_outer_wall_first = this->config->wall_sequence == WallSequence::OuterInner;
|
|
if (is_outer_wall_first ||
|
|
//BBS: always print outer wall first when there indeed has brim.
|
|
(this->layer_id == 0 &&
|
|
this->object_config->brim_type == BrimType::btOuterOnly &&
|
|
this->object_config->brim_width.value > 0))
|
|
entities.reverse();
|
|
// SoftFever: sandwich mode
|
|
else if (this->config->wall_sequence == WallSequence::InnerOuterInner)
|
|
if (entities.entities.size() > 1){
|
|
int last_outer=0;
|
|
int outer = 0;
|
|
for (; outer < entities.entities.size(); ++outer)
|
|
if (entities.entities[outer]->role() == erExternalPerimeter && outer - last_outer > 1) {
|
|
std::swap(entities.entities[outer], entities.entities[outer - 1]);
|
|
last_outer = outer;
|
|
}
|
|
}
|
|
// append perimeters for this slice as a collection
|
|
if (! entities.empty())
|
|
this->loops->append(entities);
|
|
|
|
} // for each loop of an island
|
|
|
|
// fill gaps
|
|
if (! gaps.empty()) {
|
|
// collapse
|
|
double min = 0.2 * perimeter_width * (1 - INSET_OVERLAP_TOLERANCE);
|
|
double max = 2. * perimeter_spacing;
|
|
ExPolygons gaps_ex = diff_ex(
|
|
//FIXME offset2 would be enough and cheaper.
|
|
opening_ex(gaps, float(min / 2.)),
|
|
offset2_ex(gaps, - float(max / 2.), float(max / 2. + ClipperSafetyOffset)));
|
|
ThickPolylines polylines;
|
|
for (ExPolygon& ex : gaps_ex) {
|
|
//BBS: Use DP simplify to avoid duplicated points and accelerate medial-axis calculation as well.
|
|
ex.douglas_peucker(surface_simplify_resolution);
|
|
ex.medial_axis(min, max, &polylines);
|
|
}
|
|
|
|
#ifdef GAPS_OF_PERIMETER_DEBUG_TO_SVG
|
|
{
|
|
static int irun = 0;
|
|
BoundingBox bbox_svg;
|
|
bbox_svg.merge(get_extents(gaps_ex));
|
|
{
|
|
std::stringstream stri;
|
|
stri << "debug_gaps_ex_" << irun << ".svg";
|
|
SVG svg(stri.str(), bbox_svg);
|
|
svg.draw(to_polylines(gaps_ex), "blue", 0.5);
|
|
svg.Close();
|
|
}
|
|
++ irun;
|
|
}
|
|
#endif
|
|
// SoftFever: filter out tiny gap fills
|
|
polylines.erase(std::remove_if(polylines.begin(), polylines.end(),
|
|
[&](const ThickPolyline& p) {
|
|
return p.length() < scale_(config->filter_out_gap_fill.value);
|
|
}), polylines.end());
|
|
|
|
|
|
if (! polylines.empty()) {
|
|
ExtrusionEntityCollection gap_fill;
|
|
variable_width(polylines, erGapFill, this->solid_infill_flow, gap_fill.entities);
|
|
/* Make sure we don't infill narrow parts that are already gap-filled
|
|
(we only consider this surface's gaps to reduce the diff() complexity).
|
|
Growing actual extrusions ensures that gaps not filled by medial axis
|
|
are not subtracted from fill surfaces (they might be too short gaps
|
|
that medial axis skips but infill might join with other infill regions
|
|
and use zigzag). */
|
|
//FIXME Vojtech: This grows by a rounded extrusion width, not by line spacing,
|
|
// therefore it may cover the area, but no the volume.
|
|
last = diff_ex(last, gap_fill.polygons_covered_by_width(10.f));
|
|
this->gap_fill->append(std::move(gap_fill.entities));
|
|
|
|
}
|
|
}
|
|
|
|
// create one more offset to be used as boundary for fill
|
|
// we offset by half the perimeter spacing (to get to the actual infill boundary)
|
|
// and then we offset back and forth by half the infill spacing to only consider the
|
|
// non-collapsing regions
|
|
coord_t inset =
|
|
(loop_number < 0) ? 0 :
|
|
(loop_number == 0) ?
|
|
// one loop
|
|
ext_perimeter_spacing / 2 :
|
|
// two or more loops?
|
|
perimeter_spacing / 2;
|
|
// only apply infill overlap if we actually have one perimeter
|
|
coord_t infill_peri_overlap = 0;
|
|
if (inset > 0) {
|
|
infill_peri_overlap = coord_t(scale_(this->config->infill_wall_overlap.get_abs_value(unscale<double>(inset + solid_infill_spacing / 2))));
|
|
inset -= infill_peri_overlap;
|
|
}
|
|
// simplify infill contours according to resolution
|
|
Polygons pp;
|
|
for (ExPolygon &ex : last)
|
|
ex.simplify_p(m_scaled_resolution, &pp);
|
|
ExPolygons not_filled_exp = union_ex(pp);
|
|
// collapse too narrow infill areas
|
|
coord_t min_perimeter_infill_spacing = coord_t(solid_infill_spacing * (1. - INSET_OVERLAP_TOLERANCE));
|
|
|
|
ExPolygons infill_exp = offset2_ex(
|
|
not_filled_exp,
|
|
float(-inset - min_perimeter_infill_spacing / 2.),
|
|
float(min_perimeter_infill_spacing / 2.));
|
|
// append infill areas to fill_surfaces
|
|
//if any top_fills, grow them by ext_perimeter_spacing/2 to have the real un-anchored fill
|
|
ExPolygons top_infill_exp = intersection_ex(fill_clip, offset_ex(top_fills, double(ext_perimeter_spacing / 2)));
|
|
if (!top_fills.empty()) {
|
|
infill_exp = union_ex(infill_exp, offset_ex(top_infill_exp, double(infill_peri_overlap)));
|
|
}
|
|
this->fill_surfaces->append(infill_exp, stInternal);
|
|
|
|
apply_extra_perimeters(infill_exp);
|
|
|
|
// BBS: get the no-overlap infill expolygons
|
|
{
|
|
ExPolygons polyWithoutOverlap;
|
|
if (min_perimeter_infill_spacing / 2 > infill_peri_overlap)
|
|
polyWithoutOverlap = offset2_ex(
|
|
not_filled_exp,
|
|
float(-inset - min_perimeter_infill_spacing / 2.),
|
|
float(min_perimeter_infill_spacing / 2 - infill_peri_overlap));
|
|
else
|
|
polyWithoutOverlap = offset_ex(
|
|
not_filled_exp,
|
|
double(-inset - infill_peri_overlap));
|
|
if (!top_fills.empty())
|
|
polyWithoutOverlap = union_ex(polyWithoutOverlap, top_infill_exp);
|
|
this->fill_no_overlap->insert(this->fill_no_overlap->end(), polyWithoutOverlap.begin(), polyWithoutOverlap.end());
|
|
}
|
|
|
|
} // for each island
|
|
}
|
|
|
|
//BBS:
|
|
void PerimeterGenerator::add_infill_contour_for_arachne( ExPolygons infill_contour,
|
|
int loops,
|
|
coord_t ext_perimeter_spacing,
|
|
coord_t perimeter_spacing,
|
|
coord_t min_perimeter_infill_spacing,
|
|
coord_t spacing,
|
|
bool is_inner_part)
|
|
{
|
|
if( offset_ex(infill_contour, -float(spacing / 2.)).empty() )
|
|
{
|
|
infill_contour.clear(); // Infill region is too small, so let's filter it out.
|
|
}
|
|
|
|
// create one more offset to be used as boundary for fill
|
|
// we offset by half the perimeter spacing (to get to the actual infill boundary)
|
|
// and then we offset back and forth by half the infill spacing to only consider the
|
|
// non-collapsing regions
|
|
coord_t insert = (loops < 0) ? 0: ext_perimeter_spacing;
|
|
if (is_inner_part || loops > 0)
|
|
insert = perimeter_spacing;
|
|
|
|
insert = coord_t(scale_(this->config->infill_wall_overlap.get_abs_value(unscale<double>(insert))));
|
|
|
|
Polygons inner_pp;
|
|
for (ExPolygon &ex : infill_contour)
|
|
ex.simplify_p(m_scaled_resolution, &inner_pp);
|
|
|
|
this->fill_surfaces->append(offset2_ex(union_ex(inner_pp), float(-min_perimeter_infill_spacing / 2.), float(insert + min_perimeter_infill_spacing / 2.)), stInternal);
|
|
|
|
append(*this->fill_no_overlap, offset2_ex(union_ex(inner_pp), float(-min_perimeter_infill_spacing / 2.), float(+min_perimeter_infill_spacing / 2.)));
|
|
}
|
|
|
|
// Orca: sacrificial bridge layer algorithm ported from SuperSlicer
|
|
void PerimeterGenerator::process_no_bridge(Surfaces& all_surfaces, coord_t perimeter_spacing, coord_t ext_perimeter_width)
|
|
{
|
|
//store surface for bridge infill to avoid unsupported perimeters (but the first one, this one is always good)
|
|
if (this->config->counterbore_hole_bridging != chbNone
|
|
&& this->lower_slices != NULL && !this->lower_slices->empty()) {
|
|
const coordf_t bridged_infill_margin = scale_(BRIDGE_INFILL_MARGIN);
|
|
|
|
for (size_t surface_idx = 0; surface_idx < all_surfaces.size(); surface_idx++) {
|
|
Surface* surface = &all_surfaces[surface_idx];
|
|
ExPolygons last = { surface->expolygon };
|
|
//compute our unsupported surface
|
|
ExPolygons unsupported = diff_ex(last, *this->lower_slices, ApplySafetyOffset::Yes);
|
|
if (!unsupported.empty()) {
|
|
//remove small overhangs
|
|
ExPolygons unsupported_filtered = offset2_ex(unsupported, double(-perimeter_spacing), double(perimeter_spacing));
|
|
if (!unsupported_filtered.empty()) {
|
|
//to_draw.insert(to_draw.end(), last.begin(), last.end());
|
|
//extract only the useful part of the lower layer. The safety offset is really needed here.
|
|
ExPolygons support = diff_ex(last, unsupported, ApplySafetyOffset::Yes);
|
|
if (!unsupported.empty()) {
|
|
//only consider the part that can be bridged (really, by the bridge algorithm)
|
|
//first, separate into islands (ie, each ExPlolygon)
|
|
int numploy = 0;
|
|
//only consider the bottom layer that intersect unsupported, to be sure it's only on our island.
|
|
ExPolygonCollection lower_island(support);
|
|
//a detector per island
|
|
ExPolygons bridgeable;
|
|
for (ExPolygon unsupported : unsupported_filtered) {
|
|
BridgeDetector detector{ unsupported,
|
|
lower_island.expolygons,
|
|
perimeter_spacing };
|
|
if (detector.detect_angle(Geometry::deg2rad(this->config->bridge_angle.value)))
|
|
expolygons_append(bridgeable, union_ex(detector.coverage(-1, true)));
|
|
}
|
|
if (!bridgeable.empty()) {
|
|
//check if we get everything or just the bridgeable area
|
|
if (/*this->config->counterbore_hole_bridging.value == chbNoPeri || */this->config->counterbore_hole_bridging.value == chbFilled) {
|
|
//we bridge everything, even the not-bridgeable bits
|
|
for (size_t i = 0; i < unsupported_filtered.size();) {
|
|
ExPolygon& poly_unsupp = *(unsupported_filtered.begin() + i);
|
|
Polygons contour_simplified = poly_unsupp.contour.simplify(perimeter_spacing);
|
|
ExPolygon poly_unsupp_bigger = poly_unsupp;
|
|
Polygons contour_bigger = offset(poly_unsupp_bigger.contour, bridged_infill_margin);
|
|
if (contour_bigger.size() == 1) poly_unsupp_bigger.contour = contour_bigger[0];
|
|
|
|
//check convex, has some bridge, not overhang
|
|
if (contour_simplified.size() == 1 && contour_bigger.size() == 1 && contour_simplified[0].concave_points().size() == 0
|
|
&& intersection_ex(bridgeable, ExPolygons{ poly_unsupp }).size() > 0
|
|
&& diff_ex(ExPolygons{ poly_unsupp_bigger }, union_ex(last, offset_ex(bridgeable, bridged_infill_margin + perimeter_spacing / 2)), ApplySafetyOffset::Yes).size() == 0
|
|
) {
|
|
//ok, keep it
|
|
i++;
|
|
} else {
|
|
unsupported_filtered.erase(unsupported_filtered.begin() + i);
|
|
}
|
|
}
|
|
unsupported_filtered = intersection_ex(last,
|
|
offset2_ex(unsupported_filtered, double(-perimeter_spacing / 2), double(bridged_infill_margin + perimeter_spacing / 2)));
|
|
if (this->config->counterbore_hole_bridging.value == chbFilled) {
|
|
for (ExPolygon& expol : unsupported_filtered) {
|
|
//check if the holes won't be covered by the upper layer
|
|
//TODO: if we want to do that, we must modify the geometry before making perimeters.
|
|
//if (this->upper_slices != nullptr && !this->upper_slices->expolygons.empty()) {
|
|
// for (Polygon &poly : expol.holes) poly.make_counter_clockwise();
|
|
// float perimeterwidth = this->config->perimeters == 0 ? 0 : (this->ext_perimeter_flow.scaled_width() + (this->config->perimeters - 1) + this->perimeter_flow.scaled_spacing());
|
|
// std::cout << "test upper slices with perimeterwidth=" << perimeterwidth << "=>" << offset_ex(this->upper_slices->expolygons, -perimeterwidth).size();
|
|
// if (intersection(Polygons() = { expol.holes }, to_polygons(offset_ex(this->upper_slices->expolygons, -this->ext_perimeter_flow.scaled_width() / 2))).empty()) {
|
|
// std::cout << " EMPTY";
|
|
// expol.holes.clear();
|
|
// } else {
|
|
// }
|
|
// std::cout << "\n";
|
|
//} else {
|
|
expol.holes.clear();
|
|
//}
|
|
|
|
//detect inside volume
|
|
for (size_t surface_idx_other = 0; surface_idx_other < all_surfaces.size(); surface_idx_other++) {
|
|
if (surface_idx == surface_idx_other) continue;
|
|
if (intersection_ex(ExPolygons() = { expol }, ExPolygons() = { all_surfaces[surface_idx_other].expolygon }).size() > 0) {
|
|
//this means that other_surf was inside an expol holes
|
|
//as we removed them, we need to add a new one
|
|
ExPolygons new_poly = offset2_ex(ExPolygons{ all_surfaces[surface_idx_other].expolygon }, double(-bridged_infill_margin - perimeter_spacing), double(perimeter_spacing));
|
|
if (new_poly.size() == 1) {
|
|
all_surfaces[surface_idx_other].expolygon = new_poly[0];
|
|
expol.holes.push_back(new_poly[0].contour);
|
|
expol.holes.back().make_clockwise();
|
|
} else {
|
|
for (size_t idx = 0; idx < new_poly.size(); idx++) {
|
|
Surface new_surf = all_surfaces[surface_idx_other];
|
|
new_surf.expolygon = new_poly[idx];
|
|
all_surfaces.push_back(new_surf);
|
|
expol.holes.push_back(new_poly[idx].contour);
|
|
expol.holes.back().make_clockwise();
|
|
}
|
|
all_surfaces.erase(all_surfaces.begin() + surface_idx_other);
|
|
if (surface_idx_other < surface_idx) {
|
|
surface_idx--;
|
|
surface = &all_surfaces[surface_idx];
|
|
}
|
|
surface_idx_other--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
//TODO: add other polys as holes inside this one (-margin)
|
|
} else if (/*this->config->counterbore_hole_bridging.value == chbBridgesOverhangs || */this->config->counterbore_hole_bridging.value == chbBridges) {
|
|
//simplify to avoid most of artefacts from printing lines.
|
|
ExPolygons bridgeable_simplified;
|
|
for (ExPolygon& poly : bridgeable) {
|
|
poly.simplify(perimeter_spacing, &bridgeable_simplified);
|
|
}
|
|
bridgeable_simplified = offset2_ex(bridgeable_simplified, -ext_perimeter_width, ext_perimeter_width);
|
|
//bridgeable_simplified = intersection_ex(bridgeable_simplified, unsupported_filtered);
|
|
//offset by perimeter spacing because the simplify may have reduced it a bit.
|
|
//it's not dangerous as it will be intersected by 'unsupported' later
|
|
//FIXME: add overlap in this->fill_surfaces->append
|
|
//FIXME: it overlap inside unsuppported not-bridgeable area!
|
|
|
|
//bridgeable_simplified = offset2_ex(bridgeable_simplified, (double)-perimeter_spacing, (double)perimeter_spacing * 2);
|
|
//ExPolygons unbridgeable = offset_ex(diff_ex(unsupported, bridgeable_simplified), perimeter_spacing * 3 / 2);
|
|
//ExPolygons unbridgeable = intersection_ex(unsupported, diff_ex(unsupported_filtered, offset_ex(bridgeable_simplified, ext_perimeter_width / 2)));
|
|
//unbridgeable = offset2_ex(unbridgeable, -ext_perimeter_width, ext_perimeter_width);
|
|
|
|
|
|
// if (this->config->counterbore_hole_bridging.value == chbBridges) {
|
|
ExPolygons unbridgeable = unsupported_filtered;
|
|
for (ExPolygon& expol : unbridgeable)
|
|
expol.holes.clear();
|
|
unbridgeable = diff_ex(unbridgeable, bridgeable_simplified);
|
|
unbridgeable = offset2_ex(unbridgeable, -ext_perimeter_width * 2, ext_perimeter_width * 2);
|
|
ExPolygons bridges_temp = offset2_ex(intersection_ex(last, diff_ex(unsupported_filtered, unbridgeable), ApplySafetyOffset::Yes), -ext_perimeter_width / 4, ext_perimeter_width / 4);
|
|
//remove the overhangs section from the surface polygons
|
|
ExPolygons reference = last;
|
|
last = diff_ex(last, unsupported_filtered);
|
|
//ExPolygons no_bridge = diff_ex(offset_ex(unbridgeable, ext_perimeter_width * 3 / 2), last);
|
|
//bridges_temp = diff_ex(bridges_temp, no_bridge);
|
|
coordf_t offset_to_do = bridged_infill_margin;
|
|
bool first = true;
|
|
unbridgeable = diff_ex(unbridgeable, offset_ex(bridges_temp, ext_perimeter_width));
|
|
while (offset_to_do > ext_perimeter_width * 1.5) {
|
|
unbridgeable = offset2_ex(unbridgeable, -ext_perimeter_width / 4, ext_perimeter_width * 2.25, ClipperLib::jtSquare);
|
|
bridges_temp = diff_ex(bridges_temp, unbridgeable);
|
|
bridges_temp = offset_ex(bridges_temp, ext_perimeter_width, ClipperLib::jtMiter, 6.);
|
|
unbridgeable = diff_ex(unbridgeable, offset_ex(bridges_temp, ext_perimeter_width));
|
|
offset_to_do -= ext_perimeter_width;
|
|
first = false;
|
|
}
|
|
unbridgeable = offset_ex(unbridgeable, ext_perimeter_width + offset_to_do, ClipperLib::jtSquare);
|
|
bridges_temp = diff_ex(bridges_temp, unbridgeable);
|
|
unsupported_filtered = offset_ex(bridges_temp, offset_to_do);
|
|
unsupported_filtered = intersection_ex(unsupported_filtered, reference);
|
|
// } else {
|
|
// ExPolygons unbridgeable = intersection_ex(unsupported, diff_ex(unsupported_filtered, offset_ex(bridgeable_simplified, ext_perimeter_width / 2)));
|
|
// unbridgeable = offset2_ex(unbridgeable, -ext_perimeter_width, ext_perimeter_width);
|
|
// unsupported_filtered = unbridgeable;
|
|
|
|
// ////put the bridge area inside the unsupported_filtered variable
|
|
// //unsupported_filtered = intersection_ex(last,
|
|
// // diff_ex(
|
|
// // offset_ex(bridgeable_simplified, (double)perimeter_spacing / 2),
|
|
// // unbridgeable
|
|
// // )
|
|
// // );
|
|
// }
|
|
} else {
|
|
unsupported_filtered.clear();
|
|
}
|
|
} else {
|
|
unsupported_filtered.clear();
|
|
}
|
|
}
|
|
|
|
if (!unsupported_filtered.empty()) {
|
|
|
|
//add this directly to the infill list.
|
|
// this will avoid to throw wrong offsets into a good polygons
|
|
this->fill_surfaces->append(
|
|
unsupported_filtered,
|
|
stInternal);
|
|
|
|
// store the results
|
|
last = diff_ex(last, unsupported_filtered, ApplySafetyOffset::Yes);
|
|
//remove "thin air" polygons (note: it assumes that all polygons below will be extruded)
|
|
for (int i = 0; i < last.size(); i++) {
|
|
if (intersection_ex(support, ExPolygons() = { last[i] }).empty()) {
|
|
this->fill_surfaces->append(
|
|
ExPolygons() = { last[i] },
|
|
stInternal);
|
|
last.erase(last.begin() + i);
|
|
i--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (last.size() == 0) {
|
|
all_surfaces.erase(all_surfaces.begin() + surface_idx);
|
|
surface_idx--;
|
|
} else {
|
|
surface->expolygon = last[0];
|
|
for (size_t idx = 1; idx < last.size(); idx++) {
|
|
all_surfaces.emplace_back(*surface, last[idx]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Thanks, Cura developers, for implementing an algorithm for generating perimeters with variable width (Arachne) that is based on the paper
|
|
// "A framework for adaptive width control of dense contour-parallel toolpaths in fused deposition modeling"
|
|
void PerimeterGenerator::process_arachne()
|
|
{
|
|
// other perimeters
|
|
m_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
|
|
coord_t perimeter_spacing = this->perimeter_flow.scaled_spacing();
|
|
|
|
// external perimeters
|
|
m_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
|
|
coord_t ext_perimeter_width = this->ext_perimeter_flow.scaled_width();
|
|
coord_t ext_perimeter_spacing = this->ext_perimeter_flow.scaled_spacing();
|
|
coord_t ext_perimeter_spacing2 = scaled<coord_t>(0.5f * (this->ext_perimeter_flow.spacing() + this->perimeter_flow.spacing()));
|
|
// overhang perimeters
|
|
m_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
|
|
|
|
// solid infill
|
|
coord_t solid_infill_spacing = this->solid_infill_flow.scaled_spacing();
|
|
|
|
// prepare grown lower layer slices for overhang detection
|
|
if (this->lower_slices != nullptr && this->config->detect_overhang_wall) {
|
|
// We consider overhang any part where the entire nozzle diameter is not supported by the
|
|
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
|
|
// in the current layer
|
|
double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->wall_filament - 1);
|
|
m_lower_slices_polygons = offset(*this->lower_slices, float(scale_(+nozzle_diameter / 2)));
|
|
}
|
|
|
|
Surfaces all_surfaces = this->slices->surfaces;
|
|
|
|
process_no_bridge(all_surfaces, perimeter_spacing, ext_perimeter_width);
|
|
// BBS: don't simplify too much which influence arc fitting when export gcode if arc_fitting is enabled
|
|
double surface_simplify_resolution = (print_config->enable_arc_fitting && this->config->fuzzy_skin == FuzzySkinType::None) ? 0.2 * m_scaled_resolution : m_scaled_resolution;
|
|
// we need to process each island separately because we might have different
|
|
// extra perimeters for each one
|
|
for (const Surface& surface : all_surfaces) {
|
|
coord_t bead_width_0 = ext_perimeter_spacing;
|
|
// detect how many perimeters must be generated for this island
|
|
int loop_number = this->config->wall_loops + surface.extra_perimeters - 1; // 0-indexed loops
|
|
int sparse_infill_density = this->config->sparse_infill_density.value;
|
|
if (this->config->alternate_extra_wall && this->layer_id % 2 == 1 && !m_spiral_vase && sparse_infill_density > 0) // add alternating extra wall
|
|
loop_number++;
|
|
|
|
// Set the bottommost layer to be one wall
|
|
const bool is_bottom_layer = (this->layer_id == 0) ? true : false;
|
|
if (is_bottom_layer && this->config->only_one_wall_first_layer)
|
|
loop_number = 0;
|
|
|
|
// Orca: set the topmost layer to be one wall according to the config
|
|
const bool is_topmost_layer = (this->upper_slices == nullptr) ? true : false;
|
|
if (is_topmost_layer && loop_number > 0 && config->only_one_wall_top)
|
|
loop_number = 0;
|
|
|
|
auto apply_precise_outer_wall = config->precise_outer_wall && this->config->wall_sequence == WallSequence::InnerOuter;
|
|
// Orca: properly adjust offset for the outer wall if precise_outer_wall is enabled.
|
|
ExPolygons last = offset_ex(surface.expolygon.simplify_p(surface_simplify_resolution),
|
|
apply_precise_outer_wall? -float(ext_perimeter_width - ext_perimeter_spacing )
|
|
: -float(ext_perimeter_width / 2. - ext_perimeter_spacing / 2.));
|
|
|
|
Arachne::WallToolPathsParams input_params = Arachne::make_paths_params(this->layer_id, *object_config, *print_config);
|
|
// Set params is_top_or_bottom_layer for adjusting short-wall removal sensitivity.
|
|
input_params.is_top_or_bottom_layer = (is_bottom_layer || is_topmost_layer) ? true : false;
|
|
|
|
coord_t wall_0_inset = 0;
|
|
if (apply_precise_outer_wall)
|
|
wall_0_inset = -coord_t(ext_perimeter_width / 2 - ext_perimeter_spacing / 2);
|
|
|
|
std::vector<Arachne::VariableWidthLines> out_shell;
|
|
ExPolygons top_fills;
|
|
ExPolygons fill_clip;
|
|
|
|
// Check if we're on a top surface, and make adjustments where needed
|
|
if (!surface.is_bridge() && !is_topmost_layer) {
|
|
ExPolygons non_top_polygons;
|
|
// Temporary storage, in the event all we need to do is set is_top_or_bottom_layer
|
|
ExPolygons top_fills_tmp;
|
|
ExPolygons fill_clip_tmp;
|
|
// Check if current layer has surfaces that are not covered by upper layer (i.e., top surfaces)
|
|
this->split_top_surfaces(last, top_fills_tmp, non_top_polygons, fill_clip_tmp);
|
|
|
|
if (top_fills_tmp.empty()) {
|
|
// No top surfaces, no special handling needed
|
|
} else {
|
|
// Use single-wall on top-surfaces if configured
|
|
if (loop_number > 0 && config->only_one_wall_top) {
|
|
// Adjust arachne input params to prevent removal of larger short walls, which could lead to gaps
|
|
Arachne::WallToolPathsParams input_params_tmp = input_params;
|
|
input_params_tmp.is_top_or_bottom_layer = true;
|
|
|
|
// Swap in the temporary storage
|
|
top_fills.swap(top_fills_tmp);
|
|
fill_clip.swap(fill_clip_tmp);
|
|
|
|
// First we slice the outer shell
|
|
Polygons last_p = to_polygons(last);
|
|
Arachne::WallToolPaths wallToolPaths(last_p, bead_width_0, perimeter_spacing, coord_t(1),
|
|
wall_0_inset, layer_height, input_params_tmp);
|
|
out_shell = wallToolPaths.getToolPaths();
|
|
// Make sure infill not overlap with wall
|
|
top_fills = intersection_ex(top_fills, wallToolPaths.getInnerContour());
|
|
|
|
if (!top_fills.empty()) {
|
|
// Then get the inner part that needs more walls
|
|
last = intersection_ex(non_top_polygons, wallToolPaths.getInnerContour());
|
|
loop_number--;
|
|
} else {
|
|
// Give up the outer shell because we don't have any meaningful top surface
|
|
out_shell.clear();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Polygons last_p = to_polygons(last);
|
|
|
|
Arachne::WallToolPaths wallToolPaths(last_p, bead_width_0, perimeter_spacing, coord_t(loop_number + 1),
|
|
wall_0_inset, layer_height, input_params);
|
|
|
|
std::vector<Arachne::VariableWidthLines> perimeters = wallToolPaths.getToolPaths();
|
|
|
|
if (!out_shell.empty()) {
|
|
// Combine outer shells
|
|
size_t inset_offset = 0;
|
|
for (auto &p : out_shell) {
|
|
for (auto &l : p) {
|
|
if (l.inset_idx + 1 > inset_offset) {
|
|
inset_offset = l.inset_idx + 1;
|
|
}
|
|
}
|
|
}
|
|
for (auto &p : perimeters) {
|
|
for (auto &l : p) {
|
|
l.inset_idx += inset_offset;
|
|
}
|
|
}
|
|
|
|
perimeters.insert(perimeters.begin(), out_shell.begin(), out_shell.end());
|
|
}
|
|
loop_number = int(perimeters.size()) - 1;
|
|
|
|
#ifdef ARACHNE_DEBUG
|
|
{
|
|
static int iRun = 0;
|
|
export_perimeters_to_svg(debug_out_path("arachne-perimeters-%d-%d.svg", layer_id, iRun++), to_polygons(last), perimeters, union_ex(wallToolPaths.getInnerContour()));
|
|
}
|
|
#endif
|
|
|
|
// All closed ExtrusionLine should have the same the first and the last point.
|
|
// But in rare cases, Arachne produce ExtrusionLine marked as closed but without
|
|
// equal the first and the last point.
|
|
assert([&perimeters = std::as_const(perimeters)]() -> bool {
|
|
for (const Arachne::VariableWidthLines& perimeter : perimeters)
|
|
for (const Arachne::ExtrusionLine& el : perimeter)
|
|
if (el.is_closed && el.junctions.front().p != el.junctions.back().p)
|
|
return false;
|
|
return true;
|
|
}());
|
|
|
|
int start_perimeter = int(perimeters.size()) - 1;
|
|
int end_perimeter = -1;
|
|
int direction = -1;
|
|
|
|
bool is_outer_wall_first =
|
|
this->config->wall_sequence == WallSequence::OuterInner ||
|
|
this->config->wall_sequence == WallSequence::InnerOuterInner;
|
|
|
|
if (layer_id == 0){ // disable inner outer inner algorithm after the first layer
|
|
is_outer_wall_first =
|
|
this->config->wall_sequence == WallSequence::OuterInner;
|
|
}
|
|
if (is_outer_wall_first) {
|
|
start_perimeter = 0;
|
|
end_perimeter = int(perimeters.size());
|
|
direction = 1;
|
|
}
|
|
|
|
std::vector<Arachne::ExtrusionLine*> all_extrusions;
|
|
for (int perimeter_idx = start_perimeter; perimeter_idx != end_perimeter; perimeter_idx += direction) {
|
|
if (perimeters[perimeter_idx].empty())
|
|
continue;
|
|
for (Arachne::ExtrusionLine& wall : perimeters[perimeter_idx])
|
|
all_extrusions.emplace_back(&wall);
|
|
}
|
|
|
|
// Find topological order with constraints from extrusions_constrains.
|
|
std::vector<size_t> blocked(all_extrusions.size(), 0); // Value indicating how many extrusions it is blocking (preceding extrusions) an extrusion.
|
|
std::vector<std::vector<size_t>> blocking(all_extrusions.size()); // Each extrusion contains a vector of extrusions that are blocked by this extrusion.
|
|
std::unordered_map<const Arachne::ExtrusionLine*, size_t> map_extrusion_to_idx;
|
|
for (size_t idx = 0; idx < all_extrusions.size(); idx++)
|
|
map_extrusion_to_idx.emplace(all_extrusions[idx], idx);
|
|
|
|
auto extrusions_constrains = Arachne::WallToolPaths::getRegionOrder(all_extrusions, is_outer_wall_first);
|
|
for (auto [before, after] : extrusions_constrains) {
|
|
auto after_it = map_extrusion_to_idx.find(after);
|
|
++blocked[after_it->second];
|
|
blocking[map_extrusion_to_idx.find(before)->second].emplace_back(after_it->second);
|
|
}
|
|
|
|
std::vector<bool> processed(all_extrusions.size(), false); // Indicate that the extrusion was already processed.
|
|
Point current_position = all_extrusions.empty() ? Point::Zero() : all_extrusions.front()->junctions.front().p; // Some starting position.
|
|
std::vector<PerimeterGeneratorArachneExtrusion> ordered_extrusions; // To store our result in. At the end we'll std::swap.
|
|
ordered_extrusions.reserve(all_extrusions.size());
|
|
|
|
while (ordered_extrusions.size() < all_extrusions.size()) {
|
|
size_t best_candidate = 0;
|
|
double best_distance_sqr = std::numeric_limits<double>::max();
|
|
bool is_best_closed = false;
|
|
|
|
std::vector<size_t> available_candidates;
|
|
for (size_t candidate = 0; candidate < all_extrusions.size(); ++candidate) {
|
|
if (processed[candidate] || blocked[candidate])
|
|
continue; // Not a valid candidate.
|
|
available_candidates.push_back(candidate);
|
|
}
|
|
|
|
std::sort(available_candidates.begin(), available_candidates.end(), [&all_extrusions](const size_t a_idx, const size_t b_idx) -> bool {
|
|
return all_extrusions[a_idx]->is_closed < all_extrusions[b_idx]->is_closed;
|
|
});
|
|
|
|
for (const size_t candidate_path_idx : available_candidates) {
|
|
auto& path = all_extrusions[candidate_path_idx];
|
|
|
|
if (path->junctions.empty()) { // No vertices in the path. Can't find the start position then or really plan it in. Put that at the end.
|
|
if (best_distance_sqr == std::numeric_limits<double>::max()) {
|
|
best_candidate = candidate_path_idx;
|
|
is_best_closed = path->is_closed;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
const Point candidate_position = path->junctions.front().p;
|
|
double distance_sqr = (current_position - candidate_position).cast<double>().norm();
|
|
if (distance_sqr < best_distance_sqr) { // Closer than the best candidate so far.
|
|
if (path->is_closed || (!path->is_closed && best_distance_sqr != std::numeric_limits<double>::max()) || (!path->is_closed && !is_best_closed)) {
|
|
best_candidate = candidate_path_idx;
|
|
best_distance_sqr = distance_sqr;
|
|
is_best_closed = path->is_closed;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto& best_path = all_extrusions[best_candidate];
|
|
ordered_extrusions.push_back({ best_path, best_path->is_contour(), false });
|
|
processed[best_candidate] = true;
|
|
for (size_t unlocked_idx : blocking[best_candidate])
|
|
blocked[unlocked_idx]--;
|
|
|
|
if (!best_path->junctions.empty()) { //If all paths were empty, the best path is still empty. We don't upate the current position then.
|
|
if (best_path->is_closed)
|
|
current_position = best_path->junctions[0].p; //We end where we started.
|
|
else
|
|
current_position = best_path->junctions.back().p; //Pick the other end from where we started.
|
|
}
|
|
}
|
|
if ((this->config->fuzzy_skin_first_layer || this->layer_id>0) && this->config->fuzzy_skin != FuzzySkinType::None) {
|
|
std::vector<PerimeterGeneratorArachneExtrusion*> closed_loop_extrusions;
|
|
for (PerimeterGeneratorArachneExtrusion& extrusion : ordered_extrusions)
|
|
if (extrusion.extrusion->inset_idx == 0) {
|
|
if (extrusion.extrusion->is_closed && this->config->fuzzy_skin == FuzzySkinType::External) {
|
|
closed_loop_extrusions.emplace_back(&extrusion);
|
|
}
|
|
else {
|
|
extrusion.fuzzify = true;
|
|
}
|
|
}
|
|
|
|
if (this->config->fuzzy_skin == FuzzySkinType::External) {
|
|
ClipperLib_Z::Paths loops_paths;
|
|
loops_paths.reserve(closed_loop_extrusions.size());
|
|
for (const auto& cl_extrusion : closed_loop_extrusions) {
|
|
assert(cl_extrusion->extrusion->junctions.front() == cl_extrusion->extrusion->junctions.back());
|
|
size_t loop_idx = &cl_extrusion - &closed_loop_extrusions.front();
|
|
ClipperLib_Z::Path loop_path;
|
|
loop_path.reserve(cl_extrusion->extrusion->junctions.size() - 1);
|
|
for (auto junction_it = cl_extrusion->extrusion->junctions.begin(); junction_it != std::prev(cl_extrusion->extrusion->junctions.end()); ++junction_it)
|
|
loop_path.emplace_back(junction_it->p.x(), junction_it->p.y(), loop_idx);
|
|
loops_paths.emplace_back(loop_path);
|
|
}
|
|
|
|
ClipperLib_Z::Clipper clipper;
|
|
clipper.AddPaths(loops_paths, ClipperLib_Z::ptSubject, true);
|
|
ClipperLib_Z::PolyTree loops_polytree;
|
|
clipper.Execute(ClipperLib_Z::ctUnion, loops_polytree, ClipperLib_Z::pftEvenOdd, ClipperLib_Z::pftEvenOdd);
|
|
|
|
for (const ClipperLib_Z::PolyNode* child_node : loops_polytree.Childs) {
|
|
// The whole contour must have the same index.
|
|
coord_t polygon_idx = child_node->Contour.front().z();
|
|
bool has_same_idx = std::all_of(child_node->Contour.begin(), child_node->Contour.end(),
|
|
[&polygon_idx](const ClipperLib_Z::IntPoint& point) -> bool { return polygon_idx == point.z(); });
|
|
if (has_same_idx)
|
|
closed_loop_extrusions[polygon_idx]->fuzzify = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// printf("New Layer: Layer ID %d\n",layer_id); //debug - new layer
|
|
if (this->config->wall_sequence == WallSequence::InnerOuterInner && layer_id > 0) { // only enable inner outer inner algorithm after first layer
|
|
if (ordered_extrusions.size() > 2) { // 3 walls minimum needed to do inner outer inner ordering
|
|
int position = 0; // index to run the re-ordering for multiple external perimeters in a single island.
|
|
int arr_i, arr_j = 0; // indexes to run through the walls in the for loops
|
|
int outer, first_internal, second_internal, max_internal, current_perimeter; // allocate index values
|
|
|
|
// Initiate reorder sequence to bring any index 1 (first internal) perimeters ahead of any second internal perimeters
|
|
// Leaving these out of order will result in print defects on the external wall as they will be extruded prior to any
|
|
// external wall. To do the re-ordering, we are creating two extrusion arrays - reordered_extrusions which will contain
|
|
// the reordered extrusions and skipped_extrusions will contain the ones that were skipped in the scan
|
|
std::vector<PerimeterGeneratorArachneExtrusion> reordered_extrusions, skipped_extrusions;
|
|
bool found_second_internal = false; // helper variable to indicate the start of a new island
|
|
|
|
for(auto extrusion_to_reorder : ordered_extrusions){ //scan the perimeters to reorder
|
|
switch (extrusion_to_reorder.extrusion->inset_idx) {
|
|
case 0: // external perimeter
|
|
if(found_second_internal){ //new island - move skipped extrusions to reordered array
|
|
for(auto extrusion_skipped : skipped_extrusions)
|
|
reordered_extrusions.emplace_back(extrusion_skipped);
|
|
skipped_extrusions.clear();
|
|
}
|
|
reordered_extrusions.emplace_back(extrusion_to_reorder);
|
|
break;
|
|
case 1: // first internal perimeter
|
|
reordered_extrusions.emplace_back(extrusion_to_reorder);
|
|
break;
|
|
default: // second internal+ perimeter -> put them in the skipped extrusions array
|
|
skipped_extrusions.emplace_back(extrusion_to_reorder);
|
|
found_second_internal = true;
|
|
break;
|
|
}
|
|
}
|
|
if(ordered_extrusions.size()>reordered_extrusions.size()){
|
|
// we didnt find any more islands, so lets move the remaining skipped perimeters to the reordered extrusions list.
|
|
for(auto extrusion_skipped : skipped_extrusions)
|
|
reordered_extrusions.emplace_back(extrusion_skipped);
|
|
skipped_extrusions.clear();
|
|
}
|
|
|
|
// Now start the sandwich mode wall re-ordering using the reordered_extrusions as the basis
|
|
// scan to find the external perimeter, first internal, second internal and last perimeter in the island.
|
|
// We then advance the position index to move to the second island and continue until there are no more
|
|
// perimeters left.
|
|
while (position < reordered_extrusions.size()) {
|
|
outer = first_internal = second_internal = current_perimeter = -1; // initialise all index values to -1
|
|
max_internal = reordered_extrusions.size()-1; // initialise the maximum internal perimeter to the last perimeter on the extrusion list
|
|
// run through the walls to get the index values that need re-ordering until the first one for each
|
|
// is found. Start at "position" index to enable the for loop to iterate for multiple external
|
|
// perimeters in a single island
|
|
// printf("Reorder Loop. Position %d, extrusion list size: %d, Outer index %d, inner index %d, second inner index %d\n", position, reordered_extrusions.size(),outer,first_internal,second_internal);
|
|
for (arr_i = position; arr_i < reordered_extrusions.size(); ++arr_i) {
|
|
// printf("Perimeter: extrusion inset index %d, ordered extrusions array position %d\n",reordered_extrusions[arr_i].extrusion->inset_idx, arr_i);
|
|
switch (reordered_extrusions[arr_i].extrusion->inset_idx) {
|
|
case 0: // external perimeter
|
|
if (outer == -1)
|
|
outer = arr_i;
|
|
break;
|
|
case 1: // first internal wall
|
|
if (first_internal==-1 && arr_i>outer && outer!=-1){
|
|
first_internal = arr_i;
|
|
}
|
|
break;
|
|
case 2: // second internal wall
|
|
if (second_internal == -1 && arr_i > first_internal && outer!=-1){
|
|
second_internal = arr_i;
|
|
}
|
|
break;
|
|
}
|
|
if(outer >-1 && first_internal>-1 && second_internal>-1 && reordered_extrusions[arr_i].extrusion->inset_idx == 0){ // found a new external perimeter after we've found all three perimeters to re-order -> this means we entered a new island.
|
|
arr_i=arr_i-1; //step back one perimeter
|
|
max_internal = arr_i; // new maximum internal perimeter is now this as we have found a new external perimeter, hence a new island.
|
|
break; // exit the for loop
|
|
}
|
|
}
|
|
|
|
// printf("Layer ID %d, Outer index %d, inner index %d, second inner index %d, maximum internal perimeter %d \n",layer_id,outer,first_internal,second_internal, max_internal);
|
|
if (outer > -1 && first_internal > -1 && second_internal > -1) { // found perimeters to re-order?
|
|
std::vector<PerimeterGeneratorArachneExtrusion> inner_outer_extrusions; // temporary array to hold extrusions for reordering
|
|
inner_outer_extrusions.reserve(max_internal - position + 1); // reserve array containing the number of perimeters before a new island. Variables are array indexes hence need to add +1 to convert to position allocations
|
|
// printf("Allocated array size %d, max_internal index %d, start position index %d \n",max_internal-position+1,max_internal,position);
|
|
|
|
for (arr_j = max_internal; arr_j >=position; --arr_j){ // go inside out towards the external perimeter (perimeters in reverse order) and store all internal perimeters until the first one identified with inset index 2
|
|
if(arr_j >= second_internal){
|
|
//printf("Inside out loop: Mapped perimeter index %d to array position %d\n", arr_j, max_internal-arr_j);
|
|
inner_outer_extrusions[max_internal-arr_j] = reordered_extrusions[arr_j];
|
|
current_perimeter++;
|
|
}
|
|
}
|
|
|
|
for (arr_j = position; arr_j < second_internal; ++arr_j){ // go outside in and map the remaining perimeters (external and first internal wall(s)) using the outside in wall order
|
|
// printf("Outside in loop: Mapped perimeter index %d to array position %d\n", arr_j, current_perimeter+1);
|
|
inner_outer_extrusions[++current_perimeter] = reordered_extrusions[arr_j];
|
|
}
|
|
|
|
for(arr_j = position; arr_j <= max_internal; ++arr_j) // replace perimeter array with the new re-ordered array
|
|
ordered_extrusions[arr_j] = inner_outer_extrusions[arr_j-position];
|
|
} else
|
|
break;
|
|
// go to the next perimeter from the current position to continue scanning for external walls in the same island
|
|
position = arr_i + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool steep_overhang_contour = false;
|
|
bool steep_overhang_hole = false;
|
|
const WallDirection wall_direction = config->wall_direction;
|
|
if (wall_direction != WallDirection::Auto) {
|
|
// Skip steep overhang detection if wall direction is specified
|
|
steep_overhang_contour = true;
|
|
steep_overhang_hole = true;
|
|
}
|
|
if (ExtrusionEntityCollection extrusion_coll = traverse_extrusions(*this, ordered_extrusions, steep_overhang_contour, steep_overhang_hole); !extrusion_coll.empty()) {
|
|
// All walls are counter-clockwise initially, so we don't need to reorient it if that's what we want
|
|
if (wall_direction != WallDirection::CounterClockwise) {
|
|
reorient_perimeters(extrusion_coll, steep_overhang_contour, steep_overhang_hole,
|
|
// Reverse internal only if the wall direction is auto
|
|
this->config->overhang_reverse_internal_only && wall_direction == WallDirection::Auto);
|
|
}
|
|
this->loops->append(extrusion_coll);
|
|
}
|
|
|
|
ExPolygons infill_contour = union_ex(wallToolPaths.getInnerContour());
|
|
const coord_t spacing = (perimeters.size() == 1) ? ext_perimeter_spacing2 : perimeter_spacing;
|
|
|
|
if (offset_ex(infill_contour, -float(spacing / 2.)).empty())
|
|
infill_contour.clear(); // Infill region is too small, so let's filter it out.
|
|
|
|
// create one more offset to be used as boundary for fill
|
|
// we offset by half the perimeter spacing (to get to the actual infill boundary)
|
|
// and then we offset back and forth by half the infill spacing to only consider the
|
|
// non-collapsing regions
|
|
coord_t inset =
|
|
(loop_number < 0) ? 0 :
|
|
(loop_number == 0) ?
|
|
// one loop
|
|
ext_perimeter_spacing :
|
|
// two or more loops?
|
|
perimeter_spacing;
|
|
|
|
inset = coord_t(scale_(this->config->infill_wall_overlap.get_abs_value(unscale<double>(inset))));
|
|
// simplify infill contours according to resolution
|
|
Polygons pp;
|
|
for (ExPolygon& ex : infill_contour)
|
|
ex.simplify_p(m_scaled_resolution, &pp);
|
|
ExPolygons not_filled_exp = union_ex(pp);
|
|
// collapse too narrow infill areas
|
|
const auto min_perimeter_infill_spacing = coord_t(solid_infill_spacing * (1. - INSET_OVERLAP_TOLERANCE));
|
|
|
|
ExPolygons infill_exp = offset2_ex(
|
|
not_filled_exp,
|
|
float(-min_perimeter_infill_spacing / 2.),
|
|
float(inset + min_perimeter_infill_spacing / 2.));
|
|
// append infill areas to fill_surfaces
|
|
if (!top_fills.empty()) {
|
|
infill_exp = union_ex(infill_exp, offset_ex(top_fills, double(inset)));
|
|
}
|
|
this->fill_surfaces->append(infill_exp, stInternal);
|
|
|
|
apply_extra_perimeters(infill_exp);
|
|
|
|
// BBS: get the no-overlap infill expolygons
|
|
{
|
|
ExPolygons polyWithoutOverlap;
|
|
polyWithoutOverlap = offset2_ex(
|
|
not_filled_exp,
|
|
float(-min_perimeter_infill_spacing / 2.),
|
|
float(+min_perimeter_infill_spacing / 2.));
|
|
if (!top_fills.empty())
|
|
polyWithoutOverlap = union_ex(polyWithoutOverlap, top_fills);
|
|
this->fill_no_overlap->insert(this->fill_no_overlap->end(), polyWithoutOverlap.begin(), polyWithoutOverlap.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
bool PerimeterGeneratorLoop::is_internal_contour() const
|
|
{
|
|
// An internal contour is a contour containing no other contours
|
|
if (! this->is_contour)
|
|
return false;
|
|
for (const PerimeterGeneratorLoop &loop : this->children)
|
|
if (loop.is_contour)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
std::map<int, Polygons> PerimeterGenerator::generate_lower_polygons_series(float width)
|
|
{
|
|
float nozzle_diameter = print_config->nozzle_diameter.get_at(config->wall_filament - 1);
|
|
float start_offset = -0.5 * width;
|
|
float end_offset = 0.5 * nozzle_diameter;
|
|
|
|
assert(overhang_sampling_number >= 3);
|
|
// generate offsets
|
|
std::vector<float> offset_series;
|
|
offset_series.reserve(overhang_sampling_number - 1);
|
|
for (int i = 0; i < overhang_sampling_number - 1; i++) {
|
|
offset_series.push_back(start_offset + (i + 0.5) * (end_offset - start_offset) / (overhang_sampling_number - 1));
|
|
}
|
|
// BBS: increase start_offset a little to avoid to calculate 90 degree as overhang
|
|
offset_series[0] = start_offset + 0.5 * (end_offset - start_offset) / (overhang_sampling_number - 1);
|
|
offset_series[overhang_sampling_number - 2] = end_offset;
|
|
offset_series.back() = 0.1 * nozzle_diameter;
|
|
|
|
std::map<int, Polygons> lower_polygons_series;
|
|
if (this->lower_slices == NULL) {
|
|
return lower_polygons_series;
|
|
}
|
|
|
|
// offset expolygon to generate series of polygons
|
|
for (int i = 0; i < offset_series.size(); i++) {
|
|
lower_polygons_series.insert(std::pair<int, Polygons>(i, offset(*this->lower_slices, float(scale_(offset_series[i])))));
|
|
}
|
|
return lower_polygons_series;
|
|
}
|
|
|
|
}
|