OrcaSlicer/src/libigl/igl/uniformly_sample_two_manifold.cpp
tamasmeszaros 2ae2672ee9 Building igl statically and moving to the dep scripts
Fixing dep build script on Windows and removing some warnings.

Use bundled igl by default.

Not building with the dependency scripts if not explicitly stated. This way, it will stay in
Fix the libigl patch to include C source files in header only mode.
2019-06-19 14:52:55 +02:00

427 lines
13 KiB
C++

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "uniformly_sample_two_manifold.h"
#include "verbose.h"
#include "slice.h"
#include "colon.h"
#include "all_pairs_distances.h"
#include "mat_max.h"
#include "vertex_triangle_adjacency.h"
#include "get_seconds.h"
#include "cat.h"
//#include "MT19937.h"
#include "partition.h"
//////////////////////////////////////////////////////////////////////////////
// Helper functions
//////////////////////////////////////////////////////////////////////////////
IGL_INLINE void igl::uniformly_sample_two_manifold(
const Eigen::MatrixXd & W,
const Eigen::MatrixXi & F,
const int k,
const double push,
Eigen::MatrixXd & WS)
{
using namespace Eigen;
using namespace std;
// Euclidean distance between two points on a mesh given as barycentric
// coordinates
// Inputs:
// W #W by dim positions of mesh in weight space
// F #F by 3 indices of triangles
// face_A face index where 1st point lives
// bary_A barycentric coordinates of 1st point on face_A
// face_B face index where 2nd point lives
// bary_B barycentric coordinates of 2nd point on face_B
// Returns distance in euclidean space
const auto & bary_dist = [] (
const Eigen::MatrixXd & W,
const Eigen::MatrixXi & F,
const int face_A,
const Eigen::Vector3d & bary_A,
const int face_B,
const Eigen::Vector3d & bary_B) -> double
{
return
((bary_A(0)*W.row(F(face_A,0)) +
bary_A(1)*W.row(F(face_A,1)) +
bary_A(2)*W.row(F(face_A,2)))
-
(bary_B(0)*W.row(F(face_B,0)) +
bary_B(1)*W.row(F(face_B,1)) +
bary_B(2)*W.row(F(face_B,2)))).norm();
};
// Base case if F is a tet list, find all faces and pass as non-manifold
// triangle mesh
if(F.cols() == 4)
{
verbose("uniform_sample.h: sampling tet mesh\n");
MatrixXi T0 = F.col(0);
MatrixXi T1 = F.col(1);
MatrixXi T2 = F.col(2);
MatrixXi T3 = F.col(3);
// Faces from tets
MatrixXi TF =
cat(1,
cat(1,
cat(2,T0, cat(2,T1,T2)),
cat(2,T0, cat(2,T2,T3))),
cat(1,
cat(2,T0, cat(2,T3,T1)),
cat(2,T1, cat(2,T3,T2)))
);
assert(TF.rows() == 4*F.rows());
assert(TF.cols() == 3);
uniformly_sample_two_manifold(W,TF,k,push,WS);
return;
}
double start = get_seconds();
VectorXi S;
// First get sampling as best as possible on mesh
uniformly_sample_two_manifold_at_vertices(W,k,push,S);
verbose("Lap: %g\n",get_seconds()-start);
slice(W,S,colon<int>(0,W.cols()-1),WS);
//cout<<"WSmesh=["<<endl<<WS<<endl<<"];"<<endl;
//#ifdef EXTREME_VERBOSE
//cout<<"S=["<<endl<<S<<endl<<"];"<<endl;
//#endif
// Build map from vertices to list of incident faces
vector<vector<int> > VF,VFi;
vertex_triangle_adjacency(W,F,VF,VFi);
// List of list of face indices, for each sample gives index to face it is on
vector<vector<int> > sample_faces; sample_faces.resize(k);
// List of list of barycentric coordinates, for each sample gives b-coords in
// face its on
vector<vector<Eigen::Vector3d> > sample_barys; sample_barys.resize(k);
// List of current maxmins amongst samples
vector<int> cur_maxmin; cur_maxmin.resize(k);
// List of distance matrices, D(i)(s,j) reveals distance from i's sth sample
// to jth seed if j<k or (j-k)th "pushed" corner
vector<MatrixXd> D; D.resize(k);
// Precompute an W.cols() by W.cols() identity matrix
MatrixXd I(MatrixXd::Identity(W.cols(),W.cols()));
// Describe each seed as a face index and barycentric coordinates
for(int i = 0;i < k;i++)
{
// Unreferenced vertex?
assert(VF[S(i)].size() > 0);
sample_faces[i].push_back(VF[S(i)][0]);
// We're right on a face vertex so barycentric coordinates are 0, but 1 at
// that vertex
Eigen::Vector3d bary(0,0,0);
bary( VFi[S(i)][0] ) = 1;
sample_barys[i].push_back(bary);
// initialize this to current maxmin
cur_maxmin[i] = 0;
}
// initialize radius
double radius = 1.0;
// minimum radius (bound on precision)
//double min_radius = 1e-5;
double min_radius = 1e-5;
int max_num_rand_samples_per_triangle = 100;
int max_sample_attempts_per_triangle = 1000;
// Max number of outer iterations for a given radius
int max_iters = 1000;
// continue iterating until radius is smaller than some threshold
while(radius > min_radius)
{
// initialize each seed
for(int i = 0;i < k;i++)
{
// Keep track of cur_maxmin data
int face_i = sample_faces[i][cur_maxmin[i]];
Eigen::Vector3d bary(sample_barys[i][cur_maxmin[i]]);
// Find index in face of closest mesh vertex (on this face)
int index_in_face =
(bary(0) > bary(1) ? (bary(0) > bary(2) ? 0 : 2)
: (bary(1) > bary(2) ? 1 : 2));
// find closest mesh vertex
int vertex_i = F(face_i,index_in_face);
// incident triangles
vector<int> incident_F = VF[vertex_i];
// We're going to try to place num_rand_samples_per_triangle samples on
// each sample *after* this location
sample_barys[i].clear();
sample_faces[i].clear();
cur_maxmin[i] = 0;
sample_barys[i].push_back(bary);
sample_faces[i].push_back(face_i);
// Current seed location in weight space
VectorXd seed =
bary(0)*W.row(F(face_i,0)) +
bary(1)*W.row(F(face_i,1)) +
bary(2)*W.row(F(face_i,2));
#ifdef EXTREME_VERBOSE
verbose("i: %d\n",i);
verbose("face_i: %d\n",face_i);
//cout<<"bary: "<<bary<<endl;
verbose("index_in_face: %d\n",index_in_face);
verbose("vertex_i: %d\n",vertex_i);
verbose("incident_F.size(): %d\n",incident_F.size());
//cout<<"seed: "<<seed<<endl;
#endif
// loop over indcident triangles
for(int f=0;f<(int)incident_F.size();f++)
{
#ifdef EXTREME_VERBOSE
verbose("incident_F[%d]: %d\n",f,incident_F[f]);
#endif
int face_f = incident_F[f];
int num_samples_f = 0;
for(int s=0;s<max_sample_attempts_per_triangle;s++)
{
// Randomly sample unit square
double u,v;
// double ru = fgenrand();
// double rv = fgenrand();
double ru = (double)rand() / RAND_MAX;
double rv = (double)rand() / RAND_MAX;
// Reflect to lower triangle if above
if((ru+rv)>1)
{
u = 1-rv;
v = 1-ru;
}else
{
u = ru;
v = rv;
}
Eigen::Vector3d sample_bary(u,v,1-u-v);
double d = bary_dist(W,F,face_i,bary,face_f,sample_bary);
// check that sample is close enough
if(d<radius)
{
// add sample to list
sample_faces[i].push_back(face_f);
sample_barys[i].push_back(sample_bary);
num_samples_f++;
}
// Keep track of which random samples came from which face
if(num_samples_f >= max_num_rand_samples_per_triangle)
{
#ifdef EXTREME_VERBOSE
verbose("Reached maximum number of samples per face\n");
#endif
break;
}
if(s==(max_sample_attempts_per_triangle-1))
{
#ifdef EXTREME_VERBOSE
verbose("Reached maximum sample attempts per triangle\n");
#endif
}
}
#ifdef EXTREME_VERBOSE
verbose("sample_faces[%d].size(): %d\n",i,sample_faces[i].size());
verbose("sample_barys[%d].size(): %d\n",i,sample_barys[i].size());
#endif
}
}
// Precompute distances from each seed's random samples to each "pushed"
// corner
// Put -1 in entries corresponding distance of a seed's random samples to
// self
// Loop over seeds
for(int i = 0;i < k;i++)
{
// resize distance matrix for new samples
D[i].resize(sample_faces[i].size(),k+W.cols());
// Loop over i's samples
for(int s = 0;s<(int)sample_faces[i].size();s++)
{
int sample_face = sample_faces[i][s];
Eigen::Vector3d sample_bary = sample_barys[i][s];
// Loop over other seeds
for(int j = 0;j < k;j++)
{
// distance from sample(i,s) to seed j
double d;
if(i==j)
{
// phony self distance: Ilya's idea of infinite
d = 10;
}else
{
int seed_j_face = sample_faces[j][cur_maxmin[j]];
Eigen::Vector3d seed_j_bary(sample_barys[j][cur_maxmin[j]]);
d = bary_dist(W,F,sample_face,sample_bary,seed_j_face,seed_j_bary);
}
D[i](s,j) = d;
}
// Loop over corners
for(int j = 0;j < W.cols();j++)
{
// distance from sample(i,s) to corner j
double d =
((sample_bary(0)*W.row(F(sample_face,0)) +
sample_bary(1)*W.row(F(sample_face,1)) +
sample_bary(2)*W.row(F(sample_face,2)))
- I.row(j)).norm()/push;
// append after distances to seeds
D[i](s,k+j) = d;
}
}
}
int iters = 0;
while(true)
{
bool has_changed = false;
// try to move each seed
for(int i = 0;i < k;i++)
{
// for each sample look at distance to closest seed/corner
VectorXd minD = D[i].rowwise().minCoeff();
assert(minD.size() == (int)sample_faces[i].size());
// find random sample with maximum minimum distance to other seeds
int old_cur_maxmin = cur_maxmin[i];
double max_min = -2;
for(int s = 0;s<(int)sample_faces[i].size();s++)
{
if(max_min < minD(s))
{
max_min = minD(s);
// Set this as the new seed location
cur_maxmin[i] = s;
}
}
#ifdef EXTREME_VERBOSE
verbose("max_min: %g\n",max_min);
verbose("cur_maxmin[%d]: %d->%d\n",i,old_cur_maxmin,cur_maxmin[i]);
#endif
// did location change?
has_changed |= (old_cur_maxmin!=cur_maxmin[i]);
// update distances of random samples of other seeds
}
// if no seed moved, exit
if(!has_changed)
{
break;
}
iters++;
if(iters>=max_iters)
{
verbose("Hit max iters (%d) before converging\n",iters);
}
}
// shrink radius
//radius *= 0.9;
//radius *= 0.99;
radius *= 0.9;
}
// Collect weight space locations
WS.resize(k,W.cols());
for(int i = 0;i<k;i++)
{
int face_i = sample_faces[i][cur_maxmin[i]];
Eigen::Vector3d bary(sample_barys[i][cur_maxmin[i]]);
WS.row(i) =
bary(0)*W.row(F(face_i,0)) +
bary(1)*W.row(F(face_i,1)) +
bary(2)*W.row(F(face_i,2));
}
verbose("Lap: %g\n",get_seconds()-start);
//cout<<"WSafter=["<<endl<<WS<<endl<<"];"<<endl;
}
IGL_INLINE void igl::uniformly_sample_two_manifold_at_vertices(
const Eigen::MatrixXd & OW,
const int k,
const double push,
Eigen::VectorXi & S)
{
using namespace Eigen;
using namespace std;
// Copy weights and faces
const MatrixXd & W = OW;
/*const MatrixXi & F = OF;*/
// Initialize seeds
VectorXi G;
Matrix<double,Dynamic,1> ignore;
partition(W,k+W.cols(),G,S,ignore);
// Remove corners, which better be at top
S = S.segment(W.cols(),k).eval();
MatrixXd WS;
slice(W,S,colon<int>(0,W.cols()-1),WS);
//cout<<"WSpartition=["<<endl<<WS<<endl<<"];"<<endl;
// number of vertices
int n = W.rows();
// number of dimensions in weight space
int m = W.cols();
// Corners of weight space
MatrixXd I = MatrixXd::Identity(m,m);
// append corners to bottom of weights
MatrixXd WI(n+m,m);
WI << W,I;
// Weights at seeds and corners
MatrixXd WSC(k+m,m);
for(int i = 0;i<k;i++)
{
WSC.row(i) = W.row(S(i));
}
for(int i = 0;i<m;i++)
{
WSC.row(i+k) = WI.row(n+i);
}
// initialize all pairs sqaured distances
MatrixXd sqrD;
all_pairs_distances(WI,WSC,true,sqrD);
// bring in corners by push factor (squared because distances are squared)
sqrD.block(0,k,sqrD.rows(),m) /= push*push;
int max_iters = 30;
int j = 0;
for(;j<max_iters;j++)
{
bool has_changed = false;
// loop over seeds
for(int i =0;i<k;i++)
{
int old_si = S(i);
// set distance to ilya's idea of infinity
sqrD.col(i).setZero();
sqrD.col(i).array() += 10;
// find vertex farthers from all other seeds
MatrixXd minsqrD = sqrD.rowwise().minCoeff();
MatrixXd::Index si,PHONY;
minsqrD.maxCoeff(&si,&PHONY);
MatrixXd Wsi = W.row(si);
MatrixXd sqrDi;
all_pairs_distances(WI,Wsi,true,sqrDi);
sqrD.col(i) = sqrDi;
S(i) = si;
has_changed |= si!=old_si;
}
if(j == max_iters)
{
verbose("uniform_sample.h: Warning: hit max iters\n");
}
if(!has_changed)
{
break;
}
}
}