mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-19 04:37:52 -06:00

1. sharp tails are supported by a sparse set of contact points which are easier to remove than previously dense surrounding support. Organic tree support also has this feature, including all other smart overhang detection techniques (small overhang and cantilever detection), with the cost of slightly longer time to detect overhangs. 2. improve supporting overhang contours by adding contact points along contours. jira: STUDIO-3876 2. remove some redundant data structure. Change-Id: If7f595348506a14aba2d0132d23f97d3539c1e1f (cherry picked from commit e3cce09b9db12ced2841045ffd337b1f35494e6c) (cherry picked from commit 507345deb193d895d0813fc913f00b0def7e62f9)
1417 lines
76 KiB
C++
1417 lines
76 KiB
C++
#include "ElephantFootCompensation.hpp"
|
|
#include "I18N.hpp"
|
|
#include "Layer.hpp"
|
|
#include "MultiMaterialSegmentation.hpp"
|
|
#include "Print.hpp"
|
|
#include "ClipperUtils.hpp"
|
|
#include "Interlocking/InterlockingGenerator.hpp"
|
|
//BBS
|
|
#include "ShortestPath.hpp"
|
|
|
|
#include <boost/log/trivial.hpp>
|
|
|
|
#include <tbb/parallel_for.h>
|
|
|
|
//! macro used to mark string used at localization, return same string
|
|
#define L(s) Slic3r::I18N::translate(s)
|
|
|
|
namespace Slic3r {
|
|
|
|
bool PrintObject::clip_multipart_objects = true;
|
|
bool PrintObject::infill_only_where_needed = false;
|
|
|
|
LayerPtrs new_layers(
|
|
PrintObject *print_object,
|
|
// Object layers (pairs of bottom/top Z coordinate), without the raft.
|
|
const std::vector<coordf_t> &object_layers)
|
|
{
|
|
LayerPtrs out;
|
|
out.reserve(object_layers.size());
|
|
auto id = int(print_object->slicing_parameters().raft_layers());
|
|
coordf_t zmin = print_object->slicing_parameters().object_print_z_min;
|
|
Layer *prev = nullptr;
|
|
for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
|
|
coordf_t lo = object_layers[i_layer];
|
|
coordf_t hi = object_layers[i_layer + 1];
|
|
coordf_t slice_z = 0.5 * (lo + hi);
|
|
Layer *layer = new Layer(id ++, print_object, hi - lo, hi + zmin, slice_z);
|
|
out.emplace_back(layer);
|
|
if (prev != nullptr) {
|
|
prev->upper_layer = layer;
|
|
layer->lower_layer = prev;
|
|
}
|
|
prev = layer;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
// Slice single triangle mesh.
|
|
static std::vector<ExPolygons> slice_volume(
|
|
const ModelVolume &volume,
|
|
const std::vector<float> &zs,
|
|
const MeshSlicingParamsEx ¶ms,
|
|
const std::function<void()> &throw_on_cancel_callback)
|
|
{
|
|
std::vector<ExPolygons> layers;
|
|
if (! zs.empty()) {
|
|
indexed_triangle_set its = volume.mesh().its;
|
|
if (its.indices.size() > 0) {
|
|
MeshSlicingParamsEx params2 { params };
|
|
params2.trafo = params2.trafo * volume.get_matrix();
|
|
if (params2.trafo.rotation().determinant() < 0.)
|
|
its_flip_triangles(its);
|
|
layers = slice_mesh_ex(its, zs, params2, throw_on_cancel_callback);
|
|
throw_on_cancel_callback();
|
|
}
|
|
}
|
|
return layers;
|
|
}
|
|
|
|
// Slice single triangle mesh.
|
|
// Filter the zs not inside the ranges. The ranges are closed at the bottom and open at the top, they are sorted lexicographically and non overlapping.
|
|
static std::vector<ExPolygons> slice_volume(
|
|
const ModelVolume &volume,
|
|
const std::vector<float> &z,
|
|
const std::vector<t_layer_height_range> &ranges,
|
|
const MeshSlicingParamsEx ¶ms,
|
|
const std::function<void()> &throw_on_cancel_callback)
|
|
{
|
|
std::vector<ExPolygons> out;
|
|
if (! z.empty() && ! ranges.empty()) {
|
|
if (ranges.size() == 1 && z.front() >= ranges.front().first && z.back() < ranges.front().second) {
|
|
// All layers fit into a single range.
|
|
out = slice_volume(volume, z, params, throw_on_cancel_callback);
|
|
} else {
|
|
std::vector<float> z_filtered;
|
|
std::vector<std::pair<size_t, size_t>> n_filtered;
|
|
z_filtered.reserve(z.size());
|
|
n_filtered.reserve(2 * ranges.size());
|
|
size_t i = 0;
|
|
for (const t_layer_height_range &range : ranges) {
|
|
for (; i < z.size() && z[i] < range.first; ++ i) ;
|
|
size_t first = i;
|
|
for (; i < z.size() && z[i] < range.second; ++ i)
|
|
z_filtered.emplace_back(z[i]);
|
|
if (i > first)
|
|
n_filtered.emplace_back(std::make_pair(first, i));
|
|
}
|
|
if (! n_filtered.empty()) {
|
|
std::vector<ExPolygons> layers = slice_volume(volume, z_filtered, params, throw_on_cancel_callback);
|
|
out.assign(z.size(), ExPolygons());
|
|
i = 0;
|
|
for (const std::pair<size_t, size_t> &span : n_filtered)
|
|
for (size_t j = span.first; j < span.second; ++ j)
|
|
out[j] = std::move(layers[i ++]);
|
|
}
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
static inline bool model_volume_needs_slicing(const ModelVolume &mv)
|
|
{
|
|
ModelVolumeType type = mv.type();
|
|
return type == ModelVolumeType::MODEL_PART || type == ModelVolumeType::NEGATIVE_VOLUME || type == ModelVolumeType::PARAMETER_MODIFIER;
|
|
}
|
|
|
|
// Slice printable volumes, negative volumes and modifier volumes, sorted by ModelVolume::id().
|
|
// Apply closing radius.
|
|
// Apply positive XY compensation to ModelVolumeType::MODEL_PART and ModelVolumeType::PARAMETER_MODIFIER, not to ModelVolumeType::NEGATIVE_VOLUME.
|
|
// Apply contour simplification.
|
|
static std::vector<VolumeSlices> slice_volumes_inner(
|
|
const PrintConfig &print_config,
|
|
const PrintObjectConfig &print_object_config,
|
|
const Transform3d &object_trafo,
|
|
ModelVolumePtrs model_volumes,
|
|
const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges,
|
|
const std::vector<float> &zs,
|
|
const std::function<void()> &throw_on_cancel_callback)
|
|
{
|
|
model_volumes_sort_by_id(model_volumes);
|
|
|
|
std::vector<VolumeSlices> out;
|
|
out.reserve(model_volumes.size());
|
|
|
|
std::vector<t_layer_height_range> slicing_ranges;
|
|
if (layer_ranges.size() > 1)
|
|
slicing_ranges.reserve(layer_ranges.size());
|
|
|
|
MeshSlicingParamsEx params_base;
|
|
params_base.closing_radius = print_object_config.slice_closing_radius.value;
|
|
params_base.extra_offset = 0;
|
|
params_base.trafo = object_trafo;
|
|
//BBS: 0.0025mm is safe enough to simplify the data to speed slicing up for high-resolution model.
|
|
//Also has on influence on arc fitting which has default resolution 0.0125mm.
|
|
params_base.resolution = print_config.resolution <= 0.001 ? 0.0f : 0.0025;
|
|
switch (print_object_config.slicing_mode.value) {
|
|
case SlicingMode::Regular: params_base.mode = MeshSlicingParams::SlicingMode::Regular; break;
|
|
case SlicingMode::EvenOdd: params_base.mode = MeshSlicingParams::SlicingMode::EvenOdd; break;
|
|
case SlicingMode::CloseHoles: params_base.mode = MeshSlicingParams::SlicingMode::Positive; break;
|
|
}
|
|
|
|
params_base.mode_below = params_base.mode;
|
|
|
|
// BBS
|
|
const size_t num_extruders = print_config.filament_diameter.size();
|
|
const bool is_mm_painted = num_extruders > 1 && std::any_of(model_volumes.cbegin(), model_volumes.cend(), [](const ModelVolume *mv) { return mv->is_mm_painted(); });
|
|
// BBS: don't do size compensation when slice volume.
|
|
// Will handle contour and hole size compensation seperately later.
|
|
//const auto extra_offset = is_mm_painted ? 0.f : std::max(0.f, float(print_object_config.xy_contour_compensation.value));
|
|
const auto extra_offset = 0.f;
|
|
|
|
for (const ModelVolume *model_volume : model_volumes)
|
|
if (model_volume_needs_slicing(*model_volume)) {
|
|
MeshSlicingParamsEx params { params_base };
|
|
if (! model_volume->is_negative_volume())
|
|
params.extra_offset = extra_offset;
|
|
if (layer_ranges.size() == 1) {
|
|
if (const PrintObjectRegions::LayerRangeRegions &layer_range = layer_ranges.front(); layer_range.has_volume(model_volume->id())) {
|
|
if (model_volume->is_model_part() && print_config.spiral_mode) {
|
|
auto it = std::find_if(layer_range.volume_regions.begin(), layer_range.volume_regions.end(),
|
|
[model_volume](const auto &slice){ return model_volume == slice.model_volume; });
|
|
params.mode = MeshSlicingParams::SlicingMode::PositiveLargestContour;
|
|
// Slice the bottom layers with SlicingMode::Regular.
|
|
// This needs to be in sync with LayerRegion::make_perimeters() spiral_mode!
|
|
const PrintRegionConfig ®ion_config = it->region->config();
|
|
params.slicing_mode_normal_below_layer = size_t(region_config.bottom_shell_layers.value);
|
|
for (; params.slicing_mode_normal_below_layer < zs.size() && zs[params.slicing_mode_normal_below_layer] < region_config.bottom_shell_thickness - EPSILON;
|
|
++ params.slicing_mode_normal_below_layer);
|
|
}
|
|
out.push_back({
|
|
model_volume->id(),
|
|
slice_volume(*model_volume, zs, params, throw_on_cancel_callback)
|
|
});
|
|
}
|
|
} else {
|
|
assert(! print_config.spiral_mode);
|
|
slicing_ranges.clear();
|
|
for (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
|
|
if (layer_range.has_volume(model_volume->id()))
|
|
slicing_ranges.emplace_back(layer_range.layer_height_range);
|
|
if (! slicing_ranges.empty())
|
|
out.push_back({
|
|
model_volume->id(),
|
|
slice_volume(*model_volume, zs, slicing_ranges, params, throw_on_cancel_callback)
|
|
});
|
|
}
|
|
if (! out.empty() && out.back().slices.empty())
|
|
out.pop_back();
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
static inline VolumeSlices& volume_slices_find_by_id(std::vector<VolumeSlices> &volume_slices, const ObjectID id)
|
|
{
|
|
auto it = lower_bound_by_predicate(volume_slices.begin(), volume_slices.end(), [id](const VolumeSlices &vs) { return vs.volume_id < id; });
|
|
assert(it != volume_slices.end() && it->volume_id == id);
|
|
return *it;
|
|
}
|
|
|
|
static inline bool overlap_in_xy(const PrintObjectRegions::BoundingBox &l, const PrintObjectRegions::BoundingBox &r)
|
|
{
|
|
return ! (l.max().x() < r.min().x() || l.min().x() > r.max().x() ||
|
|
l.max().y() < r.min().y() || l.min().y() > r.max().y());
|
|
}
|
|
|
|
static std::vector<PrintObjectRegions::LayerRangeRegions>::const_iterator layer_range_first(const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges, double z)
|
|
{
|
|
auto it = lower_bound_by_predicate(layer_ranges.begin(), layer_ranges.end(),
|
|
[z](const PrintObjectRegions::LayerRangeRegions &lr) {
|
|
return lr.layer_height_range.second < z && abs(lr.layer_height_range.second - z) > EPSILON;
|
|
});
|
|
assert(it != layer_ranges.end() && it->layer_height_range.first <= z && z <= it->layer_height_range.second);
|
|
if (z == it->layer_height_range.second)
|
|
if (auto it_next = it; ++ it_next != layer_ranges.end() && it_next->layer_height_range.first == z)
|
|
it = it_next;
|
|
assert(it != layer_ranges.end() && it->layer_height_range.first <= z && z <= it->layer_height_range.second);
|
|
return it;
|
|
}
|
|
|
|
static std::vector<PrintObjectRegions::LayerRangeRegions>::const_iterator layer_range_next(
|
|
const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges,
|
|
std::vector<PrintObjectRegions::LayerRangeRegions>::const_iterator it,
|
|
double z)
|
|
{
|
|
for (; it->layer_height_range.second <= z + EPSILON; ++ it)
|
|
assert(it != layer_ranges.end());
|
|
assert(it != layer_ranges.end() && it->layer_height_range.first <= z && z < it->layer_height_range.second);
|
|
return it;
|
|
}
|
|
|
|
static std::vector<std::vector<ExPolygons>> slices_to_regions(
|
|
const PrintConfig &print_config,
|
|
const PrintObject &print_object,
|
|
ModelVolumePtrs model_volumes,
|
|
const PrintObjectRegions &print_object_regions,
|
|
const std::vector<float> &zs,
|
|
std::vector<VolumeSlices> &&volume_slices,
|
|
// If clipping is disabled, then ExPolygons produced by different volumes will never be merged, thus they will be allowed to overlap.
|
|
// It is up to the model designer to handle these overlaps.
|
|
const bool clip_multipart_objects,
|
|
const std::function<void()> &throw_on_cancel_callback)
|
|
{
|
|
model_volumes_sort_by_id(model_volumes);
|
|
|
|
std::vector<std::vector<ExPolygons>> slices_by_region(print_object_regions.all_regions.size(), std::vector<ExPolygons>(zs.size(), ExPolygons()));
|
|
|
|
// First shuffle slices into regions if there is no overlap with another region possible, collect zs of the complex cases.
|
|
std::vector<std::pair<size_t, float>> zs_complex;
|
|
{
|
|
size_t z_idx = 0;
|
|
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
|
|
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.first; ++ z_idx) ;
|
|
if (layer_range.volume_regions.empty()) {
|
|
} else if (layer_range.volume_regions.size() == 1) {
|
|
const ModelVolume *model_volume = layer_range.volume_regions.front().model_volume;
|
|
assert(model_volume != nullptr);
|
|
if (model_volume->is_model_part()) {
|
|
VolumeSlices &slices_src = volume_slices_find_by_id(volume_slices, model_volume->id());
|
|
auto &slices_dst = slices_by_region[layer_range.volume_regions.front().region->print_object_region_id()];
|
|
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx)
|
|
slices_dst[z_idx] = std::move(slices_src.slices[z_idx]);
|
|
}
|
|
} else {
|
|
zs_complex.reserve(zs.size());
|
|
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx) {
|
|
float z = zs[z_idx];
|
|
int idx_first_printable_region = -1;
|
|
bool complex = false;
|
|
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region) {
|
|
const PrintObjectRegions::VolumeRegion ®ion = layer_range.volume_regions[idx_region];
|
|
if (region.bbox->min().z() <= z && region.bbox->max().z() >= z) {
|
|
if (idx_first_printable_region == -1 && region.model_volume->is_model_part())
|
|
idx_first_printable_region = idx_region;
|
|
else if (idx_first_printable_region != -1) {
|
|
// Test for overlap with some other region.
|
|
for (int idx_region2 = idx_first_printable_region; idx_region2 < idx_region; ++ idx_region2) {
|
|
const PrintObjectRegions::VolumeRegion ®ion2 = layer_range.volume_regions[idx_region2];
|
|
if (region2.bbox->min().z() <= z && region2.bbox->max().z() >= z && overlap_in_xy(*region.bbox, *region2.bbox)) {
|
|
complex = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (complex)
|
|
zs_complex.push_back({ z_idx, z });
|
|
else if (idx_first_printable_region >= 0) {
|
|
const PrintObjectRegions::VolumeRegion ®ion = layer_range.volume_regions[idx_first_printable_region];
|
|
slices_by_region[region.region->print_object_region_id()][z_idx] = std::move(volume_slices_find_by_id(volume_slices, region.model_volume->id()).slices[z_idx]);
|
|
}
|
|
}
|
|
}
|
|
throw_on_cancel_callback();
|
|
}
|
|
}
|
|
|
|
// Second perform region clipping and assignment in parallel.
|
|
if (! zs_complex.empty()) {
|
|
std::vector<std::vector<VolumeSlices*>> layer_ranges_regions_to_slices(print_object_regions.layer_ranges.size(), std::vector<VolumeSlices*>());
|
|
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
|
|
std::vector<VolumeSlices*> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[&layer_range - print_object_regions.layer_ranges.data()];
|
|
layer_range_regions_to_slices.reserve(layer_range.volume_regions.size());
|
|
for (const PrintObjectRegions::VolumeRegion ®ion : layer_range.volume_regions)
|
|
layer_range_regions_to_slices.push_back(&volume_slices_find_by_id(volume_slices, region.model_volume->id()));
|
|
}
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, zs_complex.size()),
|
|
[&slices_by_region, &print_object_regions, &zs_complex, &layer_ranges_regions_to_slices, clip_multipart_objects, &throw_on_cancel_callback]
|
|
(const tbb::blocked_range<size_t> &range) {
|
|
float z = zs_complex[range.begin()].second;
|
|
auto it_layer_range = layer_range_first(print_object_regions.layer_ranges, z);
|
|
// Per volume_regions slices at this Z height.
|
|
struct RegionSlice {
|
|
ExPolygons expolygons;
|
|
// Identifier of this region in PrintObjectRegions::all_regions
|
|
int region_id;
|
|
ObjectID volume_id;
|
|
bool operator<(const RegionSlice &rhs) const {
|
|
bool this_empty = this->region_id < 0 || this->expolygons.empty();
|
|
bool rhs_empty = rhs.region_id < 0 || rhs.expolygons.empty();
|
|
// Sort the empty items to the end of the list.
|
|
// Sort by region_id & volume_id lexicographically.
|
|
return ! this_empty && (rhs_empty || (this->region_id < rhs.region_id || (this->region_id == rhs.region_id && volume_id < volume_id)));
|
|
}
|
|
};
|
|
|
|
// BBS
|
|
auto trim_overlap = [](ExPolygons& expolys_a, ExPolygons& expolys_b) {
|
|
ExPolygons trimming_a;
|
|
ExPolygons trimming_b;
|
|
|
|
for (ExPolygon& expoly_a : expolys_a) {
|
|
BoundingBox bbox_a = get_extents(expoly_a);
|
|
ExPolygons expolys_new;
|
|
for (ExPolygon& expoly_b : expolys_b) {
|
|
BoundingBox bbox_b = get_extents(expoly_b);
|
|
if (!bbox_a.overlap(bbox_b))
|
|
continue;
|
|
|
|
ExPolygons temp = intersection_ex(expoly_b, expoly_a, ApplySafetyOffset::Yes);
|
|
if (temp.empty())
|
|
continue;
|
|
|
|
if (expoly_a.contour.length() > expoly_b.contour.length())
|
|
trimming_a.insert(trimming_a.end(), temp.begin(), temp.end());
|
|
else
|
|
trimming_b.insert(trimming_b.end(), temp.begin(), temp.end());
|
|
}
|
|
}
|
|
|
|
expolys_a = diff_ex(expolys_a, trimming_a);
|
|
expolys_b = diff_ex(expolys_b, trimming_b);
|
|
};
|
|
|
|
std::vector<RegionSlice> temp_slices;
|
|
for (size_t zs_complex_idx = range.begin(); zs_complex_idx < range.end(); ++ zs_complex_idx) {
|
|
auto [z_idx, z] = zs_complex[zs_complex_idx];
|
|
it_layer_range = layer_range_next(print_object_regions.layer_ranges, it_layer_range, z);
|
|
const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
|
|
{
|
|
std::vector<VolumeSlices*> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[it_layer_range - print_object_regions.layer_ranges.begin()];
|
|
// Per volume_regions slices at thiz Z height.
|
|
temp_slices.clear();
|
|
temp_slices.reserve(layer_range.volume_regions.size());
|
|
for (VolumeSlices* &slices : layer_range_regions_to_slices) {
|
|
const PrintObjectRegions::VolumeRegion &volume_region = layer_range.volume_regions[&slices - layer_range_regions_to_slices.data()];
|
|
temp_slices.push_back({ std::move(slices->slices[z_idx]), volume_region.region ? volume_region.region->print_object_region_id() : -1, volume_region.model_volume->id() });
|
|
}
|
|
}
|
|
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region)
|
|
if (! temp_slices[idx_region].expolygons.empty()) {
|
|
const PrintObjectRegions::VolumeRegion ®ion = layer_range.volume_regions[idx_region];
|
|
if (region.model_volume->is_modifier()) {
|
|
assert(region.parent > -1);
|
|
bool next_region_same_modifier = idx_region + 1 < int(temp_slices.size()) && layer_range.volume_regions[idx_region + 1].model_volume == region.model_volume;
|
|
RegionSlice &parent_slice = temp_slices[region.parent];
|
|
RegionSlice &this_slice = temp_slices[idx_region];
|
|
ExPolygons source = std::move(this_slice.expolygons);
|
|
if (parent_slice.expolygons.empty()) {
|
|
this_slice .expolygons.clear();
|
|
} else {
|
|
this_slice .expolygons = intersection_ex(parent_slice.expolygons, source);
|
|
parent_slice.expolygons = diff_ex (parent_slice.expolygons, source);
|
|
}
|
|
if (next_region_same_modifier)
|
|
// To be used in the following iteration.
|
|
temp_slices[idx_region + 1].expolygons = std::move(source);
|
|
} else if ((region.model_volume->is_model_part() && clip_multipart_objects) || region.model_volume->is_negative_volume()) {
|
|
// Clip every non-zero region preceding it.
|
|
for (int idx_region2 = 0; idx_region2 < idx_region; ++ idx_region2)
|
|
if (! temp_slices[idx_region2].expolygons.empty()) {
|
|
// Skip trim_overlap for now, because it slow down the performace so much for some special cases
|
|
#if 1
|
|
if (const PrintObjectRegions::VolumeRegion& region2 = layer_range.volume_regions[idx_region2];
|
|
!region2.model_volume->is_negative_volume() && overlap_in_xy(*region.bbox, *region2.bbox))
|
|
temp_slices[idx_region2].expolygons = diff_ex(temp_slices[idx_region2].expolygons, temp_slices[idx_region].expolygons);
|
|
#else
|
|
const PrintObjectRegions::VolumeRegion& region2 = layer_range.volume_regions[idx_region2];
|
|
if (!region2.model_volume->is_negative_volume() && overlap_in_xy(*region.bbox, *region2.bbox))
|
|
//BBS: handle negative_volume seperately, always minus the negative volume and don't need to trim overlap
|
|
if (!region.model_volume->is_negative_volume())
|
|
trim_overlap(temp_slices[idx_region2].expolygons, temp_slices[idx_region].expolygons);
|
|
else
|
|
temp_slices[idx_region2].expolygons = diff_ex(temp_slices[idx_region2].expolygons, temp_slices[idx_region].expolygons);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
// Sort by region_id, push empty slices to the end.
|
|
std::sort(temp_slices.begin(), temp_slices.end());
|
|
// Remove the empty slices.
|
|
temp_slices.erase(std::find_if(temp_slices.begin(), temp_slices.end(), [](const auto &slice) { return slice.region_id == -1 || slice.expolygons.empty(); }), temp_slices.end());
|
|
// Merge slices and store them to the output.
|
|
for (int i = 0; i < int(temp_slices.size());) {
|
|
// Find a range of temp_slices with the same region_id.
|
|
int j = i;
|
|
bool merged = false;
|
|
ExPolygons &expolygons = temp_slices[i].expolygons;
|
|
for (++ j; j < int(temp_slices.size()) && temp_slices[i].region_id == temp_slices[j].region_id; ++ j)
|
|
if (ExPolygons &expolygons2 = temp_slices[j].expolygons; ! expolygons2.empty()) {
|
|
if (expolygons.empty()) {
|
|
expolygons = std::move(expolygons2);
|
|
} else {
|
|
append(expolygons, std::move(expolygons2));
|
|
merged = true;
|
|
}
|
|
}
|
|
// Don't unite the regions if ! clip_multipart_objects. In that case it is user's responsibility
|
|
// to handle region overlaps. Indeed, one may intentionally let the regions overlap to produce crossing perimeters
|
|
// for example.
|
|
if (merged && clip_multipart_objects)
|
|
expolygons = closing_ex(expolygons, float(scale_(EPSILON)));
|
|
slices_by_region[temp_slices[i].region_id][z_idx] = std::move(expolygons);
|
|
i = j;
|
|
}
|
|
throw_on_cancel_callback();
|
|
}
|
|
});
|
|
}
|
|
|
|
return slices_by_region;
|
|
}
|
|
|
|
//BBS: justify whether a volume is connected to another one
|
|
bool doesVolumeIntersect(VolumeSlices& vs1, VolumeSlices& vs2)
|
|
{
|
|
if (vs1.volume_id == vs2.volume_id) return true;
|
|
// two volumes in the same object should have same number of layers, otherwise the slicing is incorrect.
|
|
if (vs1.slices.size() != vs2.slices.size()) return false;
|
|
|
|
auto& vs1s = vs1.slices;
|
|
auto& vs2s = vs2.slices;
|
|
bool is_intersect = false;
|
|
|
|
tbb::parallel_for(tbb::blocked_range<int>(0, vs1s.size()),
|
|
[&vs1s, &vs2s, &is_intersect](const tbb::blocked_range<int>& range) {
|
|
for (auto i = range.begin(); i != range.end(); ++i) {
|
|
if (vs1s[i].empty()) continue;
|
|
|
|
if (overlaps(vs1s[i], vs2s[i])) {
|
|
is_intersect = true;
|
|
break;
|
|
}
|
|
if (i + 1 != vs2s.size() && overlaps(vs1s[i], vs2s[i + 1])) {
|
|
is_intersect = true;
|
|
break;
|
|
}
|
|
if (i - 1 >= 0 && overlaps(vs1s[i], vs2s[i - 1])) {
|
|
is_intersect = true;
|
|
break;
|
|
}
|
|
}
|
|
});
|
|
return is_intersect;
|
|
}
|
|
|
|
//BBS: grouping the volumes of an object according to their connection relationship
|
|
bool groupingVolumes(std::vector<VolumeSlices> objSliceByVolume, std::vector<groupedVolumeSlices>& groups, double resolution, int firstLayerReplacedBy)
|
|
{
|
|
std::vector<int> groupIndex(objSliceByVolume.size(), -1);
|
|
double offsetValue = 0.05 / SCALING_FACTOR;
|
|
|
|
std::vector<std::vector<int>> osvIndex;
|
|
for (int i = 0; i != objSliceByVolume.size(); ++i) {
|
|
for (int j = 0; j != objSliceByVolume[i].slices.size(); ++j) {
|
|
osvIndex.push_back({ i,j });
|
|
}
|
|
}
|
|
|
|
tbb::parallel_for(tbb::blocked_range<int>(0, osvIndex.size()),
|
|
[&osvIndex, &objSliceByVolume, &offsetValue, &resolution](const tbb::blocked_range<int>& range) {
|
|
for (auto k = range.begin(); k != range.end(); ++k) {
|
|
for (ExPolygon& poly_ex : objSliceByVolume[osvIndex[k][0]].slices[osvIndex[k][1]])
|
|
poly_ex.douglas_peucker(resolution);
|
|
}
|
|
});
|
|
|
|
tbb::parallel_for(tbb::blocked_range<int>(0, osvIndex.size()),
|
|
[&osvIndex, &objSliceByVolume,&offsetValue, &resolution](const tbb::blocked_range<int>& range) {
|
|
for (auto k = range.begin(); k != range.end(); ++k) {
|
|
objSliceByVolume[osvIndex[k][0]].slices[osvIndex[k][1]] = offset_ex(objSliceByVolume[osvIndex[k][0]].slices[osvIndex[k][1]], offsetValue);
|
|
}
|
|
});
|
|
|
|
for (int i = 0; i != objSliceByVolume.size(); ++i) {
|
|
if (groupIndex[i] < 0) {
|
|
groupIndex[i] = i;
|
|
}
|
|
for (int j = i + 1; j != objSliceByVolume.size(); ++j) {
|
|
if (doesVolumeIntersect(objSliceByVolume[i], objSliceByVolume[j])) {
|
|
if (groupIndex[j] < 0) groupIndex[j] = groupIndex[i];
|
|
if (groupIndex[j] != groupIndex[i]) {
|
|
int retain = std::min(groupIndex[i], groupIndex[j]);
|
|
int cover = std::max(groupIndex[i], groupIndex[j]);
|
|
for (int k = 0; k != objSliceByVolume.size(); ++k) {
|
|
if (groupIndex[k] == cover) groupIndex[k] = retain;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
std::vector<int> groupVector{};
|
|
for (int gi : groupIndex) {
|
|
bool exist = false;
|
|
for (int gv : groupVector) {
|
|
if (gv == gi) {
|
|
exist = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!exist) groupVector.push_back(gi);
|
|
}
|
|
|
|
// group volumes and their slices according to the grouping Vector
|
|
groups.clear();
|
|
|
|
for (int gv : groupVector) {
|
|
groupedVolumeSlices gvs;
|
|
gvs.groupId = gv;
|
|
for (int i = 0; i != objSliceByVolume.size(); ++i) {
|
|
if (groupIndex[i] == gv) {
|
|
gvs.volume_ids.push_back(objSliceByVolume[i].volume_id);
|
|
append(gvs.slices, objSliceByVolume[i].slices[firstLayerReplacedBy]);
|
|
}
|
|
}
|
|
|
|
// the slices of a group should be unioned
|
|
gvs.slices = offset_ex(union_ex(gvs.slices), -offsetValue);
|
|
for (ExPolygon& poly_ex : gvs.slices)
|
|
poly_ex.douglas_peucker(resolution);
|
|
|
|
groups.push_back(gvs);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//BBS: filter the members of "objSliceByVolume" such that only "model_part" are included
|
|
std::vector<VolumeSlices> findPartVolumes(const std::vector<VolumeSlices>& objSliceByVolume, ModelVolumePtrs model_volumes) {
|
|
std::vector<VolumeSlices> outPut;
|
|
for (const auto& vs : objSliceByVolume) {
|
|
for (const auto& mv : model_volumes) {
|
|
if (vs.volume_id == mv->id() && mv->is_model_part()) outPut.push_back(vs);
|
|
}
|
|
}
|
|
return outPut;
|
|
}
|
|
|
|
void applyNegtiveVolumes(ModelVolumePtrs model_volumes, const std::vector<VolumeSlices>& objSliceByVolume, std::vector<groupedVolumeSlices>& groups, double resolution) {
|
|
ExPolygons negTotal;
|
|
for (const auto& vs : objSliceByVolume) {
|
|
for (const auto& mv : model_volumes) {
|
|
if (vs.volume_id == mv->id() && mv->is_negative_volume()) {
|
|
if (vs.slices.size() > 0) {
|
|
append(negTotal, vs.slices.front());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto& g : groups) {
|
|
g.slices = diff_ex(g.slices, negTotal);
|
|
for (ExPolygon& poly_ex : g.slices)
|
|
poly_ex.douglas_peucker(resolution);
|
|
}
|
|
}
|
|
|
|
void reGroupingLayerPolygons(std::vector<groupedVolumeSlices>& gvss, ExPolygons &eps, double resolution)
|
|
{
|
|
std::vector<int> epsIndex;
|
|
epsIndex.resize(eps.size(), -1);
|
|
|
|
auto gvssc = gvss;
|
|
auto epsc = eps;
|
|
|
|
for (ExPolygon& poly_ex : epsc)
|
|
poly_ex.douglas_peucker(resolution);
|
|
|
|
for (int i = 0; i != gvssc.size(); ++i) {
|
|
for (ExPolygon& poly_ex : gvssc[i].slices)
|
|
poly_ex.douglas_peucker(resolution);
|
|
}
|
|
|
|
tbb::parallel_for(tbb::blocked_range<int>(0, epsc.size()),
|
|
[&epsc, &gvssc, &epsIndex](const tbb::blocked_range<int>& range) {
|
|
for (auto ie = range.begin(); ie != range.end(); ++ie) {
|
|
if (epsc[ie].area() <= 0)
|
|
continue;
|
|
|
|
double minArea = epsc[ie].area();
|
|
for (int iv = 0; iv != gvssc.size(); iv++) {
|
|
auto clipedExPolys = diff_ex(epsc[ie], gvssc[iv].slices);
|
|
double area = 0;
|
|
for (const auto& ce : clipedExPolys) {
|
|
area += ce.area();
|
|
}
|
|
if (area < minArea) {
|
|
minArea = area;
|
|
epsIndex[ie] = iv;
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
for (int iv = 0; iv != gvss.size(); iv++)
|
|
gvss[iv].slices.clear();
|
|
|
|
for (int ie = 0; ie != eps.size(); ie++) {
|
|
if (epsIndex[ie] >= 0)
|
|
gvss[epsIndex[ie]].slices.push_back(eps[ie]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
std::string fix_slicing_errors(PrintObject* object, LayerPtrs &layers, const std::function<void()> &throw_if_canceled, int &firstLayerReplacedBy)
|
|
{
|
|
std::string error_msg;//BBS
|
|
|
|
if (layers.size() == 0) return error_msg;
|
|
|
|
// Collect layers with slicing errors.
|
|
// These layers will be fixed in parallel.
|
|
std::vector<size_t> buggy_layers;
|
|
buggy_layers.reserve(layers.size());
|
|
// BBS: get largest external perimenter width of all layers
|
|
auto get_ext_peri_width = [](Layer* layer) {return layer->m_regions.empty() ? 0 : layer->m_regions[0]->flow(frExternalPerimeter).scaled_width(); };
|
|
auto it = std::max_element(layers.begin(), layers.end(), [get_ext_peri_width](auto& a, auto& b) {return get_ext_peri_width(a) < get_ext_peri_width(b); });
|
|
coord_t thresh = get_ext_peri_width(*it) * 0.5;// half of external perimeter width // 0.5 * scale_(this->config().line_width);
|
|
for (size_t idx_layer = 0; idx_layer < layers.size(); ++idx_layer) {
|
|
// BBS: detect empty layers (layers with very small regions) and mark them as problematic, then these layers will copy the nearest good layer
|
|
auto layer = layers[idx_layer];
|
|
ExPolygons lslices;
|
|
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++region_id) {
|
|
LayerRegion* layerm = layer->m_regions[region_id];
|
|
for (auto& surface : layerm->slices.surfaces) {
|
|
auto expoly = offset_ex(surface.expolygon, -thresh);
|
|
lslices.insert(lslices.begin(), expoly.begin(), expoly.end());
|
|
}
|
|
}
|
|
if (lslices.empty()) {
|
|
layer->slicing_errors = true;
|
|
}
|
|
|
|
if (layers[idx_layer]->slicing_errors) {
|
|
buggy_layers.push_back(idx_layer);
|
|
}
|
|
else
|
|
break; // only detect empty layers near bed
|
|
}
|
|
|
|
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
|
|
std::atomic<bool> is_replaced = false;
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, buggy_layers.size()),
|
|
[&layers, &throw_if_canceled, &buggy_layers, &is_replaced](const tbb::blocked_range<size_t>& range) {
|
|
for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
|
|
throw_if_canceled();
|
|
size_t idx_layer = buggy_layers[buggy_layer_idx];
|
|
// BBS: only replace empty layers lower than 1mm
|
|
const coordf_t thresh_empty_layer_height = 1;
|
|
Layer* layer = layers[idx_layer];
|
|
if (layer->print_z>= thresh_empty_layer_height)
|
|
continue;
|
|
assert(layer->slicing_errors);
|
|
// Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
|
|
// BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
|
|
for (size_t region_id = 0; region_id < layer->region_count(); ++ region_id) {
|
|
LayerRegion *layerm = layer->get_region(region_id);
|
|
// Find the first valid layer below / above the current layer.
|
|
const Surfaces *upper_surfaces = nullptr;
|
|
const Surfaces *lower_surfaces = nullptr;
|
|
//BBS: only repair empty layers lowers than 1mm
|
|
for (size_t j = idx_layer + 1; j < layers.size(); ++j) {
|
|
if (!layers[j]->slicing_errors) {
|
|
upper_surfaces = &layers[j]->regions()[region_id]->slices.surfaces;
|
|
break;
|
|
}
|
|
if (layers[j]->print_z >= thresh_empty_layer_height) break;
|
|
}
|
|
for (int j = int(idx_layer) - 1; j >= 0; --j) {
|
|
if (layers[j]->print_z >= thresh_empty_layer_height) continue;
|
|
if (!layers[j]->slicing_errors) {
|
|
lower_surfaces = &layers[j]->regions()[region_id]->slices.surfaces;
|
|
break;
|
|
}
|
|
}
|
|
// Collect outer contours and holes from the valid layers above & below.
|
|
ExPolygons expolys;
|
|
expolys.reserve(
|
|
((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) +
|
|
((lower_surfaces == nullptr) ? 0 : lower_surfaces->size()));
|
|
if (upper_surfaces)
|
|
for (const auto &surface : *upper_surfaces) {
|
|
expolys.emplace_back(surface.expolygon);
|
|
}
|
|
if (lower_surfaces)
|
|
for (const auto &surface : *lower_surfaces) {
|
|
expolys.emplace_back(surface.expolygon);
|
|
}
|
|
if (!expolys.empty()) {
|
|
//BBS
|
|
is_replaced = true;
|
|
layerm->slices.set(union_ex(expolys), stInternal);
|
|
}
|
|
}
|
|
// Update layer slices after repairing the single regions.
|
|
layer->make_slices();
|
|
}
|
|
});
|
|
throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
|
|
|
|
if(is_replaced)
|
|
error_msg = L("Empty layers around bottom are replaced by nearest normal layers.");
|
|
|
|
// remove empty layers from bottom
|
|
while (! layers.empty() && (layers.front()->lslices.empty() || layers.front()->empty())) {
|
|
delete layers.front();
|
|
layers.erase(layers.begin());
|
|
layers.front()->lower_layer = nullptr;
|
|
for (size_t i = 0; i < layers.size(); ++ i)
|
|
layers[i]->set_id(layers[i]->id() - 1);
|
|
}
|
|
|
|
//BBS
|
|
if(error_msg.empty() && !buggy_layers.empty())
|
|
error_msg = L("The model has too many empty layers.");
|
|
|
|
// BBS: first layer slices are sorted by volume group, if the first layer is empty and replaced by the 2nd layer
|
|
// the later will be stored in "object->firstLayerObjGroupsMod()"
|
|
if (!buggy_layers.empty() && buggy_layers.front() == 0 && layers.size() > 1)
|
|
firstLayerReplacedBy = 1;
|
|
|
|
return error_msg;
|
|
}
|
|
*/
|
|
|
|
void groupingVolumesForBrim(PrintObject* object, LayerPtrs& layers, int firstLayerReplacedBy)
|
|
{
|
|
const auto scaled_resolution = scaled<double>(object->print()->config().resolution.value);
|
|
auto partsObjSliceByVolume = findPartVolumes(object->firstLayerObjSliceMod(), object->model_object()->volumes);
|
|
groupingVolumes(partsObjSliceByVolume, object->firstLayerObjGroupsMod(), scaled_resolution, firstLayerReplacedBy);
|
|
applyNegtiveVolumes(object->model_object()->volumes, object->firstLayerObjSliceMod(), object->firstLayerObjGroupsMod(), scaled_resolution);
|
|
|
|
// BBS: the actual first layer slices stored in layers are re-sorted by volume group and will be used to generate brim
|
|
reGroupingLayerPolygons(object->firstLayerObjGroupsMod(), layers.front()->lslices, scaled_resolution);
|
|
}
|
|
|
|
// Called by make_perimeters()
|
|
// 1) Decides Z positions of the layers,
|
|
// 2) Initializes layers and their regions
|
|
// 3) Slices the object meshes
|
|
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
|
|
// 5) Applies size compensation (offsets the slices in XY plane)
|
|
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
|
|
// Resulting expolygons of layer regions are marked as Internal.
|
|
void PrintObject::slice()
|
|
{
|
|
if (! this->set_started(posSlice))
|
|
return;
|
|
//BBS: add flag to reload scene for shell rendering
|
|
m_print->set_status(5, L("Slicing mesh"), PrintBase::SlicingStatus::RELOAD_SCENE);
|
|
std::vector<coordf_t> layer_height_profile;
|
|
this->update_layer_height_profile(*this->model_object(), m_slicing_params, layer_height_profile);
|
|
m_print->throw_if_canceled();
|
|
m_typed_slices = false;
|
|
this->clear_layers();
|
|
m_layers = new_layers(this, generate_object_layers(m_slicing_params, layer_height_profile, m_config.precise_z_height.value));
|
|
this->slice_volumes();
|
|
m_print->throw_if_canceled();
|
|
int firstLayerReplacedBy = 0;
|
|
|
|
#if 0
|
|
// Fix the model.
|
|
//FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
|
|
std::string warning = fix_slicing_errors(this, m_layers, [this](){ m_print->throw_if_canceled(); }, firstLayerReplacedBy);
|
|
m_print->throw_if_canceled();
|
|
//BBS: send warning message to slicing callback
|
|
// This warning is inaccurate, because the empty layers may have been replaced, or the model has supports.
|
|
//if (!warning.empty()) {
|
|
// BOOST_LOG_TRIVIAL(info) << warning;
|
|
// this->active_step_add_warning(PrintStateBase::WarningLevel::CRITICAL, warning, PrintStateBase::SlicingReplaceInitEmptyLayers);
|
|
//}
|
|
#endif
|
|
|
|
// Detect and process holes that should be converted to polyholes
|
|
this->_transform_hole_to_polyholes();
|
|
|
|
// BBS: the actual first layer slices stored in layers are re-sorted by volume group and will be used to generate brim
|
|
groupingVolumesForBrim(this, m_layers, firstLayerReplacedBy);
|
|
|
|
// Update bounding boxes, back up raw slices of complex models.
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, m_layers.size()),
|
|
[this](const tbb::blocked_range<size_t>& range) {
|
|
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
|
m_print->throw_if_canceled();
|
|
Layer &layer = *m_layers[layer_idx];
|
|
layer.lslices_bboxes.clear();
|
|
layer.lslices_bboxes.reserve(layer.lslices.size());
|
|
for (const ExPolygon &expoly : layer.lslices)
|
|
layer.lslices_bboxes.emplace_back(get_extents(expoly));
|
|
layer.backup_untyped_slices();
|
|
}
|
|
});
|
|
if (m_layers.empty())
|
|
throw Slic3r::SlicingError(L("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n"));
|
|
|
|
// BBS
|
|
this->set_done(posSlice);
|
|
}
|
|
|
|
template<typename ThrowOnCancel>
|
|
static inline void apply_mm_segmentation(PrintObject &print_object, ThrowOnCancel throw_on_cancel)
|
|
{
|
|
// Returns MMU segmentation based on painting in MMU segmentation gizmo
|
|
std::vector<std::vector<ExPolygons>> segmentation = multi_material_segmentation_by_painting(print_object, throw_on_cancel);
|
|
assert(segmentation.size() == print_object.layer_count());
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, segmentation.size(), std::max(segmentation.size() / 128, size_t(1))),
|
|
[&print_object, &segmentation, throw_on_cancel](const tbb::blocked_range<size_t> &range) {
|
|
const auto &layer_ranges = print_object.shared_regions()->layer_ranges;
|
|
double z = print_object.get_layer(range.begin())->slice_z;
|
|
auto it_layer_range = layer_range_first(layer_ranges, z);
|
|
// BBS
|
|
const size_t num_extruders = print_object.print()->config().filament_diameter.size();
|
|
struct ByExtruder {
|
|
ExPolygons expolygons;
|
|
BoundingBox bbox;
|
|
};
|
|
std::vector<ByExtruder> by_extruder;
|
|
struct ByRegion {
|
|
ExPolygons expolygons;
|
|
bool needs_merge { false };
|
|
};
|
|
std::vector<ByRegion> by_region;
|
|
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
|
|
throw_on_cancel();
|
|
Layer *layer = print_object.get_layer(layer_id);
|
|
it_layer_range = layer_range_next(layer_ranges, it_layer_range, layer->slice_z);
|
|
const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
|
|
// Gather per extruder expolygons.
|
|
by_extruder.assign(num_extruders, ByExtruder());
|
|
by_region.assign(layer->region_count(), ByRegion());
|
|
bool layer_split = false;
|
|
for (size_t extruder_id = 0; extruder_id < num_extruders; ++ extruder_id) {
|
|
ByExtruder ®ion = by_extruder[extruder_id];
|
|
append(region.expolygons, std::move(segmentation[layer_id][extruder_id]));
|
|
if (! region.expolygons.empty()) {
|
|
region.bbox = get_extents(region.expolygons);
|
|
layer_split = true;
|
|
}
|
|
}
|
|
if (! layer_split)
|
|
continue;
|
|
// Split LayerRegions by by_extruder regions.
|
|
// layer_range.painted_regions are sorted by extruder ID and parent PrintObject region ID.
|
|
auto it_painted_region = layer_range.painted_regions.begin();
|
|
for (int region_id = 0; region_id < int(layer->region_count()); ++ region_id)
|
|
if (LayerRegion &layerm = *layer->get_region(region_id); ! layerm.slices.surfaces.empty()) {
|
|
assert(layerm.region().print_object_region_id() == region_id);
|
|
const BoundingBox bbox = get_extents(layerm.slices.surfaces);
|
|
assert(it_painted_region < layer_range.painted_regions.end());
|
|
// Find the first it_painted_region which overrides this region.
|
|
for (; layer_range.volume_regions[it_painted_region->parent].region->print_object_region_id() < region_id; ++ it_painted_region)
|
|
assert(it_painted_region != layer_range.painted_regions.end());
|
|
assert(it_painted_region != layer_range.painted_regions.end());
|
|
assert(layer_range.volume_regions[it_painted_region->parent].region == &layerm.region());
|
|
// 1-based extruder ID
|
|
bool self_trimmed = false;
|
|
int self_extruder_id = -1;
|
|
for (int extruder_id = 1; extruder_id <= int(by_extruder.size()); ++ extruder_id)
|
|
if (ByExtruder &segmented = by_extruder[extruder_id - 1]; segmented.bbox.defined && bbox.overlap(segmented.bbox)) {
|
|
// Find the target region.
|
|
for (; int(it_painted_region->extruder_id) < extruder_id; ++ it_painted_region)
|
|
assert(it_painted_region != layer_range.painted_regions.end());
|
|
assert(layer_range.volume_regions[it_painted_region->parent].region == &layerm.region() && int(it_painted_region->extruder_id) == extruder_id);
|
|
//FIXME Don't trim by self, it is not reliable.
|
|
if (&layerm.region() == it_painted_region->region) {
|
|
self_extruder_id = extruder_id;
|
|
continue;
|
|
}
|
|
// Steal from this region.
|
|
int target_region_id = it_painted_region->region->print_object_region_id();
|
|
ExPolygons stolen = intersection_ex(layerm.slices.surfaces, segmented.expolygons);
|
|
if (! stolen.empty()) {
|
|
ByRegion &dst = by_region[target_region_id];
|
|
if (dst.expolygons.empty()) {
|
|
dst.expolygons = std::move(stolen);
|
|
} else {
|
|
append(dst.expolygons, std::move(stolen));
|
|
dst.needs_merge = true;
|
|
}
|
|
}
|
|
#if 0
|
|
if (&layerm.region() == it_painted_region->region)
|
|
// Slices of this LayerRegion were trimmed by a MMU region of the same PrintRegion.
|
|
self_trimmed = true;
|
|
#endif
|
|
}
|
|
if (! self_trimmed) {
|
|
// Trim slices of this LayerRegion with all the MMU regions.
|
|
Polygons mine = to_polygons(std::move(layerm.slices.surfaces));
|
|
for (auto &segmented : by_extruder)
|
|
if (&segmented - by_extruder.data() + 1 != self_extruder_id && segmented.bbox.defined && bbox.overlap(segmented.bbox)) {
|
|
mine = diff(mine, segmented.expolygons);
|
|
if (mine.empty())
|
|
break;
|
|
}
|
|
// Filter out unprintable polygons produced by subtraction multi-material painted regions from layerm.region().
|
|
// ExPolygon returned from multi-material segmentation does not precisely match ExPolygons in layerm.region()
|
|
// (because of preprocessing of the input regions in multi-material segmentation). Therefore, subtraction from
|
|
// layerm.region() could produce a huge number of small unprintable regions for the model's base extruder.
|
|
// This could, on some models, produce bulges with the model's base color (#7109).
|
|
if (! mine.empty())
|
|
mine = opening(union_ex(mine), float(scale_(5 * EPSILON)), float(scale_(5 * EPSILON)));
|
|
if (! mine.empty()) {
|
|
ByRegion &dst = by_region[layerm.region().print_object_region_id()];
|
|
if (dst.expolygons.empty()) {
|
|
dst.expolygons = union_ex(mine);
|
|
} else {
|
|
append(dst.expolygons, union_ex(mine));
|
|
dst.needs_merge = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Re-create Surfaces of LayerRegions.
|
|
for (size_t region_id = 0; region_id < layer->region_count(); ++ region_id) {
|
|
ByRegion &src = by_region[region_id];
|
|
if (src.needs_merge)
|
|
// Multiple regions were merged into one.
|
|
src.expolygons = closing_ex(src.expolygons, float(scale_(10 * EPSILON)));
|
|
layer->get_region(region_id)->slices.set(std::move(src.expolygons), stInternal);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
|
|
// 1) Decides Z positions of the layers,
|
|
// 2) Initializes layers and their regions
|
|
// 3) Slices the object meshes
|
|
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
|
|
// 5) Applies size compensation (offsets the slices in XY plane)
|
|
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
|
|
// Resulting expolygons of layer regions are marked as Internal.
|
|
//
|
|
// this should be idempotent
|
|
void PrintObject::slice_volumes()
|
|
{
|
|
BOOST_LOG_TRIVIAL(info) << "Slicing volumes..." << log_memory_info();
|
|
const Print *print = this->print();
|
|
const auto throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
|
|
|
|
// Clear old LayerRegions, allocate for new PrintRegions.
|
|
for (Layer* layer : m_layers) {
|
|
//BBS: should delete all LayerRegionPtr to avoid memory leak
|
|
while (!layer->m_regions.empty()) {
|
|
if (layer->m_regions.back())
|
|
delete layer->m_regions.back();
|
|
layer->m_regions.pop_back();
|
|
}
|
|
layer->m_regions.reserve(m_shared_regions->all_regions.size());
|
|
for (const std::unique_ptr<PrintRegion> &pr : m_shared_regions->all_regions)
|
|
layer->m_regions.emplace_back(new LayerRegion(layer, pr.get()));
|
|
}
|
|
|
|
std::vector<float> slice_zs = zs_from_layers(m_layers);
|
|
std::vector<VolumeSlices> objSliceByVolume;
|
|
if (!slice_zs.empty()) {
|
|
objSliceByVolume = slice_volumes_inner(
|
|
print->config(), this->config(), this->trafo_centered(),
|
|
this->model_object()->volumes, m_shared_regions->layer_ranges, slice_zs, throw_on_cancel_callback);
|
|
}
|
|
|
|
//BBS: "model_part" volumes are grouded according to their connections
|
|
//const auto scaled_resolution = scaled<double>(print->config().resolution.value);
|
|
//firstLayerObjSliceByVolume = findPartVolumes(objSliceByVolume, this->model_object()->volumes);
|
|
//groupingVolumes(objSliceByVolumeParts, firstLayerObjSliceByGroups, scaled_resolution);
|
|
//applyNegtiveVolumes(this->model_object()->volumes, objSliceByVolume, firstLayerObjSliceByGroups, scaled_resolution);
|
|
firstLayerObjSliceByVolume = objSliceByVolume;
|
|
|
|
std::vector<std::vector<ExPolygons>> region_slices =
|
|
slices_to_regions(print->config(), *this, this->model_object()->volumes, *m_shared_regions, slice_zs,
|
|
std::move(objSliceByVolume), PrintObject::clip_multipart_objects, throw_on_cancel_callback);
|
|
|
|
for (size_t region_id = 0; region_id < region_slices.size(); ++ region_id) {
|
|
std::vector<ExPolygons> &by_layer = region_slices[region_id];
|
|
for (size_t layer_id = 0; layer_id < by_layer.size(); ++ layer_id)
|
|
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(by_layer[layer_id]), stInternal);
|
|
}
|
|
region_slices.clear();
|
|
|
|
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - removing top empty layers";
|
|
while (! m_layers.empty()) {
|
|
const Layer *layer = m_layers.back();
|
|
if (! layer->empty())
|
|
break;
|
|
delete layer;
|
|
m_layers.pop_back();
|
|
}
|
|
if (! m_layers.empty())
|
|
m_layers.back()->upper_layer = nullptr;
|
|
m_print->throw_if_canceled();
|
|
|
|
this->apply_conical_overhang();
|
|
|
|
// Is any ModelVolume MMU painted?
|
|
if (const auto& volumes = this->model_object()->volumes;
|
|
m_print->config().filament_diameter.size() > 1 && // BBS
|
|
std::find_if(volumes.begin(), volumes.end(), [](const ModelVolume* v) { return !v->mmu_segmentation_facets.empty(); }) != volumes.end()) {
|
|
|
|
// If XY Size compensation is also enabled, notify the user that XY Size compensation
|
|
// would not be used because the object is multi-material painted.
|
|
if (m_config.xy_hole_compensation.value != 0.f || m_config.xy_contour_compensation.value != 0.f) {
|
|
this->active_step_add_warning(
|
|
PrintStateBase::WarningLevel::CRITICAL,
|
|
L("An object's XY size compensation will not be used because it is also color-painted.\nXY Size "
|
|
"compensation can not be combined with color-painting."));
|
|
BOOST_LOG_TRIVIAL(info) << "xy compensation will not work for object " << this->model_object()->name << " for multi filament.";
|
|
}
|
|
|
|
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - MMU segmentation";
|
|
apply_mm_segmentation(*this, [print]() { print->throw_if_canceled(); });
|
|
}
|
|
|
|
m_print->throw_if_canceled();
|
|
|
|
InterlockingGenerator::generate_interlocking_structure(this);
|
|
m_print->throw_if_canceled();
|
|
|
|
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - begin";
|
|
{
|
|
// Compensation value, scaled. Only applying the negative scaling here, as the positive scaling has already been applied during slicing.
|
|
const size_t num_extruders = print->config().filament_diameter.size();
|
|
const auto xy_hole_scaled = (num_extruders > 1 && this->is_mm_painted()) ? scaled<float>(0.f) : scaled<float>(m_config.xy_hole_compensation.value);
|
|
const auto xy_contour_scaled = (num_extruders > 1 && this->is_mm_painted()) ? scaled<float>(0.f) : scaled<float>(m_config.xy_contour_compensation.value);
|
|
const float elephant_foot_compensation_scaled = (m_config.raft_layers == 0) ?
|
|
// Only enable Elephant foot compensation if printing directly on the print bed.
|
|
float(scale_(m_config.elefant_foot_compensation.value)) :
|
|
0.f;
|
|
// Uncompensated slices for the layers in case the Elephant foot compensation is applied.
|
|
std::vector<ExPolygons> lslices_elfoot_uncompensated;
|
|
lslices_elfoot_uncompensated.resize(elephant_foot_compensation_scaled > 0 ? std::min(m_config.elefant_foot_compensation_layers.value, (int)m_layers.size()) : 0);
|
|
//BBS: this part has been changed a lot to support seperated contour and hole size compensation
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, m_layers.size()),
|
|
[this, xy_hole_scaled, xy_contour_scaled, elephant_foot_compensation_scaled, &lslices_elfoot_uncompensated](const tbb::blocked_range<size_t>& range) {
|
|
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
|
|
m_print->throw_if_canceled();
|
|
Layer *layer = m_layers[layer_id];
|
|
// Apply size compensation and perform clipping of multi-part objects.
|
|
float elfoot = elephant_foot_compensation_scaled > 0 && layer_id < m_config.elefant_foot_compensation_layers.value ?
|
|
elephant_foot_compensation_scaled - (elephant_foot_compensation_scaled / m_config.elefant_foot_compensation_layers.value) * layer_id :
|
|
0.f;
|
|
if (layer->m_regions.size() == 1) {
|
|
// Optimized version for a single region layer.
|
|
// Single region, growing or shrinking.
|
|
LayerRegion *layerm = layer->m_regions.front();
|
|
if (elfoot > 0) {
|
|
// Apply the elephant foot compensation and store the original layer slices without the Elephant foot compensation applied.
|
|
ExPolygons expolygons_to_compensate = to_expolygons(std::move(layerm->slices.surfaces));
|
|
if (xy_contour_scaled > 0 || xy_hole_scaled > 0) {
|
|
expolygons_to_compensate = _shrink_contour_holes(std::max(0.f, xy_contour_scaled),
|
|
std::max(0.f, xy_hole_scaled),
|
|
expolygons_to_compensate);
|
|
}
|
|
if (xy_contour_scaled < 0 || xy_hole_scaled < 0) {
|
|
expolygons_to_compensate = _shrink_contour_holes(std::min(0.f, xy_contour_scaled),
|
|
std::min(0.f, xy_hole_scaled),
|
|
expolygons_to_compensate);
|
|
}
|
|
lslices_elfoot_uncompensated[layer_id] = expolygons_to_compensate;
|
|
layerm->slices.set(
|
|
union_ex(
|
|
Slic3r::elephant_foot_compensation(expolygons_to_compensate,
|
|
layerm->flow(frExternalPerimeter), unscale<double>(elfoot))),
|
|
stInternal);
|
|
} else {
|
|
// Apply the XY contour and hole size compensation.
|
|
if (xy_contour_scaled != 0.0f || xy_hole_scaled != 0.0f) {
|
|
ExPolygons expolygons = to_expolygons(std::move(layerm->slices.surfaces));
|
|
if (xy_contour_scaled > 0 || xy_hole_scaled > 0) {
|
|
expolygons = _shrink_contour_holes(std::max(0.f, xy_contour_scaled),
|
|
std::max(0.f, xy_hole_scaled),
|
|
expolygons);
|
|
}
|
|
if (xy_contour_scaled < 0 || xy_hole_scaled < 0) {
|
|
expolygons = _shrink_contour_holes(std::min(0.f, xy_contour_scaled),
|
|
std::min(0.f, xy_hole_scaled),
|
|
expolygons);
|
|
}
|
|
layerm->slices.set(std::move(expolygons), stInternal);
|
|
}
|
|
}
|
|
} else {
|
|
float max_growth = std::max(xy_hole_scaled, xy_contour_scaled);
|
|
float min_growth = std::min(xy_hole_scaled, xy_contour_scaled);
|
|
ExPolygons merged_poly_for_holes_growing;
|
|
if (max_growth > 0) {
|
|
//BBS: merge polygons because region can cut "holes".
|
|
//Then, cut them to give them again later to their region
|
|
merged_poly_for_holes_growing = layer->merged(float(SCALED_EPSILON));
|
|
merged_poly_for_holes_growing = _shrink_contour_holes(std::max(0.f, xy_contour_scaled),
|
|
std::max(0.f, xy_hole_scaled),
|
|
union_ex(merged_poly_for_holes_growing));
|
|
|
|
// BBS: clipping regions, priority is given to the first regions.
|
|
Polygons processed;
|
|
for (size_t region_id = 0; region_id < layer->regions().size(); ++region_id) {
|
|
ExPolygons slices = to_expolygons(std::move(layer->m_regions[region_id]->slices.surfaces));
|
|
if (max_growth > 0.f) {
|
|
slices = intersection_ex(offset_ex(slices, max_growth), merged_poly_for_holes_growing);
|
|
}
|
|
|
|
//BBS: Trim by the slices of already processed regions.
|
|
if (region_id > 0)
|
|
slices = diff_ex(to_polygons(std::move(slices)), processed);
|
|
if (region_id + 1 < layer->regions().size())
|
|
// Collect the already processed regions to trim the to be processed regions.
|
|
polygons_append(processed, slices);
|
|
layer->m_regions[region_id]->slices.set(std::move(slices), stInternal);
|
|
}
|
|
}
|
|
if (min_growth < 0.f || elfoot > 0.f) {
|
|
// Apply the negative XY compensation. (the ones that is <0)
|
|
ExPolygons trimming;
|
|
static const float eps = float(scale_(m_config.slice_closing_radius.value) * 1.5);
|
|
if (elfoot > 0.f) {
|
|
ExPolygons expolygons_to_compensate = offset_ex(layer->merged(eps), -eps);
|
|
lslices_elfoot_uncompensated[layer_id] = expolygons_to_compensate;
|
|
trimming = Slic3r::elephant_foot_compensation(expolygons_to_compensate,
|
|
layer->m_regions.front()->flow(frExternalPerimeter), unscale<double>(elfoot));
|
|
} else {
|
|
trimming = layer->merged(float(SCALED_EPSILON));
|
|
}
|
|
if (min_growth < 0.0f)
|
|
trimming = _shrink_contour_holes(std::min(0.f, xy_contour_scaled),
|
|
std::min(0.f, xy_hole_scaled),
|
|
trimming);
|
|
//BBS: trim surfaces
|
|
for (size_t region_id = 0; region_id < layer->regions().size(); ++region_id) {
|
|
// BBS: split trimming result by region
|
|
ExPolygons contour_exp = to_expolygons(std::move(layer->regions()[region_id]->slices.surfaces));
|
|
|
|
layer->regions()[region_id]->slices.set(intersection_ex(contour_exp, to_polygons(trimming)), stInternal);
|
|
}
|
|
}
|
|
}
|
|
// Merge all regions' slices to get islands, chain them by a shortest path.
|
|
layer->make_slices();
|
|
}
|
|
});
|
|
if (elephant_foot_compensation_scaled > 0.f && ! m_layers.empty()) {
|
|
// The Elephant foot has been compensated, therefore the elefant_foot_compensation_layers layer's lslices are shrank with the Elephant foot compensation value.
|
|
// Store the uncompensated value there.
|
|
assert(m_layers.front()->id() == 0);
|
|
//BBS: sort the lslices_elfoot_uncompensated according to shortest path before saving
|
|
//Otherwise the travel of the layer layer would be mess.
|
|
for (int i = 0; i < lslices_elfoot_uncompensated.size(); i++) {
|
|
ExPolygons &expolygons_uncompensated = lslices_elfoot_uncompensated[i];
|
|
Points ordering_points;
|
|
ordering_points.reserve(expolygons_uncompensated.size());
|
|
for (const ExPolygon &ex : expolygons_uncompensated)
|
|
ordering_points.push_back(ex.contour.first_point());
|
|
std::vector<Points::size_type> order = chain_points(ordering_points);
|
|
ExPolygons lslices_sorted;
|
|
lslices_sorted.reserve(expolygons_uncompensated.size());
|
|
for (size_t i : order)
|
|
lslices_sorted.emplace_back(std::move(expolygons_uncompensated[i]));
|
|
m_layers[i]->lslices = std::move(lslices_sorted);
|
|
}
|
|
}
|
|
}
|
|
|
|
m_print->throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - end";
|
|
}
|
|
|
|
void PrintObject::apply_conical_overhang() {
|
|
BOOST_LOG_TRIVIAL(info) << "Make overhang printable...";
|
|
|
|
if (m_layers.empty()) {
|
|
return;
|
|
}
|
|
|
|
const double conical_overhang_angle = this->config().make_overhang_printable_angle;
|
|
if (conical_overhang_angle == 90.0) {
|
|
return;
|
|
}
|
|
const double angle_radians = conical_overhang_angle * M_PI / 180.;
|
|
const double max_hole_area = this->config().make_overhang_printable_hole_size; // in MM^2
|
|
const double tan_angle = tan(angle_radians); // the XY-component of the angle
|
|
BOOST_LOG_TRIVIAL(info) << "angle " << angle_radians << " maxHoleArea " << max_hole_area << " tan_angle "
|
|
<< tan_angle;
|
|
const coordf_t layer_thickness = m_config.layer_height.value;
|
|
const coordf_t max_dist_from_lower_layer = tan_angle * layer_thickness; // max dist which can be bridged, in MM
|
|
BOOST_LOG_TRIVIAL(info) << "layer_thickness " << layer_thickness << " max_dist_from_lower_layer "
|
|
<< max_dist_from_lower_layer;
|
|
|
|
// Pre-scale config
|
|
const coordf_t scaled_max_dist_from_lower_layer = -float(scale_(max_dist_from_lower_layer));
|
|
const coordf_t scaled_max_hole_area = float(scale_(scale_(max_hole_area)));
|
|
|
|
|
|
for (auto i = m_layers.rbegin() + 1; i != m_layers.rend(); ++i) {
|
|
m_print->throw_if_canceled();
|
|
Layer *layer = *i;
|
|
Layer *upper_layer = layer->upper_layer;
|
|
|
|
if (upper_layer->empty()) {
|
|
continue;
|
|
}
|
|
|
|
// Skip if entire layer has this disabled
|
|
if (std::all_of(layer->m_regions.begin(), layer->m_regions.end(),
|
|
[](const LayerRegion *r) { return r->slices.empty() || !r->region().config().make_overhang_printable; })) {
|
|
continue;
|
|
}
|
|
|
|
//layer->export_region_slices_to_svg_debug("layer_before_conical_overhang");
|
|
//upper_layer->export_region_slices_to_svg_debug("upper_layer_before_conical_overhang");
|
|
|
|
|
|
// Merge the upper layer because we want to offset the entire layer uniformly, otherwise
|
|
// the model could break at the region boundary.
|
|
auto upper_poly = upper_layer->merged(float(SCALED_EPSILON));
|
|
upper_poly = union_ex(upper_poly);
|
|
|
|
// Merge layer for the same reason
|
|
auto current_poly = layer->merged(float(SCALED_EPSILON));
|
|
current_poly = union_ex(current_poly);
|
|
|
|
// Avoid closing up of recessed holes in the base of a model.
|
|
// Detects when a hole is completely covered by the layer above and removes the hole from the layer above before
|
|
// adding it in.
|
|
// This should have no effect any time a hole in a layer interacts with any polygon in the layer above
|
|
if (scaled_max_hole_area > 0.0) {
|
|
|
|
// Now go through all the holes in the current layer and check if they intersect anything in the layer above
|
|
// If not, then they're the top of a hole and should be cut from the layer above before the union
|
|
for (auto layer_polygon : current_poly) {
|
|
for (auto hole : layer_polygon.holes) {
|
|
if (std::abs(hole.area()) < scaled_max_hole_area) {
|
|
ExPolygon hole_poly(hole);
|
|
auto hole_with_above = intersection_ex(upper_poly, hole_poly);
|
|
if (!hole_with_above.empty()) {
|
|
// The hole had some intersection with the above layer, check if it's a complete overlap
|
|
auto hole_difference = xor_ex(hole_with_above, hole_poly);
|
|
if (hole_difference.empty()) {
|
|
// The layer above completely cover it, remove it from the layer above
|
|
upper_poly = diff_ex(upper_poly, hole_poly);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now offset the upper layer to be added into current layer
|
|
upper_poly = offset_ex(upper_poly, scaled_max_dist_from_lower_layer);
|
|
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) {
|
|
// export_to_svg(debug_out_path("Surface-obj-%d-layer-%d-region-%d.svg", id().id, layer->id(), region_id).c_str(),
|
|
// layer->m_regions[region_id]->slices.surfaces);
|
|
|
|
// Disable on given region
|
|
if (!upper_layer->m_regions[region_id]->region().config().make_overhang_printable) {
|
|
continue;
|
|
}
|
|
|
|
// Calculate the scaled upper poly that belongs to current region
|
|
auto p = union_ex(intersection_ex(upper_layer->m_regions[region_id]->slices.surfaces, upper_poly));
|
|
|
|
// Remove all islands that have already been fully covered by current layer
|
|
p.erase(std::remove_if(p.begin(), p.end(), [¤t_poly](const ExPolygon& ex) {
|
|
return diff_ex(ex, current_poly).empty();
|
|
}), p.end());
|
|
|
|
// And now union it with current region
|
|
ExPolygons layer_polygons = to_expolygons(layer->m_regions[region_id]->slices.surfaces);
|
|
layer->m_regions[region_id]->slices.set(union_ex(layer_polygons, p), stInternal);
|
|
|
|
// Then remove it from all other regions, to avoid overlapping regions
|
|
for (size_t other_region = 0; other_region < this->num_printing_regions(); ++other_region) {
|
|
if (other_region == region_id) {
|
|
continue;
|
|
}
|
|
ExPolygons s = to_expolygons(layer->m_regions[other_region]->slices.surfaces);
|
|
layer->m_regions[other_region]->slices.set(diff_ex(s, p, ApplySafetyOffset::Yes), stInternal);
|
|
}
|
|
}
|
|
//layer->export_region_slices_to_svg_debug("layer_after_conical_overhang");
|
|
}
|
|
}
|
|
|
|
//BBS: this function is used to offset contour and holes of expolygons seperately by different value
|
|
ExPolygons PrintObject::_shrink_contour_holes(double contour_delta, double hole_delta, const ExPolygons& polys) const
|
|
{
|
|
ExPolygons new_ex_polys;
|
|
for (const ExPolygon& ex_poly : polys) {
|
|
Polygons contours;
|
|
Polygons holes;
|
|
//BBS: modify hole
|
|
for (const Polygon& hole : ex_poly.holes) {
|
|
if (hole_delta != 0) {
|
|
for (Polygon& newHole : offset(hole, -hole_delta)) {
|
|
newHole.make_counter_clockwise();
|
|
holes.emplace_back(std::move(newHole));
|
|
}
|
|
} else {
|
|
holes.push_back(hole);
|
|
holes.back().make_counter_clockwise();
|
|
}
|
|
}
|
|
//BBS: modify contour
|
|
if (contour_delta != 0) {
|
|
Polygons new_contours = offset(ex_poly.contour, contour_delta);
|
|
if (new_contours.size() == 0)
|
|
continue;
|
|
contours.insert(contours.end(), std::make_move_iterator(new_contours.begin()), std::make_move_iterator(new_contours.end()));
|
|
} else {
|
|
contours.push_back(ex_poly.contour);
|
|
}
|
|
ExPolygons temp = diff_ex(union_(contours), union_(holes));
|
|
new_ex_polys.insert(new_ex_polys.end(), std::make_move_iterator(temp.begin()), std::make_move_iterator(temp.end()));
|
|
}
|
|
return union_ex(new_ex_polys);
|
|
}
|
|
|
|
std::vector<Polygons> PrintObject::slice_support_volumes(const ModelVolumeType model_volume_type) const
|
|
{
|
|
auto it_volume = this->model_object()->volumes.begin();
|
|
auto it_volume_end = this->model_object()->volumes.end();
|
|
for (; it_volume != it_volume_end && (*it_volume)->type() != model_volume_type; ++ it_volume) ;
|
|
std::vector<Polygons> slices;
|
|
if (it_volume != it_volume_end) {
|
|
// Found at least a single support volume of model_volume_type.
|
|
std::vector<float> zs = zs_from_layers(this->layers());
|
|
std::vector<char> merge_layers;
|
|
bool merge = false;
|
|
const Print *print = this->print();
|
|
auto throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
|
|
MeshSlicingParamsEx params;
|
|
params.trafo = this->trafo_centered();
|
|
for (; it_volume != it_volume_end; ++ it_volume)
|
|
if ((*it_volume)->type() == model_volume_type) {
|
|
std::vector<ExPolygons> slices2 = slice_volume(*(*it_volume), zs, params, throw_on_cancel_callback);
|
|
if (slices.empty()) {
|
|
slices.reserve(slices2.size());
|
|
for (ExPolygons &src : slices2)
|
|
slices.emplace_back(to_polygons(std::move(src)));
|
|
} else if (!slices2.empty()) {
|
|
if (merge_layers.empty())
|
|
merge_layers.assign(zs.size(), false);
|
|
for (size_t i = 0; i < zs.size(); ++ i) {
|
|
if (slices[i].empty())
|
|
slices[i] = to_polygons(std::move(slices2[i]));
|
|
else if (! slices2[i].empty()) {
|
|
append(slices[i], to_polygons(std::move(slices2[i])));
|
|
merge_layers[i] = true;
|
|
merge = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (merge) {
|
|
std::vector<Polygons*> to_merge;
|
|
to_merge.reserve(zs.size());
|
|
for (size_t i = 0; i < zs.size(); ++ i)
|
|
if (merge_layers[i])
|
|
to_merge.emplace_back(&slices[i]);
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, to_merge.size()),
|
|
[&to_merge](const tbb::blocked_range<size_t> &range) {
|
|
for (size_t i = range.begin(); i < range.end(); ++ i)
|
|
*to_merge[i] = union_(*to_merge[i]);
|
|
});
|
|
}
|
|
}
|
|
return slices;
|
|
}
|
|
|
|
} // namespace Slic3r
|