mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			419 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			419 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "MultiPoint.hpp"
 | |
| #include "BoundingBox.hpp"
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| void MultiPoint::scale(double factor)
 | |
| {
 | |
|     for (Point &pt : points)
 | |
|         pt *= factor;
 | |
| }
 | |
| 
 | |
| void MultiPoint::scale(double factor_x, double factor_y)
 | |
| {
 | |
|     for (Point &pt : points)
 | |
|     {
 | |
| 		pt(0) = coord_t(pt(0) * factor_x);
 | |
| 		pt(1) = coord_t(pt(1) * factor_y);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void MultiPoint::translate(const Point &v)
 | |
| {
 | |
|     for (Point &pt : points)
 | |
|         pt += v;
 | |
| }
 | |
| 
 | |
| void MultiPoint::rotate(double cos_angle, double sin_angle)
 | |
| {
 | |
|     for (Point &pt : this->points) {
 | |
|         double cur_x = double(pt(0));
 | |
|         double cur_y = double(pt(1));
 | |
|         pt(0) = coord_t(round(cos_angle * cur_x - sin_angle * cur_y));
 | |
|         pt(1) = coord_t(round(cos_angle * cur_y + sin_angle * cur_x));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void MultiPoint::rotate(double angle, const Point ¢er)
 | |
| {
 | |
|     double s = sin(angle);
 | |
|     double c = cos(angle);
 | |
|     for (Point &pt : points) {
 | |
|         Vec2crd v(pt - center);
 | |
|         pt(0) = (coord_t)round(double(center(0)) + c * v[0] - s * v[1]);
 | |
|         pt(1) = (coord_t)round(double(center(1)) + c * v[1] + s * v[0]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| double MultiPoint::length() const
 | |
| {
 | |
|     Lines lines = this->lines();
 | |
|     double len = 0;
 | |
|     for (Lines::iterator it = lines.begin(); it != lines.end(); ++it) {
 | |
|         len += it->length();
 | |
|     }
 | |
|     return len;
 | |
| }
 | |
| 
 | |
| int MultiPoint::find_point(const Point &point) const
 | |
| {
 | |
|     for (const Point &pt : this->points)
 | |
|         if (pt == point)
 | |
|             return int(&pt - &this->points.front());
 | |
|     return -1;  // not found
 | |
| }
 | |
| 
 | |
| bool MultiPoint::has_boundary_point(const Point &point) const
 | |
| {
 | |
|     double dist = (point.projection_onto(*this) - point).cast<double>().norm();
 | |
|     return dist < SCALED_EPSILON;
 | |
| }
 | |
| 
 | |
| BoundingBox MultiPoint::bounding_box() const
 | |
| {
 | |
|     return BoundingBox(this->points);
 | |
| }
 | |
| 
 | |
| bool MultiPoint::has_duplicate_points() const
 | |
| {
 | |
|     for (size_t i = 1; i < points.size(); ++i)
 | |
|         if (points[i-1] == points[i])
 | |
|             return true;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool MultiPoint::remove_duplicate_points()
 | |
| {
 | |
|     size_t j = 0;
 | |
|     for (size_t i = 1; i < points.size(); ++i) {
 | |
|         if (points[j] == points[i]) {
 | |
|             // Just increase index i.
 | |
|         } else {
 | |
|             ++ j;
 | |
|             if (j < i)
 | |
|                 points[j] = points[i];
 | |
|         }
 | |
|     }
 | |
|     if (++ j < points.size()) {
 | |
|         points.erase(points.begin() + j, points.end());
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool MultiPoint::intersection(const Line& line, Point* intersection) const
 | |
| {
 | |
|     Lines lines = this->lines();
 | |
|     for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) {
 | |
|         if (it->intersection(line, intersection)) return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool MultiPoint::first_intersection(const Line& line, Point* intersection) const
 | |
| {
 | |
|     bool   found = false;
 | |
|     double dmin  = 0.;
 | |
|     for (const Line &l : this->lines()) {
 | |
|         Point ip;
 | |
|         if (l.intersection(line, &ip)) {
 | |
|             if (! found) {
 | |
|                 found = true;
 | |
|                 dmin = (line.a - ip).cast<double>().norm();
 | |
|                 *intersection = ip;
 | |
|             } else {
 | |
|                 double d = (line.a - ip).cast<double>().norm();
 | |
|                 if (d < dmin) {
 | |
|                     dmin = d;
 | |
|                     *intersection = ip;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return found;
 | |
| }
 | |
| 
 | |
| bool MultiPoint::intersections(const Line &line, Points *intersections) const
 | |
| {
 | |
|     size_t intersections_size = intersections->size();
 | |
|     for (const Line &polygon_line : this->lines()) {
 | |
|         Point intersection;
 | |
|         if (polygon_line.intersection(line, &intersection))
 | |
|             intersections->emplace_back(std::move(intersection));
 | |
|     }
 | |
|     return intersections->size() > intersections_size;
 | |
| }
 | |
| 
 | |
| std::vector<Point> MultiPoint::_douglas_peucker(const std::vector<Point>& pts, const double tolerance)
 | |
| {
 | |
|     std::vector<Point> result_pts;
 | |
| 	double tolerance_sq = tolerance * tolerance;
 | |
|     if (! pts.empty()) {
 | |
|         const Point  *anchor      = &pts.front();
 | |
|         size_t        anchor_idx  = 0;
 | |
|         const Point  *floater     = &pts.back();
 | |
|         size_t        floater_idx = pts.size() - 1;
 | |
|         result_pts.reserve(pts.size());
 | |
|         result_pts.emplace_back(*anchor);
 | |
|         if (anchor_idx != floater_idx) {
 | |
|             assert(pts.size() > 1);
 | |
|             std::vector<size_t> dpStack;
 | |
|             dpStack.reserve(pts.size());
 | |
|             dpStack.emplace_back(floater_idx);
 | |
|             for (;;) {
 | |
|                 double max_dist_sq  = 0.0;
 | |
|                 size_t furthest_idx = anchor_idx;
 | |
|                 // find point furthest from line seg created by (anchor, floater) and note it
 | |
|                 for (size_t i = anchor_idx + 1; i < floater_idx; ++ i) {
 | |
|                     double dist_sq = Line::distance_to_squared(pts[i], *anchor, *floater);
 | |
|                     if (dist_sq > max_dist_sq) {
 | |
|                         max_dist_sq  = dist_sq;
 | |
|                         furthest_idx = i;
 | |
|                     }
 | |
|                 }
 | |
|                 // remove point if less than tolerance
 | |
|                 if (max_dist_sq <= tolerance_sq) {
 | |
|                     result_pts.emplace_back(*floater);
 | |
|                     anchor_idx = floater_idx;
 | |
|                     anchor     = floater;
 | |
|                     assert(dpStack.back() == floater_idx);
 | |
|                     dpStack.pop_back();
 | |
|                     if (dpStack.empty())
 | |
|                         break;
 | |
|                     floater_idx = dpStack.back();
 | |
|                 } else {
 | |
|                     floater_idx = furthest_idx;
 | |
|                     dpStack.emplace_back(floater_idx);
 | |
|                 }
 | |
|                 floater = &pts[floater_idx];
 | |
|             }
 | |
|         }
 | |
|         assert(result_pts.front() == pts.front());
 | |
|         assert(result_pts.back()  == pts.back());
 | |
| 
 | |
| #if 0
 | |
|         {
 | |
|             static int iRun = 0;
 | |
| 			BoundingBox bbox(pts);
 | |
| 			BoundingBox bbox2(result_pts);
 | |
| 			bbox.merge(bbox2);
 | |
|             SVG svg(debug_out_path("douglas_peucker_%d.svg", iRun ++).c_str(), bbox);
 | |
|             if (pts.front() == pts.back())
 | |
|                 svg.draw(Polygon(pts), "black");
 | |
|             else
 | |
|                 svg.draw(Polyline(pts), "black");
 | |
|             if (result_pts.front() == result_pts.back())
 | |
|                 svg.draw(Polygon(result_pts), "green", scale_(0.1));
 | |
|             else
 | |
|                 svg.draw(Polyline(result_pts), "green", scale_(0.1));
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
|     return result_pts;
 | |
| }
 | |
| 
 | |
| // Visivalingam simplification algorithm https://github.com/slic3r/Slic3r/pull/3825
 | |
| // thanks to @fuchstraumer
 | |
| /*
 | |
|      struct - vis_node
 | |
|      Used with the visivalignam simplification algorithm, which needs to be able to find a points
 | |
|     successors and predecessors to operate succesfully. Since this struct is only used in one
 | |
|     location, it could probably be dropped into a namespace to avoid polluting the slic3r namespace.
 | |
|      Source: https://github.com/shortsleeves/visvalingam_simplify
 | |
|      ^ Provided original algorithm implementation. I've only changed things a bit to "clean" them up
 | |
|     (i.e be more like my personal style), and managed to do this without requiring a binheap implementation
 | |
|  */
 | |
| struct vis_node{
 | |
|     vis_node(const size_t& idx, const size_t& _prev_idx, const size_t& _next_idx, const double& _area) : pt_idx(idx), prev_idx(_prev_idx), next_idx(_next_idx), area(_area) {}
 | |
|     // Indices into a Points container, from which this object was constructed
 | |
|     size_t pt_idx, prev_idx, next_idx;
 | |
|     // Effective area of this "node"
 | |
|     double area;
 | |
|     // Overloaded operator used to sort the binheap
 | |
|     // Greater area = "more important" node. So, this node is less than the 
 | |
|     // other node if it's area is less than the other node's area
 | |
|     bool operator<(const vis_node& other) { return (this->area < other.area); }
 | |
| };
 | |
| Points MultiPoint::visivalingam(const Points& pts, const double& tolerance)
 | |
| {
 | |
|     // Make sure there's enough points in "pts" to bother with simplification.
 | |
|     assert(pts.size() >= 2);
 | |
|      // Result object
 | |
|     Points results;
 | |
|      // Lambda to calculate effective area spanned by a point and its immediate 
 | |
|     // successor + predecessor.
 | |
|     auto effective_area = [pts](const size_t& curr_pt_idx, const size_t& prev_pt_idx, const size_t& next_pt_idx)->coordf_t {
 | |
|         const Point& curr = pts[curr_pt_idx];
 | |
|         const Point& prev = pts[prev_pt_idx];
 | |
|         const Point& next = pts[next_pt_idx];
 | |
|         // Use point objects as vector-distances
 | |
| 		const Vec2d curr_to_next = (next - curr).cast<double>();
 | |
| 		const Vec2d prev_to_next = (prev - curr).cast<double>();
 | |
|         // Take cross product of these two vector distances
 | |
| 		return 0.50 * abs(cross2(curr_to_next, prev_to_next));
 | |
|     };
 | |
|      // We store the effective areas for each node
 | |
|     std::vector<coordf_t> areas;
 | |
|     areas.reserve(pts.size());
 | |
|      // Construct the initial set of nodes. We will make a heap out of the "heap" vector using 
 | |
|     // std::make_heap. node_list is used later.
 | |
|     std::vector<vis_node*> node_list;
 | |
|     node_list.resize(pts.size());
 | |
|     std::vector<vis_node*> heap;
 | |
|     heap.reserve(pts.size());
 | |
|     for (size_t i = 1; i < pts.size() - 1; ++ i) {
 | |
|         // Get effective area of current node.
 | |
|         coordf_t area = effective_area(i, i - 1, i + 1);
 | |
|         // If area is greater than some arbitrarily small value, use it.
 | |
|         node_list[i] = new vis_node(i, i - 1, i + 1, area);
 | |
|         heap.push_back(node_list[i]);
 | |
|     }
 | |
|      // Call std::make_heap, which uses the < operator by default to make "heap" into 
 | |
|     // a binheap, sorted by the < operator we defind in the vis_node struct
 | |
|     std::make_heap(heap.begin(), heap.end());
 | |
|      // Start comparing areas. Set min_area to an outrageous value initially.
 | |
|     double min_area = -std::numeric_limits<double>::max();
 | |
|     while (!heap.empty()) {
 | |
|          // Get current node.
 | |
|         vis_node* curr = heap.front();
 | |
|          // Pop node we just retrieved off the heap. pop_heap moves front element in vector
 | |
|         // to the back, so we can call pop_back()
 | |
|         std::pop_heap(heap.begin(), heap.end());
 | |
|         heap.pop_back();
 | |
|          // Sanity assert check
 | |
|         assert(curr == node_list[curr->pt_idx]);
 | |
|          // If the current pt'ss area is less than that of the previous pt's area
 | |
|         // use the last pt's area instead. This ensures we don't elimate the current
 | |
|         // point without eliminating the previous 
 | |
|         min_area = std::max(min_area, curr->area);
 | |
|          // Update prev
 | |
|         vis_node* prev = node_list[curr->prev_idx];
 | |
|         if(prev != nullptr){
 | |
|             prev->next_idx = curr->next_idx;
 | |
|             prev->area = effective_area(prev->pt_idx, prev->prev_idx, prev->next_idx);
 | |
|             // For some reason, std::make_heap() is the fastest way to resort the heap. Probably needs testing.
 | |
|             std::make_heap(heap.begin(), heap.end());
 | |
|         }
 | |
|          // Update next
 | |
|         vis_node* next = node_list[curr->next_idx];
 | |
|         if(next != nullptr){
 | |
|             next->prev_idx = curr->prev_idx;
 | |
|             next->area = effective_area(next->pt_idx, next->prev_idx, next->next_idx);
 | |
|             std::make_heap(heap.begin(), heap.end());
 | |
|         }
 | |
|          areas[curr->pt_idx] = min_area;
 | |
|         node_list[curr->pt_idx] = nullptr;
 | |
|         delete curr;
 | |
|     }
 | |
|     // Clear node list and shrink_to_fit() (to free actual memory). Not necessary. Could be removed.
 | |
|     node_list.clear();
 | |
|     node_list.shrink_to_fit();
 | |
|     // This lambda is how we test whether or not to keep a point.
 | |
|     auto use_point = [areas, tolerance](const size_t& idx)->bool {
 | |
|         assert(idx < areas.size());
 | |
|         // Return true at front/back of path/areas
 | |
|         if(idx == 0 || idx == areas.size() - 1){
 | |
|             return true;
 | |
|         }
 | |
|         // Return true if area at idx is greater than minimum area to consider "valid"
 | |
|         else{
 | |
|             return areas[idx] > tolerance;
 | |
|         }
 | |
|     };
 | |
|     // Use previously defined lambda to build results.
 | |
|     for (size_t i = 0; i < pts.size(); ++i) {
 | |
|         if (use_point(i)){
 | |
|             results.push_back(pts[i]);
 | |
|         }
 | |
|     }
 | |
|      // Check that results has at least two points
 | |
|     assert(results.size() >= 2);
 | |
|      // Return simplified vector of points
 | |
|     return results;
 | |
| }
 | |
| 
 | |
| void MultiPoint3::translate(double x, double y)
 | |
| {
 | |
|     for (Vec3crd &p : points) {
 | |
|         p(0) += coord_t(x);
 | |
|         p(1) += coord_t(y);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void MultiPoint3::translate(const Point& vector)
 | |
| {
 | |
|     this->translate(vector(0), vector(1));
 | |
| }
 | |
| 
 | |
| double MultiPoint3::length() const
 | |
| {
 | |
|     double len = 0.0;
 | |
|     for (const Line3& line : this->lines())
 | |
|         len += line.length();
 | |
|     return len;
 | |
| }
 | |
| 
 | |
| BoundingBox3 MultiPoint3::bounding_box() const
 | |
| {
 | |
|     return BoundingBox3(points);
 | |
| }
 | |
| 
 | |
| bool MultiPoint3::remove_duplicate_points()
 | |
| {
 | |
|     size_t j = 0;
 | |
|     for (size_t i = 1; i < points.size(); ++i) {
 | |
|         if (points[j] == points[i]) {
 | |
|             // Just increase index i.
 | |
|         } else {
 | |
|             ++ j;
 | |
|             if (j < i)
 | |
|                 points[j] = points[i];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (++j < points.size())
 | |
|     {
 | |
|         points.erase(points.begin() + j, points.end());
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| BoundingBox get_extents(const MultiPoint &mp)
 | |
| { 
 | |
|     return BoundingBox(mp.points);
 | |
| }
 | |
| 
 | |
| BoundingBox get_extents_rotated(const Points &points, double angle)
 | |
| { 
 | |
|     BoundingBox bbox;
 | |
|     if (! points.empty()) {
 | |
|         double s = sin(angle);
 | |
|         double c = cos(angle);
 | |
|         Points::const_iterator it = points.begin();
 | |
|         double cur_x = (double)(*it)(0);
 | |
|         double cur_y = (double)(*it)(1);
 | |
|         bbox.min(0) = bbox.max(0) = (coord_t)round(c * cur_x - s * cur_y);
 | |
|         bbox.min(1) = bbox.max(1) = (coord_t)round(c * cur_y + s * cur_x);
 | |
|         for (++it; it != points.end(); ++it) {
 | |
|             double cur_x = (double)(*it)(0);
 | |
|             double cur_y = (double)(*it)(1);
 | |
|             coord_t x = (coord_t)round(c * cur_x - s * cur_y);
 | |
|             coord_t y = (coord_t)round(c * cur_y + s * cur_x);
 | |
|             bbox.min(0) = std::min(x, bbox.min(0));
 | |
|             bbox.min(1) = std::min(y, bbox.min(1));
 | |
|             bbox.max(0) = std::max(x, bbox.max(0));
 | |
|             bbox.max(1) = std::max(y, bbox.max(1));
 | |
|         }
 | |
|         bbox.defined = true;
 | |
|     }
 | |
|     return bbox;
 | |
| }
 | |
| 
 | |
| BoundingBox get_extents_rotated(const MultiPoint &mp, double angle)
 | |
| {
 | |
|     return get_extents_rotated(mp.points, angle);
 | |
| }
 | |
| 
 | |
| }
 | 
