mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			334 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			334 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef _libslic3r_h_
 | |
| #define _libslic3r_h_
 | |
| 
 | |
| #include "libslic3r_version.h"
 | |
| #define GCODEVIEWER_APP_NAME "PrusaSlicer G-code Viewer"
 | |
| #define GCODEVIEWER_APP_KEY  "PrusaSlicerGcodeViewer"
 | |
| #define GCODEVIEWER_BUILD_ID std::string("PrusaSlicer G-code Viewer-") + std::string(SLIC3R_VERSION) + std::string("-UNKNOWN")
 | |
| 
 | |
| // this needs to be included early for MSVC (listing it in Build.PL is not enough)
 | |
| #include <memory>
 | |
| #include <array>
 | |
| #include <algorithm>
 | |
| #include <ostream>
 | |
| #include <iostream>
 | |
| #include <math.h>
 | |
| #include <queue>
 | |
| #include <sstream>
 | |
| #include <cstdio>
 | |
| #include <stdint.h>
 | |
| #include <stdarg.h>
 | |
| #include <vector>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "Technologies.hpp"
 | |
| #include "Semver.hpp"
 | |
| 
 | |
| #if 1
 | |
| // Saves around 32% RAM after slicing step, 6.7% after G-code export (tested on PrusaSlicer 2.2.0 final).
 | |
| using coord_t = int32_t;
 | |
| #else
 | |
| //FIXME At least FillRectilinear2 and std::boost Voronoi require coord_t to be 32bit.
 | |
| typedef int64_t coord_t;
 | |
| #endif
 | |
| 
 | |
| using coordf_t = double;
 | |
| 
 | |
| //FIXME This epsilon value is used for many non-related purposes:
 | |
| // For a threshold of a squared Euclidean distance,
 | |
| // for a trheshold in a difference of radians,
 | |
| // for a threshold of a cross product of two non-normalized vectors etc.
 | |
| static constexpr double EPSILON = 1e-4;
 | |
| // Scaling factor for a conversion from coord_t to coordf_t: 10e-6
 | |
| // This scaling generates a following fixed point representation with for a 32bit integer:
 | |
| // 0..4294mm with 1nm resolution
 | |
| // int32_t fits an interval of (-2147.48mm, +2147.48mm)
 | |
| // with int64_t we don't have to worry anymore about the size of the int.
 | |
| static constexpr double SCALING_FACTOR = 0.000001;
 | |
| // RESOLUTION, SCALED_RESOLUTION: Used as an error threshold for a Douglas-Peucker polyline simplification algorithm.
 | |
| static constexpr double RESOLUTION = 0.0125;
 | |
| #define                 SCALED_RESOLUTION (RESOLUTION / SCALING_FACTOR)
 | |
| static constexpr double PI = 3.141592653589793238;
 | |
| // When extruding a closed loop, the loop is interrupted and shortened a bit to reduce the seam.
 | |
| static constexpr double LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER = 0.15;
 | |
| // Maximum perimeter length for the loop to apply the small perimeter speed. 
 | |
| #define                 SMALL_PERIMETER_LENGTH  ((6.5 / SCALING_FACTOR) * 2 * PI)
 | |
| static constexpr double INSET_OVERLAP_TOLERANCE = 0.4;
 | |
| // 3mm ring around the top / bottom / bridging areas.
 | |
| //FIXME This is quite a lot.
 | |
| static constexpr double EXTERNAL_INFILL_MARGIN = 3.;
 | |
| //FIXME Better to use an inline function with an explicit return type.
 | |
| //inline coord_t scale_(coordf_t v) { return coord_t(floor(v / SCALING_FACTOR + 0.5f)); }
 | |
| #define scale_(val) ((val) / SCALING_FACTOR)
 | |
| 
 | |
| #define SCALED_EPSILON scale_(EPSILON)
 | |
| 
 | |
| #define SLIC3R_DEBUG_OUT_PATH_PREFIX "out/"
 | |
| 
 | |
| inline std::string debug_out_path(const char *name, ...)
 | |
| {
 | |
| 	char buffer[2048];
 | |
| 	va_list args;
 | |
| 	va_start(args, name);
 | |
| 	std::vsprintf(buffer, name, args);
 | |
| 	va_end(args);
 | |
| 	return std::string(SLIC3R_DEBUG_OUT_PATH_PREFIX) + std::string(buffer);
 | |
| }
 | |
| 
 | |
| #ifndef UNUSED
 | |
| #define UNUSED(x) (void)(x)
 | |
| #endif /* UNUSED */
 | |
| 
 | |
| // Write slices as SVG images into out directory during the 2D processing of the slices.
 | |
| // #define SLIC3R_DEBUG_SLICE_PROCESSING
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| extern Semver SEMVER;
 | |
| 
 | |
| template<typename T, typename Q>
 | |
| inline T unscale(Q v) { return T(v) * T(SCALING_FACTOR); }
 | |
| 
 | |
| enum Axis { 
 | |
| 	X=0,
 | |
| 	Y,
 | |
| 	Z,
 | |
| 	E,
 | |
| 	F,
 | |
| 	NUM_AXES,
 | |
| 	// For the GCodeReader to mark a parsed axis, which is not in "XYZEF", it was parsed correctly.
 | |
| 	UNKNOWN_AXIS = NUM_AXES,
 | |
| 	NUM_AXES_WITH_UNKNOWN,
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| inline void append(std::vector<T>& dest, const std::vector<T>& src)
 | |
| {
 | |
|     if (dest.empty())
 | |
|         dest = src;
 | |
|     else
 | |
|         dest.insert(dest.end(), src.begin(), src.end());
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline void append(std::vector<T>& dest, std::vector<T>&& src)
 | |
| {
 | |
|     if (dest.empty())
 | |
|         dest = std::move(src);
 | |
|     else {
 | |
|         dest.reserve(dest.size() + src.size());
 | |
|         std::move(std::begin(src), std::end(src), std::back_inserter(dest));
 | |
|     }
 | |
|     src.clear();
 | |
|     src.shrink_to_fit();
 | |
| }
 | |
| 
 | |
| // Append the source in reverse.
 | |
| template <typename T>
 | |
| inline void append_reversed(std::vector<T>& dest, const std::vector<T>& src)
 | |
| {
 | |
|     if (dest.empty())
 | |
|         dest = src;
 | |
|     else
 | |
|         dest.insert(dest.end(), src.rbegin(), src.rend());
 | |
| }
 | |
| 
 | |
| // Append the source in reverse.
 | |
| template <typename T>
 | |
| inline void append_reversed(std::vector<T>& dest, std::vector<T>&& src)
 | |
| {
 | |
|     if (dest.empty())
 | |
|         dest = std::move(src);
 | |
|     else {
 | |
|         dest.reserve(dest.size() + src.size());
 | |
|         std::move(std::rbegin(src), std::rend(src), std::back_inserter(dest));
 | |
|     }
 | |
|     src.clear();
 | |
|     src.shrink_to_fit();
 | |
| }
 | |
| 
 | |
| // Casting an std::vector<> from one type to another type without warnings about a loss of accuracy.
 | |
| template<typename T_TO, typename T_FROM>
 | |
| std::vector<T_TO> cast(const std::vector<T_FROM> &src) 
 | |
| {
 | |
|     std::vector<T_TO> dst;
 | |
|     dst.reserve(src.size());
 | |
|     for (const T_FROM &a : src)
 | |
|         dst.emplace_back((T_TO)a);
 | |
|     return dst;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline void remove_nulls(std::vector<T*> &vec)
 | |
| {
 | |
| 	vec.erase(
 | |
|     	std::remove_if(vec.begin(), vec.end(), [](const T *ptr) { return ptr == nullptr; }),
 | |
|     	vec.end());
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline void sort_remove_duplicates(std::vector<T> &vec)
 | |
| {
 | |
| 	std::sort(vec.begin(), vec.end());
 | |
| 	vec.erase(std::unique(vec.begin(), vec.end()), vec.end());
 | |
| }
 | |
| 
 | |
| // Older compilers do not provide a std::make_unique template. Provide a simple one.
 | |
| template<typename T, typename... Args>
 | |
| inline std::unique_ptr<T> make_unique(Args&&... args) {
 | |
|     return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
 | |
| }
 | |
| 
 | |
| // Variant of std::lower_bound() with compare predicate, but without the key.
 | |
| // This variant is very useful in case that the T type is large or it does not even have a public constructor.
 | |
| template<class ForwardIt, class LowerThanKeyPredicate>
 | |
| ForwardIt lower_bound_by_predicate(ForwardIt first, ForwardIt last, LowerThanKeyPredicate lower_than_key)
 | |
| {
 | |
|     ForwardIt it;
 | |
|     typename std::iterator_traits<ForwardIt>::difference_type count, step;
 | |
|     count = std::distance(first, last);
 | |
|  
 | |
|     while (count > 0) {
 | |
|         it = first;
 | |
|         step = count / 2;
 | |
|         std::advance(it, step);
 | |
|         if (lower_than_key(*it)) {
 | |
|             first = ++it;
 | |
|             count -= step + 1;
 | |
|         }
 | |
|         else
 | |
|             count = step;
 | |
|     }
 | |
|     return first;
 | |
| }
 | |
| 
 | |
| // from https://en.cppreference.com/w/cpp/algorithm/lower_bound
 | |
| template<class ForwardIt, class T, class Compare=std::less<>>
 | |
| ForwardIt binary_find(ForwardIt first, ForwardIt last, const T& value, Compare comp={})
 | |
| {
 | |
|     // Note: BOTH type T and the type after ForwardIt is dereferenced 
 | |
|     // must be implicitly convertible to BOTH Type1 and Type2, used in Compare. 
 | |
|     // This is stricter than lower_bound requirement (see above)
 | |
|  
 | |
|     first = std::lower_bound(first, last, value, comp);
 | |
|     return first != last && !comp(value, *first) ? first : last;
 | |
| }
 | |
| 
 | |
| // from https://en.cppreference.com/w/cpp/algorithm/lower_bound
 | |
| template<class ForwardIt, class LowerThanKeyPredicate, class EqualToKeyPredicate>
 | |
| ForwardIt binary_find_by_predicate(ForwardIt first, ForwardIt last, LowerThanKeyPredicate lower_thank_key, EqualToKeyPredicate equal_to_key)
 | |
| {
 | |
|     // Note: BOTH type T and the type after ForwardIt is dereferenced 
 | |
|     // must be implicitly convertible to BOTH Type1 and Type2, used in Compare. 
 | |
|     // This is stricter than lower_bound requirement (see above)
 | |
|  
 | |
|     first = lower_bound_by_predicate(first, last, lower_thank_key);
 | |
|     return first != last && equal_to_key(*first) ? first : last;
 | |
| }
 | |
| 
 | |
| template<typename ContainerType, typename ValueType> inline bool contains(const ContainerType &c, const ValueType &v)
 | |
|     { return std::find(c.begin(), c.end(), v) != c.end(); }
 | |
| template<typename T> inline bool contains(const std::initializer_list<T> &il, const T &v)
 | |
|     { return std::find(il.begin(), il.end(), v) != il.end(); }
 | |
| 
 | |
| template<typename ContainerType, typename ValueType> inline bool one_of(const ValueType &v, const ContainerType &c)
 | |
|     { return contains(c, v); }
 | |
| template<typename T> inline bool one_of(const T& v, const std::initializer_list<T>& il)
 | |
|     { return contains(il, v); }
 | |
| 
 | |
| template<typename T>
 | |
| constexpr inline T sqr(T x)
 | |
| {
 | |
|     return x * x;
 | |
| }
 | |
| 
 | |
| template <typename T, typename Number>
 | |
| constexpr inline T lerp(const T& a, const T& b, Number t)
 | |
| {
 | |
|     assert((t >= Number(-EPSILON)) && (t <= Number(1) + Number(EPSILON)));
 | |
|     return (Number(1) - t) * a + t * b;
 | |
| }
 | |
| 
 | |
| template <typename Number>
 | |
| constexpr inline bool is_approx(Number value, Number test_value)
 | |
| {
 | |
|     return std::fabs(double(value) - double(test_value)) < double(EPSILON);
 | |
| }
 | |
| 
 | |
| // A meta-predicate which is true for integers wider than or equal to coord_t
 | |
| template<class I> struct is_scaled_coord
 | |
| {
 | |
|     static const constexpr bool value =
 | |
|         std::is_integral<I>::value &&
 | |
|         std::numeric_limits<I>::digits >=
 | |
|             std::numeric_limits<coord_t>::digits;
 | |
| };
 | |
| 
 | |
| // Meta predicates for floating, 'scaled coord' and generic arithmetic types
 | |
| // Can be used to restrict templates to work for only the specified set of types.
 | |
| // parameter T is the type we want to restrict
 | |
| // parameter O (Optional defaults to T) is the type that the whole expression
 | |
| // will be evaluated to.
 | |
| // e.g. template<class T> FloatingOnly<T, bool> is_nan(T val);
 | |
| // The whole template will be defined only for floating point types and the
 | |
| // return type will be bool.
 | |
| // For more info how to use, see docs for std::enable_if
 | |
| //
 | |
| template<class T, class O = T> 
 | |
| using FloatingOnly = std::enable_if_t<std::is_floating_point<T>::value, O>;
 | |
| 
 | |
| template<class T, class O = T>
 | |
| using ScaledCoordOnly = std::enable_if_t<is_scaled_coord<T>::value, O>;
 | |
| 
 | |
| template<class T, class O = T>
 | |
| using IntegerOnly = std::enable_if_t<std::is_integral<T>::value, O>;
 | |
| 
 | |
| template<class T, class O = T>
 | |
| using ArithmeticOnly = std::enable_if_t<std::is_arithmetic<T>::value, O>;
 | |
| 
 | |
| template<class T, class O = T>
 | |
| using IteratorOnly = std::enable_if_t<
 | |
|     !std::is_same_v<typename std::iterator_traits<T>::value_type, void>, O
 | |
| >;
 | |
| 
 | |
| template<class T, class I, class... Args> // Arbitrary allocator can be used
 | |
| IntegerOnly<I, std::vector<T, Args...>> reserve_vector(I capacity)
 | |
| {
 | |
|     std::vector<T, Args...> ret;
 | |
|     if (capacity > I(0)) ret.reserve(size_t(capacity));
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| // Borrowed from C++20
 | |
| template<class T>
 | |
| using remove_cvref_t = std::remove_cv_t<std::remove_reference_t<T>>;
 | |
| 
 | |
| // A very simple range concept implementation with iterator-like objects.
 | |
| // This should be replaced by std::ranges::subrange (C++20)
 | |
| template<class It> class Range
 | |
| {
 | |
|     It from, to;
 | |
| public:
 | |
| 
 | |
|     // The class is ready for range based for loops.
 | |
|     It begin() const { return from; }
 | |
|     It end() const { return to; }
 | |
| 
 | |
|     // The iterator type can be obtained this way.
 | |
|     using iterator = It;
 | |
|     using value_type = typename std::iterator_traits<It>::value_type;
 | |
| 
 | |
|     Range() = default;
 | |
|     Range(It b, It e) : from(std::move(b)), to(std::move(e)) {}
 | |
| 
 | |
|     // Some useful container-like methods...
 | |
|     inline size_t size() const { return end() - begin(); }
 | |
|     inline bool   empty() const { return size() == 0; }
 | |
| };
 | |
| 
 | |
| } // namespace Slic3r
 | |
| 
 | |
| #endif
 | 
