mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	 7d4b3f2992
			
		
	
	
		7d4b3f2992
		
	
	
	
	
		
			
			Fixes Solid infill where there should be none #6482 Also the safety offsetting was revised to be enabled only where needed, the "do safety offset" is now easy to discover by a new ApplySafetyOffset::Yes enum, and safety offset over union, which is better done by offset() / offset_ex() has been replaced with new union_safety_offset() / union_safety_offset_ex() functions, which better convey their meaning and which could be better optimized than union() with the safety offset applied.
		
			
				
	
	
		
			560 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			560 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "PerimeterGenerator.hpp"
 | |
| #include "ClipperUtils.hpp"
 | |
| #include "ExtrusionEntityCollection.hpp"
 | |
| #include "ShortestPath.hpp"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cassert>
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| static ExtrusionPaths thick_polyline_to_extrusion_paths(const ThickPolyline &thick_polyline, ExtrusionRole role, const Flow &flow, const float tolerance)
 | |
| {
 | |
|     ExtrusionPaths paths;
 | |
|     ExtrusionPath path(role);
 | |
|     ThickLines lines = thick_polyline.thicklines();
 | |
|     
 | |
|     for (int i = 0; i < (int)lines.size(); ++i) {
 | |
|         const ThickLine& line = lines[i];
 | |
|         
 | |
|         const coordf_t line_len = line.length();
 | |
|         if (line_len < SCALED_EPSILON) continue;
 | |
|         
 | |
|         double thickness_delta = fabs(line.a_width - line.b_width);
 | |
|         if (thickness_delta > tolerance) {
 | |
|             const unsigned int segments = (unsigned int)ceil(thickness_delta / tolerance);
 | |
|             const coordf_t seg_len = line_len / segments;
 | |
|             Points pp;
 | |
|             std::vector<coordf_t> width;
 | |
|             {
 | |
|                 pp.push_back(line.a);
 | |
|                 width.push_back(line.a_width);
 | |
|                 for (size_t j = 1; j < segments; ++j) {
 | |
|                     pp.push_back((line.a.cast<double>() + (line.b - line.a).cast<double>().normalized() * (j * seg_len)).cast<coord_t>());
 | |
|                     
 | |
|                     coordf_t w = line.a_width + (j*seg_len) * (line.b_width-line.a_width) / line_len;
 | |
|                     width.push_back(w);
 | |
|                     width.push_back(w);
 | |
|                 }
 | |
|                 pp.push_back(line.b);
 | |
|                 width.push_back(line.b_width);
 | |
|                 
 | |
|                 assert(pp.size() == segments + 1u);
 | |
|                 assert(width.size() == segments*2);
 | |
|             }
 | |
|             
 | |
|             // delete this line and insert new ones
 | |
|             lines.erase(lines.begin() + i);
 | |
|             for (size_t j = 0; j < segments; ++j) {
 | |
|                 ThickLine new_line(pp[j], pp[j+1]);
 | |
|                 new_line.a_width = width[2*j];
 | |
|                 new_line.b_width = width[2*j+1];
 | |
|                 lines.insert(lines.begin() + i + j, new_line);
 | |
|             }
 | |
|             
 | |
|             -- i;
 | |
|             continue;
 | |
|         }
 | |
|         
 | |
|         const double w = fmax(line.a_width, line.b_width);
 | |
|         if (path.polyline.points.empty()) {
 | |
|             path.polyline.append(line.a);
 | |
|             path.polyline.append(line.b);
 | |
|             // Convert from spacing to extrusion width based on the extrusion model
 | |
|             // of a square extrusion ended with semi circles.
 | |
|             Flow new_flow = flow.with_width(unscale<float>(w) + flow.height() * float(1. - 0.25 * PI));
 | |
|             #ifdef SLIC3R_DEBUG
 | |
|             printf("  filling %f gap\n", flow.width);
 | |
|             #endif
 | |
|             path.mm3_per_mm  = new_flow.mm3_per_mm();
 | |
|             path.width       = new_flow.width();
 | |
|             path.height      = new_flow.height();
 | |
|         } else {
 | |
|             thickness_delta = fabs(scale_(flow.width()) - w);
 | |
|             if (thickness_delta <= tolerance) {
 | |
|                 // the width difference between this line and the current flow width is 
 | |
|                 // within the accepted tolerance
 | |
|                 path.polyline.append(line.b);
 | |
|             } else {
 | |
|                 // we need to initialize a new line
 | |
|                 paths.emplace_back(std::move(path));
 | |
|                 path = ExtrusionPath(role);
 | |
|                 -- i;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (path.polyline.is_valid())
 | |
|         paths.emplace_back(std::move(path));
 | |
|     return paths;
 | |
| }
 | |
| 
 | |
| static void variable_width(const ThickPolylines& polylines, ExtrusionRole role, const Flow &flow, std::vector<ExtrusionEntity*> &out)
 | |
| {
 | |
| 	// This value determines granularity of adaptive width, as G-code does not allow
 | |
| 	// variable extrusion within a single move; this value shall only affect the amount
 | |
| 	// of segments, and any pruning shall be performed before we apply this tolerance.
 | |
| 	const float tolerance = float(scale_(0.05));
 | |
| 	for (const ThickPolyline &p : polylines) {
 | |
| 		ExtrusionPaths paths = thick_polyline_to_extrusion_paths(p, role, flow, tolerance);
 | |
| 		// Append paths to collection.
 | |
| 		if (! paths.empty()) {
 | |
| 			if (paths.front().first_point() == paths.back().last_point())
 | |
| 				out.emplace_back(new ExtrusionLoop(std::move(paths)));
 | |
| 			else {
 | |
| 				for (ExtrusionPath &path : paths)
 | |
| 					out.emplace_back(new ExtrusionPath(std::move(path)));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Hierarchy of perimeters.
 | |
| class PerimeterGeneratorLoop {
 | |
| public:
 | |
|     // Polygon of this contour.
 | |
|     Polygon                             polygon;
 | |
|     // Is it a contour or a hole?
 | |
|     // Contours are CCW oriented, holes are CW oriented.
 | |
|     bool                                is_contour;
 | |
|     // Depth in the hierarchy. External perimeter has depth = 0. An external perimeter could be both a contour and a hole.
 | |
|     unsigned short                      depth;
 | |
|     // Should this contur be fuzzyfied on path generation?
 | |
|     bool                                fuzzify;
 | |
|     // Children contour, may be both CCW and CW oriented (outer contours or holes).
 | |
|     std::vector<PerimeterGeneratorLoop> children;
 | |
|     
 | |
|     PerimeterGeneratorLoop(const Polygon &polygon, unsigned short depth, bool is_contour, bool fuzzify) : 
 | |
|         polygon(polygon), is_contour(is_contour), depth(depth), fuzzify(fuzzify) {}
 | |
|     // External perimeter. It may be CCW or CW oriented (outer contour or hole contour).
 | |
|     bool is_external() const { return this->depth == 0; }
 | |
|     // An island, which may have holes, but it does not have another internal island.
 | |
|     bool is_internal_contour() const;
 | |
| };
 | |
| 
 | |
| // Thanks Cura developers for this function.
 | |
| static void fuzzy_polygon(Polygon &poly, double fuzzy_skin_thickness, double fuzzy_skin_point_dist)
 | |
| {
 | |
|     const double min_dist_between_points = fuzzy_skin_point_dist * 3. / 4.; // hardcoded: the point distance may vary between 3/4 and 5/4 the supplied value
 | |
|     const double range_random_point_dist = fuzzy_skin_point_dist / 2.;
 | |
|     double dist_left_over = double(rand()) * (min_dist_between_points / 2) / double(RAND_MAX); // the distance to be traversed on the line before making the first new point
 | |
|     Point* p0 = &poly.points.back();
 | |
|     Points out;
 | |
|     out.reserve(poly.points.size());
 | |
|     for (Point &p1 : poly.points)
 | |
|     { // 'a' is the (next) new point between p0 and p1
 | |
|         Vec2d  p0p1      = (p1 - *p0).cast<double>();
 | |
|         double p0p1_size = p0p1.norm();
 | |
|         // so that p0p1_size - dist_last_point evaulates to dist_left_over - p0p1_size
 | |
|         double dist_last_point = dist_left_over + p0p1_size * 2.;
 | |
|         for (double p0pa_dist = dist_left_over; p0pa_dist < p0p1_size;
 | |
|             p0pa_dist += min_dist_between_points + double(rand()) * range_random_point_dist / double(RAND_MAX))
 | |
|         {
 | |
|             double r = double(rand()) * (fuzzy_skin_thickness * 2.) / double(RAND_MAX) - fuzzy_skin_thickness;
 | |
|             out.emplace_back(*p0 + (p0p1 * (p0pa_dist / p0p1_size) + perp(p0p1).cast<double>().normalized() * r).cast<coord_t>());
 | |
|             dist_last_point = p0pa_dist;
 | |
|         }
 | |
|         dist_left_over = p0p1_size - dist_last_point;
 | |
|         p0 = &p1;
 | |
|     }
 | |
|     while (out.size() < 3) {
 | |
|         size_t point_idx = poly.size() - 2;
 | |
|         out.emplace_back(poly[point_idx]);
 | |
|         if (point_idx == 0)
 | |
|             break;
 | |
|         -- point_idx;
 | |
|     }
 | |
|     if (out.size() >= 3)
 | |
|         poly.points = std::move(out);
 | |
| }
 | |
| 
 | |
| using PerimeterGeneratorLoops = std::vector<PerimeterGeneratorLoop>;
 | |
| 
 | |
| static ExtrusionEntityCollection traverse_loops(const PerimeterGenerator &perimeter_generator, const PerimeterGeneratorLoops &loops, ThickPolylines &thin_walls)
 | |
| {
 | |
|     // loops is an arrayref of ::Loop objects
 | |
|     // turn each one into an ExtrusionLoop object
 | |
|     ExtrusionEntityCollection   coll;
 | |
|     Polygon                     fuzzified;
 | |
|     for (const PerimeterGeneratorLoop &loop : loops) {
 | |
|         bool is_external = loop.is_external();
 | |
|         
 | |
|         ExtrusionRole role;
 | |
|         ExtrusionLoopRole loop_role;
 | |
|         role = is_external ? erExternalPerimeter : erPerimeter;
 | |
|         if (loop.is_internal_contour()) {
 | |
|             // Note that we set loop role to ContourInternalPerimeter
 | |
|             // also when loop is both internal and external (i.e.
 | |
|             // there's only one contour loop).
 | |
|             loop_role = elrContourInternalPerimeter;
 | |
|         } else {
 | |
|             loop_role = elrDefault;
 | |
|         }
 | |
|         
 | |
|         // detect overhanging/bridging perimeters
 | |
|         ExtrusionPaths paths;
 | |
|         const Polygon &polygon = loop.fuzzify ? fuzzified : loop.polygon;
 | |
|         if (loop.fuzzify) {
 | |
|             fuzzified = loop.polygon;
 | |
|             fuzzy_polygon(fuzzified, scaled<float>(perimeter_generator.config->fuzzy_skin_thickness.value), scaled<float>(perimeter_generator.config->fuzzy_skin_point_dist.value));
 | |
|         }
 | |
|         if (perimeter_generator.config->overhangs && perimeter_generator.layer_id > perimeter_generator.object_config->raft_layers
 | |
|             && ! ((perimeter_generator.object_config->support_material || perimeter_generator.object_config->support_material_enforce_layers > 0) && 
 | |
|                   perimeter_generator.object_config->support_material_contact_distance.value == 0)) {
 | |
|             // get non-overhang paths by intersecting this loop with the grown lower slices
 | |
|             extrusion_paths_append(
 | |
|                 paths,
 | |
|                 intersection_pl({ polygon }, perimeter_generator.lower_slices_polygons()),
 | |
|                 role,
 | |
|                 is_external ? perimeter_generator.ext_mm3_per_mm()           : perimeter_generator.mm3_per_mm(),
 | |
|                 is_external ? perimeter_generator.ext_perimeter_flow.width() : perimeter_generator.perimeter_flow.width(),
 | |
|                 (float)perimeter_generator.layer_height);
 | |
|             
 | |
|             // get overhang paths by checking what parts of this loop fall 
 | |
|             // outside the grown lower slices (thus where the distance between
 | |
|             // the loop centerline and original lower slices is >= half nozzle diameter
 | |
|             extrusion_paths_append(
 | |
|                 paths,
 | |
|                 diff_pl({ polygon }, perimeter_generator.lower_slices_polygons()),
 | |
|                 erOverhangPerimeter,
 | |
|                 perimeter_generator.mm3_per_mm_overhang(),
 | |
|                 perimeter_generator.overhang_flow.width(),
 | |
|                 perimeter_generator.overhang_flow.height());
 | |
|             
 | |
|             // Reapply the nearest point search for starting point.
 | |
|             // We allow polyline reversal because Clipper may have randomly reversed polylines during clipping.
 | |
|             chain_and_reorder_extrusion_paths(paths, &paths.front().first_point());
 | |
|         } else {
 | |
|             ExtrusionPath path(role);
 | |
|             path.polyline   = polygon.split_at_first_point();
 | |
|             path.mm3_per_mm = is_external ? perimeter_generator.ext_mm3_per_mm()           : perimeter_generator.mm3_per_mm();
 | |
|             path.width      = is_external ? perimeter_generator.ext_perimeter_flow.width() : perimeter_generator.perimeter_flow.width();
 | |
|             path.height     = (float)perimeter_generator.layer_height;
 | |
|             paths.push_back(path);
 | |
|         }
 | |
|         
 | |
|         coll.append(ExtrusionLoop(std::move(paths), loop_role));
 | |
|     }
 | |
|     
 | |
|     // Append thin walls to the nearest-neighbor search (only for first iteration)
 | |
|     if (! thin_walls.empty()) {
 | |
|         variable_width(thin_walls, erExternalPerimeter, perimeter_generator.ext_perimeter_flow, coll.entities);
 | |
|         thin_walls.clear();
 | |
|     }
 | |
|     
 | |
|     // Traverse children and build the final collection.
 | |
| 	Point zero_point(0, 0);
 | |
| 	std::vector<std::pair<size_t, bool>> chain = chain_extrusion_entities(coll.entities, &zero_point);
 | |
|     ExtrusionEntityCollection out;
 | |
|     for (const std::pair<size_t, bool> &idx : chain) {
 | |
| 		assert(coll.entities[idx.first] != nullptr);
 | |
|         if (idx.first >= loops.size()) {
 | |
|             // This is a thin wall.
 | |
| 			out.entities.reserve(out.entities.size() + 1);
 | |
|             out.entities.emplace_back(coll.entities[idx.first]);
 | |
| 			coll.entities[idx.first] = nullptr;
 | |
|             if (idx.second)
 | |
| 				out.entities.back()->reverse();
 | |
|         } else {
 | |
|             const PerimeterGeneratorLoop &loop = loops[idx.first];
 | |
|             assert(thin_walls.empty());
 | |
|             ExtrusionEntityCollection children = traverse_loops(perimeter_generator, loop.children, thin_walls);
 | |
|             out.entities.reserve(out.entities.size() + children.entities.size() + 1);
 | |
|             ExtrusionLoop *eloop = static_cast<ExtrusionLoop*>(coll.entities[idx.first]);
 | |
|             coll.entities[idx.first] = nullptr;
 | |
|             if (loop.is_contour) {
 | |
|                 eloop->make_counter_clockwise();
 | |
|                 out.append(std::move(children.entities));
 | |
|                 out.entities.emplace_back(eloop);
 | |
|             } else {
 | |
|                 eloop->make_clockwise();
 | |
|                 out.entities.emplace_back(eloop);
 | |
|                 out.append(std::move(children.entities));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| void PerimeterGenerator::process()
 | |
| {
 | |
|     // other perimeters
 | |
|     m_mm3_per_mm               		= this->perimeter_flow.mm3_per_mm();
 | |
|     coord_t perimeter_width         = this->perimeter_flow.scaled_width();
 | |
|     coord_t perimeter_spacing       = this->perimeter_flow.scaled_spacing();
 | |
|     
 | |
|     // external perimeters
 | |
|     m_ext_mm3_per_mm           		= this->ext_perimeter_flow.mm3_per_mm();
 | |
|     coord_t ext_perimeter_width     = this->ext_perimeter_flow.scaled_width();
 | |
|     coord_t ext_perimeter_spacing   = this->ext_perimeter_flow.scaled_spacing();
 | |
|     coord_t ext_perimeter_spacing2  = scaled<coord_t>(0.5f * (this->ext_perimeter_flow.spacing() + this->perimeter_flow.spacing()));
 | |
|     
 | |
|     // overhang perimeters
 | |
|     m_mm3_per_mm_overhang      		= this->overhang_flow.mm3_per_mm();
 | |
|     
 | |
|     // solid infill
 | |
|     coord_t solid_infill_spacing    = this->solid_infill_flow.scaled_spacing();
 | |
|     
 | |
|     // Calculate the minimum required spacing between two adjacent traces.
 | |
|     // This should be equal to the nominal flow spacing but we experiment
 | |
|     // with some tolerance in order to avoid triggering medial axis when
 | |
|     // some squishing might work. Loops are still spaced by the entire
 | |
|     // flow spacing; this only applies to collapsing parts.
 | |
|     // For ext_min_spacing we use the ext_perimeter_spacing calculated for two adjacent
 | |
|     // external loops (which is the correct way) instead of using ext_perimeter_spacing2
 | |
|     // which is the spacing between external and internal, which is not correct
 | |
|     // and would make the collapsing (thus the details resolution) dependent on 
 | |
|     // internal flow which is unrelated.
 | |
|     coord_t min_spacing         = coord_t(perimeter_spacing      * (1 - INSET_OVERLAP_TOLERANCE));
 | |
|     coord_t ext_min_spacing     = coord_t(ext_perimeter_spacing  * (1 - INSET_OVERLAP_TOLERANCE));
 | |
|     bool    has_gap_fill 		= this->config->gap_fill_enabled.value && this->config->gap_fill_speed.value > 0;
 | |
| 
 | |
|     // prepare grown lower layer slices for overhang detection
 | |
|     if (this->lower_slices != NULL && this->config->overhangs) {
 | |
|         // We consider overhang any part where the entire nozzle diameter is not supported by the
 | |
|         // lower layer, so we take lower slices and offset them by half the nozzle diameter used 
 | |
|         // in the current layer
 | |
|         double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
 | |
|         m_lower_slices_polygons = offset(*this->lower_slices, float(scale_(+nozzle_diameter/2)));
 | |
|     }
 | |
| 
 | |
|     // we need to process each island separately because we might have different
 | |
|     // extra perimeters for each one
 | |
|     for (const Surface &surface : this->slices->surfaces) {
 | |
|         // detect how many perimeters must be generated for this island
 | |
|         int        loop_number = this->config->perimeters + surface.extra_perimeters - 1;  // 0-indexed loops
 | |
|         ExPolygons last        = union_ex(surface.expolygon.simplify_p(SCALED_RESOLUTION));
 | |
|         ExPolygons gaps;
 | |
|         if (loop_number >= 0) {
 | |
|             // In case no perimeters are to be generated, loop_number will equal to -1.
 | |
|             std::vector<PerimeterGeneratorLoops> contours(loop_number+1);    // depth => loops
 | |
|             std::vector<PerimeterGeneratorLoops> holes(loop_number+1);       // depth => loops
 | |
|             ThickPolylines thin_walls;
 | |
|             // we loop one time more than needed in order to find gaps after the last perimeter was applied
 | |
|             for (int i = 0;; ++ i) {  // outer loop is 0
 | |
|                 // Calculate next onion shell of perimeters.
 | |
|                 ExPolygons offsets;
 | |
|                 if (i == 0) {
 | |
|                     // the minimum thickness of a single loop is:
 | |
|                     // ext_width/2 + ext_spacing/2 + spacing/2 + width/2
 | |
|                     offsets = this->config->thin_walls ? 
 | |
|                         offset2_ex(
 | |
|                             last,
 | |
|                             - float(ext_perimeter_width / 2. + ext_min_spacing / 2. - 1),
 | |
|                             + float(ext_min_spacing / 2. - 1)) :
 | |
|                         offset_ex(last, - float(ext_perimeter_width / 2.));
 | |
|                     // look for thin walls
 | |
|                     if (this->config->thin_walls) {
 | |
|                         // the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
 | |
|                         // (actually, something larger than that still may exist due to mitering or other causes)
 | |
|                         coord_t min_width = coord_t(scale_(this->ext_perimeter_flow.nozzle_diameter() / 3));
 | |
|                         ExPolygons expp = offset2_ex(
 | |
|                             // medial axis requires non-overlapping geometry
 | |
|                             diff_ex(last, offset(offsets, float(ext_perimeter_width / 2.) + ClipperSafetyOffset)),
 | |
|                             - float(min_width / 2.), float(min_width / 2.));
 | |
|                         // the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
 | |
|                         for (ExPolygon &ex : expp)
 | |
|                             ex.medial_axis(ext_perimeter_width + ext_perimeter_spacing2, min_width, &thin_walls);
 | |
|                     }
 | |
|                     if (m_spiral_vase && offsets.size() > 1) {
 | |
|                     	// Remove all but the largest area polygon.
 | |
|                     	keep_largest_contour_only(offsets);
 | |
|                     }
 | |
|                 } else {
 | |
|                     //FIXME Is this offset correct if the line width of the inner perimeters differs
 | |
|                     // from the line width of the infill?
 | |
|                     coord_t distance = (i == 1) ? ext_perimeter_spacing2 : perimeter_spacing;
 | |
|                     offsets = this->config->thin_walls ?
 | |
|                         // This path will ensure, that the perimeters do not overfill, as in 
 | |
|                         // prusa3d/Slic3r GH #32, but with the cost of rounding the perimeters
 | |
|                         // excessively, creating gaps, which then need to be filled in by the not very 
 | |
|                         // reliable gap fill algorithm.
 | |
|                         // Also the offset2(perimeter, -x, x) may sometimes lead to a perimeter, which is larger than
 | |
|                         // the original.
 | |
|                         offset2_ex(last,
 | |
|                                 - float(distance + min_spacing / 2. - 1.),
 | |
|                                 float(min_spacing / 2. - 1.)) :
 | |
|                         // If "detect thin walls" is not enabled, this paths will be entered, which 
 | |
|                         // leads to overflows, as in prusa3d/Slic3r GH #32
 | |
|                         offset_ex(last, - float(distance));
 | |
|                     // look for gaps
 | |
|                     if (has_gap_fill)
 | |
|                         // not using safety offset here would "detect" very narrow gaps
 | |
|                         // (but still long enough to escape the area threshold) that gap fill
 | |
|                         // won't be able to fill but we'd still remove from infill area
 | |
|                         append(gaps, diff_ex(
 | |
|                             offset(last,    - float(0.5 * distance)),
 | |
|                             offset(offsets,   float(0.5 * distance + 10))));  // safety offset
 | |
|                 }
 | |
|                 if (offsets.empty()) {
 | |
|                     // Store the number of loops actually generated.
 | |
|                     loop_number = i - 1;
 | |
|                     // No region left to be filled in.
 | |
|                     last.clear();
 | |
|                     break;
 | |
|                 } else if (i > loop_number) {
 | |
|                     // If i > loop_number, we were looking just for gaps.
 | |
|                     break;
 | |
|                 }
 | |
|                 {
 | |
|                     const bool fuzzify_contours = this->config->fuzzy_skin != FuzzySkinType::None && i == 0 && this->layer_id > 0;
 | |
|                     const bool fuzzify_holes    = fuzzify_contours && this->config->fuzzy_skin == FuzzySkinType::All;
 | |
|                     for (const ExPolygon &expolygon : offsets) {
 | |
|     	                // Outer contour may overlap with an inner contour,
 | |
|     	                // inner contour may overlap with another inner contour,
 | |
|     	                // outer contour may overlap with itself.
 | |
|     	                //FIXME evaluate the overlaps, annotate each point with an overlap depth,
 | |
|                         // compensate for the depth of intersection.
 | |
|                         contours[i].emplace_back(expolygon.contour, i, true, fuzzify_contours);
 | |
| 
 | |
|                         if (! expolygon.holes.empty()) {
 | |
|                             holes[i].reserve(holes[i].size() + expolygon.holes.size());
 | |
|                             for (const Polygon &hole : expolygon.holes)
 | |
|                                 holes[i].emplace_back(hole, i, false, fuzzify_holes);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 last = std::move(offsets);
 | |
|                 if (i == loop_number && (! has_gap_fill || this->config->fill_density.value == 0)) {
 | |
|                 	// The last run of this loop is executed to collect gaps for gap fill.
 | |
|                 	// As the gap fill is either disabled or not 
 | |
|                 	break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // nest loops: holes first
 | |
|             for (int d = 0; d <= loop_number; ++ d) {
 | |
|                 PerimeterGeneratorLoops &holes_d = holes[d];
 | |
|                 // loop through all holes having depth == d
 | |
|                 for (int i = 0; i < (int)holes_d.size(); ++ i) {
 | |
|                     const PerimeterGeneratorLoop &loop = holes_d[i];
 | |
|                     // find the hole loop that contains this one, if any
 | |
|                     for (int t = d + 1; t <= loop_number; ++ t) {
 | |
|                         for (int j = 0; j < (int)holes[t].size(); ++ j) {
 | |
|                             PerimeterGeneratorLoop &candidate_parent = holes[t][j];
 | |
|                             if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
 | |
|                                 candidate_parent.children.push_back(loop);
 | |
|                                 holes_d.erase(holes_d.begin() + i);
 | |
|                                 -- i;
 | |
|                                 goto NEXT_LOOP;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     // if no hole contains this hole, find the contour loop that contains it
 | |
|                     for (int t = loop_number; t >= 0; -- t) {
 | |
|                         for (int j = 0; j < (int)contours[t].size(); ++ j) {
 | |
|                             PerimeterGeneratorLoop &candidate_parent = contours[t][j];
 | |
|                             if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
 | |
|                                 candidate_parent.children.push_back(loop);
 | |
|                                 holes_d.erase(holes_d.begin() + i);
 | |
|                                 -- i;
 | |
|                                 goto NEXT_LOOP;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     NEXT_LOOP: ;
 | |
|                 }
 | |
|             }
 | |
|             // nest contour loops
 | |
|             for (int d = loop_number; d >= 1; -- d) {
 | |
|                 PerimeterGeneratorLoops &contours_d = contours[d];
 | |
|                 // loop through all contours having depth == d
 | |
|                 for (int i = 0; i < (int)contours_d.size(); ++ i) {
 | |
|                     const PerimeterGeneratorLoop &loop = contours_d[i];
 | |
|                     // find the contour loop that contains it
 | |
|                     for (int t = d - 1; t >= 0; -- t) {
 | |
|                         for (size_t j = 0; j < contours[t].size(); ++ j) {
 | |
|                             PerimeterGeneratorLoop &candidate_parent = contours[t][j];
 | |
|                             if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
 | |
|                                 candidate_parent.children.push_back(loop);
 | |
|                                 contours_d.erase(contours_d.begin() + i);
 | |
|                                 -- i;
 | |
|                                 goto NEXT_CONTOUR;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     NEXT_CONTOUR: ;
 | |
|                 }
 | |
|             }
 | |
|             // at this point, all loops should be in contours[0]
 | |
|             ExtrusionEntityCollection entities = traverse_loops(*this, contours.front(), thin_walls);
 | |
|             // if brim will be printed, reverse the order of perimeters so that
 | |
|             // we continue inwards after having finished the brim
 | |
|             // TODO: add test for perimeter order
 | |
|             if (this->config->external_perimeters_first || 
 | |
|                 (this->layer_id == 0 && this->object_config->brim_width.value > 0))
 | |
|                 entities.reverse();
 | |
|             // append perimeters for this slice as a collection
 | |
|             if (! entities.empty())
 | |
|                 this->loops->append(entities);
 | |
|         } // for each loop of an island
 | |
| 
 | |
|         // fill gaps
 | |
|         if (! gaps.empty()) {
 | |
|             // collapse 
 | |
|             double min = 0.2 * perimeter_width * (1 - INSET_OVERLAP_TOLERANCE);
 | |
|             double max = 2. * perimeter_spacing;
 | |
|             ExPolygons gaps_ex = diff_ex(
 | |
|                 //FIXME offset2 would be enough and cheaper.
 | |
|                 offset2_ex(gaps, - float(min / 2.), float(min / 2.)),
 | |
|                 offset2_ex(gaps, - float(max / 2.), float(max / 2. + ClipperSafetyOffset)));
 | |
|             ThickPolylines polylines;
 | |
|             for (const ExPolygon &ex : gaps_ex)
 | |
|                 ex.medial_axis(max, min, &polylines);
 | |
|             if (! polylines.empty()) {
 | |
| 				ExtrusionEntityCollection gap_fill;
 | |
| 				variable_width(polylines, erGapFill, this->solid_infill_flow, gap_fill.entities);
 | |
|                 /*  Make sure we don't infill narrow parts that are already gap-filled
 | |
|                     (we only consider this surface's gaps to reduce the diff() complexity).
 | |
|                     Growing actual extrusions ensures that gaps not filled by medial axis
 | |
|                     are not subtracted from fill surfaces (they might be too short gaps
 | |
|                     that medial axis skips but infill might join with other infill regions
 | |
|                     and use zigzag).  */
 | |
|                 //FIXME Vojtech: This grows by a rounded extrusion width, not by line spacing,
 | |
|                 // therefore it may cover the area, but no the volume.
 | |
|                 last = diff_ex(last, gap_fill.polygons_covered_by_width(10.f));
 | |
| 				this->gap_fill->append(std::move(gap_fill.entities));
 | |
| 			}
 | |
|         }
 | |
| 
 | |
|         // create one more offset to be used as boundary for fill
 | |
|         // we offset by half the perimeter spacing (to get to the actual infill boundary)
 | |
|         // and then we offset back and forth by half the infill spacing to only consider the
 | |
|         // non-collapsing regions
 | |
|         coord_t inset = 
 | |
|             (loop_number < 0) ? 0 :
 | |
|             (loop_number == 0) ?
 | |
|                 // one loop
 | |
|                 ext_perimeter_spacing / 2 :
 | |
|                 // two or more loops?
 | |
|                 perimeter_spacing / 2;
 | |
|         // only apply infill overlap if we actually have one perimeter
 | |
|         if (inset > 0)
 | |
|             inset -= coord_t(scale_(this->config->get_abs_value("infill_overlap", unscale<double>(inset + solid_infill_spacing / 2))));
 | |
|         // simplify infill contours according to resolution
 | |
|         Polygons pp;
 | |
|         for (ExPolygon &ex : last)
 | |
|             ex.simplify_p(SCALED_RESOLUTION, &pp);
 | |
|         // collapse too narrow infill areas
 | |
|         coord_t min_perimeter_infill_spacing = coord_t(solid_infill_spacing * (1. - INSET_OVERLAP_TOLERANCE));
 | |
|         // append infill areas to fill_surfaces
 | |
|         this->fill_surfaces->append(
 | |
|             offset2_ex(
 | |
|                 union_ex(pp),
 | |
|                 float(- inset - min_perimeter_infill_spacing / 2.),
 | |
|                 float(min_perimeter_infill_spacing / 2.)),
 | |
|             stInternal);
 | |
|     } // for each island
 | |
| }
 | |
| 
 | |
| bool PerimeterGeneratorLoop::is_internal_contour() const
 | |
| {
 | |
|     // An internal contour is a contour containing no other contours
 | |
|     if (! this->is_contour)
 | |
|         return false;
 | |
|     for (const PerimeterGeneratorLoop &loop : this->children)
 | |
|         if (loop.is_contour)
 | |
|             return false;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| }
 |