mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2026-01-30 04:40:47 -07:00
1674 lines
82 KiB
C++
1674 lines
82 KiB
C++
#include <assert.h>
|
||
#include <stdio.h>
|
||
#include <memory>
|
||
|
||
#include "../ClipperUtils.hpp"
|
||
#include "../Geometry.hpp"
|
||
#include "../Layer.hpp"
|
||
#include "../Print.hpp"
|
||
#include "../PrintConfig.hpp"
|
||
#include "../Surface.hpp"
|
||
|
||
#include "AABBTreeLines.hpp"
|
||
#include "ExtrusionEntity.hpp"
|
||
#include "FillBase.hpp"
|
||
#include "FillRectilinear.hpp"
|
||
#include "FillLightning.hpp"
|
||
#include "FillConcentricInternal.hpp"
|
||
#include "FillTpmsD.hpp"
|
||
#include "FillTpmsFK.hpp"
|
||
#include "FillConcentric.hpp"
|
||
#include "libslic3r.h"
|
||
|
||
namespace Slic3r {
|
||
|
||
// Calculate infill rotation angle (in radians) for a given layer from a rotation template.
|
||
// Grammar subset handled (rotation only):
|
||
// [±]α[*Z or !][joint][-][N|B|T][length][* or !]
|
||
// [±]α* sets an initial angle only (no layer processed)
|
||
// Where:
|
||
// - α: angle in degrees. Without a sign it's absolute; with +/− it's relative. α% means a percentage of 360°.
|
||
// - Runtime: *Z repeats the instruction Z times; bare * is a no-op used for initialization; ! runs once globally and then stops.
|
||
// - Solid signs (D,S,O,M,R) are not processed here; if present they are treated as invalid/non-rotation characters.
|
||
// - Joint signs (shape of the turn across a range):
|
||
// / linear;
|
||
// N,n vertical sinus (n = lazy/half amplitude);
|
||
// Z,z horizontal sinus (z = lazy/half amplitude);
|
||
// $ arcsin; L quarter circle H→V; l quarter circle V→H;
|
||
// U,u squared; Q,q cubic; ~ random; ^ pseudorandom; | middle step; # vertical step at end.
|
||
// - Counting / range length:
|
||
// After the joint (or after α) a count determines duration of the turn:
|
||
// N = layer count, B = bottom_shell_layers, T = top_shell_layers.
|
||
// Prefix '-' flips the joint (swap initial/final orientation).
|
||
// - Length modifiers convert the count to a Z range instead of a pure layer count:
|
||
// mm, cm, m, ' (feet), " (inches), # (standard height of N layers), % (percent of model height).
|
||
//
|
||
// Behavior:
|
||
// - The template string is tokenized by commas/whitespace and evaluated cyclically with one or more "ranges" per token.
|
||
// - Absolute α resets the accumulated angle at the start of its range; relative α accumulates.
|
||
// - *Z and ! control repetition and one-time execution of tokens across layers.
|
||
// - If the template contains no metalanguage symbols, it is treated as a simple comma-separated list of angles repeated by modulo.
|
||
// - Returns angle in radians for the requested layer_id. 0° aligns with +X; fillers may internally rotate as needed.
|
||
double calculate_infill_rotation_angle(const PrintObject* object,
|
||
size_t layer_id,
|
||
const double& fixed_infill_angle,
|
||
const std::string& template_string)
|
||
{
|
||
if (template_string.empty()) {
|
||
return Geometry::deg2rad(fixed_infill_angle);
|
||
}
|
||
double angle = 0.0;
|
||
ConfigOptionFloats rotate_angles;
|
||
const std::string search_string = "/NnZz$LlUuQq~^|#";
|
||
if (regex_search(template_string, std::regex("[+\\-%*@\'\"cm" + search_string + "]"))) { // template metalanguage of rotating infill
|
||
std::regex del("[\\s,]+");
|
||
std::sregex_token_iterator it(template_string.begin(), template_string.end(), del, -1);
|
||
std::vector<std::string> tk;
|
||
std::sregex_token_iterator end;
|
||
while (it != end) {
|
||
tk.push_back(*it++);
|
||
}
|
||
int t = 0;
|
||
int repeats = 0;
|
||
double angle_add = 0;
|
||
double angle_steps = 1;
|
||
double angle_start = 0;
|
||
double limit_fill_z = object->get_layer(0)->bottom_z();
|
||
double start_fill_z = limit_fill_z;
|
||
bool _noop = false;
|
||
auto fill_form = std::string::npos;
|
||
bool _absolute = false;
|
||
bool _negative = false;
|
||
std::vector<bool> stop(tk.size(), false);
|
||
|
||
for (int i = 0; i <= layer_id; i++) {
|
||
double fill_z = object->get_layer(i)->bottom_z();
|
||
|
||
if (limit_fill_z < object->get_layer(i)->slice_z) {
|
||
if (repeats) { // if repeats >0 then restore parameters for new iteration
|
||
limit_fill_z += limit_fill_z - start_fill_z;
|
||
start_fill_z = fill_z;
|
||
repeats--;
|
||
} else {
|
||
start_fill_z = fill_z;
|
||
limit_fill_z = object->get_layer(i)->print_z;
|
||
// Solid handling removed: this function only computes rotation.
|
||
fill_form = std::string::npos;
|
||
do {
|
||
if (!stop[t]) {
|
||
_noop = false;
|
||
_absolute = false;
|
||
_negative = false;
|
||
angle_start += angle_add;
|
||
angle_add = 0;
|
||
angle_steps = 1;
|
||
repeats = 1;
|
||
if (tk[t].find('!') != std::string::npos) // this is an one-time instruction
|
||
stop[t] = true;
|
||
|
||
char* cs = &tk[t][0];
|
||
|
||
if ((cs[0] >= '0' && cs[0] <= '9') && !(cs[0] == '+' || cs[0] == '-')) // absolute/relative
|
||
_absolute = true;
|
||
|
||
angle_add = strtod(cs, &cs); // read angle parameter
|
||
|
||
if (cs[0] == '%') { // percentage of angles
|
||
angle_add *= 3.6;
|
||
cs = &cs[1];
|
||
}
|
||
|
||
int tit = tk[t].find('*');
|
||
if (tit != std::string::npos) // overall angle_cycles
|
||
repeats = strtol(&tk[t][tit + 1], &cs, 0);
|
||
|
||
if (repeats) { // run if overall cycles greater than 0
|
||
// Solid signs (D,S,O,M,R) are not handled here; if present they behave as invalid characters.
|
||
|
||
if (cs[0] == 'B') {
|
||
angle_steps = object->print()->default_region_config().bottom_shell_layers.value;
|
||
} else if (cs[0] == 'T') {
|
||
angle_steps = object->print()->default_region_config().top_shell_layers.value;
|
||
} else {
|
||
fill_form = search_string.find(cs[0]);
|
||
if (fill_form != std::string::npos)
|
||
cs = &cs[1];
|
||
|
||
_negative = (cs[0] == '-'); // negative parameter
|
||
angle_steps = abs(strtod(cs, &cs));
|
||
|
||
if (angle_steps && cs[0] != '\0' && cs[0] != '!') {
|
||
if (cs[0] == '%') // value in the percents of fill_z
|
||
limit_fill_z = angle_steps * object->height() * 1e-8;
|
||
else if (cs[0] == '#') // value in the feet
|
||
limit_fill_z = angle_steps * object->config().layer_height;
|
||
else if (cs[0] == '\'') // value in the feet
|
||
limit_fill_z = angle_steps * 12 * 25.4;
|
||
else if (cs[0] == '\"') // value in the inches
|
||
limit_fill_z = angle_steps * 25.4;
|
||
else if (cs[0] == 'c') // value in centimeters
|
||
limit_fill_z = angle_steps * 10.;
|
||
else if (cs[0] == 'm') {
|
||
if (cs[1] == 'm') { // value in the millimeters
|
||
limit_fill_z = angle_steps * 1.;
|
||
} else{
|
||
limit_fill_z = angle_steps * 1000.;
|
||
}
|
||
}
|
||
limit_fill_z += fill_z;
|
||
angle_steps = 0; // limit_fill_z has already count
|
||
}
|
||
}
|
||
if (angle_steps) { // if limit_fill_z does not setting by lenght method. Get count the layer id above model height
|
||
if (fill_form == std::string::npos && !_absolute)
|
||
angle_add *= (int) angle_steps;
|
||
int idx = i + std::max(angle_steps - 1, 0.);
|
||
int sdx = std::max(0, idx - (int) object->layers().size());
|
||
idx = std::min(idx, (int) object->layers().size() - 1);
|
||
limit_fill_z = object->get_layer(idx)->print_z + sdx * object->config().layer_height;
|
||
}
|
||
repeats = std::max(--repeats, 0);
|
||
} else
|
||
_noop = true; // set the dumb cycle
|
||
if (_absolute) { // is absolute
|
||
angle_start = angle_add;
|
||
angle_add = 0;
|
||
}
|
||
}
|
||
if (++t >= tk.size())
|
||
t = 0;
|
||
} while (std::all_of(stop.begin(), stop.end(), [](bool v) { return v; }) ?
|
||
false :
|
||
(t ? _noop : false) || stop[t]); // if this is a dumb instruction which never reaprated twice
|
||
}
|
||
}
|
||
double top_z = object->get_layer(i)->print_z;
|
||
double negvalue = (_negative ? limit_fill_z - top_z : top_z - start_fill_z) / (limit_fill_z - start_fill_z);
|
||
|
||
switch (fill_form) {
|
||
case 0: break; // /-joint, linear
|
||
case 1: negvalue -= sin(negvalue * PI * 2.) / (PI * 2.); break; // N-joint, sinus, vertical start
|
||
case 2: negvalue -= sin(negvalue * PI * 2.) / (PI * 4.); break; // n-joint, sinus, vertical start, lazy
|
||
case 3: negvalue += sin(negvalue * PI * 2.) / (PI * 2.); break; // Z-joint, sinus, horizontal start
|
||
case 4: negvalue += sin(negvalue * PI * 2.) / (PI * 4.); break; // z-joint, sinus, horizontal start, lazy
|
||
case 5: negvalue = asin(negvalue * 2. - 1.) / PI + 0.5; break; // $-joint, arcsin
|
||
case 6: negvalue = sin(negvalue * PI / 2.); break; // L-joint, quarter of circle, horizontal start
|
||
case 7: negvalue = 1. - cos(negvalue * PI / 2.); break; // l-joint, quarter of circle, vertical start
|
||
case 8: negvalue = 1. - pow(1. - negvalue, 2); break; // U-joint, squared, x2
|
||
case 9: negvalue = pow(1 - negvalue, 2); break; // u-joint, squared, x2 inverse
|
||
case 10: negvalue = 1. - pow(1. - negvalue, 3); break; // Q-joint, cubic, x3
|
||
case 11: negvalue = pow(1. - negvalue, 3); break; // q-joint, cubic, x3 inverse
|
||
case 12: negvalue = (double) rand() / RAND_MAX; break; // ~-joint, random, fill the whole angle
|
||
case 13: negvalue += (double) rand() / RAND_MAX - 0.5; break; // ^-joint, pseudorandom, disperse at middle line
|
||
case 14: negvalue = 0.5; break; // |-joint, like #-joint but placed at middle angle
|
||
case 15: negvalue = _negative ? 0. : 1.; break; // #-joint, vertical at the end angle
|
||
}
|
||
angle = Geometry::deg2rad(angle_start + angle_add * negvalue);
|
||
}
|
||
} else {
|
||
rotate_angles.deserialize(template_string);
|
||
auto rotate_angle_idx = layer_id % rotate_angles.size();
|
||
angle = Geometry::deg2rad(rotate_angles.values[rotate_angle_idx]);
|
||
}
|
||
return angle;
|
||
}
|
||
|
||
struct SurfaceFillParams
|
||
{
|
||
// Zero based extruder ID.
|
||
unsigned int extruder = 0;
|
||
// Infill pattern, adjusted for the density etc.
|
||
InfillPattern pattern = InfillPattern(0);
|
||
|
||
// FillBase
|
||
// in unscaled coordinates
|
||
coordf_t spacing = 0.;
|
||
// infill / perimeter overlap, in unscaled coordinates
|
||
coordf_t overlap = 0.;
|
||
// Angle as provided by the region config, in radians.
|
||
float angle = 0.f;
|
||
// Orca: fixed_angle
|
||
bool fixed_angle = false;
|
||
// Is bridging used for this fill? Bridging parameters may be used even if this->flow.bridge() is not set.
|
||
bool bridge;
|
||
// Non-negative for a bridge.
|
||
float bridge_angle = 0.f;
|
||
|
||
// FillParams
|
||
float density = 0.f;
|
||
// Infill line multiplier count.
|
||
int multiline = 1;
|
||
// Don't adjust spacing to fill the space evenly.
|
||
// bool dont_adjust = false;
|
||
// Length of the infill anchor along the perimeter line.
|
||
// 1000mm is roughly the maximum length line that fits into a 32bit coord_t.
|
||
float anchor_length = 1000.f;
|
||
float anchor_length_max = 1000.f;
|
||
|
||
// width, height of extrusion, nozzle diameter, is bridge
|
||
// For the output, for fill generator.
|
||
Flow flow;
|
||
|
||
// For the output
|
||
ExtrusionRole extrusion_role = ExtrusionRole(0);
|
||
|
||
// Various print settings?
|
||
|
||
// Index of this entry in a linear vector.
|
||
size_t idx = 0;
|
||
// infill speed settings
|
||
float sparse_infill_speed = 0;
|
||
float top_surface_speed = 0;
|
||
float solid_infill_speed = 0;
|
||
|
||
// Params for lattice infill angles
|
||
float lateral_lattice_angle_1 = 0.f;
|
||
float lateral_lattice_angle_2 = 0.f;
|
||
float infill_lock_depth = 0;
|
||
float skin_infill_depth = 0;
|
||
bool symmetric_infill_y_axis = false;
|
||
|
||
// Params for Lateral honeycomb
|
||
float infill_overhang_angle = 60.f;
|
||
|
||
bool operator<(const SurfaceFillParams &rhs) const {
|
||
#define RETURN_COMPARE_NON_EQUAL(KEY) if (this->KEY < rhs.KEY) return true; if (this->KEY > rhs.KEY) return false;
|
||
#define RETURN_COMPARE_NON_EQUAL_TYPED(TYPE, KEY) if (TYPE(this->KEY) < TYPE(rhs.KEY)) return true; if (TYPE(this->KEY) > TYPE(rhs.KEY)) return false;
|
||
|
||
// Sort first by decreasing bridging angle, so that the bridges are processed with priority when trimming one layer by the other.
|
||
if (this->bridge_angle > rhs.bridge_angle) return true;
|
||
if (this->bridge_angle < rhs.bridge_angle) return false;
|
||
|
||
RETURN_COMPARE_NON_EQUAL(extruder);
|
||
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, pattern);
|
||
RETURN_COMPARE_NON_EQUAL(spacing);
|
||
RETURN_COMPARE_NON_EQUAL(overlap);
|
||
RETURN_COMPARE_NON_EQUAL(angle);
|
||
RETURN_COMPARE_NON_EQUAL(fixed_angle);
|
||
RETURN_COMPARE_NON_EQUAL(density);
|
||
RETURN_COMPARE_NON_EQUAL(multiline);
|
||
// RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, dont_adjust);
|
||
RETURN_COMPARE_NON_EQUAL(anchor_length);
|
||
RETURN_COMPARE_NON_EQUAL(anchor_length_max);
|
||
RETURN_COMPARE_NON_EQUAL(flow.width());
|
||
RETURN_COMPARE_NON_EQUAL(flow.height());
|
||
RETURN_COMPARE_NON_EQUAL(flow.nozzle_diameter());
|
||
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, bridge);
|
||
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, extrusion_role);
|
||
RETURN_COMPARE_NON_EQUAL(sparse_infill_speed);
|
||
RETURN_COMPARE_NON_EQUAL(top_surface_speed);
|
||
RETURN_COMPARE_NON_EQUAL(solid_infill_speed);
|
||
RETURN_COMPARE_NON_EQUAL(lateral_lattice_angle_1);
|
||
RETURN_COMPARE_NON_EQUAL(lateral_lattice_angle_2);
|
||
RETURN_COMPARE_NON_EQUAL(symmetric_infill_y_axis);
|
||
RETURN_COMPARE_NON_EQUAL(infill_lock_depth);
|
||
RETURN_COMPARE_NON_EQUAL(skin_infill_depth); RETURN_COMPARE_NON_EQUAL(infill_overhang_angle);
|
||
|
||
return false;
|
||
}
|
||
|
||
bool operator==(const SurfaceFillParams &rhs) const {
|
||
return this->extruder == rhs.extruder &&
|
||
this->pattern == rhs.pattern &&
|
||
this->spacing == rhs.spacing &&
|
||
this->overlap == rhs.overlap &&
|
||
this->angle == rhs.angle &&
|
||
this->fixed_angle == rhs.fixed_angle &&
|
||
this->bridge == rhs.bridge &&
|
||
this->bridge_angle == rhs.bridge_angle &&
|
||
this->density == rhs.density &&
|
||
this->multiline == rhs.multiline &&
|
||
// this->dont_adjust == rhs.dont_adjust &&
|
||
this->anchor_length == rhs.anchor_length &&
|
||
this->anchor_length_max == rhs.anchor_length_max &&
|
||
this->flow == rhs.flow &&
|
||
this->extrusion_role == rhs.extrusion_role &&
|
||
this->sparse_infill_speed == rhs.sparse_infill_speed &&
|
||
this->top_surface_speed == rhs.top_surface_speed &&
|
||
this->solid_infill_speed == rhs.solid_infill_speed &&
|
||
this->lateral_lattice_angle_1 == rhs.lateral_lattice_angle_1 &&
|
||
this->lateral_lattice_angle_2 == rhs.lateral_lattice_angle_2 &&
|
||
this->infill_lock_depth == rhs.infill_lock_depth &&
|
||
this->skin_infill_depth == rhs.skin_infill_depth &&
|
||
this->infill_overhang_angle == rhs.infill_overhang_angle;
|
||
}
|
||
};
|
||
|
||
struct SurfaceFill {
|
||
SurfaceFill(const SurfaceFillParams& params) : region_id(size_t(-1)), surface(stCount, ExPolygon()), params(params) {}
|
||
|
||
size_t region_id;
|
||
Surface surface;
|
||
ExPolygons expolygons;
|
||
SurfaceFillParams params;
|
||
// BBS
|
||
std::vector<size_t> region_id_group;
|
||
ExPolygons no_overlap_expolygons;
|
||
};
|
||
|
||
|
||
// Detect narrow infill regions
|
||
// Based on the anti-vibration algorithm from PrusaSlicer:
|
||
// https://github.com/prusa3d/PrusaSlicer/blob/5dc04b4e8f14f65bbcc5377d62cad3e86c2aea36/src/libslic3r/Fill/FillEnsuring.cpp#L37-L273
|
||
|
||
static coord_t _MAX_LINE_LENGTH_TO_FILTER() // 4 mm.
|
||
{
|
||
return scaled<coord_t>(4.);
|
||
}
|
||
const constexpr size_t MAX_SKIPS_ALLOWED = 2; // Skip means propagation through long line.
|
||
const constexpr size_t MIN_DEPTH_FOR_LINE_REMOVING = 5;
|
||
|
||
struct LineNode
|
||
{
|
||
struct State
|
||
{
|
||
// The total number of long lines visited before this node was reached.
|
||
// We just need the minimum number of all possible paths to decide whether we can remove the line or not.
|
||
int min_skips_taken = 0;
|
||
// The total number of short lines visited before this node was reached.
|
||
int total_short_lines = 0;
|
||
// Some initial line is touching some long line. This information is propagated to neighbors.
|
||
bool initial_touches_long_lines = false;
|
||
bool initialized = false;
|
||
|
||
void reset() {
|
||
this->min_skips_taken = 0;
|
||
this->total_short_lines = 0;
|
||
this->initial_touches_long_lines = false;
|
||
this->initialized = false;
|
||
}
|
||
};
|
||
|
||
explicit LineNode(const Line &line) : line(line) {}
|
||
|
||
Line line;
|
||
// Pointers to line nodes in the previous and the next section that overlap with this line.
|
||
std::vector<LineNode*> next_section_overlapping_lines;
|
||
std::vector<LineNode*> prev_section_overlapping_lines;
|
||
|
||
bool is_removed = false;
|
||
|
||
State state;
|
||
|
||
// Return true if some initial line is touching some long line and this information was propagated into the current line.
|
||
bool is_initial_line_touching_long_lines() const {
|
||
if (prev_section_overlapping_lines.empty())
|
||
return false;
|
||
|
||
for (LineNode *line_node : prev_section_overlapping_lines) {
|
||
if (line_node->state.initial_touches_long_lines)
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
// Return true if the current line overlaps with some long line in the previous section.
|
||
bool is_touching_long_lines_in_previous_layer() const {
|
||
if (prev_section_overlapping_lines.empty())
|
||
return false;
|
||
|
||
const auto MAX_LINE_LENGTH_TO_FILTER = _MAX_LINE_LENGTH_TO_FILTER();
|
||
for (LineNode *line_node : prev_section_overlapping_lines) {
|
||
if (!line_node->is_removed && line_node->line.length() >= MAX_LINE_LENGTH_TO_FILTER)
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
// Return true if the current line overlaps with some line in the next section.
|
||
bool has_next_layer_neighbours() const {
|
||
if (next_section_overlapping_lines.empty())
|
||
return false;
|
||
|
||
for (LineNode *line_node : next_section_overlapping_lines) {
|
||
if (!line_node->is_removed)
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
};
|
||
|
||
using LineNodes = std::vector<LineNode>;
|
||
|
||
inline bool are_lines_overlapping_in_y_axes(const Line &first_line, const Line &second_line) {
|
||
return (second_line.a.y() <= first_line.a.y() && first_line.a.y() <= second_line.b.y())
|
||
|| (second_line.a.y() <= first_line.b.y() && first_line.b.y() <= second_line.b.y())
|
||
|| (first_line.a.y() <= second_line.a.y() && second_line.a.y() <= first_line.b.y())
|
||
|| (first_line.a.y() <= second_line.b.y() && second_line.b.y() <= first_line.b.y());
|
||
}
|
||
|
||
bool can_line_note_be_removed(const LineNode &line_node) {
|
||
const auto MAX_LINE_LENGTH_TO_FILTER = _MAX_LINE_LENGTH_TO_FILTER();
|
||
return (line_node.line.length() < MAX_LINE_LENGTH_TO_FILTER)
|
||
&& (line_node.state.total_short_lines > int(MIN_DEPTH_FOR_LINE_REMOVING)
|
||
|| (!line_node.is_initial_line_touching_long_lines() && !line_node.has_next_layer_neighbours()));
|
||
}
|
||
|
||
// Remove the node and propagate its removal to the previous sections.
|
||
void propagate_line_node_remove(const LineNode &line_node) {
|
||
std::queue<LineNode *> line_node_queue;
|
||
for (LineNode *prev_line : line_node.prev_section_overlapping_lines) {
|
||
if (prev_line->is_removed)
|
||
continue;
|
||
|
||
line_node_queue.emplace(prev_line);
|
||
}
|
||
|
||
for (; !line_node_queue.empty(); line_node_queue.pop()) {
|
||
LineNode &line_to_check = *line_node_queue.front();
|
||
|
||
if (can_line_note_be_removed(line_to_check)) {
|
||
line_to_check.is_removed = true;
|
||
|
||
for (LineNode *prev_line : line_to_check.prev_section_overlapping_lines) {
|
||
if (prev_line->is_removed)
|
||
continue;
|
||
|
||
line_node_queue.emplace(prev_line);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Filter out short extrusions that could create vibrations.
|
||
static std::vector<Lines> filter_vibrating_extrusions(const std::vector<Lines> &lines_sections) {
|
||
// Initialize all line nodes.
|
||
std::vector<LineNodes> line_nodes_sections(lines_sections.size());
|
||
for (const Lines &lines_section : lines_sections) {
|
||
const size_t section_idx = &lines_section - lines_sections.data();
|
||
|
||
line_nodes_sections[section_idx].reserve(lines_section.size());
|
||
for (const Line &line : lines_section) {
|
||
line_nodes_sections[section_idx].emplace_back(line);
|
||
}
|
||
}
|
||
|
||
// Precalculate for each line node which line nodes in the previous and next section this line node overlaps.
|
||
for (auto curr_lines_section_it = line_nodes_sections.begin(); curr_lines_section_it != line_nodes_sections.end(); ++curr_lines_section_it) {
|
||
if (curr_lines_section_it != line_nodes_sections.begin()) {
|
||
const auto prev_lines_section_it = std::prev(curr_lines_section_it);
|
||
for (LineNode &curr_line : *curr_lines_section_it) {
|
||
for (LineNode &prev_line : *prev_lines_section_it) {
|
||
if (are_lines_overlapping_in_y_axes(curr_line.line, prev_line.line)) {
|
||
curr_line.prev_section_overlapping_lines.emplace_back(&prev_line);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (std::next(curr_lines_section_it) != line_nodes_sections.end()) {
|
||
const auto next_lines_section_it = std::next(curr_lines_section_it);
|
||
for (LineNode &curr_line : *curr_lines_section_it) {
|
||
for (LineNode &next_line : *next_lines_section_it) {
|
||
if (are_lines_overlapping_in_y_axes(curr_line.line, next_line.line)) {
|
||
curr_line.next_section_overlapping_lines.emplace_back(&next_line);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
const auto MAX_LINE_LENGTH_TO_FILTER = _MAX_LINE_LENGTH_TO_FILTER();
|
||
// Select each section as the initial lines section and propagate line node states from this initial lines section to the last lines section.
|
||
// During this propagation, we remove those lines that meet the conditions for its removal.
|
||
// When some line is removed, we propagate this removal to previous layers.
|
||
for (size_t initial_line_section_idx = 0; initial_line_section_idx < line_nodes_sections.size(); ++initial_line_section_idx) {
|
||
// Stars from non-removed short lines.
|
||
for (LineNode &initial_line : line_nodes_sections[initial_line_section_idx]) {
|
||
if (initial_line.is_removed || initial_line.line.length() >= MAX_LINE_LENGTH_TO_FILTER)
|
||
continue;
|
||
|
||
initial_line.state.reset();
|
||
initial_line.state.total_short_lines = 1;
|
||
initial_line.state.initial_touches_long_lines = initial_line.is_touching_long_lines_in_previous_layer();
|
||
initial_line.state.initialized = true;
|
||
}
|
||
|
||
// Iterate from the initial lines section until the last lines section.
|
||
for (size_t propagation_line_section_idx = initial_line_section_idx; propagation_line_section_idx < line_nodes_sections.size(); ++propagation_line_section_idx) {
|
||
// Before we propagate node states into next lines sections, we reset the state of all line nodes in the next line section.
|
||
if (propagation_line_section_idx + 1 < line_nodes_sections.size()) {
|
||
for (LineNode &propagation_line : line_nodes_sections[propagation_line_section_idx + 1]) {
|
||
propagation_line.state.reset();
|
||
}
|
||
}
|
||
|
||
for (LineNode &propagation_line : line_nodes_sections[propagation_line_section_idx]) {
|
||
if (propagation_line.is_removed || !propagation_line.state.initialized)
|
||
continue;
|
||
|
||
for (LineNode *neighbour_line : propagation_line.next_section_overlapping_lines) {
|
||
if (neighbour_line->is_removed)
|
||
continue;
|
||
|
||
const bool is_short_line = neighbour_line->line.length() < MAX_LINE_LENGTH_TO_FILTER;
|
||
const bool is_skip_allowed = propagation_line.state.min_skips_taken < int(MAX_SKIPS_ALLOWED);
|
||
|
||
if (!is_short_line && !is_skip_allowed)
|
||
continue;
|
||
|
||
const int neighbour_total_short_lines = propagation_line.state.total_short_lines + int(is_short_line);
|
||
const int neighbour_min_skips_taken = propagation_line.state.min_skips_taken + int(!is_short_line);
|
||
|
||
if (neighbour_line->state.initialized) {
|
||
// When the state of the node was previously filled, then we need to update data in such a way
|
||
// that will maximize the possibility of removing this node.
|
||
neighbour_line->state.min_skips_taken = std::max(neighbour_line->state.min_skips_taken, neighbour_total_short_lines);
|
||
neighbour_line->state.min_skips_taken = std::min(neighbour_line->state.min_skips_taken, neighbour_min_skips_taken);
|
||
|
||
// We will keep updating neighbor initial_touches_long_lines until it is equal to false.
|
||
if (neighbour_line->state.initial_touches_long_lines) {
|
||
neighbour_line->state.initial_touches_long_lines = propagation_line.state.initial_touches_long_lines;
|
||
}
|
||
} else {
|
||
neighbour_line->state.total_short_lines = neighbour_total_short_lines;
|
||
neighbour_line->state.min_skips_taken = neighbour_min_skips_taken;
|
||
neighbour_line->state.initial_touches_long_lines = propagation_line.state.initial_touches_long_lines;
|
||
neighbour_line->state.initialized = true;
|
||
}
|
||
}
|
||
|
||
if (can_line_note_be_removed(propagation_line)) {
|
||
// Remove the current node and propagate its removal to the previous sections.
|
||
propagation_line.is_removed = true;
|
||
propagate_line_node_remove(propagation_line);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Create lines sections without filtered-out lines.
|
||
std::vector<Lines> lines_sections_out(line_nodes_sections.size());
|
||
for (const std::vector<LineNode> &line_nodes_section : line_nodes_sections) {
|
||
const size_t section_idx = &line_nodes_section - line_nodes_sections.data();
|
||
|
||
for (const LineNode &line_node : line_nodes_section) {
|
||
if (!line_node.is_removed) {
|
||
lines_sections_out[section_idx].emplace_back(line_node.line);
|
||
}
|
||
}
|
||
}
|
||
|
||
return lines_sections_out;
|
||
}
|
||
|
||
void split_solid_surface(size_t layer_id, const SurfaceFill &fill, ExPolygons &normal_infill, ExPolygons &narrow_infill)
|
||
{
|
||
assert(fill.surface.surface_type == stInternalSolid);
|
||
|
||
switch (fill.params.pattern) {
|
||
case ipRectilinear:
|
||
case ipMonotonic:
|
||
case ipMonotonicLine:
|
||
case ipAlignedRectilinear:
|
||
// Only support straight line based infill
|
||
break;
|
||
|
||
default:
|
||
// For all other types, don't split
|
||
return;
|
||
}
|
||
|
||
Polygons normal_fill_areas; // Areas that filled with normal infill
|
||
|
||
constexpr double connect_extrusions = true;
|
||
|
||
const coord_t scaled_spacing = scaled<coord_t>(fill.params.spacing);
|
||
double distance_limit_reconnection = 2.0 * double(scaled_spacing);
|
||
double squared_distance_limit_reconnection = distance_limit_reconnection * distance_limit_reconnection;
|
||
// Calculate infill direction, see Fill::_infill_direction
|
||
double base_angle = fill.params.angle + float(M_PI / 2.);
|
||
// For pattern other than ipAlignedRectilinear, the angle are alternated
|
||
if (fill.params.pattern != ipAlignedRectilinear) {
|
||
size_t idx = layer_id / fill.surface.thickness_layers;
|
||
base_angle += (idx & 1) ? float(M_PI / 2.) : 0;
|
||
}
|
||
const double aligning_angle = -base_angle + PI;
|
||
|
||
for (const ExPolygon &expolygon : fill.expolygons) {
|
||
Polygons filled_area = to_polygons(expolygon);
|
||
polygons_rotate(filled_area, aligning_angle);
|
||
BoundingBox bb = get_extents(filled_area);
|
||
|
||
Polygons inner_area = intersection(filled_area, opening(filled_area, 2 * scaled_spacing, 3 * scaled_spacing));
|
||
|
||
inner_area = shrink(inner_area, scaled_spacing * 0.5 - scaled<double>(fill.params.overlap));
|
||
|
||
AABBTreeLines::LinesDistancer<Line> area_walls{to_lines(inner_area)};
|
||
|
||
const size_t n_vlines = (bb.max.x() - bb.min.x() + scaled_spacing - 1) / scaled_spacing;
|
||
const coord_t y_min = bb.min.y();
|
||
const coord_t y_max = bb.max.y();
|
||
Lines vertical_lines(n_vlines);
|
||
for (size_t i = 0; i < n_vlines; i++) {
|
||
coord_t x = bb.min.x() + i * double(scaled_spacing);
|
||
vertical_lines[i].a = Point{x, y_min};
|
||
vertical_lines[i].b = Point{x, y_max};
|
||
}
|
||
|
||
if (!vertical_lines.empty()) {
|
||
vertical_lines.push_back(vertical_lines.back());
|
||
vertical_lines.back().a = Point{coord_t(bb.min.x() + n_vlines * double(scaled_spacing) + scaled_spacing * 0.5), y_min};
|
||
vertical_lines.back().b = Point{vertical_lines.back().a.x(), y_max};
|
||
}
|
||
|
||
std::vector<Lines> polygon_sections(n_vlines);
|
||
|
||
for (size_t i = 0; i < n_vlines; i++) {
|
||
const auto intersections = area_walls.intersections_with_line<true>(vertical_lines[i]);
|
||
|
||
for (int intersection_idx = 0; intersection_idx < int(intersections.size()) - 1; intersection_idx++) {
|
||
const auto &a = intersections[intersection_idx];
|
||
const auto &b = intersections[intersection_idx + 1];
|
||
if (area_walls.outside((a.first + b.first) / 2) < 0) {
|
||
if (std::abs(a.first.y() - b.first.y()) > scaled_spacing) {
|
||
polygon_sections[i].emplace_back(a.first, b.first);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
polygon_sections = filter_vibrating_extrusions(polygon_sections);
|
||
|
||
Polygons reconstructed_area{};
|
||
// reconstruct polygon from polygon sections
|
||
{
|
||
struct TracedPoly
|
||
{
|
||
Points lows;
|
||
Points highs;
|
||
};
|
||
|
||
std::vector<std::vector<Line>> polygon_sections_w_width = polygon_sections;
|
||
for (auto &slice : polygon_sections_w_width) {
|
||
for (Line &l : slice) {
|
||
l.a -= Point{0.0, 0.5 * scaled_spacing};
|
||
l.b += Point{0.0, 0.5 * scaled_spacing};
|
||
}
|
||
}
|
||
|
||
std::vector<TracedPoly> current_traced_polys;
|
||
for (const auto &polygon_slice : polygon_sections_w_width) {
|
||
std::unordered_set<const Line *> used_segments;
|
||
for (TracedPoly &traced_poly : current_traced_polys) {
|
||
auto candidates_begin = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.lows.back(),
|
||
[](const Point &low, const Line &seg) { return seg.b.y() > low.y(); });
|
||
auto candidates_end = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.highs.back(),
|
||
[](const Point &high, const Line &seg) { return seg.a.y() > high.y(); });
|
||
|
||
bool segment_added = false;
|
||
for (auto candidate = candidates_begin; candidate != candidates_end && !segment_added; candidate++) {
|
||
if (used_segments.find(&(*candidate)) != used_segments.end()) {
|
||
continue;
|
||
}
|
||
if (connect_extrusions && (traced_poly.lows.back() - candidates_begin->a).cast<double>().squaredNorm() <
|
||
squared_distance_limit_reconnection) {
|
||
traced_poly.lows.push_back(candidates_begin->a);
|
||
} else {
|
||
traced_poly.lows.push_back(traced_poly.lows.back() + Point{scaled_spacing / 2, coord_t(0)});
|
||
traced_poly.lows.push_back(candidates_begin->a - Point{scaled_spacing / 2, 0});
|
||
traced_poly.lows.push_back(candidates_begin->a);
|
||
}
|
||
|
||
if (connect_extrusions && (traced_poly.highs.back() - candidates_begin->b).cast<double>().squaredNorm() <
|
||
squared_distance_limit_reconnection) {
|
||
traced_poly.highs.push_back(candidates_begin->b);
|
||
} else {
|
||
traced_poly.highs.push_back(traced_poly.highs.back() + Point{scaled_spacing / 2, 0});
|
||
traced_poly.highs.push_back(candidates_begin->b - Point{scaled_spacing / 2, 0});
|
||
traced_poly.highs.push_back(candidates_begin->b);
|
||
}
|
||
segment_added = true;
|
||
used_segments.insert(&(*candidates_begin));
|
||
}
|
||
|
||
if (!segment_added) {
|
||
// Zero or multiple overlapping segments. Resolving this is nontrivial,
|
||
// so we just close this polygon and maybe open several new. This will hopefully happen much less often
|
||
traced_poly.lows.push_back(traced_poly.lows.back() + Point{scaled_spacing / 2, 0});
|
||
traced_poly.highs.push_back(traced_poly.highs.back() + Point{scaled_spacing / 2, 0});
|
||
Polygon &new_poly = reconstructed_area.emplace_back(std::move(traced_poly.lows));
|
||
new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend());
|
||
traced_poly.lows.clear();
|
||
traced_poly.highs.clear();
|
||
}
|
||
}
|
||
|
||
current_traced_polys.erase(std::remove_if(current_traced_polys.begin(), current_traced_polys.end(),
|
||
[](const TracedPoly &tp) { return tp.lows.empty(); }),
|
||
current_traced_polys.end());
|
||
|
||
for (const auto &segment : polygon_slice) {
|
||
if (used_segments.find(&segment) == used_segments.end()) {
|
||
TracedPoly &new_tp = current_traced_polys.emplace_back();
|
||
new_tp.lows.push_back(segment.a - Point{scaled_spacing / 2, 0});
|
||
new_tp.lows.push_back(segment.a);
|
||
new_tp.highs.push_back(segment.b - Point{scaled_spacing / 2, 0});
|
||
new_tp.highs.push_back(segment.b);
|
||
}
|
||
}
|
||
}
|
||
|
||
// add not closed polys
|
||
for (TracedPoly &traced_poly : current_traced_polys) {
|
||
Polygon &new_poly = reconstructed_area.emplace_back(std::move(traced_poly.lows));
|
||
new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend());
|
||
}
|
||
}
|
||
|
||
polygons_append(normal_fill_areas, reconstructed_area);
|
||
}
|
||
|
||
polygons_rotate(normal_fill_areas, -aligning_angle);
|
||
|
||
// Do the split
|
||
ExPolygons normal_fill_areas_ex = union_safety_offset_ex(normal_fill_areas);
|
||
ExPolygons narrow_fill_areas = diff_ex(fill.expolygons, normal_fill_areas_ex);
|
||
|
||
// Merge very small areas that is smaller than a single line width to the normal infill if they touches
|
||
for (auto iter = narrow_fill_areas.begin(); iter != narrow_fill_areas.end();) {
|
||
auto shrinked_expoly = offset_ex(*iter, -scaled_spacing * 0.5);
|
||
if (shrinked_expoly.empty()) {
|
||
// Too small! Check if it touches any normal infills
|
||
auto expanede_exploy = offset_ex(*iter, scaled_spacing * 0.3);
|
||
Polygons normal_fill_area_clipped = ClipperUtils::clip_clipper_polygons_with_subject_bbox(normal_fill_areas_ex, get_extents(expanede_exploy));
|
||
auto touch_check = intersection_ex(normal_fill_area_clipped, expanede_exploy);
|
||
if (!touch_check.empty()) {
|
||
normal_fill_areas_ex.emplace_back(*iter);
|
||
iter = narrow_fill_areas.erase(iter);
|
||
continue;
|
||
}
|
||
}
|
||
iter++;
|
||
}
|
||
|
||
if (narrow_fill_areas.empty()) {
|
||
// No split needed
|
||
return;
|
||
}
|
||
|
||
// Expand the normal infills a little bit to avoid gaps between normal and narrow infills
|
||
normal_infill = intersection_ex(offset_ex(normal_fill_areas_ex, scaled_spacing * 0.1), fill.expolygons);
|
||
narrow_infill = narrow_fill_areas;
|
||
|
||
#ifdef DEBUG_SURFACE_SPLIT
|
||
{
|
||
BoundingBox bbox = get_extents(fill.expolygons);
|
||
bbox.offset(scale_(1.));
|
||
::Slic3r::SVG svg(debug_out_path("surface_split_%d.svg", layer_id), bbox);
|
||
svg.draw(to_lines(fill.expolygons), "red", scale_(0.1));
|
||
svg.draw(normal_infill, "blue", 0.5);
|
||
svg.draw(narrow_infill, "green", 0.5);
|
||
svg.Close();
|
||
}
|
||
#endif
|
||
}
|
||
|
||
std::vector<SurfaceFill> group_fills(const Layer &layer, LockRegionParam &lock_param)
|
||
{
|
||
std::vector<SurfaceFill> surface_fills;
|
||
// Fill in a map of a region & surface to SurfaceFillParams.
|
||
std::set<SurfaceFillParams> set_surface_params;
|
||
std::vector<std::vector<const SurfaceFillParams*>> region_to_surface_params(layer.regions().size(), std::vector<const SurfaceFillParams*>());
|
||
SurfaceFillParams params;
|
||
bool has_internal_voids = false;
|
||
const PrintObjectConfig& object_config = layer.object()->config();
|
||
|
||
auto append_flow_param = [](std::map<Flow, ExPolygons> &flow_params, Flow flow, const ExPolygon &exp) {
|
||
auto it = flow_params.find(flow);
|
||
if (it == flow_params.end())
|
||
flow_params.insert({flow, {exp}});
|
||
else
|
||
it->second.push_back(exp);
|
||
};
|
||
|
||
auto append_density_param = [](std::map<float, ExPolygons> &density_params, float density, const ExPolygon &exp) {
|
||
auto it = density_params.find(density);
|
||
if (it == density_params.end())
|
||
density_params.insert({density, {exp}});
|
||
else
|
||
it->second.push_back(exp);
|
||
};
|
||
|
||
for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) {
|
||
const LayerRegion &layerm = *layer.regions()[region_id];
|
||
region_to_surface_params[region_id].assign(layerm.fill_surfaces.size(), nullptr);
|
||
for (const Surface &surface : layerm.fill_surfaces.surfaces)
|
||
if (surface.surface_type == stInternalVoid)
|
||
has_internal_voids = true;
|
||
else {
|
||
const PrintRegionConfig ®ion_config = layerm.region().config();
|
||
FlowRole extrusion_role = surface.is_top() ? frTopSolidInfill : (surface.is_solid() ? frSolidInfill : frInfill);
|
||
bool is_bridge = layer.id() > 0 && surface.is_bridge();
|
||
params.extruder = layerm.region().extruder(extrusion_role);
|
||
params.pattern = region_config.sparse_infill_pattern.value;
|
||
params.density = float(region_config.sparse_infill_density);
|
||
params.lateral_lattice_angle_1 = region_config.lateral_lattice_angle_1;
|
||
params.lateral_lattice_angle_2 = region_config.lateral_lattice_angle_2;
|
||
params.infill_overhang_angle = region_config.infill_overhang_angle;
|
||
if (params.pattern == ipLockedZag) {
|
||
params.infill_lock_depth = scale_(region_config.infill_lock_depth);
|
||
params.skin_infill_depth = scale_(region_config.skin_infill_depth);
|
||
}
|
||
if (params.pattern == ipCrossZag || params.pattern == ipLockedZag) {
|
||
params.symmetric_infill_y_axis = region_config.symmetric_infill_y_axis;
|
||
} else if (params.pattern == ipZigZag) {
|
||
params.symmetric_infill_y_axis = region_config.symmetric_infill_y_axis;
|
||
}
|
||
|
||
if (surface.is_solid()) {
|
||
if (surface.is_external() && !is_bridge) {
|
||
if (surface.is_top()) {
|
||
params.pattern = region_config.top_surface_pattern.value;
|
||
params.density = float(region_config.top_surface_density);
|
||
} else { // Surface is bottom
|
||
params.pattern = region_config.bottom_surface_pattern.value;
|
||
params.density = float(region_config.bottom_surface_density);
|
||
}
|
||
} else if (surface.is_solid_infill()) {
|
||
params.pattern = region_config.internal_solid_infill_pattern.value;
|
||
params.density = 100.f;
|
||
} else {
|
||
if (region_config.top_surface_pattern == ipMonotonic || region_config.top_surface_pattern == ipMonotonicLine)
|
||
params.pattern = ipMonotonic;
|
||
else
|
||
params.pattern = ipRectilinear;
|
||
params.density = 100.f;
|
||
}
|
||
} else if (params.density <= 0)
|
||
continue;
|
||
|
||
params.extrusion_role = erInternalInfill;
|
||
if (is_bridge) {
|
||
if (surface.is_internal_bridge())
|
||
params.extrusion_role = erInternalBridgeInfill;
|
||
else
|
||
params.extrusion_role = erBridgeInfill;
|
||
} else if (surface.is_solid()) {
|
||
if (surface.is_top()) {
|
||
params.extrusion_role = erTopSolidInfill;
|
||
} else if (surface.is_bottom()) {
|
||
params.extrusion_role = erBottomSurface;
|
||
} else {
|
||
params.extrusion_role = erSolidInfill;
|
||
}
|
||
}
|
||
// Orca: apply fill multiline only for sparse infill
|
||
params.multiline = params.extrusion_role == erInternalInfill ? int(region_config.fill_multiline) : 1;
|
||
|
||
if (params.extrusion_role == erInternalInfill) {
|
||
params.angle = calculate_infill_rotation_angle(layer.object(), layer.id(), region_config.infill_direction.value,
|
||
region_config.sparse_infill_rotate_template.value);
|
||
params.fixed_angle = !region_config.sparse_infill_rotate_template.value.empty();
|
||
} else {
|
||
params.angle = calculate_infill_rotation_angle(layer.object(), layer.id(), region_config.solid_infill_direction.value,
|
||
region_config.solid_infill_rotate_template.value);
|
||
params.fixed_angle = !region_config.solid_infill_rotate_template.value.empty();
|
||
}
|
||
params.bridge_angle = float(surface.bridge_angle);
|
||
|
||
if (region_config.align_infill_direction_to_model) {
|
||
auto m = layer.object()->trafo().matrix();
|
||
params.angle += atan2((float) m(1, 0), (float) m(0, 0));
|
||
}
|
||
|
||
// Calculate the actual flow we'll be using for this infill.
|
||
params.bridge = is_bridge || Fill::use_bridge_flow(params.pattern);
|
||
const bool is_thick_bridge = surface.is_bridge() && (surface.is_internal_bridge() ? object_config.thick_internal_bridges : object_config.thick_bridges);
|
||
params.flow = params.bridge ?
|
||
//Orca: enable thick bridge based on config
|
||
layerm.bridging_flow(extrusion_role, is_thick_bridge) :
|
||
layerm.flow(extrusion_role, (surface.thickness == -1) ? layer.height : surface.thickness);
|
||
// record speed params
|
||
if (!params.bridge) {
|
||
if (params.extrusion_role == erInternalInfill)
|
||
params.sparse_infill_speed = region_config.sparse_infill_speed;
|
||
else if (params.extrusion_role == erTopSolidInfill) {
|
||
params.top_surface_speed = region_config.top_surface_speed;
|
||
} else if (params.extrusion_role == erSolidInfill)
|
||
params.solid_infill_speed = region_config.internal_solid_infill_speed;
|
||
}
|
||
// Calculate flow spacing for infill pattern generation.
|
||
if (surface.is_solid() || is_bridge) {
|
||
params.spacing = params.flow.spacing();
|
||
// Don't limit anchor length for solid or bridging infill.
|
||
params.anchor_length = 1000.f;
|
||
params.anchor_length_max = 1000.f;
|
||
} else {
|
||
// Internal infill. Calculating infill line spacing independent of the current layer height and 1st layer status,
|
||
// so that internall infill will be aligned over all layers of the current region.
|
||
params.spacing = layerm.region().flow(*layer.object(), frInfill, layer.object()->config().layer_height, false).spacing();
|
||
// Anchor a sparse infill to inner perimeters with the following anchor length:
|
||
params.anchor_length = float(region_config.infill_anchor);
|
||
if (region_config.infill_anchor.percent)
|
||
params.anchor_length = float(params.anchor_length * 0.01 * params.spacing);
|
||
params.anchor_length_max = float(region_config.infill_anchor_max);
|
||
if (region_config.infill_anchor_max.percent)
|
||
params.anchor_length_max = float(params.anchor_length_max * 0.01 * params.spacing);
|
||
params.anchor_length = std::min(params.anchor_length, params.anchor_length_max);
|
||
}
|
||
|
||
//get locked region param
|
||
if (params.pattern == ipLockedZag){
|
||
const PrintObject *object = layerm.layer()->object();
|
||
auto nozzle_diameter = float(object->print()->config().nozzle_diameter.get_at(layerm.region().extruder(extrusion_role) - 1));
|
||
Flow skin_flow = params.bridge ? params.flow : Flow::new_from_config_width(extrusion_role, region_config.skin_infill_line_width, nozzle_diameter, float((surface.thickness == -1) ? layer.height : surface.thickness));
|
||
//add skin flow
|
||
append_flow_param(lock_param.skin_flow_params, skin_flow, surface.expolygon);
|
||
|
||
Flow skeleton_flow = params.bridge ? params.flow : Flow::new_from_config_width(extrusion_role, region_config.skeleton_infill_line_width, nozzle_diameter, float((surface.thickness == -1) ? layer.height : surface.thickness)) ;
|
||
// add skeleton flow
|
||
append_flow_param(lock_param.skeleton_flow_params, skeleton_flow, surface.expolygon);
|
||
|
||
// add skin density
|
||
append_density_param(lock_param.skin_density_params, float(0.01 * region_config.skin_infill_density), surface.expolygon);
|
||
|
||
// add skin density
|
||
append_density_param(lock_param.skeleton_density_params, float(0.01 * region_config.skeleton_infill_density), surface.expolygon);
|
||
|
||
}
|
||
|
||
auto it_params = set_surface_params.find(params);
|
||
|
||
if (it_params == set_surface_params.end())
|
||
it_params = set_surface_params.insert(it_params, params);
|
||
region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()] = &(*it_params);
|
||
}
|
||
}
|
||
|
||
surface_fills.reserve(set_surface_params.size());
|
||
for (const SurfaceFillParams ¶ms : set_surface_params) {
|
||
const_cast<SurfaceFillParams&>(params).idx = surface_fills.size();
|
||
surface_fills.emplace_back(params);
|
||
}
|
||
|
||
for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) {
|
||
const LayerRegion &layerm = *layer.regions()[region_id];
|
||
for (const Surface &surface : layerm.fill_surfaces.surfaces)
|
||
if (surface.surface_type != stInternalVoid) {
|
||
const SurfaceFillParams *params = region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()];
|
||
if (params != nullptr) {
|
||
SurfaceFill &fill = surface_fills[params->idx];
|
||
if (fill.region_id == size_t(-1)) {
|
||
fill.region_id = region_id;
|
||
fill.surface = surface;
|
||
fill.expolygons.emplace_back(std::move(fill.surface.expolygon));
|
||
//BBS
|
||
fill.region_id_group.push_back(region_id);
|
||
fill.no_overlap_expolygons = layerm.fill_no_overlap_expolygons;
|
||
} else {
|
||
fill.expolygons.emplace_back(surface.expolygon);
|
||
//BBS
|
||
auto t = find(fill.region_id_group.begin(), fill.region_id_group.end(), region_id);
|
||
if (t == fill.region_id_group.end()) {
|
||
fill.region_id_group.push_back(region_id);
|
||
fill.no_overlap_expolygons = union_ex(fill.no_overlap_expolygons, layerm.fill_no_overlap_expolygons);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
{
|
||
Polygons all_polygons;
|
||
for (SurfaceFill &fill : surface_fills)
|
||
if (! fill.expolygons.empty()) {
|
||
if (fill.expolygons.size() > 1 || ! all_polygons.empty()) {
|
||
Polygons polys = to_polygons(std::move(fill.expolygons));
|
||
// Make a union of polygons, use a safety offset, subtract the preceding polygons.
|
||
// Bridges are processed first (see SurfaceFill::operator<())
|
||
fill.expolygons = all_polygons.empty() ? union_safety_offset_ex(polys) : diff_ex(polys, all_polygons, ApplySafetyOffset::Yes);
|
||
append(all_polygons, std::move(polys));
|
||
} else if (&fill != &surface_fills.back())
|
||
append(all_polygons, to_polygons(fill.expolygons));
|
||
}
|
||
}
|
||
|
||
// we need to detect any narrow surfaces that might collapse
|
||
// when adding spacing below
|
||
// such narrow surfaces are often generated in sloping walls
|
||
// by bridge_over_infill() and combine_infill() as a result of the
|
||
// subtraction of the combinable area from the layer infill area,
|
||
// which leaves small areas near the perimeters
|
||
// we are going to grow such regions by overlapping them with the void (if any)
|
||
// TODO: detect and investigate whether there could be narrow regions without
|
||
// any void neighbors
|
||
if (has_internal_voids) {
|
||
// Internal voids are generated only if "infill_only_where_needed" or "infill_every_layers" are active.
|
||
coord_t distance_between_surfaces = 0;
|
||
Polygons surfaces_polygons;
|
||
Polygons voids;
|
||
int region_internal_infill = -1;
|
||
int region_solid_infill = -1;
|
||
int region_some_infill = -1;
|
||
for (SurfaceFill &surface_fill : surface_fills)
|
||
if (! surface_fill.expolygons.empty()) {
|
||
distance_between_surfaces = std::max(distance_between_surfaces, surface_fill.params.flow.scaled_spacing());
|
||
append((surface_fill.surface.surface_type == stInternalVoid) ? voids : surfaces_polygons, to_polygons(surface_fill.expolygons));
|
||
if (surface_fill.surface.surface_type == stInternalSolid)
|
||
region_internal_infill = (int)surface_fill.region_id;
|
||
if (surface_fill.surface.is_solid())
|
||
region_solid_infill = (int)surface_fill.region_id;
|
||
if (surface_fill.surface.surface_type != stInternalVoid)
|
||
region_some_infill = (int)surface_fill.region_id;
|
||
}
|
||
if (! voids.empty() && ! surfaces_polygons.empty()) {
|
||
// First clip voids by the printing polygons, as the voids were ignored by the loop above during mutual clipping.
|
||
voids = diff(voids, surfaces_polygons);
|
||
// Corners of infill regions, which would not be filled with an extrusion path with a radius of distance_between_surfaces/2
|
||
Polygons collapsed = diff(
|
||
surfaces_polygons,
|
||
opening(surfaces_polygons, float(distance_between_surfaces /2), float(distance_between_surfaces / 2 + ClipperSafetyOffset)));
|
||
//FIXME why the voids are added to collapsed here? First it is expensive, second the result may lead to some unwanted regions being
|
||
// added if two offsetted void regions merge.
|
||
// polygons_append(voids, collapsed);
|
||
ExPolygons extensions = intersection_ex(expand(collapsed, float(distance_between_surfaces)), voids, ApplySafetyOffset::Yes);
|
||
// Now find an internal infill SurfaceFill to add these extrusions to.
|
||
SurfaceFill *internal_solid_fill = nullptr;
|
||
unsigned int region_id = 0;
|
||
if (region_internal_infill != -1)
|
||
region_id = region_internal_infill;
|
||
else if (region_solid_infill != -1)
|
||
region_id = region_solid_infill;
|
||
else if (region_some_infill != -1)
|
||
region_id = region_some_infill;
|
||
const LayerRegion& layerm = *layer.regions()[region_id];
|
||
for (SurfaceFill &surface_fill : surface_fills)
|
||
if (surface_fill.surface.surface_type == stInternalSolid && std::abs(layer.height - surface_fill.params.flow.height()) < EPSILON) {
|
||
internal_solid_fill = &surface_fill;
|
||
break;
|
||
}
|
||
if (internal_solid_fill == nullptr) {
|
||
// Produce another solid fill.
|
||
params.extruder = layerm.region().extruder(frSolidInfill);
|
||
const auto top_pattern = layerm.region().config().top_surface_pattern;
|
||
if(top_pattern == ipMonotonic || top_pattern == ipMonotonicLine)
|
||
params.pattern = top_pattern;
|
||
else
|
||
params.pattern = ipRectilinear;
|
||
params.density = 100.f;
|
||
params.extrusion_role = erSolidInfill;
|
||
const PrintRegionConfig ®ion_config = layerm.region().config();
|
||
params.angle = calculate_infill_rotation_angle(layer.object(), layer.id(), region_config.solid_infill_direction.value,
|
||
region_config.solid_infill_rotate_template.value);
|
||
params.fixed_angle = !region_config.solid_infill_rotate_template.value.empty();
|
||
|
||
// calculate the actual flow we'll be using for this infill
|
||
params.flow = layerm.flow(frSolidInfill);
|
||
params.spacing = params.flow.spacing();
|
||
surface_fills.emplace_back(params);
|
||
surface_fills.back().surface.surface_type = stInternalSolid;
|
||
surface_fills.back().surface.thickness = layer.height;
|
||
surface_fills.back().expolygons = std::move(extensions);
|
||
} else {
|
||
append(extensions, std::move(internal_solid_fill->expolygons));
|
||
internal_solid_fill->expolygons = union_ex(extensions);
|
||
}
|
||
}
|
||
}
|
||
|
||
// BBS: detect narrow internal solid infill area and use ipConcentricInternal pattern instead
|
||
if (layer.object()->config().detect_narrow_internal_solid_infill) {
|
||
size_t surface_fills_size = surface_fills.size();
|
||
for (size_t i = 0; i < surface_fills_size; i++) {
|
||
if (surface_fills[i].surface.surface_type != stInternalSolid)
|
||
continue;
|
||
|
||
ExPolygons normal_infill;
|
||
ExPolygons narrow_infill;
|
||
split_solid_surface(layer.id(), surface_fills[i], normal_infill, narrow_infill);
|
||
|
||
if (narrow_infill.empty()) {
|
||
// BBS: has no narrow expolygon
|
||
continue;
|
||
} else if (normal_infill.empty()) {
|
||
// BBS: all expolygons are narrow, directly change the fill pattern
|
||
surface_fills[i].params.pattern = ipConcentricInternal;
|
||
}
|
||
else {
|
||
// BBS: some expolygons are narrow, spilit surface_fills[i] and rearrange the expolygons
|
||
params = surface_fills[i].params;
|
||
params.pattern = ipConcentricInternal;
|
||
surface_fills.emplace_back(params);
|
||
surface_fills.back().region_id = surface_fills[i].region_id;
|
||
surface_fills.back().surface.surface_type = stInternalSolid;
|
||
surface_fills.back().surface.thickness = surface_fills[i].surface.thickness;
|
||
surface_fills.back().region_id_group = surface_fills[i].region_id_group;
|
||
surface_fills.back().no_overlap_expolygons = surface_fills[i].no_overlap_expolygons;
|
||
// BBS: move the narrow expolygons to new surface_fills.back();
|
||
surface_fills.back().expolygons = std::move(narrow_infill);
|
||
// BBS: delete the narrow expolygons from old surface_fills
|
||
surface_fills[i].expolygons = std::move(normal_infill);
|
||
}
|
||
}
|
||
}
|
||
|
||
return surface_fills;
|
||
}
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
void export_group_fills_to_svg(const char *path, const std::vector<SurfaceFill> &fills)
|
||
{
|
||
BoundingBox bbox;
|
||
for (const auto &fill : fills)
|
||
for (const auto &expoly : fill.expolygons)
|
||
bbox.merge(get_extents(expoly));
|
||
Point legend_size = export_surface_type_legend_to_svg_box_size();
|
||
Point legend_pos(bbox.min(0), bbox.max(1));
|
||
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
|
||
|
||
SVG svg(path, bbox);
|
||
const float transparency = 0.5f;
|
||
for (const auto &fill : fills)
|
||
for (const auto &expoly : fill.expolygons)
|
||
svg.draw(expoly, surface_type_to_color_name(fill.surface.surface_type), transparency);
|
||
export_surface_type_legend_to_svg(svg, legend_pos);
|
||
svg.Close();
|
||
}
|
||
#endif
|
||
|
||
// friend to Layer
|
||
void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive::Octree* support_fill_octree, FillLightning::Generator* lightning_generator)
|
||
{
|
||
for (LayerRegion *layerm : m_regions)
|
||
layerm->fills.clear();
|
||
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
// this->export_region_fill_surfaces_to_svg_debug("10_fill-initial");
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
LockRegionParam lock_param;
|
||
std::vector<SurfaceFill> surface_fills = group_fills(*this, lock_param);
|
||
const Slic3r::BoundingBox bbox = this->object()->bounding_box();
|
||
const auto resolution = this->object()->print()->config().resolution.value;
|
||
|
||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||
{
|
||
static int iRun = 0;
|
||
export_group_fills_to_svg(debug_out_path("Layer-fill_surfaces-10_fill-final-%d.svg", iRun ++).c_str(), surface_fills);
|
||
}
|
||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||
|
||
for (SurfaceFill &surface_fill : surface_fills) {
|
||
// Create the filler object.
|
||
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(surface_fill.params.pattern));
|
||
f->set_bounding_box(bbox);
|
||
f->layer_id = this->id();
|
||
f->z = this->print_z;
|
||
f->angle = surface_fill.params.angle;
|
||
f->fixed_angle = surface_fill.params.fixed_angle;
|
||
f->adapt_fill_octree = (surface_fill.params.pattern == ipSupportCubic) ? support_fill_octree : adaptive_fill_octree;
|
||
f->print_config = &this->object()->print()->config();
|
||
f->print_object_config = &this->object()->config();
|
||
if (surface_fill.params.pattern == ipConcentricInternal) {
|
||
FillConcentricInternal *fill_concentric = dynamic_cast<FillConcentricInternal *>(f.get());
|
||
assert(fill_concentric != nullptr);
|
||
fill_concentric->print_config = &this->object()->print()->config();
|
||
fill_concentric->print_object_config = &this->object()->config();
|
||
} else if (surface_fill.params.pattern == ipConcentric) {
|
||
FillConcentric *fill_concentric = dynamic_cast<FillConcentric *>(f.get());
|
||
assert(fill_concentric != nullptr);
|
||
fill_concentric->print_config = &this->object()->print()->config();
|
||
fill_concentric->print_object_config = &this->object()->config();
|
||
} else if (surface_fill.params.pattern == ipLightning)
|
||
dynamic_cast<FillLightning::Filler*>(f.get())->generator = lightning_generator;
|
||
// calculate flow spacing for infill pattern generation
|
||
bool using_internal_flow = ! surface_fill.surface.is_solid() && ! surface_fill.params.bridge;
|
||
double link_max_length = 0.;
|
||
if (! surface_fill.params.bridge) {
|
||
#if 0
|
||
link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
|
||
// printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
|
||
#else
|
||
if (surface_fill.params.density > 80.) // 80%
|
||
link_max_length = 3. * f->spacing;
|
||
#endif
|
||
}
|
||
|
||
LayerRegion* layerm = this->m_regions[surface_fill.region_id];
|
||
|
||
// Maximum length of the perimeter segment linking two infill lines.
|
||
f->link_max_length = (coord_t)scale_(link_max_length);
|
||
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
|
||
f->loop_clipping = coord_t(scale_(layerm->region().config().seam_gap.get_abs_value(surface_fill.params.flow.nozzle_diameter())));
|
||
|
||
// apply half spacing using this flow's own spacing and generate infill
|
||
FillParams params;
|
||
params.density = float(0.01 * surface_fill.params.density);
|
||
params.multiline = surface_fill.params.multiline;
|
||
params.dont_adjust = false; // surface_fill.params.dont_adjust;
|
||
params.anchor_length = surface_fill.params.anchor_length;
|
||
params.anchor_length_max = surface_fill.params.anchor_length_max;
|
||
params.resolution = resolution;
|
||
params.use_arachne = surface_fill.params.pattern == ipConcentric || surface_fill.params.pattern == ipConcentricInternal;
|
||
params.layer_height = layerm->layer()->height;
|
||
params.lateral_lattice_angle_1 = surface_fill.params.lateral_lattice_angle_1;
|
||
params.lateral_lattice_angle_2 = surface_fill.params.lateral_lattice_angle_2;
|
||
params.infill_overhang_angle = surface_fill.params.infill_overhang_angle;
|
||
|
||
// BBS
|
||
params.flow = surface_fill.params.flow;
|
||
params.extrusion_role = surface_fill.params.extrusion_role;
|
||
params.using_internal_flow = using_internal_flow;
|
||
params.no_extrusion_overlap = surface_fill.params.overlap;
|
||
auto ®ion_config = layerm->region().config();
|
||
params.config = ®ion_config;
|
||
params.pattern = surface_fill.params.pattern;
|
||
|
||
if( surface_fill.params.pattern == ipLockedZag ) {
|
||
params.locked_zag = true;
|
||
params.infill_lock_depth = surface_fill.params.infill_lock_depth;
|
||
params.skin_infill_depth = surface_fill.params.skin_infill_depth;
|
||
f->set_lock_region_param(lock_param);
|
||
}
|
||
if (surface_fill.params.pattern == ipCrossZag || surface_fill.params.pattern == ipLockedZag) {
|
||
if (f->layer_id % 2 == 0) {
|
||
params.horiz_move -= scale_(region_config.infill_shift_step) * (f->layer_id / 2);
|
||
} else {
|
||
params.horiz_move += scale_(region_config.infill_shift_step) * (f->layer_id / 2);
|
||
}
|
||
|
||
params.symmetric_infill_y_axis = surface_fill.params.symmetric_infill_y_axis;
|
||
|
||
}
|
||
if (surface_fill.params.pattern == ipGrid)
|
||
params.can_reverse = false;
|
||
for (ExPolygon& expoly : surface_fill.expolygons) {
|
||
|
||
f->no_overlap_expolygons = intersection_ex(surface_fill.no_overlap_expolygons, ExPolygons() = {expoly}, ApplySafetyOffset::Yes);
|
||
if (params.symmetric_infill_y_axis) {
|
||
params.symmetric_y_axis = f->extended_object_bounding_box().center().x();
|
||
expoly.symmetric_y(params.symmetric_y_axis);
|
||
}
|
||
|
||
// Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon.
|
||
f->spacing = surface_fill.params.spacing;
|
||
surface_fill.surface.expolygon = std::move(expoly);
|
||
|
||
if(surface_fill.params.bridge && surface_fill.surface.is_external() && surface_fill.params.density > 99.0){
|
||
params.density = layerm->region().config().bridge_density.get_abs_value(1.0);
|
||
params.dont_adjust = true;
|
||
}
|
||
if(surface_fill.surface.is_internal_bridge()){
|
||
params.density = f->print_object_config->internal_bridge_density.get_abs_value(1.0);
|
||
params.dont_adjust = true;
|
||
}
|
||
// BBS: make fill
|
||
f->fill_surface_extrusion(&surface_fill.surface,
|
||
params,
|
||
m_regions[surface_fill.region_id]->fills.entities);
|
||
}
|
||
}
|
||
|
||
// add thin fill regions
|
||
// Unpacks the collection, creates multiple collections per path.
|
||
// The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
|
||
// Why the paths are unpacked?
|
||
for (LayerRegion *layerm : m_regions)
|
||
for (const ExtrusionEntity *thin_fill : layerm->thin_fills.entities) {
|
||
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
|
||
layerm->fills.entities.push_back(&collection);
|
||
collection.entities.push_back(thin_fill->clone());
|
||
}
|
||
|
||
#ifndef NDEBUG
|
||
for (LayerRegion *layerm : m_regions)
|
||
for (size_t i = 0; i < layerm->fills.entities.size(); ++ i)
|
||
assert(dynamic_cast<ExtrusionEntityCollection*>(layerm->fills.entities[i]) != nullptr);
|
||
#endif
|
||
}
|
||
/**
|
||
* Generate sparse-infill polylines for anchoring/analysis purposes.
|
||
*
|
||
* This produces the geometric polylines of internal sparse infill for the current
|
||
* layer (using the same infill pattern, angle, rotation template, and spacing that
|
||
* normal slicing would use), but it does not create extrusion entities.
|
||
*
|
||
* The returned polylines are consumed by internal-bridge detection on the next
|
||
* layer to derive anchor lines and compute the bridge direction over sparse infill.
|
||
*
|
||
* Notes:
|
||
* - Only `stInternal` surfaces are considered.
|
||
* - Rotation templates (e.g. `sparse_infill_rotate_template`) are applied so the
|
||
* anchors reflect the actual infill orientation.
|
||
* - For lightning/adaptive patterns, the respective generators are wired so their
|
||
* polylines match the final infill layout.
|
||
*/
|
||
Polylines Layer::generate_sparse_infill_polylines_for_anchoring(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive::Octree* support_fill_octree, FillLightning::Generator* lightning_generator) const
|
||
{
|
||
LockRegionParam skin_inner_param;
|
||
std::vector<SurfaceFill> surface_fills = group_fills(*this, skin_inner_param);
|
||
const Slic3r::BoundingBox bbox = this->object()->bounding_box();
|
||
const auto resolution = this->object()->print()->config().resolution.value;
|
||
|
||
Polylines sparse_infill_polylines{};
|
||
|
||
for (SurfaceFill &surface_fill : surface_fills) {
|
||
if (surface_fill.surface.surface_type != stInternal) {
|
||
continue;
|
||
}
|
||
|
||
switch (surface_fill.params.pattern) {
|
||
case ipCount: continue; break;
|
||
case ipSupportBase: continue; break;
|
||
case ipConcentricInternal: continue; break;
|
||
case ipLightning:
|
||
case ipAdaptiveCubic:
|
||
case ipSupportCubic:
|
||
case ipRectilinear:
|
||
case ipMonotonic:
|
||
case ipMonotonicLine:
|
||
case ipAlignedRectilinear:
|
||
case ipGrid:
|
||
case ipLateralLattice:
|
||
case ipTriangles:
|
||
case ipStars:
|
||
case ipCubic:
|
||
case ipLine:
|
||
case ipConcentric:
|
||
case ipHoneycomb:
|
||
case ipLateralHoneycomb:
|
||
case ip3DHoneycomb:
|
||
case ipGyroid:
|
||
case ipTpmsD:
|
||
case ipTpmsFK:
|
||
case ipHilbertCurve:
|
||
case ipArchimedeanChords:
|
||
case ipOctagramSpiral:
|
||
case ipZigZag:
|
||
case ipCrossZag:
|
||
case ipLockedZag: break;
|
||
}
|
||
|
||
// Create the filler object.
|
||
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(surface_fill.params.pattern));
|
||
f->set_bounding_box(bbox);
|
||
f->layer_id = this->id() - this->object()->get_layer(0)->id(); // We need to subtract raft layers.
|
||
f->z = this->print_z;
|
||
f->angle = surface_fill.params.angle;
|
||
f->fixed_angle = surface_fill.params.fixed_angle;
|
||
f->adapt_fill_octree = (surface_fill.params.pattern == ipSupportCubic) ? support_fill_octree : adaptive_fill_octree;
|
||
f->print_config = &this->object()->print()->config();
|
||
f->print_object_config = &this->object()->config();
|
||
|
||
if (surface_fill.params.pattern == ipLightning)
|
||
dynamic_cast<FillLightning::Filler *>(f.get())->generator = lightning_generator;
|
||
|
||
// calculate flow spacing for infill pattern generation
|
||
double link_max_length = 0.;
|
||
if (!surface_fill.params.bridge) {
|
||
#if 0
|
||
link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
|
||
// printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
|
||
#else
|
||
if (surface_fill.params.density > 80.) // 80%
|
||
link_max_length = 3. * f->spacing;
|
||
#endif
|
||
}
|
||
|
||
LayerRegion &layerm = *m_regions[surface_fill.region_id];
|
||
|
||
// Maximum length of the perimeter segment linking two infill lines.
|
||
f->link_max_length = (coord_t) scale_(link_max_length);
|
||
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
|
||
f->loop_clipping = coord_t(scale_(layerm.region().config().seam_gap.get_abs_value(surface_fill.params.flow.nozzle_diameter())));
|
||
|
||
// apply half spacing using this flow's own spacing and generate infill
|
||
FillParams params;
|
||
params.density = float(0.01 * surface_fill.params.density);
|
||
params.dont_adjust = false; // surface_fill.params.dont_adjust;
|
||
params.anchor_length = surface_fill.params.anchor_length;
|
||
params.anchor_length_max = surface_fill.params.anchor_length_max;
|
||
params.resolution = resolution;
|
||
params.use_arachne = false;
|
||
params.layer_height = layerm.layer()->height;
|
||
params.lateral_lattice_angle_1 = surface_fill.params.lateral_lattice_angle_1;
|
||
params.lateral_lattice_angle_2 = surface_fill.params.lateral_lattice_angle_2;
|
||
params.infill_overhang_angle = surface_fill.params.infill_overhang_angle;
|
||
params.multiline = surface_fill.params.multiline;
|
||
|
||
for (ExPolygon &expoly : surface_fill.expolygons) {
|
||
// Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon.
|
||
f->spacing = surface_fill.params.spacing;
|
||
surface_fill.surface.expolygon = std::move(expoly);
|
||
try {
|
||
Polylines polylines = f->fill_surface(&surface_fill.surface, params);
|
||
sparse_infill_polylines.insert(sparse_infill_polylines.end(), polylines.begin(), polylines.end());
|
||
} catch (InfillFailedException &) {}
|
||
}
|
||
}
|
||
|
||
return sparse_infill_polylines;
|
||
}
|
||
|
||
// Create ironing extrusions over top surfaces.
|
||
void Layer::make_ironing()
|
||
{
|
||
// LayerRegion::slices contains surfaces marked with SurfaceType.
|
||
// Here we want to collect top surfaces extruded with the same extruder.
|
||
// A surface will be ironed with the same extruder to not contaminate the print with another material leaking from the nozzle.
|
||
|
||
// First classify regions based on the extruder used.
|
||
struct IroningParams {
|
||
InfillPattern pattern;
|
||
int extruder = -1;
|
||
bool just_infill = false;
|
||
// Spacing of the ironing lines, also to calculate the extrusion flow from.
|
||
double line_spacing;
|
||
// Height of the extrusion, to calculate the extrusion flow from.
|
||
double height;
|
||
double speed;
|
||
double angle;
|
||
bool fixed_angle;
|
||
double inset;
|
||
|
||
bool operator<(const IroningParams &rhs) const {
|
||
RETURN_COMPARE_NON_EQUAL(extruder);
|
||
RETURN_COMPARE_NON_EQUAL(just_infill);
|
||
RETURN_COMPARE_NON_EQUAL(line_spacing);
|
||
RETURN_COMPARE_NON_EQUAL(height);
|
||
RETURN_COMPARE_NON_EQUAL(speed);
|
||
RETURN_COMPARE_NON_EQUAL(angle);
|
||
RETURN_COMPARE_NON_EQUAL(fixed_angle);
|
||
RETURN_COMPARE_NON_EQUAL(inset);
|
||
return false;
|
||
}
|
||
|
||
bool operator==(const IroningParams &rhs) const {
|
||
return this->extruder == rhs.extruder &&
|
||
this->just_infill == rhs.just_infill &&
|
||
this->line_spacing == rhs.line_spacing &&
|
||
this->height == rhs.height &&
|
||
this->speed == rhs.speed &&
|
||
this->angle == rhs.angle &&
|
||
this->fixed_angle == rhs.fixed_angle &&
|
||
this->pattern == rhs.pattern &&
|
||
this->inset == rhs.inset;
|
||
}
|
||
|
||
LayerRegion *layerm = nullptr;
|
||
|
||
// IdeaMaker: ironing
|
||
// ironing flowrate (5% percent)
|
||
// ironing speed (10 mm/sec)
|
||
|
||
// Kisslicer:
|
||
// iron off, Sweep, Group
|
||
// ironing speed: 15 mm/sec
|
||
|
||
// Cura:
|
||
// Pattern (zig-zag / concentric)
|
||
// line spacing (0.1mm)
|
||
// flow: from normal layer height. 10%
|
||
// speed: 20 mm/sec
|
||
};
|
||
|
||
std::vector<IroningParams> by_extruder;
|
||
double default_layer_height = this->object()->config().layer_height;
|
||
|
||
for (LayerRegion *layerm : m_regions)
|
||
if (! layerm->slices.empty()) {
|
||
IroningParams ironing_params;
|
||
const PrintRegionConfig &config = layerm->region().config();
|
||
if (config.ironing_type != IroningType::NoIroning &&
|
||
(config.ironing_type == IroningType::AllSolid ||
|
||
((config.top_shell_layers > 0 || (this->object()->print()->config().spiral_mode && config.bottom_shell_layers > 1)) &&
|
||
(config.ironing_type == IroningType::TopSurfaces ||
|
||
(config.ironing_type == IroningType::TopmostOnly && layerm->layer()->upper_layer == nullptr))))) {
|
||
if (config.wall_filament == config.solid_infill_filament || config.wall_loops == 0) {
|
||
// Iron the whole face.
|
||
ironing_params.extruder = config.solid_infill_filament;
|
||
} else {
|
||
// Iron just the infill.
|
||
ironing_params.extruder = config.solid_infill_filament;
|
||
}
|
||
}
|
||
if (ironing_params.extruder != -1) {
|
||
//TODO just_infill is currently not used.
|
||
ironing_params.just_infill = false;
|
||
// Get filament-specific overrides if configured, otherwise use default values
|
||
size_t extruder_idx = ironing_params.extruder - 1;
|
||
ironing_params.line_spacing = (!config.filament_ironing_spacing.is_nil(extruder_idx)
|
||
? config.filament_ironing_spacing.get_at(extruder_idx)
|
||
: config.ironing_spacing);
|
||
ironing_params.inset = (!config.filament_ironing_inset.is_nil(extruder_idx)
|
||
? config.filament_ironing_inset.get_at(extruder_idx)
|
||
: config.ironing_inset);
|
||
ironing_params.height = default_layer_height * 0.01 * (!config.filament_ironing_flow.is_nil(extruder_idx)
|
||
? config.filament_ironing_flow.get_at(extruder_idx)
|
||
: config.ironing_flow);
|
||
ironing_params.speed = (!config.filament_ironing_speed.is_nil(extruder_idx)
|
||
? config.filament_ironing_speed.get_at(extruder_idx)
|
||
: config.ironing_speed);
|
||
ironing_params.angle = (config.ironing_angle_fixed ? 0 : calculate_infill_rotation_angle(this->object(), this->id(), config.solid_infill_direction.value, config.solid_infill_rotate_template.value)) + config.ironing_angle * M_PI / 180.;
|
||
ironing_params.fixed_angle = config.ironing_angle_fixed || !config.solid_infill_rotate_template.value.empty();
|
||
ironing_params.pattern = config.ironing_pattern;
|
||
ironing_params.layerm = layerm;
|
||
by_extruder.emplace_back(ironing_params);
|
||
}
|
||
}
|
||
std::sort(by_extruder.begin(), by_extruder.end());
|
||
|
||
FillParams fill_params;
|
||
fill_params.density = 1.;
|
||
fill_params.monotonic = true;
|
||
InfillPattern f_pattern = ipRectilinear;
|
||
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(f_pattern));
|
||
f->set_bounding_box(this->object()->bounding_box());
|
||
f->layer_id = this->id();
|
||
f->z = this->print_z;
|
||
f->overlap = 0;
|
||
for (size_t i = 0; i < by_extruder.size();) {
|
||
// Find span of regions equivalent to the ironing operation.
|
||
IroningParams &ironing_params = by_extruder[i];
|
||
// Create the filler object.
|
||
if( f_pattern != ironing_params.pattern )
|
||
{
|
||
f_pattern = ironing_params.pattern;
|
||
f = std::unique_ptr<Fill>(Fill::new_from_type(f_pattern));
|
||
f->set_bounding_box(this->object()->bounding_box());
|
||
f->layer_id = this->id();
|
||
f->z = this->print_z;
|
||
f->overlap = 0;
|
||
}
|
||
|
||
size_t j = i;
|
||
for (++ j; j < by_extruder.size() && ironing_params == by_extruder[j]; ++ j) ;
|
||
|
||
// Create the ironing extrusions for regions <i, j)
|
||
ExPolygons ironing_areas;
|
||
double nozzle_dmr = this->object()->print()->config().nozzle_diameter.get_at(ironing_params.extruder - 1);
|
||
if (ironing_params.just_infill) {
|
||
//TODO just_infill is currently not used.
|
||
// Just infill.
|
||
} else {
|
||
// Infill and perimeter.
|
||
// Merge top surfaces with the same ironing parameters.
|
||
Polygons polys;
|
||
Polygons infills;
|
||
for (size_t k = i; k < j; ++ k) {
|
||
const IroningParams &ironing_params = by_extruder[k];
|
||
const PrintRegionConfig ®ion_config = ironing_params.layerm->region().config();
|
||
bool iron_everything = region_config.ironing_type == IroningType::AllSolid;
|
||
bool iron_completely = iron_everything;
|
||
if (iron_everything) {
|
||
// Check whether there is any non-solid hole in the regions.
|
||
bool internal_infill_solid = region_config.sparse_infill_density.value > 95.;
|
||
for (const Surface &surface : ironing_params.layerm->fill_surfaces.surfaces)
|
||
if ((!internal_infill_solid && surface.surface_type == stInternal) || surface.surface_type == stInternalBridge || surface.surface_type == stInternalVoid) {
|
||
// Some fill region is not quite solid. Don't iron over the whole surface.
|
||
iron_completely = false;
|
||
break;
|
||
}
|
||
}
|
||
if (iron_completely) {
|
||
// Iron everything. This is likely only good for solid transparent objects.
|
||
for (const Surface &surface : ironing_params.layerm->slices.surfaces)
|
||
polygons_append(polys, surface.expolygon);
|
||
} else {
|
||
for (const Surface &surface : ironing_params.layerm->slices.surfaces)
|
||
if ((surface.surface_type == stTop && (region_config.top_shell_layers > 0 || this->object()->print()->config().spiral_mode)) || (iron_everything && surface.surface_type == stBottom && region_config.bottom_shell_layers > 0))
|
||
// stBottomBridge is not being ironed on purpose, as it would likely destroy the bridges.
|
||
polygons_append(polys, surface.expolygon);
|
||
}
|
||
if (iron_everything && ! iron_completely) {
|
||
// Add solid fill surfaces. This may not be ideal, as one will not iron perimeters touching these
|
||
// solid fill surfaces, but it is likely better than nothing.
|
||
for (const Surface &surface : ironing_params.layerm->fill_surfaces.surfaces)
|
||
if (surface.surface_type == stInternalSolid)
|
||
polygons_append(infills, surface.expolygon);
|
||
}
|
||
}
|
||
|
||
if (! infills.empty() || j > i + 1) {
|
||
// Ironing over more than a single region or over solid internal infill.
|
||
if (! infills.empty())
|
||
// For IroningType::AllSolid only:
|
||
// Add solid infill areas for layers, that contain some non-ironable infil (sparse infill, bridge infill).
|
||
append(polys, std::move(infills));
|
||
polys = union_safety_offset(polys);
|
||
}
|
||
// Trim the top surfaces with half the nozzle diameter.
|
||
// BBS: ironing inset
|
||
double ironing_areas_offset = ironing_params.inset == 0 ? float(scale_(0.5 * nozzle_dmr)) : scale_(ironing_params.inset);
|
||
ironing_areas = intersection_ex(polys, offset(this->lslices, - ironing_areas_offset));
|
||
}
|
||
|
||
// Create the filler object.
|
||
f->spacing = ironing_params.line_spacing;
|
||
f->angle = float(ironing_params.angle);
|
||
f->fixed_angle = ironing_params.fixed_angle;
|
||
f->link_max_length = (coord_t) scale_(3. * f->spacing);
|
||
double extrusion_height = ironing_params.height * f->spacing / nozzle_dmr;
|
||
float extrusion_width = Flow::rounded_rectangle_extrusion_width_from_spacing(float(nozzle_dmr), float(extrusion_height));
|
||
double flow_mm3_per_mm = nozzle_dmr * extrusion_height;
|
||
Surface surface_fill(stTop, ExPolygon());
|
||
for (ExPolygon &expoly : ironing_areas) {
|
||
surface_fill.expolygon = std::move(expoly);
|
||
Polylines polylines;
|
||
try {
|
||
polylines = f->fill_surface(&surface_fill, fill_params);
|
||
} catch (InfillFailedException &) {
|
||
}
|
||
if (! polylines.empty()) {
|
||
// Save into layer.
|
||
ExtrusionEntityCollection *eec = nullptr;
|
||
ironing_params.layerm->fills.entities.push_back(eec = new ExtrusionEntityCollection());
|
||
// Don't sort the ironing infill lines as they are monotonicly ordered.
|
||
eec->no_sort = true;
|
||
extrusion_entities_append_paths(
|
||
eec->entities, std::move(polylines),
|
||
erIroning,
|
||
flow_mm3_per_mm, extrusion_width, float(extrusion_height));
|
||
}
|
||
}
|
||
|
||
// Regions up to j were processed.
|
||
i = j;
|
||
}
|
||
}
|
||
|
||
} // namespace Slic3r
|