mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-23 16:51:21 -06:00
Fixing dep build script on Windows and removing some warnings. Use bundled igl by default. Not building with the dependency scripts if not explicitly stated. This way, it will stay in Fix the libigl patch to include C source files in header only mode.
854 lines
23 KiB
C++
854 lines
23 KiB
C++
// This file is part of libigl, a simple c++ geometry processing library.
|
|
//
|
|
// Copyright (C) 2013 Daniele Panozzo <daniele.panozzo@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
|
#include "principal_curvature.h"
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <queue>
|
|
#include <list>
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
#include <Eigen/SparseCholesky>
|
|
|
|
// Lib IGL includes
|
|
#include <igl/adjacency_list.h>
|
|
#include <igl/per_face_normals.h>
|
|
#include <igl/per_vertex_normals.h>
|
|
#include <igl/avg_edge_length.h>
|
|
#include <igl/vertex_triangle_adjacency.h>
|
|
|
|
typedef enum
|
|
{
|
|
SPHERE_SEARCH,
|
|
K_RING_SEARCH
|
|
} searchType;
|
|
|
|
typedef enum
|
|
{
|
|
AVERAGE,
|
|
PROJ_PLANE
|
|
} normalType;
|
|
|
|
class CurvatureCalculator
|
|
{
|
|
public:
|
|
/* Row number i represents the i-th vertex, whose columns are:
|
|
curv[i][0] : K2
|
|
curv[i][1] : K1
|
|
curvDir[i][0] : PD1
|
|
curvDir[i][1] : PD2
|
|
*/
|
|
std::vector< std::vector<double> > curv;
|
|
std::vector< std::vector<Eigen::Vector3d> > curvDir;
|
|
bool curvatureComputed;
|
|
class Quadric
|
|
{
|
|
public:
|
|
|
|
IGL_INLINE Quadric ()
|
|
{
|
|
a() = b() = c() = d() = e() = 1.0;
|
|
}
|
|
|
|
IGL_INLINE Quadric(double av, double bv, double cv, double dv, double ev)
|
|
{
|
|
a() = av;
|
|
b() = bv;
|
|
c() = cv;
|
|
d() = dv;
|
|
e() = ev;
|
|
}
|
|
|
|
IGL_INLINE double& a() { return data[0];}
|
|
IGL_INLINE double& b() { return data[1];}
|
|
IGL_INLINE double& c() { return data[2];}
|
|
IGL_INLINE double& d() { return data[3];}
|
|
IGL_INLINE double& e() { return data[4];}
|
|
|
|
double data[5];
|
|
|
|
IGL_INLINE double evaluate(double u, double v)
|
|
{
|
|
return a()*u*u + b()*u*v + c()*v*v + d()*u + e()*v;
|
|
}
|
|
|
|
IGL_INLINE double du(double u, double v)
|
|
{
|
|
return 2.0*a()*u + b()*v + d();
|
|
}
|
|
|
|
IGL_INLINE double dv(double u, double v)
|
|
{
|
|
return 2.0*c()*v + b()*u + e();
|
|
}
|
|
|
|
IGL_INLINE double duv(double u, double v)
|
|
{
|
|
return b();
|
|
}
|
|
|
|
IGL_INLINE double duu(double u, double v)
|
|
{
|
|
return 2.0*a();
|
|
}
|
|
|
|
IGL_INLINE double dvv(double u, double v)
|
|
{
|
|
return 2.0*c();
|
|
}
|
|
|
|
|
|
IGL_INLINE static Quadric fit(const std::vector<Eigen::Vector3d> &VV)
|
|
{
|
|
assert(VV.size() >= 5);
|
|
if (VV.size() < 5)
|
|
{
|
|
std::cerr << "ASSERT FAILED! fit function requires at least 5 points: Only " << VV.size() << " were given." << std::endl;
|
|
exit(0);
|
|
}
|
|
|
|
Eigen::MatrixXd A(VV.size(),5);
|
|
Eigen::MatrixXd b(VV.size(),1);
|
|
Eigen::MatrixXd sol(5,1);
|
|
|
|
for(unsigned int c=0; c < VV.size(); ++c)
|
|
{
|
|
double u = VV[c][0];
|
|
double v = VV[c][1];
|
|
double n = VV[c][2];
|
|
|
|
A(c,0) = u*u;
|
|
A(c,1) = u*v;
|
|
A(c,2) = v*v;
|
|
A(c,3) = u;
|
|
A(c,4) = v;
|
|
|
|
b(c) = n;
|
|
}
|
|
|
|
sol=A.jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(b);
|
|
|
|
return Quadric(sol(0),sol(1),sol(2),sol(3),sol(4));
|
|
}
|
|
};
|
|
|
|
public:
|
|
|
|
Eigen::MatrixXd vertices;
|
|
// Face list of current mesh (#F x 3) or (#F x 4)
|
|
// The i-th row contains the indices of the vertices that forms the i-th face in ccw order
|
|
Eigen::MatrixXi faces;
|
|
|
|
std::vector<std::vector<int> > vertex_to_vertices;
|
|
std::vector<std::vector<int> > vertex_to_faces;
|
|
std::vector<std::vector<int> > vertex_to_faces_index;
|
|
Eigen::MatrixXd face_normals;
|
|
Eigen::MatrixXd vertex_normals;
|
|
|
|
/* Size of the neighborhood */
|
|
double sphereRadius;
|
|
int kRing;
|
|
|
|
bool localMode; /* Use local mode */
|
|
bool projectionPlaneCheck; /* Check collected vertices on tangent plane */
|
|
bool montecarlo;
|
|
unsigned int montecarloN;
|
|
|
|
searchType st; /* Use either a sphere search or a k-ring search */
|
|
normalType nt;
|
|
|
|
double lastRadius;
|
|
double scaledRadius;
|
|
std::string lastMeshName;
|
|
|
|
/* Benchmark related variables */
|
|
bool expStep; /* True if we want the radius to increase exponentially */
|
|
int step; /* If expStep==false, by how much rhe radius increases on every step */
|
|
int maxSize; /* The maximum limit of the radius in the benchmark */
|
|
|
|
IGL_INLINE CurvatureCalculator();
|
|
IGL_INLINE void init(const Eigen::MatrixXd& V, const Eigen::MatrixXi& F);
|
|
|
|
IGL_INLINE void finalEigenStuff(int, const std::vector<Eigen::Vector3d>&, Quadric&);
|
|
IGL_INLINE void fitQuadric(const Eigen::Vector3d&, const std::vector<Eigen::Vector3d>& ref, const std::vector<int>& , Quadric *);
|
|
IGL_INLINE void applyProjOnPlane(const Eigen::Vector3d&, const std::vector<int>&, std::vector<int>&);
|
|
IGL_INLINE void getSphere(const int, const double, std::vector<int>&, int min);
|
|
IGL_INLINE void getKRing(const int, const double,std::vector<int>&);
|
|
IGL_INLINE Eigen::Vector3d project(const Eigen::Vector3d&, const Eigen::Vector3d&, const Eigen::Vector3d&);
|
|
IGL_INLINE void computeReferenceFrame(int, const Eigen::Vector3d&, std::vector<Eigen::Vector3d>&);
|
|
IGL_INLINE void getAverageNormal(int, const std::vector<int>&, Eigen::Vector3d&);
|
|
IGL_INLINE void getProjPlane(int, const std::vector<int>&, Eigen::Vector3d&);
|
|
IGL_INLINE void applyMontecarlo(const std::vector<int>&,std::vector<int>*);
|
|
IGL_INLINE void computeCurvature();
|
|
IGL_INLINE void printCurvature(const std::string& outpath);
|
|
IGL_INLINE double getAverageEdge();
|
|
|
|
IGL_INLINE static int rotateForward (double *v0, double *v1, double *v2)
|
|
{
|
|
double t;
|
|
|
|
if (std::abs(*v2) >= std::abs(*v1) && std::abs(*v2) >= std::abs(*v0))
|
|
return 0;
|
|
|
|
t = *v0;
|
|
*v0 = *v2;
|
|
*v2 = *v1;
|
|
*v1 = t;
|
|
|
|
return 1 + rotateForward (v0, v1, v2);
|
|
}
|
|
|
|
IGL_INLINE static void rotateBackward (int nr, double *v0, double *v1, double *v2)
|
|
{
|
|
double t;
|
|
|
|
if (nr == 0)
|
|
return;
|
|
|
|
t = *v2;
|
|
*v2 = *v0;
|
|
*v0 = *v1;
|
|
*v1 = t;
|
|
|
|
rotateBackward (nr - 1, v0, v1, v2);
|
|
}
|
|
|
|
IGL_INLINE static Eigen::Vector3d chooseMax (Eigen::Vector3d n, Eigen::Vector3d abc, double ab)
|
|
{
|
|
int max_i;
|
|
double max_sp;
|
|
Eigen::Vector3d nt[8];
|
|
|
|
n.normalize ();
|
|
abc.normalize ();
|
|
|
|
max_sp = - std::numeric_limits<double>::max();
|
|
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
nt[i] = n;
|
|
if (ab > 0)
|
|
{
|
|
switch (i)
|
|
{
|
|
case 0:
|
|
break;
|
|
|
|
case 1:
|
|
nt[i][2] = -n[2];
|
|
break;
|
|
|
|
case 2:
|
|
nt[i][0] = -n[0];
|
|
nt[i][1] = -n[1];
|
|
break;
|
|
|
|
case 3:
|
|
nt[i][0] = -n[0];
|
|
nt[i][1] = -n[1];
|
|
nt[i][2] = -n[2];
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (i)
|
|
{
|
|
case 0:
|
|
nt[i][0] = -n[0];
|
|
break;
|
|
|
|
case 1:
|
|
nt[i][1] = -n[1];
|
|
break;
|
|
|
|
case 2:
|
|
nt[i][0] = -n[0];
|
|
nt[i][2] = -n[2];
|
|
break;
|
|
|
|
case 3:
|
|
nt[i][1] = -n[1];
|
|
nt[i][2] = -n[2];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (nt[i].dot(abc) > max_sp)
|
|
{
|
|
max_sp = nt[i].dot(abc);
|
|
max_i = i;
|
|
}
|
|
}
|
|
return nt[max_i];
|
|
}
|
|
|
|
};
|
|
|
|
class comparer
|
|
{
|
|
public:
|
|
IGL_INLINE bool operator() (const std::pair<int, double>& lhs, const std::pair<int, double>&rhs) const
|
|
{
|
|
return lhs.second>rhs.second;
|
|
}
|
|
};
|
|
|
|
IGL_INLINE CurvatureCalculator::CurvatureCalculator()
|
|
{
|
|
this->localMode=true;
|
|
this->projectionPlaneCheck=true;
|
|
this->sphereRadius=5;
|
|
this->st=SPHERE_SEARCH;
|
|
this->nt=AVERAGE;
|
|
this->montecarlo=false;
|
|
this->montecarloN=0;
|
|
this->kRing=3;
|
|
this->curvatureComputed=false;
|
|
this->expStep=true;
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::init(const Eigen::MatrixXd& V, const Eigen::MatrixXi& F)
|
|
{
|
|
// Normalize vertices
|
|
vertices = V;
|
|
|
|
// vertices = vertices.array() - vertices.minCoeff();
|
|
// vertices = vertices.array() / vertices.maxCoeff();
|
|
// vertices = vertices.array() * (1.0/igl::avg_edge_length(V,F));
|
|
|
|
faces = F;
|
|
igl::adjacency_list(F, vertex_to_vertices);
|
|
igl::vertex_triangle_adjacency(V, F, vertex_to_faces, vertex_to_faces_index);
|
|
igl::per_face_normals(V, F, face_normals);
|
|
igl::per_vertex_normals(V, F, face_normals, vertex_normals);
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::fitQuadric(const Eigen::Vector3d& v, const std::vector<Eigen::Vector3d>& ref, const std::vector<int>& vv, Quadric *q)
|
|
{
|
|
std::vector<Eigen::Vector3d> points;
|
|
points.reserve (vv.size());
|
|
|
|
for (unsigned int i = 0; i < vv.size(); ++i) {
|
|
|
|
Eigen::Vector3d cp = vertices.row(vv[i]);
|
|
|
|
// vtang non e` il v tangente!!!
|
|
Eigen::Vector3d vTang = cp - v;
|
|
|
|
double x = vTang.dot(ref[0]);
|
|
double y = vTang.dot(ref[1]);
|
|
double z = vTang.dot(ref[2]);
|
|
points.push_back(Eigen::Vector3d (x,y,z));
|
|
}
|
|
if (points.size() < 5)
|
|
{
|
|
std::cerr << "ASSERT FAILED! fit function requires at least 5 points: Only " << points.size() << " were given." << std::endl;
|
|
*q = Quadric(0,0,0,0,0);
|
|
}
|
|
else
|
|
{
|
|
*q = Quadric::fit (points);
|
|
}
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::finalEigenStuff(int i, const std::vector<Eigen::Vector3d>& ref, Quadric& q)
|
|
{
|
|
|
|
const double a = q.a();
|
|
const double b = q.b();
|
|
const double c = q.c();
|
|
const double d = q.d();
|
|
const double e = q.e();
|
|
|
|
// if (fabs(a) < 10e-8 || fabs(b) < 10e-8)
|
|
// {
|
|
// std::cout << "Degenerate quadric: " << i << std::endl;
|
|
// }
|
|
|
|
double E = 1.0 + d*d;
|
|
double F = d*e;
|
|
double G = 1.0 + e*e;
|
|
|
|
Eigen::Vector3d n = Eigen::Vector3d(-d,-e,1.0).normalized();
|
|
|
|
double L = 2.0 * a * n[2];
|
|
double M = b * n[2];
|
|
double N = 2 * c * n[2];
|
|
|
|
|
|
// ----------------- Eigen stuff
|
|
Eigen::Matrix2d m;
|
|
m << L*G - M*F, M*E-L*F, M*E-L*F, N*E-M*F;
|
|
m = m / (E*G-F*F);
|
|
Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d> eig(m);
|
|
|
|
Eigen::Vector2d c_val = eig.eigenvalues();
|
|
Eigen::Matrix2d c_vec = eig.eigenvectors();
|
|
|
|
// std::cerr << "c_val:" << c_val << std::endl;
|
|
// std::cerr << "c_vec:" << c_vec << std::endl;
|
|
|
|
// std::cerr << "c_vec:" << c_vec(0) << " " << c_vec(1) << std::endl;
|
|
|
|
c_val = -c_val;
|
|
|
|
Eigen::Vector3d v1, v2;
|
|
v1[0] = c_vec(0);
|
|
v1[1] = c_vec(1);
|
|
v1[2] = 0; //d * v1[0] + e * v1[1];
|
|
|
|
v2[0] = c_vec(2);
|
|
v2[1] = c_vec(3);
|
|
v2[2] = 0; //d * v2[0] + e * v2[1];
|
|
|
|
|
|
// v1 = v1.normalized();
|
|
// v2 = v2.normalized();
|
|
|
|
Eigen::Vector3d v1global = ref[0] * v1[0] + ref[1] * v1[1] + ref[2] * v1[2];
|
|
Eigen::Vector3d v2global = ref[0] * v2[0] + ref[1] * v2[1] + ref[2] * v2[2];
|
|
|
|
v1global.normalize();
|
|
v2global.normalize();
|
|
|
|
v1global *= c_val(0);
|
|
v2global *= c_val(1);
|
|
|
|
if (c_val[0] > c_val[1])
|
|
{
|
|
curv[i]=std::vector<double>(2);
|
|
curv[i][0]=c_val(1);
|
|
curv[i][1]=c_val(0);
|
|
curvDir[i]=std::vector<Eigen::Vector3d>(2);
|
|
curvDir[i][0]=v2global;
|
|
curvDir[i][1]=v1global;
|
|
}
|
|
else
|
|
{
|
|
curv[i]=std::vector<double>(2);
|
|
curv[i][0]=c_val(0);
|
|
curv[i][1]=c_val(1);
|
|
curvDir[i]=std::vector<Eigen::Vector3d>(2);
|
|
curvDir[i][0]=v1global;
|
|
curvDir[i][1]=v2global;
|
|
}
|
|
// ---- end Eigen stuff
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::getKRing(const int start, const double r, std::vector<int>&vv)
|
|
{
|
|
int bufsize=vertices.rows();
|
|
vv.reserve(bufsize);
|
|
std::list<std::pair<int,int> > queue;
|
|
bool* visited = (bool*)calloc(bufsize,sizeof(bool));
|
|
queue.push_back(std::pair<int,int>(start,0));
|
|
visited[start]=true;
|
|
while (!queue.empty())
|
|
{
|
|
int toVisit=queue.front().first;
|
|
int distance=queue.front().second;
|
|
queue.pop_front();
|
|
vv.push_back(toVisit);
|
|
if (distance<(int)r)
|
|
{
|
|
for (unsigned int i=0; i<vertex_to_vertices[toVisit].size(); ++i)
|
|
{
|
|
int neighbor=vertex_to_vertices[toVisit][i];
|
|
if (!visited[neighbor])
|
|
{
|
|
queue.push_back(std::pair<int,int> (neighbor,distance+1));
|
|
visited[neighbor]=true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
free(visited);
|
|
return;
|
|
}
|
|
|
|
|
|
IGL_INLINE void CurvatureCalculator::getSphere(const int start, const double r, std::vector<int> &vv, int min)
|
|
{
|
|
int bufsize=vertices.rows();
|
|
vv.reserve(bufsize);
|
|
std::list<int>* queue= new std::list<int>();
|
|
bool* visited = (bool*)calloc(bufsize,sizeof(bool));
|
|
queue->push_back(start);
|
|
visited[start]=true;
|
|
Eigen::Vector3d me=vertices.row(start);
|
|
std::priority_queue<std::pair<int, double>, std::vector<std::pair<int, double> >, comparer >* extra_candidates= new std::priority_queue<std::pair<int, double>, std::vector<std::pair<int, double> >, comparer >();
|
|
while (!queue->empty())
|
|
{
|
|
int toVisit=queue->front();
|
|
queue->pop_front();
|
|
vv.push_back(toVisit);
|
|
for (unsigned int i=0; i<vertex_to_vertices[toVisit].size(); ++i)
|
|
{
|
|
int neighbor=vertex_to_vertices[toVisit][i];
|
|
if (!visited[neighbor])
|
|
{
|
|
Eigen::Vector3d neigh=vertices.row(neighbor);
|
|
double distance=(me-neigh).norm();
|
|
if (distance<r)
|
|
queue->push_back(neighbor);
|
|
else if ((int)vv.size()<min)
|
|
extra_candidates->push(std::pair<int,double>(neighbor,distance));
|
|
visited[neighbor]=true;
|
|
}
|
|
}
|
|
}
|
|
while (!extra_candidates->empty() && (int)vv.size()<min)
|
|
{
|
|
std::pair<int, double> cand=extra_candidates->top();
|
|
extra_candidates->pop();
|
|
vv.push_back(cand.first);
|
|
for (unsigned int i=0; i<vertex_to_vertices[cand.first].size(); ++i)
|
|
{
|
|
int neighbor=vertex_to_vertices[cand.first][i];
|
|
if (!visited[neighbor])
|
|
{
|
|
Eigen::Vector3d neigh=vertices.row(neighbor);
|
|
double distance=(me-neigh).norm();
|
|
extra_candidates->push(std::pair<int,double>(neighbor,distance));
|
|
visited[neighbor]=true;
|
|
}
|
|
}
|
|
}
|
|
free(extra_candidates);
|
|
free(queue);
|
|
free(visited);
|
|
}
|
|
|
|
IGL_INLINE Eigen::Vector3d CurvatureCalculator::project(const Eigen::Vector3d& v, const Eigen::Vector3d& vp, const Eigen::Vector3d& ppn)
|
|
{
|
|
return (vp - (ppn * ((vp - v).dot(ppn))));
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::computeReferenceFrame(int i, const Eigen::Vector3d& normal, std::vector<Eigen::Vector3d>& ref )
|
|
{
|
|
|
|
Eigen::Vector3d longest_v=Eigen::Vector3d(vertices.row(vertex_to_vertices[i][0]));
|
|
|
|
longest_v=(project(vertices.row(i),longest_v,normal)-Eigen::Vector3d(vertices.row(i))).normalized();
|
|
|
|
/* L'ultimo asse si ottiene come prodotto vettoriale tra i due
|
|
* calcolati */
|
|
Eigen::Vector3d y_axis=(normal.cross(longest_v)).normalized();
|
|
ref[0]=longest_v;
|
|
ref[1]=y_axis;
|
|
ref[2]=normal;
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::getAverageNormal(int j, const std::vector<int>& vv, Eigen::Vector3d& normal)
|
|
{
|
|
normal=(vertex_normals.row(j)).normalized();
|
|
if (localMode)
|
|
return;
|
|
|
|
for (unsigned int i=0; i<vv.size(); ++i)
|
|
{
|
|
normal+=vertex_normals.row(vv[i]).normalized();
|
|
}
|
|
normal.normalize();
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::getProjPlane(int j, const std::vector<int>& vv, Eigen::Vector3d& ppn)
|
|
{
|
|
int nr;
|
|
double a, b, c;
|
|
double nx, ny, nz;
|
|
double abcq;
|
|
|
|
a = b = c = 0;
|
|
|
|
if (localMode)
|
|
{
|
|
for (unsigned int i=0; i<vertex_to_faces.at(j).size(); ++i)
|
|
{
|
|
Eigen::Vector3d faceNormal=face_normals.row(vertex_to_faces.at(j).at(i));
|
|
a += faceNormal[0];
|
|
b += faceNormal[1];
|
|
c += faceNormal[2];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (unsigned int i=0; i<vv.size(); ++i)
|
|
{
|
|
a+= vertex_normals.row(vv[i])[0];
|
|
b+= vertex_normals.row(vv[i])[1];
|
|
c+= vertex_normals.row(vv[i])[2];
|
|
}
|
|
}
|
|
nr = rotateForward (&a, &b, &c);
|
|
abcq = a*a + b*b + c*c;
|
|
nx = sqrt (a*a / abcq);
|
|
ny = sqrt (b*b / abcq);
|
|
nz = sqrt (1 - nx*nx - ny*ny);
|
|
rotateBackward (nr, &a, &b, &c);
|
|
rotateBackward (nr, &nx, &ny, &nz);
|
|
|
|
ppn = chooseMax (Eigen::Vector3d(nx, ny, nz), Eigen::Vector3d (a, b, c), a * b);
|
|
ppn.normalize();
|
|
}
|
|
|
|
|
|
IGL_INLINE double CurvatureCalculator::getAverageEdge()
|
|
{
|
|
double sum = 0;
|
|
int count = 0;
|
|
|
|
for (int i = 0; i<faces.rows(); ++i)
|
|
{
|
|
for (short unsigned j=0; j<3; ++j)
|
|
{
|
|
Eigen::Vector3d p1=vertices.row(faces.row(i)[j]);
|
|
Eigen::Vector3d p2=vertices.row(faces.row(i)[(j+1)%3]);
|
|
|
|
double l = (p1-p2).norm();
|
|
|
|
sum+=l;
|
|
++count;
|
|
}
|
|
}
|
|
|
|
return (sum/(double)count);
|
|
}
|
|
|
|
|
|
IGL_INLINE void CurvatureCalculator::applyProjOnPlane(const Eigen::Vector3d& ppn, const std::vector<int>& vin, std::vector<int> &vout)
|
|
{
|
|
for (std::vector<int>::const_iterator vpi = vin.begin(); vpi != vin.end(); ++vpi)
|
|
if (vertex_normals.row(*vpi) * ppn > 0.0)
|
|
vout.push_back(*vpi);
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::applyMontecarlo(const std::vector<int>& vin, std::vector<int> *vout)
|
|
{
|
|
if (montecarloN >= vin.size ())
|
|
{
|
|
*vout = vin;
|
|
return;
|
|
}
|
|
|
|
float p = ((float) montecarloN) / (float) vin.size();
|
|
for (std::vector<int>::const_iterator vpi = vin.begin(); vpi != vin.end(); ++vpi)
|
|
{
|
|
float r;
|
|
if ((r = ((float)rand () / RAND_MAX)) < p)
|
|
{
|
|
vout->push_back(*vpi);
|
|
}
|
|
}
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::computeCurvature()
|
|
{
|
|
//CHECK che esista la mesh
|
|
const size_t vertices_count=vertices.rows();
|
|
|
|
if (vertices_count ==0)
|
|
return;
|
|
|
|
curvDir=std::vector< std::vector<Eigen::Vector3d> >(vertices_count);
|
|
curv=std::vector<std::vector<double> >(vertices_count);
|
|
|
|
|
|
|
|
scaledRadius=getAverageEdge()*sphereRadius;
|
|
|
|
std::vector<int> vv;
|
|
std::vector<int> vvtmp;
|
|
Eigen::Vector3d normal;
|
|
|
|
//double time_spent;
|
|
//double searchtime=0, ref_time=0, fit_time=0, final_time=0;
|
|
|
|
for (size_t i=0; i<vertices_count; ++i)
|
|
{
|
|
vv.clear();
|
|
vvtmp.clear();
|
|
Eigen::Vector3d me=vertices.row(i);
|
|
switch (st)
|
|
{
|
|
case SPHERE_SEARCH:
|
|
getSphere(i,scaledRadius,vv,6);
|
|
break;
|
|
case K_RING_SEARCH:
|
|
getKRing(i,kRing,vv);
|
|
break;
|
|
default:
|
|
fprintf(stderr,"Error: search type not recognized");
|
|
return;
|
|
}
|
|
|
|
if (vv.size()<6)
|
|
{
|
|
std::cerr << "Could not compute curvature of radius " << scaledRadius << std::endl;
|
|
return;
|
|
}
|
|
|
|
|
|
if (projectionPlaneCheck)
|
|
{
|
|
vvtmp.reserve (vv.size ());
|
|
applyProjOnPlane (vertex_normals.row(i), vv, vvtmp);
|
|
if (vvtmp.size() >= 6 && vvtmp.size()<vv.size())
|
|
vv = vvtmp;
|
|
}
|
|
|
|
|
|
switch (nt)
|
|
{
|
|
case AVERAGE:
|
|
getAverageNormal(i,vv,normal);
|
|
break;
|
|
case PROJ_PLANE:
|
|
getProjPlane(i,vv,normal);
|
|
break;
|
|
default:
|
|
fprintf(stderr,"Error: normal type not recognized");
|
|
return;
|
|
}
|
|
if (vv.size()<6)
|
|
{
|
|
std::cerr << "Could not compute curvature of radius " << scaledRadius << std::endl;
|
|
return;
|
|
}
|
|
if (montecarlo)
|
|
{
|
|
if(montecarloN<6)
|
|
break;
|
|
vvtmp.reserve(vv.size());
|
|
applyMontecarlo(vv,&vvtmp);
|
|
vv=vvtmp;
|
|
}
|
|
|
|
if (vv.size()<6)
|
|
return;
|
|
std::vector<Eigen::Vector3d> ref(3);
|
|
computeReferenceFrame(i,normal,ref);
|
|
|
|
Quadric q;
|
|
fitQuadric (me, ref, vv, &q);
|
|
finalEigenStuff(i,ref,q);
|
|
}
|
|
|
|
lastRadius=sphereRadius;
|
|
curvatureComputed=true;
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::printCurvature(const std::string& outpath)
|
|
{
|
|
using namespace std;
|
|
if (!curvatureComputed)
|
|
return;
|
|
|
|
std::ofstream of;
|
|
of.open(outpath.c_str());
|
|
|
|
if (!of)
|
|
{
|
|
fprintf(stderr, "Error: could not open output file %s\n", outpath.c_str());
|
|
return;
|
|
}
|
|
|
|
int vertices_count=vertices.rows();
|
|
of << vertices_count << endl;
|
|
for (int i=0; i<vertices_count; ++i)
|
|
{
|
|
of << curv[i][0] << " " << curv[i][1] << " " << curvDir[i][0][0] << " " << curvDir[i][0][1] << " " << curvDir[i][0][2] << " " <<
|
|
curvDir[i][1][0] << " " << curvDir[i][1][1] << " " << curvDir[i][1][2] << endl;
|
|
}
|
|
|
|
of.close();
|
|
|
|
}
|
|
|
|
template <
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedPD1,
|
|
typename DerivedPD2,
|
|
typename DerivedPV1,
|
|
typename DerivedPV2>
|
|
IGL_INLINE void igl::principal_curvature(
|
|
const Eigen::PlainObjectBase<DerivedV>& V,
|
|
const Eigen::PlainObjectBase<DerivedF>& F,
|
|
Eigen::PlainObjectBase<DerivedPD1>& PD1,
|
|
Eigen::PlainObjectBase<DerivedPD2>& PD2,
|
|
Eigen::PlainObjectBase<DerivedPV1>& PV1,
|
|
Eigen::PlainObjectBase<DerivedPV2>& PV2,
|
|
unsigned radius,
|
|
bool useKring)
|
|
{
|
|
if (radius < 2)
|
|
{
|
|
radius = 2;
|
|
std::cout << "WARNING: igl::principal_curvature needs a radius >= 2, fixing it to 2." << std::endl;
|
|
}
|
|
|
|
// Preallocate memory
|
|
PD1.resize(V.rows(),3);
|
|
PD2.resize(V.rows(),3);
|
|
|
|
// Preallocate memory
|
|
PV1.resize(V.rows(),1);
|
|
PV2.resize(V.rows(),1);
|
|
|
|
// Precomputation
|
|
CurvatureCalculator cc;
|
|
cc.init(V.template cast<double>(),F.template cast<int>());
|
|
cc.sphereRadius = radius;
|
|
|
|
if (useKring)
|
|
{
|
|
cc.kRing = radius;
|
|
cc.st = K_RING_SEARCH;
|
|
}
|
|
|
|
// Compute
|
|
cc.computeCurvature();
|
|
|
|
// Copy it back
|
|
for (unsigned i=0; i<V.rows(); ++i)
|
|
{
|
|
PD1.row(i) << cc.curvDir[i][0][0], cc.curvDir[i][0][1], cc.curvDir[i][0][2];
|
|
PD2.row(i) << cc.curvDir[i][1][0], cc.curvDir[i][1][1], cc.curvDir[i][1][2];
|
|
PD1.row(i).normalize();
|
|
PD2.row(i).normalize();
|
|
|
|
if (std::isnan(PD1(i,0)) || std::isnan(PD1(i,1)) || std::isnan(PD1(i,2)) || std::isnan(PD2(i,0)) || std::isnan(PD2(i,1)) || std::isnan(PD2(i,2)))
|
|
{
|
|
PD1.row(i) << 0,0,0;
|
|
PD2.row(i) << 0,0,0;
|
|
}
|
|
|
|
PV1(i) = cc.curv[i][0];
|
|
PV2(i) = cc.curv[i][1];
|
|
|
|
if (PD1.row(i) * PD2.row(i).transpose() > 10e-6)
|
|
{
|
|
std::cerr << "PRINCIPAL_CURVATURE: Something is wrong with vertex: " << i << std::endl;
|
|
PD1.row(i) *= 0;
|
|
PD2.row(i) *= 0;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef IGL_STATIC_LIBRARY
|
|
// Explicit template instantiation
|
|
// generated by autoexplicit.sh
|
|
template void igl::principal_curvature<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, unsigned int, bool);
|
|
template void igl::principal_curvature<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, unsigned int, bool);
|
|
template void igl::principal_curvature<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, unsigned int, bool);
|
|
#endif
|