mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			692 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			692 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #define CATCH_CONFIG_MAIN
 | |
| #include <catch2/catch.hpp>
 | |
| 
 | |
| #include <unordered_set>
 | |
| #include <unordered_map>
 | |
| #include <random>
 | |
| 
 | |
| // Debug
 | |
| #include <fstream>
 | |
| 
 | |
| #include "libslic3r/libslic3r.h"
 | |
| #include "libslic3r/Format/OBJ.hpp"
 | |
| #include "libslic3r/SLAPrint.hpp"
 | |
| #include "libslic3r/TriangleMesh.hpp"
 | |
| #include "libslic3r/SLA/SLAPad.hpp"
 | |
| #include "libslic3r/SLA/SLASupportTreeBuilder.hpp"
 | |
| #include "libslic3r/SLA/SLASupportTreeBuildsteps.hpp"
 | |
| #include "libslic3r/SLA/SLAAutoSupports.hpp"
 | |
| #include "libslic3r/SLA/SLARaster.hpp"
 | |
| #include "libslic3r/SLA/ConcaveHull.hpp"
 | |
| #include "libslic3r/MTUtils.hpp"
 | |
| 
 | |
| #include "libslic3r/SVG.hpp"
 | |
| #include "libslic3r/Format/OBJ.hpp"
 | |
| 
 | |
| #if defined(WIN32) || defined(_WIN32)
 | |
| #define PATH_SEPARATOR R"(\)"
 | |
| #else
 | |
| #define PATH_SEPARATOR R"(/)"
 | |
| #endif
 | |
| 
 | |
| namespace  {
 | |
| using namespace Slic3r;
 | |
| 
 | |
| TriangleMesh load_model(const std::string &obj_filename)
 | |
| {
 | |
|     TriangleMesh mesh;
 | |
|     auto fpath = TEST_DATA_DIR PATH_SEPARATOR + obj_filename;
 | |
|     load_obj(fpath.c_str(), &mesh);
 | |
|     return mesh;
 | |
| }
 | |
| 
 | |
| enum e_validity {
 | |
|     ASSUME_NO_EMPTY = 1,
 | |
|     ASSUME_MANIFOLD = 2,
 | |
|     ASSUME_NO_REPAIR = 4
 | |
| };
 | |
| 
 | |
| void check_validity(const TriangleMesh &input_mesh,
 | |
|                     int flags = ASSUME_NO_EMPTY | ASSUME_MANIFOLD |
 | |
|                                 ASSUME_NO_REPAIR)
 | |
| {
 | |
|     TriangleMesh mesh{input_mesh};
 | |
| 
 | |
|     if (flags & ASSUME_NO_EMPTY) {
 | |
|         REQUIRE_FALSE(mesh.empty());
 | |
|     } else if (mesh.empty())
 | |
|         return; // If it can be empty and it is, there is nothing left to do.
 | |
| 
 | |
|     REQUIRE(stl_validate(&mesh.stl));
 | |
| 
 | |
|     bool do_update_shared_vertices = false;
 | |
|     mesh.repair(do_update_shared_vertices);
 | |
| 
 | |
|     if (flags & ASSUME_NO_REPAIR) {
 | |
|         REQUIRE_FALSE(mesh.needed_repair());
 | |
|     }
 | |
| 
 | |
|     if (flags & ASSUME_MANIFOLD) {
 | |
|         mesh.require_shared_vertices();
 | |
|         if (!mesh.is_manifold()) mesh.WriteOBJFile("non_manifold.obj");
 | |
|         REQUIRE(mesh.is_manifold());
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct PadByproducts
 | |
| {
 | |
|     ExPolygons   model_contours;
 | |
|     ExPolygons   support_contours;
 | |
|     TriangleMesh mesh;
 | |
| };
 | |
| 
 | |
| void _test_concave_hull(const Polygons &hull, const ExPolygons &polys)
 | |
| {
 | |
|     REQUIRE(polys.size() >=hull.size());
 | |
| 
 | |
|     double polys_area = 0;
 | |
|     for (const ExPolygon &p : polys) polys_area += p.area();
 | |
| 
 | |
|     double cchull_area = 0;
 | |
|     for (const Slic3r::Polygon &p : hull) cchull_area += p.area();
 | |
| 
 | |
|     REQUIRE(cchull_area >= Approx(polys_area));
 | |
| 
 | |
|     size_t cchull_holes = 0;
 | |
|     for (const Slic3r::Polygon &p : hull)
 | |
|         cchull_holes += p.is_clockwise() ? 1 : 0;
 | |
| 
 | |
|     REQUIRE(cchull_holes == 0);
 | |
| 
 | |
|     Polygons intr = diff(to_polygons(polys), hull);
 | |
|     REQUIRE(intr.empty());
 | |
| }
 | |
| 
 | |
| void test_concave_hull(const ExPolygons &polys) {
 | |
|     sla::PadConfig pcfg;
 | |
| 
 | |
|     Slic3r::sla::ConcaveHull cchull{polys, pcfg.max_merge_dist_mm, []{}};
 | |
| 
 | |
|     _test_concave_hull(cchull.polygons(), polys);
 | |
| 
 | |
|     coord_t delta = scaled(pcfg.brim_size_mm + pcfg.wing_distance());
 | |
|     ExPolygons wafflex = sla::offset_waffle_style_ex(cchull, delta);
 | |
|     Polygons waffl = sla::offset_waffle_style(cchull, delta);
 | |
| 
 | |
|     _test_concave_hull(to_polygons(wafflex), polys);
 | |
|     _test_concave_hull(waffl, polys);
 | |
| }
 | |
| 
 | |
| void test_pad(const std::string &   obj_filename,
 | |
|               const sla::PadConfig &padcfg,
 | |
|               PadByproducts &       out)
 | |
| {
 | |
|     REQUIRE(padcfg.validate().empty());
 | |
| 
 | |
|     TriangleMesh mesh = load_model(obj_filename);
 | |
| 
 | |
|     REQUIRE_FALSE(mesh.empty());
 | |
| 
 | |
|     // Create pad skeleton only from the model
 | |
|     Slic3r::sla::pad_blueprint(mesh, out.model_contours);
 | |
| 
 | |
|     test_concave_hull(out.model_contours);
 | |
| 
 | |
|     REQUIRE_FALSE(out.model_contours.empty());
 | |
| 
 | |
|     // Create the pad geometry for the model contours only
 | |
|     Slic3r::sla::create_pad({}, out.model_contours, out.mesh, padcfg);
 | |
| 
 | |
|     check_validity(out.mesh);
 | |
| 
 | |
|     auto bb = out.mesh.bounding_box();
 | |
|     REQUIRE(bb.max.z() - bb.min.z() == Approx(padcfg.full_height()));
 | |
| }
 | |
| 
 | |
| void test_pad(const std::string &   obj_filename,
 | |
|               const sla::PadConfig &padcfg = {})
 | |
| {
 | |
|     PadByproducts byproducts;
 | |
|     test_pad(obj_filename, padcfg, byproducts);
 | |
| }
 | |
| 
 | |
| struct SupportByproducts
 | |
| {
 | |
|     std::string             obj_fname;
 | |
|     std::vector<float>      slicegrid;
 | |
|     std::vector<ExPolygons> model_slices;
 | |
|     sla::SupportTreeBuilder supporttree;
 | |
|     TriangleMesh            input_mesh;
 | |
| };
 | |
| 
 | |
| const constexpr float CLOSING_RADIUS = 0.005f;
 | |
| 
 | |
| void check_support_tree_integrity(const sla::SupportTreeBuilder &stree,
 | |
|                                   const sla::SupportConfig &cfg)
 | |
| {
 | |
|     double gnd  = stree.ground_level;
 | |
|     double H1   = cfg.max_solo_pillar_height_mm;
 | |
|     double H2   = cfg.max_dual_pillar_height_mm;
 | |
| 
 | |
|     for (const sla::Head &head : stree.heads()) {
 | |
|         REQUIRE((!head.is_valid() || head.pillar_id != sla::ID_UNSET ||
 | |
|                  head.bridge_id != sla::ID_UNSET));
 | |
|     }
 | |
| 
 | |
|     for (const sla::Pillar &pillar : stree.pillars()) {
 | |
|         if (std::abs(pillar.endpoint().z() - gnd) < EPSILON) {
 | |
|             double h = pillar.height;
 | |
| 
 | |
|             if (h > H1) REQUIRE(pillar.links >= 1);
 | |
|             else if(h > H2) { REQUIRE(pillar.links >= 2); }
 | |
|         }
 | |
| 
 | |
|         REQUIRE(pillar.links <= cfg.pillar_cascade_neighbors);
 | |
|         REQUIRE(pillar.bridges <= cfg.max_bridges_on_pillar);
 | |
|     }
 | |
| 
 | |
|     double max_bridgelen = 0.;
 | |
|     auto chck_bridge = [&cfg](const sla::Bridge &bridge, double &max_brlen) {
 | |
|         Vec3d n = bridge.endp - bridge.startp;
 | |
|         double d = sla::distance(n);
 | |
|         max_brlen = std::max(d, max_brlen);
 | |
| 
 | |
|         double z     = n.z();
 | |
|         double polar = std::acos(z / d);
 | |
|         double slope = -polar + PI / 2.;
 | |
|         REQUIRE(std::abs(slope) >= cfg.bridge_slope - EPSILON);
 | |
|     };
 | |
| 
 | |
|     for (auto &bridge : stree.bridges()) chck_bridge(bridge, max_bridgelen);
 | |
|     REQUIRE(max_bridgelen <= cfg.max_bridge_length_mm);
 | |
| 
 | |
|     max_bridgelen = 0;
 | |
|     for (auto &bridge : stree.crossbridges()) chck_bridge(bridge, max_bridgelen);
 | |
| 
 | |
|     double md = cfg.max_pillar_link_distance_mm / std::cos(-cfg.bridge_slope);
 | |
|     REQUIRE(max_bridgelen <= md);
 | |
| }
 | |
| 
 | |
| void test_supports(const std::string &       obj_filename,
 | |
|                    const sla::SupportConfig &supportcfg,
 | |
|                    SupportByproducts &       out)
 | |
| {
 | |
|     using namespace Slic3r;
 | |
|     TriangleMesh mesh = load_model(obj_filename);
 | |
| 
 | |
|     REQUIRE_FALSE(mesh.empty());
 | |
| 
 | |
|     TriangleMeshSlicer slicer{&mesh};
 | |
| 
 | |
|     auto   bb      = mesh.bounding_box();
 | |
|     double zmin    = bb.min.z();
 | |
|     double zmax    = bb.max.z();
 | |
|     double gnd     = zmin - supportcfg.object_elevation_mm;
 | |
|     auto   layer_h = 0.05f;
 | |
| 
 | |
|     out.slicegrid = grid(float(gnd), float(zmax), layer_h);
 | |
|     slicer.slice(out.slicegrid , CLOSING_RADIUS, &out.model_slices, []{});
 | |
| 
 | |
|     // Create the special index-triangle mesh with spatial indexing which
 | |
|     // is the input of the support point and support mesh generators
 | |
|     sla::EigenMesh3D emesh{mesh};
 | |
| 
 | |
|     // Create the support point generator
 | |
|     sla::SLAAutoSupports::Config autogencfg;
 | |
|     autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
 | |
|     sla::SLAAutoSupports point_gen{emesh, out.model_slices, out.slicegrid,
 | |
|                                    autogencfg, [] {}, [](int) {}};
 | |
| 
 | |
|     // Get the calculated support points.
 | |
|     std::vector<sla::SupportPoint> support_points = point_gen.output();
 | |
| 
 | |
|     int validityflags = ASSUME_NO_REPAIR;
 | |
| 
 | |
|     // If there is no elevation, support points shall be removed from the
 | |
|     // bottom of the object.
 | |
|     if (std::abs(supportcfg.object_elevation_mm) < EPSILON) {
 | |
|         sla::remove_bottom_points(support_points, zmin,
 | |
|                                   supportcfg.base_height_mm);
 | |
|     } else {
 | |
|         // Should be support points at least on the bottom of the model
 | |
|         REQUIRE_FALSE(support_points.empty());
 | |
| 
 | |
|         // Also the support mesh should not be empty.
 | |
|         validityflags |= ASSUME_NO_EMPTY;
 | |
|     }
 | |
| 
 | |
|     // Generate the actual support tree
 | |
|     sla::SupportTreeBuilder treebuilder;
 | |
|     treebuilder.build(sla::SupportableMesh{emesh, support_points, supportcfg});
 | |
| 
 | |
|     check_support_tree_integrity(treebuilder, supportcfg);
 | |
| 
 | |
|     const TriangleMesh &output_mesh = treebuilder.retrieve_mesh();
 | |
| 
 | |
|     check_validity(output_mesh, validityflags);
 | |
| 
 | |
|     // Quick check if the dimensions and placement of supports are correct
 | |
|     auto obb = output_mesh.bounding_box();
 | |
| 
 | |
|     double allowed_zmin = zmin - supportcfg.object_elevation_mm;
 | |
| 
 | |
|     if (std::abs(supportcfg.object_elevation_mm) < EPSILON)
 | |
|         allowed_zmin = zmin - 2 * supportcfg.head_back_radius_mm;
 | |
| 
 | |
|     REQUIRE(obb.min.z() >= allowed_zmin);
 | |
|     REQUIRE(obb.max.z() <= zmax);
 | |
| 
 | |
|     // Move out the support tree into the byproducts, we can examine it further
 | |
|     // in various tests.
 | |
|     out.obj_fname   = std::move(obj_filename);
 | |
|     out.supporttree = std::move(treebuilder);
 | |
|     out.input_mesh  = std::move(mesh);
 | |
| }
 | |
| 
 | |
| void test_supports(const std::string &       obj_filename,
 | |
|                    const sla::SupportConfig &supportcfg = {})
 | |
| {
 | |
|     SupportByproducts byproducts;
 | |
|     test_supports(obj_filename, supportcfg, byproducts);
 | |
| }
 | |
| 
 | |
| void export_failed_case(const std::vector<ExPolygons> &support_slices,
 | |
|                         const SupportByproducts &byproducts)
 | |
| {
 | |
|     for (size_t n = 0; n < support_slices.size(); ++n) {
 | |
|         const ExPolygons &sup_slice = support_slices[n];
 | |
|         const ExPolygons &mod_slice = byproducts.model_slices[n];
 | |
|         Polygons intersections = intersection(sup_slice, mod_slice);
 | |
| 
 | |
|         std::stringstream ss;
 | |
|         if (!intersections.empty()) {
 | |
|             ss << byproducts.obj_fname << std::setprecision(4) << n << ".svg";
 | |
|             SVG svg(ss.str());
 | |
|             svg.draw(sup_slice, "green");
 | |
|             svg.draw(mod_slice, "blue");
 | |
|             svg.draw(intersections, "red");
 | |
|             svg.Close();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     TriangleMesh m;
 | |
|     byproducts.supporttree.retrieve_full_mesh(m);
 | |
|     m.merge(byproducts.input_mesh);
 | |
|     m.repair();
 | |
|     m.require_shared_vertices();
 | |
|     m.WriteOBJFile(byproducts.obj_fname.c_str());
 | |
| }
 | |
| 
 | |
| void test_support_model_collision(
 | |
|     const std::string &       obj_filename,
 | |
|     const sla::SupportConfig &input_supportcfg = {})
 | |
| {
 | |
|     SupportByproducts byproducts;
 | |
| 
 | |
|     sla::SupportConfig supportcfg = input_supportcfg;
 | |
| 
 | |
|     // Set head penetration to a small negative value which should ensure that
 | |
|     // the supports will not touch the model body.
 | |
|     supportcfg.head_penetration_mm = -0.15;
 | |
| 
 | |
|     // TODO: currently, the tailheads penetrating into the model body do not
 | |
|     // respect the penetration parameter properly. No issues were reported so
 | |
|     // far but we should definitely fix this.
 | |
|     supportcfg.ground_facing_only = true;
 | |
| 
 | |
|     test_supports(obj_filename, supportcfg, byproducts);
 | |
| 
 | |
|     // Slice the support mesh given the slice grid of the model.
 | |
|     std::vector<ExPolygons> support_slices =
 | |
|         byproducts.supporttree.slice(byproducts.slicegrid, CLOSING_RADIUS);
 | |
| 
 | |
|     // The slices originate from the same slice grid so the numbers must match
 | |
| 
 | |
|     bool support_mesh_is_empty =
 | |
|         byproducts.supporttree.retrieve_mesh(sla::MeshType::Pad).empty() &&
 | |
|         byproducts.supporttree.retrieve_mesh(sla::MeshType::Support).empty();
 | |
| 
 | |
|     if (support_mesh_is_empty)
 | |
|         REQUIRE(support_slices.empty());
 | |
|     else
 | |
|         REQUIRE(support_slices.size() == byproducts.model_slices.size());
 | |
| 
 | |
|     bool notouch = true;
 | |
|     for (size_t n = 0; notouch && n < support_slices.size(); ++n) {
 | |
|         const ExPolygons &sup_slice = support_slices[n];
 | |
|         const ExPolygons &mod_slice = byproducts.model_slices[n];
 | |
| 
 | |
|         Polygons intersections = intersection(sup_slice, mod_slice);
 | |
| 
 | |
|         notouch = notouch && intersections.empty();
 | |
|     }
 | |
| 
 | |
|     if (!notouch) export_failed_case(support_slices, byproducts);
 | |
| 
 | |
|     REQUIRE(notouch);
 | |
| }
 | |
| 
 | |
| const char * const BELOW_PAD_TEST_OBJECTS[] = {
 | |
|     "20mm_cube.obj",
 | |
|     "V.obj",
 | |
| };
 | |
| 
 | |
| const char * const AROUND_PAD_TEST_OBJECTS[] = {
 | |
|     "20mm_cube.obj",
 | |
|     "V.obj",
 | |
|     "frog_legs.obj",
 | |
|     "cube_with_concave_hole_enlarged.obj",
 | |
| };
 | |
| 
 | |
| const char *const SUPPORT_TEST_MODELS[] = {
 | |
|     "cube_with_concave_hole_enlarged_standing.obj",
 | |
|     "A_upsidedown.obj",
 | |
|     "extruder_idler.obj"
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| // Test pair hash for 'nums' random number pairs.
 | |
| template <class I, class II> void test_pairhash()
 | |
| {
 | |
|     const constexpr size_t nums = 1000;
 | |
|     I A[nums] = {0}, B[nums] = {0};
 | |
|     std::unordered_set<I> CH;
 | |
|     std::unordered_map<II, std::pair<I, I>> ints;
 | |
| 
 | |
|     std::random_device rd;
 | |
|     std::mt19937 gen(rd());
 | |
| 
 | |
|     const I Ibits = int(sizeof(I) * CHAR_BIT);
 | |
|     const II IIbits = int(sizeof(II) * CHAR_BIT);
 | |
| 
 | |
|     int bits = IIbits / 2 < Ibits ? Ibits / 2 : Ibits;
 | |
|     if (std::is_signed<I>::value) bits -= 1;
 | |
|     const I Imin = 0;
 | |
|     const I Imax = I(std::pow(2., bits) - 1);
 | |
| 
 | |
|     std::uniform_int_distribution<I> dis(Imin, Imax);
 | |
| 
 | |
|     for (size_t i = 0; i < nums;) {
 | |
|         I a = dis(gen);
 | |
|         if (CH.find(a) == CH.end()) { CH.insert(a); A[i] = a; ++i; }
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < nums;) {
 | |
|         I b = dis(gen);
 | |
|         if (CH.find(b) == CH.end()) { CH.insert(b); B[i] = b; ++i; }
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < nums; ++i) {
 | |
|         I a = A[i], b = B[i];
 | |
| 
 | |
|         REQUIRE(a != b);
 | |
| 
 | |
|         II hash_ab = sla::pairhash<I, II>(a, b);
 | |
|         II hash_ba = sla::pairhash<I, II>(b, a);
 | |
|         REQUIRE(hash_ab == hash_ba);
 | |
| 
 | |
|         auto it = ints.find(hash_ab);
 | |
| 
 | |
|         if (it != ints.end()) {
 | |
|             REQUIRE((
 | |
|                 (it->second.first == a && it->second.second == b) ||
 | |
|                 (it->second.first == b && it->second.second == a)
 | |
|             ));
 | |
|         } else
 | |
|             ints[hash_ab] = std::make_pair(a, b);
 | |
|     }
 | |
| }
 | |
| 
 | |
| TEST_CASE("Pillar pairhash should be unique", "[SLASupportGeneration]") {
 | |
|     test_pairhash<int, int>();
 | |
|     test_pairhash<int, long>();
 | |
|     test_pairhash<unsigned, unsigned>();
 | |
|     test_pairhash<unsigned, unsigned long>();
 | |
| }
 | |
| 
 | |
| TEST_CASE("Flat pad geometry is valid", "[SLASupportGeneration]") {
 | |
|     sla::PadConfig padcfg;
 | |
| 
 | |
|     // Disable wings
 | |
|     padcfg.wall_height_mm = .0;
 | |
| 
 | |
|     for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
 | |
| }
 | |
| 
 | |
| TEST_CASE("WingedPadGeometryIsValid", "[SLASupportGeneration]") {
 | |
|     sla::PadConfig padcfg;
 | |
| 
 | |
|     // Add some wings to the pad to test the cavity
 | |
|     padcfg.wall_height_mm = 1.;
 | |
| 
 | |
|     for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
 | |
| }
 | |
| 
 | |
| TEST_CASE("FlatPadAroundObjectIsValid", "[SLASupportGeneration]") {
 | |
|     sla::PadConfig padcfg;
 | |
| 
 | |
|     // Add some wings to the pad to test the cavity
 | |
|     padcfg.wall_height_mm = 0.;
 | |
|     // padcfg.embed_object.stick_stride_mm = 0.;
 | |
|     padcfg.embed_object.enabled = true;
 | |
|     padcfg.embed_object.everywhere = true;
 | |
| 
 | |
|     for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
 | |
| }
 | |
| 
 | |
| TEST_CASE("WingedPadAroundObjectIsValid", "[SLASupportGeneration]") {
 | |
|     sla::PadConfig padcfg;
 | |
| 
 | |
|     // Add some wings to the pad to test the cavity
 | |
|     padcfg.wall_height_mm = 1.;
 | |
|     padcfg.embed_object.enabled = true;
 | |
|     padcfg.embed_object.everywhere = true;
 | |
| 
 | |
|     for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
 | |
| }
 | |
| 
 | |
| TEST_CASE("ElevatedSupportGeometryIsValid", "[SLASupportGeneration]") {
 | |
|     sla::SupportConfig supportcfg;
 | |
|     supportcfg.object_elevation_mm = 5.;
 | |
| 
 | |
|     for (auto fname : SUPPORT_TEST_MODELS) test_supports(fname);
 | |
| }
 | |
| 
 | |
| TEST_CASE("FloorSupportGeometryIsValid", "[SLASupportGeneration]") {
 | |
|     sla::SupportConfig supportcfg;
 | |
|     supportcfg.object_elevation_mm = 0;
 | |
| 
 | |
|     for (auto &fname: SUPPORT_TEST_MODELS) test_supports(fname, supportcfg);
 | |
| }
 | |
| 
 | |
| TEST_CASE("ElevatedSupportsDoNotPierceModel", "[SLASupportGeneration]") {
 | |
| 
 | |
|     sla::SupportConfig supportcfg;
 | |
| 
 | |
|     for (auto fname : SUPPORT_TEST_MODELS)
 | |
|         test_support_model_collision(fname, supportcfg);
 | |
| }
 | |
| 
 | |
| TEST_CASE("FloorSupportsDoNotPierceModel", "[SLASupportGeneration]") {
 | |
| 
 | |
|     sla::SupportConfig supportcfg;
 | |
|     supportcfg.object_elevation_mm = 0;
 | |
| 
 | |
|     for (auto fname : SUPPORT_TEST_MODELS)
 | |
|         test_support_model_collision(fname, supportcfg);
 | |
| }
 | |
| 
 | |
| TEST_CASE("DefaultRasterShouldBeEmpty", "[SLARasterOutput]") {
 | |
|     sla::Raster raster;
 | |
|     REQUIRE(raster.empty());
 | |
| }
 | |
| 
 | |
| TEST_CASE("InitializedRasterShouldBeNONEmpty", "[SLARasterOutput]") {
 | |
|     // Default Prusa SL1 display parameters
 | |
|     sla::Raster::Resolution res{2560, 1440};
 | |
|     sla::Raster::PixelDim   pixdim{120. / res.width_px, 68. / res.height_px};
 | |
| 
 | |
|     sla::Raster raster;
 | |
|     raster.reset(res, pixdim);
 | |
|     REQUIRE_FALSE(raster.empty());
 | |
|     REQUIRE(raster.resolution().width_px == res.width_px);
 | |
|     REQUIRE(raster.resolution().height_px == res.height_px);
 | |
|     REQUIRE(raster.pixel_dimensions().w_mm == Approx(pixdim.w_mm));
 | |
|     REQUIRE(raster.pixel_dimensions().h_mm == Approx(pixdim.h_mm));
 | |
| }
 | |
| 
 | |
| using TPixel = uint8_t;
 | |
| static constexpr const TPixel FullWhite = 255;
 | |
| static constexpr const TPixel FullBlack = 0;
 | |
| 
 | |
| template <class A, int N> constexpr int arraysize(const A (&)[N]) { return N; }
 | |
| 
 | |
| static void check_raster_transformations(sla::Raster::Orientation o,
 | |
|                                          sla::Raster::TMirroring  mirroring)
 | |
| {
 | |
|     double disp_w = 120., disp_h = 68.;
 | |
|     sla::Raster::Resolution res{2560, 1440};
 | |
|     sla::Raster::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
 | |
| 
 | |
|     auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
 | |
|     sla::Raster::Trafo trafo{o, mirroring};
 | |
|     trafo.origin_x = bb.center().x();
 | |
|     trafo.origin_y = bb.center().y();
 | |
| 
 | |
|     sla::Raster raster{res, pixdim, trafo};
 | |
| 
 | |
|     // create box of size 32x32 pixels (not 1x1 to avoid antialiasing errors)
 | |
|     coord_t pw = 32 * coord_t(std::ceil(scaled<double>(pixdim.w_mm)));
 | |
|     coord_t ph = 32 * coord_t(std::ceil(scaled<double>(pixdim.h_mm)));
 | |
|     ExPolygon box;
 | |
|     box.contour.points = {{-pw, -ph}, {pw, -ph}, {pw, ph}, {-pw, ph}};
 | |
| 
 | |
|     double tr_x = scaled<double>(20.), tr_y = tr_x;
 | |
| 
 | |
|     box.translate(tr_x, tr_y);
 | |
|     ExPolygon expected_box = box;
 | |
| 
 | |
|     // Now calculate the position of the translated box according to output
 | |
|     // trafo.
 | |
|     if (o == sla::Raster::Orientation::roPortrait) expected_box.rotate(PI / 2.);
 | |
| 
 | |
|     if (mirroring[X])
 | |
|         for (auto &p : expected_box.contour.points) p.x() = -p.x();
 | |
| 
 | |
|     if (mirroring[Y])
 | |
|         for (auto &p : expected_box.contour.points) p.y() = -p.y();
 | |
| 
 | |
|     raster.draw(box);
 | |
| 
 | |
|     Point expected_coords = expected_box.contour.bounding_box().center();
 | |
|     double rx = unscaled(expected_coords.x() + bb.center().x()) / pixdim.w_mm;
 | |
|     double ry = unscaled(expected_coords.y() + bb.center().y()) / pixdim.h_mm;
 | |
|     auto w = size_t(std::floor(rx));
 | |
|     auto h = res.height_px - size_t(std::floor(ry));
 | |
| 
 | |
|     REQUIRE((w < res.width_px && h < res.height_px));
 | |
| 
 | |
|     auto px = raster.read_pixel(w, h);
 | |
| 
 | |
|     if (px != FullWhite) {
 | |
|         sla::PNGImage img;
 | |
|         std::fstream outf("out.png", std::ios::out);
 | |
| 
 | |
|         outf << img.serialize(raster);
 | |
|     }
 | |
| 
 | |
|     REQUIRE(px == FullWhite);
 | |
| }
 | |
| 
 | |
| TEST_CASE("MirroringShouldBeCorrect", "[SLARasterOutput]") {
 | |
|     sla::Raster::TMirroring mirrorings[] = {sla::Raster::NoMirror,
 | |
|                                             sla::Raster::MirrorX,
 | |
|                                             sla::Raster::MirrorY,
 | |
|                                             sla::Raster::MirrorXY};
 | |
| 
 | |
|     sla::Raster::Orientation orientations[] = {sla::Raster::roLandscape,
 | |
|                                                sla::Raster::roPortrait};
 | |
|     for (auto orientation : orientations)
 | |
|         for (auto &mirror : mirrorings)
 | |
|             check_raster_transformations(orientation, mirror);
 | |
| }
 | |
| 
 | |
| static ExPolygon square_with_hole(double v)
 | |
| {
 | |
|     ExPolygon poly;
 | |
|     coord_t V = scaled(v / 2.);
 | |
| 
 | |
|     poly.contour.points = {{-V, -V}, {V, -V}, {V, V}, {-V, V}};
 | |
|     poly.holes.emplace_back();
 | |
|     V = V / 2;
 | |
|     poly.holes.front().points = {{-V, V}, {V, V}, {V, -V}, {-V, -V}};
 | |
|     return poly;
 | |
| }
 | |
| 
 | |
| static double pixel_area(TPixel px, const sla::Raster::PixelDim &pxdim)
 | |
| {
 | |
|     return (pxdim.h_mm * pxdim.w_mm) * px * 1. / (FullWhite - FullBlack);
 | |
| }
 | |
| 
 | |
| static double raster_white_area(const sla::Raster &raster)
 | |
| {
 | |
|     if (raster.empty()) return std::nan("");
 | |
| 
 | |
|     auto res = raster.resolution();
 | |
|     double a = 0;
 | |
| 
 | |
|     for (size_t x = 0; x < res.width_px; ++x)
 | |
|         for (size_t y = 0; y < res.height_px; ++y) {
 | |
|             auto px = raster.read_pixel(x, y);
 | |
|             a += pixel_area(px, raster.pixel_dimensions());
 | |
|         }
 | |
| 
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| static double predict_error(const ExPolygon &p, const sla::Raster::PixelDim &pd)
 | |
| {
 | |
|     auto lines = p.lines();
 | |
|     double pix_err = pixel_area(FullWhite, pd)  / 2.;
 | |
| 
 | |
|     // Worst case is when a line is parallel to the shorter axis of one pixel,
 | |
|     // when the line will be composed of the max number of pixels
 | |
|     double pix_l = std::min(pd.h_mm, pd.w_mm);
 | |
| 
 | |
|     double error = 0.;
 | |
|     for (auto &l : lines)
 | |
|         error += (unscaled(l.length()) / pix_l) * pix_err;
 | |
| 
 | |
|     return error;
 | |
| }
 | |
| 
 | |
| TEST_CASE("RasterizedPolygonAreaShouldMatch", "[SLARasterOutput]") {
 | |
|     double disp_w = 120., disp_h = 68.;
 | |
|     sla::Raster::Resolution res{2560, 1440};
 | |
|     sla::Raster::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
 | |
| 
 | |
|     sla::Raster raster{res, pixdim};
 | |
|     auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
 | |
| 
 | |
|     ExPolygon poly = square_with_hole(10.);
 | |
|     poly.translate(bb.center().x(), bb.center().y());
 | |
|     raster.draw(poly);
 | |
| 
 | |
|     double a = poly.area() / (scaled<double>(1.) * scaled(1.));
 | |
|     double ra = raster_white_area(raster);
 | |
|     double diff = std::abs(a - ra);
 | |
| 
 | |
|     REQUIRE(diff <= predict_error(poly, pixdim));
 | |
| 
 | |
|     raster.clear();
 | |
|     poly = square_with_hole(60.);
 | |
|     poly.translate(bb.center().x(), bb.center().y());
 | |
|     raster.draw(poly);
 | |
| 
 | |
|     a = poly.area() / (scaled<double>(1.) * scaled(1.));
 | |
|     ra = raster_white_area(raster);
 | |
|     diff = std::abs(a - ra);
 | |
| 
 | |
|     REQUIRE(diff <= predict_error(poly, pixdim));
 | |
| }
 | 
