mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			1830 lines
		
	
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1830 lines
		
	
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "SLAPrint.hpp"
 | |
| #include "SLA/SLASupportTree.hpp"
 | |
| #include "SLA/SLABasePool.hpp"
 | |
| #include "SLA/SLAAutoSupports.hpp"
 | |
| #include "ClipperUtils.hpp"
 | |
| #include "Geometry.hpp"
 | |
| #include "MTUtils.hpp"
 | |
| 
 | |
| #include <unordered_set>
 | |
| #include <numeric>
 | |
| 
 | |
| #include <tbb/parallel_for.h>
 | |
| #include <boost/filesystem/path.hpp>
 | |
| #include <boost/log/trivial.hpp>
 | |
| 
 | |
| // For geometry algorithms with native Clipper types (no copies and conversions)
 | |
| #include <libnest2d/backends/clipper/geometries.hpp>
 | |
| 
 | |
| //#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"
 | |
| 
 | |
| #include "I18N.hpp"
 | |
| 
 | |
| //! macro used to mark string used at localization,
 | |
| //! return same string
 | |
| #define L(s) Slic3r::I18N::translate(s)
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| using SupportTreePtr = std::unique_ptr<sla::SLASupportTree>;
 | |
| 
 | |
| class SLAPrintObject::SupportData {
 | |
| public:
 | |
|     sla::EigenMesh3D emesh;              // index-triangle representation
 | |
|     std::vector<sla::SupportPoint> support_points;     // all the support points (manual/auto)
 | |
|     SupportTreePtr   support_tree_ptr;   // the supports
 | |
|     SlicedSupports   support_slices;     // sliced supports
 | |
| 
 | |
|     inline SupportData(const TriangleMesh& trmesh): emesh(trmesh) {}
 | |
| };
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // should add up to 100 (%)
 | |
| const std::array<unsigned, slaposCount>     OBJ_STEP_LEVELS =
 | |
| {
 | |
|     30,     // slaposObjectSlice,
 | |
|     20,     // slaposSupportPoints,
 | |
|     10,     // slaposSupportTree,
 | |
|     10,     // slaposBasePool,
 | |
|     30,     // slaposSliceSupports,
 | |
| };
 | |
| 
 | |
| const std::array<std::string, slaposCount> OBJ_STEP_LABELS =
 | |
| {
 | |
|     L("Slicing model"),                 // slaposObjectSlice,
 | |
|     L("Generating support points"),     // slaposSupportPoints,
 | |
|     L("Generating support tree"),       // slaposSupportTree,
 | |
|     L("Generating pad"),                // slaposBasePool,
 | |
|     L("Slicing supports"),              // slaposSliceSupports,
 | |
| };
 | |
| 
 | |
| // Should also add up to 100 (%)
 | |
| const std::array<unsigned, slapsCount> PRINT_STEP_LEVELS =
 | |
| {
 | |
|     10,      // slapsMergeSlicesAndEval
 | |
|     90,      // slapsRasterize
 | |
| };
 | |
| 
 | |
| const std::array<std::string, slapsCount> PRINT_STEP_LABELS =
 | |
| {
 | |
|     L("Merging slices and calculating statistics"),     // slapsStats
 | |
|     L("Rasterizing layers"),         // slapsRasterize
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| void SLAPrint::clear()
 | |
| {
 | |
|     tbb::mutex::scoped_lock lock(this->state_mutex());
 | |
|     // The following call should stop background processing if it is running.
 | |
|     this->invalidate_all_steps();
 | |
|     for (SLAPrintObject *object : m_objects)
 | |
|         delete object;
 | |
|     m_objects.clear();
 | |
|     m_model.clear_objects();
 | |
| }
 | |
| 
 | |
| // Transformation without rotation around Z and without a shift by X and Y.
 | |
| static Transform3d sla_trafo(const SLAPrint& p, const ModelObject &model_object)
 | |
| {
 | |
| 
 | |
|     Vec3d corr = p.relative_correction();
 | |
| 
 | |
|     ModelInstance &model_instance = *model_object.instances.front();
 | |
|     Vec3d          offset         = model_instance.get_offset();
 | |
|     Vec3d          rotation       = model_instance.get_rotation();
 | |
|     offset(0) = 0.;
 | |
|     offset(1) = 0.;
 | |
|     rotation(2) = 0.;
 | |
| 
 | |
|     offset(Z) *= corr(Z);
 | |
| 
 | |
|     auto trafo = Transform3d::Identity();
 | |
|     trafo.translate(offset);
 | |
|     trafo.scale(corr);
 | |
|     trafo.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()));
 | |
|     trafo.rotate(Eigen::AngleAxisd(rotation(1), Vec3d::UnitY()));
 | |
|     trafo.rotate(Eigen::AngleAxisd(rotation(0), Vec3d::UnitX()));
 | |
|     trafo.scale(model_instance.get_scaling_factor());
 | |
|     trafo.scale(model_instance.get_mirror());
 | |
| 
 | |
|     if (model_instance.is_left_handed())
 | |
|         trafo = Eigen::Scaling(Vec3d(-1., 1., 1.)) * trafo;
 | |
| 
 | |
|     return trafo;
 | |
| }
 | |
| 
 | |
| // List of instances, where the ModelInstance transformation is a composite of sla_trafo and the transformation defined by SLAPrintObject::Instance.
 | |
| static std::vector<SLAPrintObject::Instance> sla_instances(const ModelObject &model_object)
 | |
| {
 | |
|     std::vector<SLAPrintObject::Instance> instances;
 | |
|     assert(! model_object.instances.empty());
 | |
|     if (! model_object.instances.empty()) {
 | |
|         Vec3d rotation0 = model_object.instances.front()->get_rotation();
 | |
|         rotation0(2) = 0.;
 | |
|         for (ModelInstance *model_instance : model_object.instances)
 | |
|             if (model_instance->is_printable()) {
 | |
|                 instances.emplace_back(
 | |
|                     model_instance->id(),
 | |
|                     Point::new_scale(model_instance->get_offset(X), model_instance->get_offset(Y)),
 | |
| 					float(Geometry::rotation_diff_z(rotation0, model_instance->get_rotation())));
 | |
|             }
 | |
|     }
 | |
|     return instances;
 | |
| }
 | |
| 
 | |
| SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, const DynamicPrintConfig &config_in)
 | |
| {
 | |
| #ifdef _DEBUG
 | |
|     check_model_ids_validity(model);
 | |
| #endif /* _DEBUG */
 | |
| 
 | |
|     // Make a copy of the config, normalize it.
 | |
|     DynamicPrintConfig config(config_in);
 | |
|     config.option("sla_print_settings_id",    true);
 | |
|     config.option("sla_material_settings_id", true);
 | |
|     config.option("printer_settings_id",      true);
 | |
|     config.normalize();
 | |
|     // Collect changes to print config.
 | |
|     t_config_option_keys print_diff    = m_print_config.diff(config);
 | |
|     t_config_option_keys printer_diff  = m_printer_config.diff(config);
 | |
|     t_config_option_keys material_diff = m_material_config.diff(config);
 | |
|     t_config_option_keys object_diff   = m_default_object_config.diff(config);
 | |
|     t_config_option_keys placeholder_parser_diff = this->placeholder_parser().config_diff(config);
 | |
| 
 | |
|     // Do not use the ApplyStatus as we will use the max function when updating apply_status.
 | |
|     unsigned int apply_status = APPLY_STATUS_UNCHANGED;
 | |
|     auto update_apply_status = [&apply_status](bool invalidated)
 | |
|         { apply_status = std::max<unsigned int>(apply_status, invalidated ? APPLY_STATUS_INVALIDATED : APPLY_STATUS_CHANGED); };
 | |
|     if (! (print_diff.empty() && printer_diff.empty() && material_diff.empty() && object_diff.empty()))
 | |
|         update_apply_status(false);
 | |
| 
 | |
|     // Grab the lock for the Print / PrintObject milestones.
 | |
|     tbb::mutex::scoped_lock lock(this->state_mutex());
 | |
| 
 | |
|     // The following call may stop the background processing.
 | |
|     bool invalidate_all_model_objects = false;
 | |
|     if (! print_diff.empty())
 | |
|         update_apply_status(this->invalidate_state_by_config_options(print_diff, invalidate_all_model_objects));
 | |
|     if (! printer_diff.empty())
 | |
|         update_apply_status(this->invalidate_state_by_config_options(printer_diff, invalidate_all_model_objects));
 | |
|     if (! material_diff.empty())
 | |
|         update_apply_status(this->invalidate_state_by_config_options(material_diff, invalidate_all_model_objects));
 | |
| 
 | |
|     // Apply variables to placeholder parser. The placeholder parser is currently used
 | |
|     // only to generate the output file name.
 | |
|     if (! placeholder_parser_diff.empty()) {
 | |
|         // update_apply_status(this->invalidate_step(slapsRasterize));
 | |
|         PlaceholderParser &pp = this->placeholder_parser();
 | |
|         pp.apply_config(config);
 | |
|         // Set the profile aliases for the PrintBase::output_filename()
 | |
|         pp.set("print_preset",    config.option("sla_print_settings_id")->clone());
 | |
|         pp.set("material_preset", config.option("sla_material_settings_id")->clone());
 | |
|         pp.set("printer_preset",  config.option("printer_settings_id")->clone());
 | |
|     }
 | |
| 
 | |
|     // It is also safe to change m_config now after this->invalidate_state_by_config_options() call.
 | |
|     m_print_config.apply_only(config, print_diff, true);
 | |
|     m_printer_config.apply_only(config, printer_diff, true);
 | |
|     // Handle changes to material config.
 | |
|     m_material_config.apply_only(config, material_diff, true);
 | |
|     // Handle changes to object config defaults
 | |
|     m_default_object_config.apply_only(config, object_diff, true);
 | |
| 
 | |
|     struct ModelObjectStatus {
 | |
|         enum Status {
 | |
|             Unknown,
 | |
|             Old,
 | |
|             New,
 | |
|             Moved,
 | |
|             Deleted,
 | |
|         };
 | |
|         ModelObjectStatus(ModelID id, Status status = Unknown) : id(id), status(status) {}
 | |
|         ModelID                 id;
 | |
|         Status                  status;
 | |
|         // Search by id.
 | |
|         bool operator<(const ModelObjectStatus &rhs) const { return id < rhs.id; }
 | |
|     };
 | |
|     std::set<ModelObjectStatus> model_object_status;
 | |
| 
 | |
|     // 1) Synchronize model objects.
 | |
|     if (model.id() != m_model.id() || invalidate_all_model_objects) {
 | |
|         // Kill everything, initialize from scratch.
 | |
|         // Stop background processing.
 | |
|         this->call_cancel_callback();
 | |
|         update_apply_status(this->invalidate_all_steps());
 | |
|         for (SLAPrintObject *object : m_objects) {
 | |
|             model_object_status.emplace(object->model_object()->id(), ModelObjectStatus::Deleted);
 | |
|             update_apply_status(object->invalidate_all_steps());
 | |
|             delete object;
 | |
|         }
 | |
|         m_objects.clear();
 | |
|         m_model.assign_copy(model);
 | |
|         for (const ModelObject *model_object : m_model.objects)
 | |
|             model_object_status.emplace(model_object->id(), ModelObjectStatus::New);
 | |
|     } else {
 | |
|         if (model_object_list_equal(m_model, model)) {
 | |
|             // The object list did not change.
 | |
|             for (const ModelObject *model_object : m_model.objects)
 | |
|                 model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
 | |
|         } else if (model_object_list_extended(m_model, model)) {
 | |
|             // Add new objects. Their volumes and configs will be synchronized later.
 | |
|             update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval));
 | |
|             for (const ModelObject *model_object : m_model.objects)
 | |
|                 model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
 | |
|             for (size_t i = m_model.objects.size(); i < model.objects.size(); ++ i) {
 | |
|                 model_object_status.emplace(model.objects[i]->id(), ModelObjectStatus::New);
 | |
|                 m_model.objects.emplace_back(ModelObject::new_copy(*model.objects[i]));
 | |
|                 m_model.objects.back()->set_model(&m_model);
 | |
|             }
 | |
|         } else {
 | |
|             // Reorder the objects, add new objects.
 | |
|             // First stop background processing before shuffling or deleting the PrintObjects in the object list.
 | |
|             this->call_cancel_callback();
 | |
|             update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval));
 | |
|             // Second create a new list of objects.
 | |
|             std::vector<ModelObject*> model_objects_old(std::move(m_model.objects));
 | |
|             m_model.objects.clear();
 | |
|             m_model.objects.reserve(model.objects.size());
 | |
|             auto by_id_lower = [](const ModelObject *lhs, const ModelObject *rhs){ return lhs->id() < rhs->id(); };
 | |
|             std::sort(model_objects_old.begin(), model_objects_old.end(), by_id_lower);
 | |
|             for (const ModelObject *mobj : model.objects) {
 | |
|                 auto it = std::lower_bound(model_objects_old.begin(), model_objects_old.end(), mobj, by_id_lower);
 | |
|                 if (it == model_objects_old.end() || (*it)->id() != mobj->id()) {
 | |
|                     // New ModelObject added.
 | |
|                     m_model.objects.emplace_back(ModelObject::new_copy(*mobj));
 | |
|                     m_model.objects.back()->set_model(&m_model);
 | |
|                     model_object_status.emplace(mobj->id(), ModelObjectStatus::New);
 | |
|                 } else {
 | |
|                     // Existing ModelObject re-added (possibly moved in the list).
 | |
|                     m_model.objects.emplace_back(*it);
 | |
|                     model_object_status.emplace(mobj->id(), ModelObjectStatus::Moved);
 | |
|                 }
 | |
|             }
 | |
|             bool deleted_any = false;
 | |
|             for (ModelObject *&model_object : model_objects_old) {
 | |
|                 if (model_object_status.find(ModelObjectStatus(model_object->id())) == model_object_status.end()) {
 | |
|                     model_object_status.emplace(model_object->id(), ModelObjectStatus::Deleted);
 | |
|                     deleted_any = true;
 | |
|                 } else
 | |
|                     // Do not delete this ModelObject instance.
 | |
|                     model_object = nullptr;
 | |
|             }
 | |
|             if (deleted_any) {
 | |
|                 // Delete PrintObjects of the deleted ModelObjects.
 | |
|                 std::vector<SLAPrintObject*> print_objects_old = std::move(m_objects);
 | |
|                 m_objects.clear();
 | |
|                 m_objects.reserve(print_objects_old.size());
 | |
|                 for (SLAPrintObject *print_object : print_objects_old) {
 | |
|                     auto it_status = model_object_status.find(ModelObjectStatus(print_object->model_object()->id()));
 | |
|                     assert(it_status != model_object_status.end());
 | |
|                     if (it_status->status == ModelObjectStatus::Deleted) {
 | |
|                         update_apply_status(print_object->invalidate_all_steps());
 | |
|                         delete print_object;
 | |
|                     } else
 | |
|                         m_objects.emplace_back(print_object);
 | |
|                 }
 | |
|                 for (ModelObject *model_object : model_objects_old)
 | |
|                     delete model_object;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // 2) Map print objects including their transformation matrices.
 | |
|     struct PrintObjectStatus {
 | |
|         enum Status {
 | |
|             Unknown,
 | |
|             Deleted,
 | |
|             Reused,
 | |
|             New
 | |
|         };
 | |
|         PrintObjectStatus(SLAPrintObject *print_object, Status status = Unknown) :
 | |
|             id(print_object->model_object()->id()),
 | |
|             print_object(print_object),
 | |
|             trafo(print_object->trafo()),
 | |
|             status(status) {}
 | |
|         PrintObjectStatus(ModelID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {}
 | |
|         // ID of the ModelObject & PrintObject
 | |
|         ModelID          id;
 | |
|         // Pointer to the old PrintObject
 | |
|         SLAPrintObject  *print_object;
 | |
|         // Trafo generated with model_object->world_matrix(true)
 | |
|         Transform3d      trafo;
 | |
|         Status           status;
 | |
|         // Search by id.
 | |
|         bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; }
 | |
|     };
 | |
|     std::multiset<PrintObjectStatus> print_object_status;
 | |
|     for (SLAPrintObject *print_object : m_objects)
 | |
|         print_object_status.emplace(PrintObjectStatus(print_object));
 | |
| 
 | |
|     // 3) Synchronize ModelObjects & PrintObjects.
 | |
|     std::vector<SLAPrintObject*> print_objects_new;
 | |
|     print_objects_new.reserve(std::max(m_objects.size(), m_model.objects.size()));
 | |
|     bool new_objects = false;
 | |
|     for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) {
 | |
|         ModelObject &model_object = *m_model.objects[idx_model_object];
 | |
|         auto it_status = model_object_status.find(ModelObjectStatus(model_object.id()));
 | |
|         assert(it_status != model_object_status.end());
 | |
|         assert(it_status->status != ModelObjectStatus::Deleted);
 | |
|         // PrintObject for this ModelObject, if it exists.
 | |
|         auto it_print_object_status = print_object_status.end();
 | |
|         if (it_status->status != ModelObjectStatus::New) {
 | |
|             // Update the ModelObject instance, possibly invalidate the linked PrintObjects.
 | |
|             assert(it_status->status == ModelObjectStatus::Old || it_status->status == ModelObjectStatus::Moved);
 | |
|             const ModelObject &model_object_new       = *model.objects[idx_model_object];
 | |
|             it_print_object_status = print_object_status.lower_bound(PrintObjectStatus(model_object.id()));
 | |
|             if (it_print_object_status != print_object_status.end() && it_print_object_status->id != model_object.id())
 | |
|                 it_print_object_status = print_object_status.end();
 | |
|             // Check whether a model part volume was added or removed, their transformations or order changed.
 | |
|             bool model_parts_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::MODEL_PART);
 | |
|             bool sla_trafo_differs  =
 | |
|                 model_object.instances.empty() != model_object_new.instances.empty() ||
 | |
|                 (! model_object.instances.empty() &&
 | |
|                   (! sla_trafo(*this, model_object).isApprox(sla_trafo(*this, model_object_new)) ||
 | |
|                     model_object.instances.front()->is_left_handed() != model_object_new.instances.front()->is_left_handed()));
 | |
|             if (model_parts_differ || sla_trafo_differs) {
 | |
|                 // The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects.
 | |
|                 if (it_print_object_status != print_object_status.end()) {
 | |
|                     update_apply_status(it_print_object_status->print_object->invalidate_all_steps());
 | |
|                     const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Deleted;
 | |
|                 }
 | |
|                 // Copy content of the ModelObject including its ID, do not change the parent.
 | |
|                 model_object.assign_copy(model_object_new);
 | |
|             } else {
 | |
|                 // Synchronize Object's config.
 | |
|                 bool object_config_changed = model_object.config != model_object_new.config;
 | |
|                 if (object_config_changed)
 | |
|                     model_object.config = model_object_new.config;
 | |
|                 if (! object_diff.empty() || object_config_changed) {
 | |
|                     SLAPrintObjectConfig new_config = m_default_object_config;
 | |
|                     normalize_and_apply_config(new_config, model_object.config);
 | |
|                     if (it_print_object_status != print_object_status.end()) {
 | |
|                         t_config_option_keys diff = it_print_object_status->print_object->config().diff(new_config);
 | |
|                         if (! diff.empty()) {
 | |
|                             update_apply_status(it_print_object_status->print_object->invalidate_state_by_config_options(diff));
 | |
|                             it_print_object_status->print_object->config_apply_only(new_config, diff, true);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 bool old_user_modified = model_object.sla_points_status == sla::PointsStatus::UserModified;
 | |
|                 bool new_user_modified = model_object_new.sla_points_status == sla::PointsStatus::UserModified;
 | |
|                 if ((old_user_modified && ! new_user_modified) || // switching to automatic supports from manual supports
 | |
|                     (! old_user_modified && new_user_modified) || // switching to manual supports from automatic supports
 | |
|                     (new_user_modified && model_object.sla_support_points != model_object_new.sla_support_points)) {
 | |
|                     if (it_print_object_status != print_object_status.end())
 | |
|                         update_apply_status(it_print_object_status->print_object->invalidate_step(slaposSupportPoints));
 | |
| 
 | |
|                     model_object.sla_points_status = model_object_new.sla_points_status;
 | |
|                     model_object.sla_support_points = model_object_new.sla_support_points;
 | |
|                 }
 | |
| 
 | |
|                 // Copy the ModelObject name, input_file and instances. The instances will compared against PrintObject instances in the next step.
 | |
|                 model_object.name       = model_object_new.name;
 | |
|                 model_object.input_file = model_object_new.input_file;
 | |
|                 model_object.clear_instances();
 | |
|                 model_object.instances.reserve(model_object_new.instances.size());
 | |
|                 for (const ModelInstance *model_instance : model_object_new.instances) {
 | |
|                     model_object.instances.emplace_back(new ModelInstance(*model_instance));
 | |
|                     model_object.instances.back()->set_model_object(&model_object);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         std::vector<SLAPrintObject::Instance> new_instances = sla_instances(model_object);
 | |
|         if (it_print_object_status != print_object_status.end() && it_print_object_status->status != PrintObjectStatus::Deleted) {
 | |
|             // The SLAPrintObject is already there.
 | |
|             if (new_instances.empty()) {
 | |
|                 const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Deleted;
 | |
|             } else {
 | |
|                 if (new_instances != it_print_object_status->print_object->instances()) {
 | |
|                     // Instances changed.
 | |
|                     it_print_object_status->print_object->set_instances(new_instances);
 | |
|                     update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval));
 | |
|                 }
 | |
|                 print_objects_new.emplace_back(it_print_object_status->print_object);
 | |
|                 const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Reused;
 | |
|             }
 | |
|         } else if (! new_instances.empty()) {
 | |
|             auto print_object = new SLAPrintObject(this, &model_object);
 | |
| 
 | |
|             // FIXME: this invalidates the transformed mesh in SLAPrintObject
 | |
|             // which is expensive to calculate (especially the raw_mesh() call)
 | |
|             print_object->set_trafo(sla_trafo(*this, model_object), model_object.instances.front()->is_left_handed());
 | |
| 
 | |
|             print_object->set_instances(std::move(new_instances));
 | |
|             print_object->config_apply(config, true);
 | |
|             print_objects_new.emplace_back(print_object);
 | |
|             new_objects = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_objects != print_objects_new) {
 | |
|         this->call_cancel_callback();
 | |
|         update_apply_status(this->invalidate_all_steps());
 | |
|         m_objects = print_objects_new;
 | |
|         // Delete the PrintObjects marked as Unknown or Deleted.
 | |
|         bool deleted_objects = false;
 | |
|         for (auto &pos : print_object_status)
 | |
|             if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) {
 | |
|                 update_apply_status(pos.print_object->invalidate_all_steps());
 | |
|                 delete pos.print_object;
 | |
|                 deleted_objects = true;
 | |
|             }
 | |
|         if (new_objects)
 | |
|             update_apply_status(false);
 | |
|     }
 | |
| 
 | |
| #ifdef _DEBUG
 | |
|     check_model_ids_equal(m_model, model);
 | |
| #endif /* _DEBUG */
 | |
| 
 | |
|     return static_cast<ApplyStatus>(apply_status);
 | |
| }
 | |
| 
 | |
| // After calling the apply() function, set_task() may be called to limit the task to be processed by process().
 | |
| void SLAPrint::set_task(const TaskParams ¶ms)
 | |
| {
 | |
|     // Grab the lock for the Print / PrintObject milestones.
 | |
|     tbb::mutex::scoped_lock lock(this->state_mutex());
 | |
| 
 | |
|     int n_object_steps = int(params.to_object_step) + 1;
 | |
|     if (n_object_steps == 0)
 | |
|         n_object_steps = (int)slaposCount;
 | |
| 
 | |
|     if (params.single_model_object.valid()) {
 | |
|         // Find the print object to be processed with priority.
 | |
|         SLAPrintObject *print_object = nullptr;
 | |
|         size_t          idx_print_object = 0;
 | |
|         for (; idx_print_object < m_objects.size(); ++ idx_print_object)
 | |
|             if (m_objects[idx_print_object]->model_object()->id() == params.single_model_object) {
 | |
|                 print_object = m_objects[idx_print_object];
 | |
|                 break;
 | |
|             }
 | |
|         assert(print_object != nullptr);
 | |
|         // Find out whether the priority print object is being currently processed.
 | |
|         bool running = false;
 | |
|         for (int istep = 0; istep < n_object_steps; ++ istep) {
 | |
|             if (! print_object->m_stepmask[istep])
 | |
|                 // Step was skipped, cancel.
 | |
|                 break;
 | |
|             if (print_object->is_step_started_unguarded(SLAPrintObjectStep(istep))) {
 | |
|                 // No step was skipped, and a wanted step is being processed. Don't cancel.
 | |
|                 running = true;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (! running)
 | |
|             this->call_cancel_callback();
 | |
| 
 | |
|         // Now the background process is either stopped, or it is inside one of the print object steps to be calculated anyway.
 | |
|         if (params.single_model_instance_only) {
 | |
|             // Suppress all the steps of other instances.
 | |
|             for (SLAPrintObject *po : m_objects)
 | |
|                 for (int istep = 0; istep < (int)slaposCount; ++ istep)
 | |
|                     po->m_stepmask[istep] = false;
 | |
|         } else if (! running) {
 | |
|             // Swap the print objects, so that the selected print_object is first in the row.
 | |
|             // At this point the background processing must be stopped, so it is safe to shuffle print objects.
 | |
|             if (idx_print_object != 0)
 | |
|                 std::swap(m_objects.front(), m_objects[idx_print_object]);
 | |
|         }
 | |
|         // and set the steps for the current object.
 | |
|         for (int istep = 0; istep < n_object_steps; ++ istep)
 | |
|             print_object->m_stepmask[istep] = true;
 | |
|         for (int istep = n_object_steps; istep < (int)slaposCount; ++ istep)
 | |
|             print_object->m_stepmask[istep] = false;
 | |
|     } else {
 | |
|         // Slicing all objects.
 | |
|         bool running = false;
 | |
|         for (SLAPrintObject *print_object : m_objects)
 | |
|             for (int istep = 0; istep < n_object_steps; ++ istep) {
 | |
|                 if (! print_object->m_stepmask[istep]) {
 | |
|                     // Step may have been skipped. Restart.
 | |
|                     goto loop_end;
 | |
|                 }
 | |
|                 if (print_object->is_step_started_unguarded(SLAPrintObjectStep(istep))) {
 | |
|                     // This step is running, and the state cannot be changed due to the this->state_mutex() being locked.
 | |
|                     // It is safe to manipulate m_stepmask of other SLAPrintObjects and SLAPrint now.
 | |
|                     running = true;
 | |
|                     goto loop_end;
 | |
|                 }
 | |
|             }
 | |
|     loop_end:
 | |
|         if (! running)
 | |
|             this->call_cancel_callback();
 | |
|         for (SLAPrintObject *po : m_objects) {
 | |
|             for (int istep = 0; istep < n_object_steps; ++ istep)
 | |
|                 po->m_stepmask[istep] = true;
 | |
|             for (int istep = n_object_steps; istep < (int)slaposCount; ++ istep)
 | |
|                 po->m_stepmask[istep] = false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (params.to_object_step != -1 || params.to_print_step != -1) {
 | |
|         // Limit the print steps.
 | |
|         size_t istep = (params.to_object_step != -1) ? 0 : size_t(params.to_print_step) + 1;
 | |
|         for (; istep < m_stepmask.size(); ++ istep)
 | |
|             m_stepmask[istep] = false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Clean up after process() finished, either with success, error or if canceled.
 | |
| // The adjustments on the SLAPrint / SLAPrintObject data due to set_task() are to be reverted here.
 | |
| void SLAPrint::finalize()
 | |
| {
 | |
|     for (SLAPrintObject *po : m_objects)
 | |
|         for (int istep = 0; istep < (int)slaposCount; ++ istep)
 | |
|             po->m_stepmask[istep] = true;
 | |
|     for (int istep = 0; istep < (int)slapsCount; ++ istep)
 | |
|         m_stepmask[istep] = true;
 | |
| }
 | |
| 
 | |
| // Generate a recommended output file name based on the format template, default extension, and template parameters
 | |
| // (timestamps, object placeholders derived from the model, current placeholder prameters and print statistics.
 | |
| // Use the final print statistics if available, or just keep the print statistics placeholders if not available yet (before the output is finalized).
 | |
| std::string SLAPrint::output_filename() const
 | |
| {
 | |
|     DynamicConfig config = this->finished() ? this->print_statistics().config() : this->print_statistics().placeholders();
 | |
|     return this->PrintBase::output_filename(m_print_config.output_filename_format.value, "sl1", &config);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Compile the argument for support creation from the static print config.
 | |
| sla::SupportConfig make_support_cfg(const SLAPrintObjectConfig& c) {
 | |
|     sla::SupportConfig scfg;
 | |
| 
 | |
|     scfg.head_front_radius_mm = 0.5*c.support_head_front_diameter.getFloat();
 | |
|     scfg.head_back_radius_mm = 0.5*c.support_pillar_diameter.getFloat();
 | |
|     scfg.head_penetration_mm = c.support_head_penetration.getFloat();
 | |
|     scfg.head_width_mm = c.support_head_width.getFloat();
 | |
|     scfg.object_elevation_mm = c.support_object_elevation.getFloat();
 | |
|     scfg.bridge_slope = c.support_critical_angle.getFloat() * PI / 180.0 ;
 | |
|     scfg.max_bridge_length_mm = c.support_max_bridge_length.getFloat();
 | |
|     scfg.max_pillar_link_distance_mm = c.support_max_pillar_link_distance.getFloat();
 | |
|     switch(c.support_pillar_connection_mode.getInt()) {
 | |
|     case slapcmZigZag:
 | |
|         scfg.pillar_connection_mode = sla::PillarConnectionMode::zigzag; break;
 | |
|     case slapcmCross:
 | |
|         scfg.pillar_connection_mode = sla::PillarConnectionMode::cross; break;
 | |
|     case slapcmDynamic:
 | |
|         scfg.pillar_connection_mode = sla::PillarConnectionMode::dynamic; break;
 | |
|     }
 | |
|     scfg.ground_facing_only = c.support_buildplate_only.getBool();
 | |
|     scfg.pillar_widening_factor = c.support_pillar_widening_factor.getFloat();
 | |
|     scfg.base_radius_mm = 0.5*c.support_base_diameter.getFloat();
 | |
|     scfg.base_height_mm = c.support_base_height.getFloat();
 | |
| 
 | |
|     return scfg;
 | |
| }
 | |
| 
 | |
| sla::PoolConfig make_pool_config(const SLAPrintObjectConfig& c) {
 | |
|     sla::PoolConfig pcfg;
 | |
| 
 | |
|     pcfg.min_wall_thickness_mm = c.pad_wall_thickness.getFloat();
 | |
|     pcfg.wall_slope = c.pad_wall_slope.getFloat();
 | |
|     pcfg.edge_radius_mm = c.pad_edge_radius.getFloat();
 | |
|     pcfg.max_merge_distance_mm = c.pad_max_merge_distance.getFloat();
 | |
|     pcfg.min_wall_height_mm = c.pad_wall_height.getFloat();
 | |
| 
 | |
|     return pcfg;
 | |
| }
 | |
| }
 | |
| 
 | |
| std::string SLAPrint::validate() const
 | |
| {
 | |
|     for(SLAPrintObject * po : m_objects) {
 | |
| 
 | |
|         const ModelObject *mo = po->model_object();
 | |
|         bool supports_en = po->config().supports_enable.getBool();
 | |
| 
 | |
|         if(supports_en &&
 | |
|            mo->sla_points_status == sla::PointsStatus::UserModified &&
 | |
|            mo->sla_support_points.empty())
 | |
|             return L("Cannot proceed without support points! "
 | |
|                      "Add support points or disable support generation.");
 | |
| 
 | |
|         sla::SupportConfig cfg = make_support_cfg(po->config());
 | |
| 
 | |
|         double pinhead_width =
 | |
|                 2 * cfg.head_front_radius_mm +
 | |
|                 cfg.head_width_mm +
 | |
|                 2 * cfg.head_back_radius_mm -
 | |
|                 cfg.head_penetration_mm;
 | |
| 
 | |
|         if(supports_en && pinhead_width > cfg.object_elevation_mm)
 | |
|             return L("Elevation is too low for object.");
 | |
|     }
 | |
| 
 | |
|     return "";
 | |
| }
 | |
| 
 | |
| bool SLAPrint::invalidate_step(SLAPrintStep step)
 | |
| {
 | |
|     bool invalidated = Inherited::invalidate_step(step);
 | |
| 
 | |
|     // propagate to dependent steps
 | |
|     if (step == slapsMergeSlicesAndEval) {
 | |
|         invalidated |= this->invalidate_all_steps();
 | |
|     }
 | |
| 
 | |
|     return invalidated;
 | |
| }
 | |
| 
 | |
| void SLAPrint::process()
 | |
| {
 | |
|     using namespace sla;
 | |
|     using ExPolygon = Slic3r::ExPolygon;
 | |
| 
 | |
|     if(m_objects.empty()) return;
 | |
| 
 | |
|     // Assumption: at this point the print objects should be populated only with
 | |
|     // the model objects we have to process and the instances are also filtered
 | |
| 
 | |
|     // shortcut to initial layer height
 | |
|     double ilhd = m_material_config.initial_layer_height.getFloat();
 | |
|     auto   ilh  = float(ilhd);
 | |
| 
 | |
|     auto ilhs = coord_t(ilhd / SCALING_FACTOR);
 | |
|     const size_t objcount = m_objects.size();
 | |
| 
 | |
|     const unsigned min_objstatus = 0;   // where the per object operations start
 | |
|     const unsigned max_objstatus = 50;  // where the per object operations end
 | |
| 
 | |
|     // the coefficient that multiplies the per object status values which
 | |
|     // are set up for <0, 100>. They need to be scaled into the whole process
 | |
|     const double ostepd = (max_objstatus - min_objstatus) / (objcount * 100.0);
 | |
| 
 | |
|     // The slicing will be performed on an imaginary 1D grid which starts from
 | |
|     // the bottom of the bounding box created around the supported model. So
 | |
|     // the first layer which is usually thicker will be part of the supports
 | |
|     // not the model geometry. Exception is when the model is not in the air
 | |
|     // (elevation is zero) and no pad creation was requested. In this case the
 | |
|     // model geometry starts on the ground level and the initial layer is part
 | |
|     // of it. In any case, the model and the supports have to be sliced in the
 | |
|     // same imaginary grid (the height vector argument to TriangleMeshSlicer).
 | |
| 
 | |
|     // Slicing the model object. This method is oversimplified and needs to
 | |
|     // be compared with the fff slicing algorithm for verification
 | |
|     auto slice_model = [this, ilhs, ilh](SLAPrintObject& po) {
 | |
|         TriangleMesh mesh = po.transformed_mesh();
 | |
| 
 | |
|         // We need to prepare the slice index...
 | |
| 
 | |
|         double lhd  = m_objects.front()->m_config.layer_height.getFloat();
 | |
|         float  lh   = float(lhd);
 | |
|         auto   lhs  = coord_t(lhd  / SCALING_FACTOR);
 | |
| 
 | |
|         auto&& bb3d = mesh.bounding_box();
 | |
|         double minZ = bb3d.min(Z) - po.get_elevation();
 | |
|         double maxZ = bb3d.max(Z);
 | |
| 
 | |
|         auto minZs = coord_t(minZ / SCALING_FACTOR);
 | |
|         auto maxZs = coord_t(maxZ / SCALING_FACTOR);
 | |
| 
 | |
|         po.m_slice_index.clear();
 | |
|         po.m_slice_index.reserve(size_t(maxZs - (minZs + ilhs) / lhs) + 1);
 | |
|         po.m_slice_index.emplace_back(minZs + ilhs, float(minZ) + ilh / 2.f, ilh);
 | |
| 
 | |
|         for(coord_t h = minZs + ilhs + lhs; h <= maxZs; h += lhs) {
 | |
|             po.m_slice_index.emplace_back(h, float(h*SCALING_FACTOR) - lh / 2.f, lh);
 | |
|         }
 | |
| 
 | |
|         // Just get the first record that is form the model:
 | |
|         auto slindex_it =
 | |
|                 po.closest_slice_record(po.m_slice_index, float(bb3d.min(Z)));
 | |
| 
 | |
|         if(slindex_it == po.m_slice_index.end())
 | |
| 			//TRN To be shown at the status bar on SLA slicing error.
 | |
|             throw std::runtime_error(L("Slicing had to be stopped "
 | |
|                                        "due to an internal error."));
 | |
| 
 | |
|         po.m_model_height_levels.clear();
 | |
|         po.m_model_height_levels.reserve(po.m_slice_index.size());
 | |
|         for(auto it = slindex_it; it != po.m_slice_index.end(); ++it)
 | |
|         {
 | |
|             po.m_model_height_levels.emplace_back(it->slice_level());
 | |
|         }
 | |
| 
 | |
|         mesh.require_shared_vertices(); // TriangleMeshSlicer needs this
 | |
|         TriangleMeshSlicer slicer(&mesh);
 | |
| 
 | |
|         po.m_model_slices.clear();
 | |
|         slicer.slice(po.m_model_height_levels,
 | |
|                      float(po.config().slice_closing_radius.value),
 | |
|                      &po.m_model_slices,
 | |
|                      [this](){ throw_if_canceled(); });
 | |
| 
 | |
|         auto mit = slindex_it;
 | |
|         double doffs = m_printer_config.absolute_correction.getFloat();
 | |
|         coord_t clpr_offs = coord_t(doffs / SCALING_FACTOR);
 | |
|         for(size_t id = 0;
 | |
|             id < po.m_model_slices.size() && mit != po.m_slice_index.end();
 | |
|             id++)
 | |
|         {
 | |
|             // We apply the printer correction offset here.
 | |
|             if(clpr_offs != 0)
 | |
|                 po.m_model_slices[id] = 
 | |
|                         offset_ex(po.m_model_slices[id], clpr_offs);
 | |
|             
 | |
|             mit->set_model_slice_idx(po, id); ++mit;
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     // In this step we check the slices, identify island and cover them with
 | |
|     // support points. Then we sprinkle the rest of the mesh.
 | |
|     auto support_points = [this, ostepd](SLAPrintObject& po) {
 | |
|         const ModelObject& mo = *po.m_model_object;
 | |
|         po.m_supportdata.reset(
 | |
|                     new SLAPrintObject::SupportData(po.transformed_mesh()) );
 | |
| 
 | |
|         // If supports are disabled, we can skip the model scan.
 | |
|         if(!po.m_config.supports_enable.getBool()) return;
 | |
| 
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Support point count "
 | |
|                                  << mo.sla_support_points.size();
 | |
| 
 | |
|         // Unless the user modified the points or we already did the calculation, we will do
 | |
|         // the autoplacement. Otherwise we will just blindly copy the frontend data
 | |
|         // into the backend cache.
 | |
|         if (mo.sla_points_status != sla::PointsStatus::UserModified) {
 | |
| 
 | |
|             // Hypotetical use of the slice index:
 | |
|             // auto bb = po.transformed_mesh().bounding_box();
 | |
|             // auto range = po.get_slice_records(bb.min(Z));
 | |
|             // std::vector<float> heights; heights.reserve(range.size());
 | |
|             // for(auto& record : range) heights.emplace_back(record.slice_level());
 | |
| 
 | |
|             // calculate heights of slices (slices are calculated already)
 | |
|             const std::vector<float>& heights = po.m_model_height_levels;
 | |
| 
 | |
|             this->throw_if_canceled();
 | |
|             SLAAutoSupports::Config config;
 | |
|             const SLAPrintObjectConfig& cfg = po.config();
 | |
| 
 | |
|             // the density config value is in percents:
 | |
|             config.density_relative = float(cfg.support_points_density_relative / 100.f);
 | |
|             config.minimal_distance = float(cfg.support_points_minimal_distance);
 | |
|             config.head_diameter    = float(cfg.support_head_front_diameter);
 | |
| 
 | |
|             // scaling for the sub operations
 | |
|             double d = ostepd * OBJ_STEP_LEVELS[slaposSupportPoints] / 100.0;
 | |
|             double init = m_report_status.status();
 | |
| 
 | |
|             auto statuscb = [this, d, init](unsigned st)
 | |
|             {
 | |
|                 double current = init + st * d;
 | |
|                 if(std::round(m_report_status.status()) < std::round(current))
 | |
|                     m_report_status(*this, current,
 | |
|                                     OBJ_STEP_LABELS[slaposSupportPoints]);
 | |
| 
 | |
|             };
 | |
| 
 | |
|             // Construction of this object does the calculation.
 | |
|             this->throw_if_canceled();
 | |
|             SLAAutoSupports auto_supports(po.transformed_mesh(),
 | |
|                                           po.m_supportdata->emesh,
 | |
|                                           po.get_model_slices(),
 | |
|                                           heights,
 | |
|                                           config,
 | |
|                                           [this]() { throw_if_canceled(); },
 | |
|                                           statuscb);
 | |
| 
 | |
|             // Now let's extract the result.
 | |
|             const std::vector<sla::SupportPoint>& points = auto_supports.output();
 | |
|             this->throw_if_canceled();
 | |
|             po.m_supportdata->support_points = points;
 | |
| 
 | |
|             BOOST_LOG_TRIVIAL(debug) << "Automatic support points: "
 | |
|                                      << po.m_supportdata->support_points.size();
 | |
| 
 | |
|             // Using RELOAD_SLA_SUPPORT_POINTS to tell the Plater to pass the update status to GLGizmoSlaSupports
 | |
|             m_report_status(*this, -1, L("Generating support points"), SlicingStatus::RELOAD_SLA_SUPPORT_POINTS);
 | |
|         }
 | |
|         else {
 | |
|             // There are either some points on the front-end, or the user removed them on purpose. No calculation will be done.
 | |
|             po.m_supportdata->support_points = po.transformed_support_points();
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     // In this step we create the supports
 | |
|     auto support_tree = [this, ostepd](SLAPrintObject& po)
 | |
|     {
 | |
|         if(!po.m_supportdata) return;
 | |
| 
 | |
|         if(!po.m_config.supports_enable.getBool()) {
 | |
|             // Generate empty support tree. It can still host a pad
 | |
|             po.m_supportdata->support_tree_ptr.reset(new SLASupportTree());
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         sla::SupportConfig scfg = make_support_cfg(po.m_config);
 | |
|         sla::Controller ctl;
 | |
| 
 | |
|         // scaling for the sub operations
 | |
|         double d = ostepd * OBJ_STEP_LEVELS[slaposSupportTree] / 100.0;
 | |
|         double init = m_report_status.status();
 | |
| 
 | |
|         ctl.statuscb = [this, d, init](unsigned st, const std::string&)
 | |
|         {
 | |
|             double current = init + st * d;
 | |
|             if(std::round(m_report_status.status()) < std::round(current))
 | |
|                 m_report_status(*this, current,
 | |
|                                 OBJ_STEP_LABELS[slaposSupportTree]);
 | |
| 
 | |
|         };
 | |
| 
 | |
|         ctl.stopcondition = [this](){ return canceled(); };
 | |
|         ctl.cancelfn = [this]() { throw_if_canceled(); };
 | |
| 
 | |
|         po.m_supportdata->support_tree_ptr.reset(
 | |
|                     new SLASupportTree(po.m_supportdata->support_points,
 | |
|                                        po.m_supportdata->emesh, scfg, ctl));
 | |
| 
 | |
|         throw_if_canceled();
 | |
| 
 | |
|         // Create the unified mesh
 | |
|         auto rc = SlicingStatus::RELOAD_SCENE;
 | |
| 
 | |
|         // This is to prevent "Done." being displayed during merged_mesh()
 | |
|         m_report_status(*this, -1, L("Visualizing supports"));
 | |
|         po.m_supportdata->support_tree_ptr->merged_mesh();
 | |
| 
 | |
|         BOOST_LOG_TRIVIAL(debug) << "Processed support point count "
 | |
|                                  << po.m_supportdata->support_points.size();
 | |
| 
 | |
|         // Check the mesh for later troubleshooting.
 | |
|         if(po.support_mesh().empty())
 | |
|             BOOST_LOG_TRIVIAL(warning) << "Support mesh is empty";
 | |
| 
 | |
|         m_report_status(*this, -1, L("Visualizing supports"), rc);
 | |
|     };
 | |
| 
 | |
|     // This step generates the sla base pad
 | |
|     auto base_pool = [this](SLAPrintObject& po) {
 | |
|         // this step can only go after the support tree has been created
 | |
|         // and before the supports had been sliced. (or the slicing has to be
 | |
|         // repeated)
 | |
| 
 | |
|         if(!po.m_supportdata || !po.m_supportdata->support_tree_ptr) {
 | |
|             BOOST_LOG_TRIVIAL(error) << "Uninitialized support data at "
 | |
|                                      << "pad creation.";
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if(po.m_config.pad_enable.getBool())
 | |
|         {
 | |
|             double wt = po.m_config.pad_wall_thickness.getFloat();
 | |
|             double h =  po.m_config.pad_wall_height.getFloat();
 | |
|             double md = po.m_config.pad_max_merge_distance.getFloat();
 | |
|             // Radius is disabled for now...
 | |
|             double er = 0; // po.m_config.pad_edge_radius.getFloat();
 | |
|             double tilt = po.m_config.pad_wall_slope.getFloat()  * PI / 180.0;
 | |
|             double lh = po.m_config.layer_height.getFloat();
 | |
|             double elevation = po.m_config.support_object_elevation.getFloat();
 | |
|             if(!po.m_config.supports_enable.getBool()) elevation = 0;
 | |
|             sla::PoolConfig pcfg(wt, h, md, er, tilt);
 | |
| 
 | |
|             ExPolygons bp;
 | |
|             double pad_h = sla::get_pad_fullheight(pcfg);
 | |
|             auto&& trmesh = po.transformed_mesh();
 | |
| 
 | |
|             // This call can get pretty time consuming
 | |
|             auto thrfn = [this](){ throw_if_canceled(); };
 | |
| 
 | |
|             if(elevation < pad_h) {
 | |
|                 // we have to count with the model geometry for the base plate
 | |
|                 sla::base_plate(trmesh, bp, float(pad_h), float(lh), thrfn);
 | |
|             }
 | |
| 
 | |
|             pcfg.throw_on_cancel = thrfn;
 | |
|             po.m_supportdata->support_tree_ptr->add_pad(bp, pcfg);
 | |
|         } else {
 | |
|             po.m_supportdata->support_tree_ptr->remove_pad();
 | |
|         }
 | |
| 
 | |
|         po.throw_if_canceled();
 | |
|         auto rc = SlicingStatus::RELOAD_SCENE;
 | |
|         m_report_status(*this, -1, L("Visualizing supports"), rc);
 | |
|     };
 | |
| 
 | |
|     // Slicing the support geometries similarly to the model slicing procedure.
 | |
|     // If the pad had been added previously (see step "base_pool" than it will
 | |
|     // be part of the slices)
 | |
|     auto slice_supports = [this](SLAPrintObject& po) {
 | |
|         auto& sd = po.m_supportdata;
 | |
| 
 | |
|         if(sd) sd->support_slices.clear();
 | |
| 
 | |
|         if(sd && sd->support_tree_ptr) {
 | |
| 
 | |
|             std::vector<float> heights; heights.reserve(po.m_slice_index.size());
 | |
| 
 | |
|             for(auto& rec : po.m_slice_index) {
 | |
|                 heights.emplace_back(rec.slice_level());
 | |
|             }
 | |
| 
 | |
|             sd->support_slices = sd->support_tree_ptr->slice(
 | |
|                         heights, float(po.config().slice_closing_radius.value));
 | |
|         }
 | |
| 
 | |
|         double doffs = m_printer_config.absolute_correction.getFloat();
 | |
|         coord_t clpr_offs = coord_t(doffs / SCALING_FACTOR);
 | |
|         for(size_t i = 0;
 | |
|             i < sd->support_slices.size() && i < po.m_slice_index.size();
 | |
|             ++i)
 | |
|         {
 | |
|             // We apply the printer correction offset here.
 | |
|             if(clpr_offs != 0)
 | |
|                 sd->support_slices[i] = 
 | |
|                         offset_ex(sd->support_slices[i], clpr_offs);
 | |
|             
 | |
|             po.m_slice_index[i].set_support_slice_idx(po, i);
 | |
|         }
 | |
| 
 | |
|         // Using RELOAD_SLA_PREVIEW to tell the Plater to pass the update status to the 3D preview to load the SLA slices.
 | |
|         m_report_status(*this, -2, "", SlicingStatus::RELOAD_SLA_PREVIEW);
 | |
|     };
 | |
| 
 | |
|     // Merging the slices from all the print objects into one slice grid and
 | |
|     // calculating print statistics from the merge result.
 | |
|     auto merge_slices_and_eval_stats = [this, ilhs]() {
 | |
| 
 | |
|         // clear the rasterizer input
 | |
|         m_printer_input.clear();
 | |
| 
 | |
|         size_t mx = 0;
 | |
|         for(SLAPrintObject * o : m_objects) {
 | |
|             if(auto m = o->get_slice_index().size() > mx) mx = m;
 | |
|         }
 | |
| 
 | |
|         m_printer_input.reserve(mx);
 | |
| 
 | |
|         auto eps = coord_t(SCALED_EPSILON);
 | |
| 
 | |
|         for(SLAPrintObject * o : m_objects) {
 | |
|             coord_t gndlvl = o->get_slice_index().front().print_level() - ilhs;
 | |
| 
 | |
|             for(const SliceRecord& slicerecord : o->get_slice_index()) {
 | |
|                 coord_t lvlid = slicerecord.print_level() - gndlvl;
 | |
| 
 | |
|                 // Neat trick to round the layer levels to the grid.
 | |
|                 lvlid = eps * (lvlid / eps);
 | |
| 
 | |
|                 auto it = std::lower_bound(m_printer_input.begin(),
 | |
|                                            m_printer_input.end(),
 | |
|                                            PrintLayer(lvlid));
 | |
| 
 | |
|                 if(it == m_printer_input.end() || it->level() != lvlid)
 | |
|                     it = m_printer_input.insert(it, PrintLayer(lvlid));
 | |
| 
 | |
| 
 | |
|                 it->add(slicerecord);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         m_print_statistics.clear();
 | |
| 
 | |
|         using ClipperPoint  = ClipperLib::IntPoint;
 | |
|         using ClipperPolygon = ClipperLib::Polygon; // see clipper_polygon.hpp in libnest2d
 | |
|         using ClipperPolygons = std::vector<ClipperPolygon>;
 | |
|         namespace sl = libnest2d::shapelike;    // For algorithms
 | |
| 
 | |
|         // If the raster has vertical orientation, we will flip the coordinates
 | |
|         bool flpXY = m_printer_config.display_orientation.getInt() == SLADisplayOrientation::sladoPortrait;
 | |
| 
 | |
|         // Set up custom union and diff functions for clipper polygons
 | |
|         auto polyunion = [] (const ClipperPolygons& subjects)
 | |
|         {
 | |
|             ClipperLib::Clipper clipper;
 | |
| 
 | |
|             bool closed = true;
 | |
| 
 | |
|             for(auto& path : subjects) {
 | |
|                 clipper.AddPath(path.Contour, ClipperLib::ptSubject, closed);
 | |
|                 clipper.AddPaths(path.Holes, ClipperLib::ptSubject, closed);
 | |
|             }
 | |
| 
 | |
|             auto mode = ClipperLib::pftPositive;
 | |
| 
 | |
|             return libnest2d::clipper_execute(clipper, ClipperLib::ctUnion, mode, mode);
 | |
|         };
 | |
| 
 | |
|         auto polydiff = [](const ClipperPolygons& subjects, const ClipperPolygons& clips)
 | |
|         {
 | |
|             ClipperLib::Clipper clipper;
 | |
| 
 | |
|             bool closed = true;
 | |
| 
 | |
|             for(auto& path : subjects) {
 | |
|                 clipper.AddPath(path.Contour, ClipperLib::ptSubject, closed);
 | |
|                 clipper.AddPaths(path.Holes, ClipperLib::ptSubject, closed);
 | |
|             }
 | |
| 
 | |
|             for(auto& path : clips) {
 | |
|                 clipper.AddPath(path.Contour, ClipperLib::ptClip, closed);
 | |
|                 clipper.AddPaths(path.Holes, ClipperLib::ptClip, closed);
 | |
|             }
 | |
| 
 | |
|             auto mode = ClipperLib::pftPositive;
 | |
| 
 | |
|             return libnest2d::clipper_execute(clipper, ClipperLib::ctDifference, mode, mode);
 | |
|         };
 | |
| 
 | |
|         // libnest calculates positive area for clockwise polygons, Slic3r is in counter-clockwise
 | |
|         auto areafn = [](const ClipperPolygon& poly) { return - sl::area(poly); };
 | |
| 
 | |
|         const double area_fill          = m_printer_config.area_fill.getFloat()*0.01;// 0.5 (50%);
 | |
|         const double fast_tilt          = m_printer_config.fast_tilt_time.getFloat();// 5.0;
 | |
|         const double slow_tilt          = m_printer_config.slow_tilt_time.getFloat();// 8.0;
 | |
| 
 | |
|         const double init_exp_time      = m_material_config.initial_exposure_time.getFloat();
 | |
|         const double exp_time           = m_material_config.exposure_time.getFloat();
 | |
| 
 | |
|         const int    fade_layers_cnt    = m_default_object_config.faded_layers.getInt();// 10 // [3;20]
 | |
| 
 | |
|         const double width              = m_printer_config.display_width.getFloat() / SCALING_FACTOR;
 | |
|         const double height             = m_printer_config.display_height.getFloat() / SCALING_FACTOR;
 | |
|         const double display_area       = width*height;
 | |
|         
 | |
|         const coord_t clpr_back_offs    = - coord_t(m_printer_config.absolute_correction.getFloat() / SCALING_FACTOR);
 | |
| 
 | |
|         // get polygons for all instances in the object
 | |
|         auto get_all_polygons =
 | |
|                 [flpXY](const ExPolygons& input_polygons,
 | |
|                         const std::vector<SLAPrintObject::Instance>& instances,
 | |
|                         bool is_lefthanded)
 | |
|         {
 | |
|             ClipperPolygons polygons;
 | |
|             polygons.reserve(input_polygons.size() * instances.size());
 | |
| 
 | |
|             for (const ExPolygon& polygon : input_polygons) {
 | |
|                 if(polygon.contour.empty()) continue;
 | |
| 
 | |
|                 for (size_t i = 0; i < instances.size(); ++i)
 | |
|                 {
 | |
|                     ClipperPolygon poly;
 | |
| 
 | |
|                     // We need to reverse if flpXY OR is_lefthanded is true but
 | |
|                     // not if both are true which is a logical inequality (XOR)
 | |
|                     bool needreverse = flpXY != is_lefthanded;
 | |
| 
 | |
|                     // should be a move
 | |
|                     poly.Contour.reserve(polygon.contour.size() + 1);
 | |
| 
 | |
|                     auto& cntr = polygon.contour.points;
 | |
|                     if(needreverse)
 | |
|                         for(auto it = cntr.rbegin(); it != cntr.rend(); ++it)
 | |
|                             poly.Contour.emplace_back(it->x(), it->y());
 | |
|                     else
 | |
|                         for(auto& p : cntr)
 | |
|                             poly.Contour.emplace_back(p.x(), p.y());
 | |
| 
 | |
|                     for(auto& h : polygon.holes) {
 | |
|                         poly.Holes.emplace_back();
 | |
|                         auto& hole = poly.Holes.back();
 | |
|                         hole.reserve(h.points.size() + 1);
 | |
| 
 | |
|                         if(needreverse)
 | |
|                             for(auto it = h.points.rbegin(); it != h.points.rend(); ++it)
 | |
|                                 hole.emplace_back(it->x(), it->y());
 | |
|                         else
 | |
|                             for(auto& p : h.points)
 | |
|                                 hole.emplace_back(p.x(), p.y());
 | |
|                     }
 | |
| 
 | |
|                     if(is_lefthanded) {
 | |
|                         for(auto& p : poly.Contour) p.X = -p.X;
 | |
|                         for(auto& h : poly.Holes) for(auto& p : h) p.X = -p.X;
 | |
|                     }
 | |
| 
 | |
|                     sl::rotate(poly, double(instances[i].rotation));
 | |
|                     sl::translate(poly, ClipperPoint{instances[i].shift(X),
 | |
|                                                      instances[i].shift(Y)});
 | |
| 
 | |
|                     if (flpXY) {
 | |
|                         for(auto& p : poly.Contour) std::swap(p.X, p.Y);
 | |
|                         for(auto& h : poly.Holes) for(auto& p : h) std::swap(p.X, p.Y);
 | |
|                     }
 | |
| 
 | |
|                     polygons.emplace_back(std::move(poly));
 | |
|                 }
 | |
|             }
 | |
|             return polygons;
 | |
|         };
 | |
| 
 | |
|         double supports_volume(0.0);
 | |
|         double models_volume(0.0);
 | |
| 
 | |
|         double estim_time(0.0);
 | |
| 
 | |
|         size_t slow_layers = 0;
 | |
|         size_t fast_layers = 0;
 | |
| 
 | |
|         const double delta_fade_time = (init_exp_time - exp_time) / (fade_layers_cnt + 1);
 | |
|         double fade_layer_time = init_exp_time;
 | |
| 
 | |
|         SpinMutex mutex;
 | |
|         using Lock = std::lock_guard<SpinMutex>;
 | |
| 
 | |
|         // Going to parallel:
 | |
|         auto printlayerfn = [this,
 | |
|                 // functions and read only vars
 | |
|                 get_all_polygons, polyunion, polydiff, areafn,
 | |
|                 area_fill, display_area, exp_time, init_exp_time, fast_tilt, slow_tilt, delta_fade_time, clpr_back_offs,
 | |
| 
 | |
|                 // write vars
 | |
|                 &mutex, &models_volume, &supports_volume, &estim_time, &slow_layers,
 | |
|                 &fast_layers, &fade_layer_time](size_t sliced_layer_cnt)
 | |
|         {
 | |
|             PrintLayer& layer = m_printer_input[sliced_layer_cnt];
 | |
| 
 | |
|             // vector of slice record references
 | |
|             auto& slicerecord_references = layer.slices();
 | |
| 
 | |
|             if(slicerecord_references.empty()) return;
 | |
| 
 | |
|             // Layer height should match for all object slices for a given level.
 | |
|             const auto l_height = double(slicerecord_references.front().get().layer_height());
 | |
| 
 | |
|             // Calculation of the consumed material
 | |
| 
 | |
|             ClipperPolygons model_polygons;
 | |
|             ClipperPolygons supports_polygons;
 | |
| 
 | |
|             size_t c = std::accumulate(layer.slices().begin(), layer.slices().end(), 0u, [](size_t a, const SliceRecord& sr) {
 | |
|                                            return a + sr.get_slice(soModel).size();
 | |
|                                        });
 | |
| 
 | |
|             model_polygons.reserve(c);
 | |
| 
 | |
|             c = std::accumulate(layer.slices().begin(), layer.slices().end(), 0u, [](size_t a, const SliceRecord& sr) {
 | |
|                                     return a + sr.get_slice(soModel).size();
 | |
|                                 });
 | |
| 
 | |
|             supports_polygons.reserve(c);
 | |
| 
 | |
|             for(const SliceRecord& record : layer.slices()) {
 | |
|                 const SLAPrintObject *po = record.print_obj();
 | |
| 
 | |
|                 const ExPolygons &rawmodelslices = record.get_slice(soModel);
 | |
|                 const ExPolygons &modelslices = clpr_back_offs != 0 ? offset_ex(rawmodelslices, clpr_back_offs) : rawmodelslices;
 | |
|                 
 | |
|                 bool is_lefth = record.print_obj()->is_left_handed();
 | |
|                 if (!modelslices.empty()) {
 | |
|                     ClipperPolygons v = get_all_polygons(modelslices, po->instances(), is_lefth);
 | |
|                     for(ClipperPolygon& p_tmp : v) model_polygons.emplace_back(std::move(p_tmp));
 | |
|                 }
 | |
| 
 | |
|                 const ExPolygons &rawsupportslices = record.get_slice(soSupport);
 | |
|                 const ExPolygons &supportslices = clpr_back_offs != 0 ? offset_ex(rawsupportslices, clpr_back_offs) : rawsupportslices;
 | |
|                 
 | |
|                 if (!supportslices.empty()) {
 | |
|                     ClipperPolygons v = get_all_polygons(supportslices, po->instances(), is_lefth);
 | |
|                     for(ClipperPolygon& p_tmp : v) supports_polygons.emplace_back(std::move(p_tmp));
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             model_polygons = polyunion(model_polygons);
 | |
|             double layer_model_area = 0;
 | |
|             for (const ClipperPolygon& polygon : model_polygons)
 | |
|                 layer_model_area += areafn(polygon);
 | |
| 
 | |
|             if (layer_model_area < 0 || layer_model_area > 0) {
 | |
|                 Lock lck(mutex); models_volume += layer_model_area * l_height;
 | |
|             }
 | |
| 
 | |
|             if(!supports_polygons.empty()) {
 | |
|                 if(model_polygons.empty()) supports_polygons = polyunion(supports_polygons);
 | |
|                 else supports_polygons = polydiff(supports_polygons, model_polygons);
 | |
|                 // allegedly, union of subject is done withing the diff according to the pftPositive polyFillType
 | |
|             }
 | |
| 
 | |
|             double layer_support_area = 0;
 | |
|             for (const ClipperPolygon& polygon : supports_polygons)
 | |
|                 layer_support_area += areafn(polygon);
 | |
| 
 | |
|             if (layer_support_area < 0 || layer_support_area > 0) {
 | |
|                 Lock lck(mutex); supports_volume += layer_support_area * l_height;
 | |
|             }
 | |
| 
 | |
|             // Here we can save the expensively calculated polygons for printing
 | |
|             ClipperPolygons trslices;
 | |
|             trslices.reserve(model_polygons.size() + supports_polygons.size());
 | |
|             for(ClipperPolygon& poly : model_polygons) trslices.emplace_back(std::move(poly));
 | |
|             for(ClipperPolygon& poly : supports_polygons) trslices.emplace_back(std::move(poly));
 | |
| 
 | |
|             layer.transformed_slices(polyunion(trslices));
 | |
| 
 | |
|             // Calculation of the slow and fast layers to the future controlling those values on FW
 | |
| 
 | |
|             const bool is_fast_layer = (layer_model_area + layer_support_area) <= display_area*area_fill;
 | |
|             const double tilt_time = is_fast_layer ? fast_tilt : slow_tilt;
 | |
| 
 | |
|             { Lock lck(mutex);
 | |
|                 if (is_fast_layer)
 | |
|                     fast_layers++;
 | |
|                 else
 | |
|                     slow_layers++;
 | |
| 
 | |
| 
 | |
|                 // Calculation of the printing time
 | |
| 
 | |
|                 if (sliced_layer_cnt < 3)
 | |
|                     estim_time += init_exp_time;
 | |
|                 else if (fade_layer_time > exp_time)
 | |
|                 {
 | |
|                     fade_layer_time -= delta_fade_time;
 | |
|                     estim_time += fade_layer_time;
 | |
|                 }
 | |
|                 else
 | |
|                     estim_time += exp_time;
 | |
| 
 | |
|                 estim_time += tilt_time;
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         // sequential version for debugging:
 | |
|         // for(size_t i = 0; i < m_printer_input.size(); ++i) printlayerfn(i);
 | |
|         tbb::parallel_for<size_t, decltype(printlayerfn)>(0, m_printer_input.size(), printlayerfn);
 | |
| 
 | |
|         m_print_statistics.support_used_material = supports_volume * SCALING_FACTOR * SCALING_FACTOR;
 | |
|         m_print_statistics.objects_used_material = models_volume  * SCALING_FACTOR * SCALING_FACTOR;
 | |
| 
 | |
|         // Estimated printing time
 | |
|         // A layers count o the highest object
 | |
|         if (m_printer_input.size() == 0)
 | |
|             m_print_statistics.estimated_print_time = "N/A";
 | |
|         else
 | |
|             m_print_statistics.estimated_print_time = get_time_dhms(float(estim_time));
 | |
| 
 | |
|         m_print_statistics.fast_layers_count = fast_layers;
 | |
|         m_print_statistics.slow_layers_count = slow_layers;
 | |
| 
 | |
|         m_report_status(*this, -2, "", SlicingStatus::RELOAD_SLA_PREVIEW);
 | |
|     };
 | |
| 
 | |
|     // Rasterizing the model objects, and their supports
 | |
|     auto rasterize = [this, max_objstatus]() {
 | |
|         if(canceled()) return;
 | |
| 
 | |
|         // collect all the keys
 | |
| 
 | |
|         // If the raster has vertical orientation, we will flip the coordinates
 | |
|         bool flpXY = m_printer_config.display_orientation.getInt() ==
 | |
|                 SLADisplayOrientation::sladoPortrait;
 | |
| 
 | |
|         { // create a raster printer for the current print parameters
 | |
|             // I don't know any better
 | |
|             auto& ocfg = m_objects.front()->m_config;
 | |
|             auto& matcfg = m_material_config;
 | |
|             auto& printcfg = m_printer_config;
 | |
| 
 | |
|             double w = printcfg.display_width.getFloat();
 | |
|             double h = printcfg.display_height.getFloat();
 | |
|             auto pw = unsigned(printcfg.display_pixels_x.getInt());
 | |
|             auto ph = unsigned(printcfg.display_pixels_y.getInt());
 | |
|             double lh = ocfg.layer_height.getFloat();
 | |
|             double exp_t = matcfg.exposure_time.getFloat();
 | |
|             double iexp_t = matcfg.initial_exposure_time.getFloat();
 | |
|             
 | |
|             double gamma = m_printer_config.gamma_correction.getFloat();
 | |
| 
 | |
|             if(flpXY) { std::swap(w, h); std::swap(pw, ph); }
 | |
| 
 | |
|             m_printer.reset(
 | |
|                 new SLAPrinter(w, h, pw, ph, lh, exp_t, iexp_t,
 | |
|                                flpXY? SLAPrinter::RO_PORTRAIT : 
 | |
|                                       SLAPrinter::RO_LANDSCAPE, 
 | |
|                                gamma));
 | |
|         }
 | |
| 
 | |
|         // Allocate space for all the layers
 | |
|         SLAPrinter& printer = *m_printer;
 | |
|         auto lvlcnt = unsigned(m_printer_input.size());
 | |
|         printer.layers(lvlcnt);
 | |
| 
 | |
|         // coefficient to map the rasterization state (0-99) to the allocated
 | |
|         // portion (slot) of the process state
 | |
|         double sd = (100 - max_objstatus) / 100.0;
 | |
| 
 | |
|         // slot is the portion of 100% that is realted to rasterization
 | |
|         unsigned slot = PRINT_STEP_LEVELS[slapsRasterize];
 | |
| 
 | |
|         // pst: previous state
 | |
|         double pst = m_report_status.status();
 | |
| 
 | |
|         double increment = (slot * sd) / m_printer_input.size();
 | |
|         double dstatus = m_report_status.status();
 | |
| 
 | |
|         SpinMutex slck;
 | |
| 
 | |
|         // procedure to process one height level. This will run in parallel
 | |
|         auto lvlfn =
 | |
|         [this, &slck, &printer, increment, &dstatus, &pst]
 | |
|             (unsigned level_id)
 | |
|         {
 | |
|             if(canceled()) return;
 | |
| 
 | |
|             PrintLayer& printlayer = m_printer_input[level_id];
 | |
| 
 | |
|             // Switch to the appropriate layer in the printer
 | |
|             printer.begin_layer(level_id);
 | |
| 
 | |
|             for(const ClipperLib::Polygon& poly : printlayer.transformed_slices())
 | |
|                 printer.draw_polygon(poly, level_id);
 | |
| 
 | |
|             // Finish the layer for later saving it.
 | |
|             printer.finish_layer(level_id);
 | |
| 
 | |
|             // Status indication guarded with the spinlock
 | |
|             {
 | |
|                 std::lock_guard<SpinMutex> lck(slck);
 | |
|                 dstatus += increment;
 | |
|                 double st = std::round(dstatus);
 | |
|                 if(st > pst) {
 | |
|                     m_report_status(*this, st,
 | |
|                                     PRINT_STEP_LABELS[slapsRasterize]);
 | |
|                     pst = st;
 | |
|                 }
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         // last minute escape
 | |
|         if(canceled()) return;
 | |
| 
 | |
|         // Sequential version (for testing)
 | |
|         // for(unsigned l = 0; l < lvlcnt; ++l) process_level(l);
 | |
| 
 | |
|         // Print all the layers in parallel
 | |
|         tbb::parallel_for<unsigned, decltype(lvlfn)>(0, lvlcnt, lvlfn);
 | |
| 
 | |
|         // Set statistics values to the printer
 | |
|         m_printer->set_statistics({(m_print_statistics.objects_used_material + m_print_statistics.support_used_material)/1000,
 | |
|                                 double(m_default_object_config.faded_layers.getInt()),
 | |
|                                 double(m_print_statistics.slow_layers_count),
 | |
|                                 double(m_print_statistics.fast_layers_count)
 | |
|                                 });
 | |
|     };
 | |
| 
 | |
|     using slaposFn = std::function<void(SLAPrintObject&)>;
 | |
|     using slapsFn  = std::function<void(void)>;
 | |
| 
 | |
|     std::array<slaposFn, slaposCount> pobj_program =
 | |
|     {
 | |
|         slice_model,
 | |
|         support_points,
 | |
|         support_tree,
 | |
|         base_pool,
 | |
|         slice_supports
 | |
|     };
 | |
| 
 | |
|     std::array<slapsFn, slapsCount> print_program =
 | |
|     {
 | |
|         merge_slices_and_eval_stats,
 | |
|         rasterize
 | |
|     };
 | |
| 
 | |
|     double st = min_objstatus;
 | |
|     unsigned incr = 0;
 | |
| 
 | |
|     BOOST_LOG_TRIVIAL(info) << "Start slicing process.";
 | |
| 
 | |
|     // TODO: this loop could run in parallel but should not exhaust all the CPU
 | |
|     // power available
 | |
|     // Calculate the support structures first before slicing the supports, so that the preview will get displayed ASAP for all objects.
 | |
|     std::vector<SLAPrintObjectStep> step_ranges = { slaposObjectSlice, slaposSliceSupports, slaposCount };
 | |
|     for (size_t idx_range = 0; idx_range + 1 < step_ranges.size(); ++ idx_range) {
 | |
|         for(SLAPrintObject * po : m_objects) {
 | |
| 
 | |
|             BOOST_LOG_TRIVIAL(info) << "Slicing object " << po->model_object()->name;
 | |
| 
 | |
|             for (int s = int(step_ranges[idx_range]); s < int(step_ranges[idx_range + 1]); ++s) {
 | |
|                 auto currentstep = static_cast<SLAPrintObjectStep>(s);
 | |
| 
 | |
|                 // Cancellation checking. Each step will check for cancellation
 | |
|                 // on its own and return earlier gracefully. Just after it returns
 | |
|                 // execution gets to this point and throws the canceled signal.
 | |
|                 throw_if_canceled();
 | |
| 
 | |
|                 st += incr * ostepd;
 | |
| 
 | |
|                 if(po->m_stepmask[currentstep] && po->set_started(currentstep)) {
 | |
|                     m_report_status(*this, st, OBJ_STEP_LABELS[currentstep]);
 | |
|                     pobj_program[currentstep](*po);
 | |
|                     throw_if_canceled();
 | |
|                     po->set_done(currentstep);
 | |
|                 }
 | |
| 
 | |
|                 incr = OBJ_STEP_LEVELS[currentstep];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     std::array<SLAPrintStep, slapsCount> printsteps = {
 | |
|         slapsMergeSlicesAndEval, slapsRasterize
 | |
|     };
 | |
| 
 | |
|     // this would disable the rasterization step
 | |
|     // m_stepmask[slapsRasterize] = false;
 | |
| 
 | |
|     double pstd = (100 - max_objstatus) / 100.0;
 | |
|     st = max_objstatus;
 | |
|     for(size_t s = 0; s < print_program.size(); ++s) {
 | |
|         auto currentstep = printsteps[s];
 | |
| 
 | |
|         throw_if_canceled();
 | |
| 
 | |
|         if(m_stepmask[currentstep] && set_started(currentstep))
 | |
|         {
 | |
|             m_report_status(*this, st, PRINT_STEP_LABELS[currentstep]);
 | |
|             print_program[currentstep]();
 | |
|             throw_if_canceled();
 | |
|             set_done(currentstep);
 | |
|         }
 | |
| 
 | |
|         st += PRINT_STEP_LEVELS[currentstep] * pstd;
 | |
|     }
 | |
| 
 | |
|     // If everything vent well
 | |
|     m_report_status(*this, 100, L("Slicing done"));
 | |
| }
 | |
| 
 | |
| bool SLAPrint::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys, bool &invalidate_all_model_objects)
 | |
| {
 | |
|     if (opt_keys.empty())
 | |
|         return false;
 | |
| 
 | |
|     static std::unordered_set<std::string> steps_full = {
 | |
|         "initial_layer_height",
 | |
|         "material_correction",
 | |
|         "relative_correction",
 | |
|         "absolute_correction",
 | |
|         "gamma_correction"
 | |
|     };
 | |
| 
 | |
|     // Cache the plenty of parameters, which influence the final rasterization only,
 | |
|     // or they are only notes not influencing the rasterization step.
 | |
|     static std::unordered_set<std::string> steps_rasterize = {
 | |
|         "exposure_time",
 | |
|         "initial_exposure_time",
 | |
|         "display_width",
 | |
|         "display_height",
 | |
|         "display_pixels_x",
 | |
|         "display_pixels_y",
 | |
|         "display_orientation"
 | |
|     };
 | |
| 
 | |
|     static std::unordered_set<std::string> steps_ignore = {
 | |
|         "bed_shape",
 | |
|         "max_print_height",
 | |
|         "printer_technology",
 | |
|         "output_filename_format",
 | |
|         "fast_tilt_time",
 | |
|         "slow_tilt_time",
 | |
|         "area_fill"
 | |
|     };
 | |
| 
 | |
|     std::vector<SLAPrintStep> steps;
 | |
|     std::vector<SLAPrintObjectStep> osteps;
 | |
|     bool invalidated = false;
 | |
| 
 | |
|     for (const t_config_option_key &opt_key : opt_keys) {
 | |
|         if (steps_rasterize.find(opt_key) != steps_rasterize.end()) {
 | |
|             // These options only affect the final rasterization, or they are just notes without influence on the output,
 | |
|             // so there is nothing to invalidate.
 | |
|             steps.emplace_back(slapsMergeSlicesAndEval);
 | |
|         } else if (steps_ignore.find(opt_key) != steps_ignore.end()) {
 | |
|             // These steps have no influence on the output. Just ignore them.
 | |
|         } else if (steps_full.find(opt_key) != steps_full.end()) {
 | |
|             steps.emplace_back(slapsMergeSlicesAndEval);
 | |
|             osteps.emplace_back(slaposObjectSlice);
 | |
|             invalidate_all_model_objects = true;
 | |
|         } else {
 | |
|             // All values should be covered.
 | |
|             assert(false);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     sort_remove_duplicates(steps);
 | |
|     for (SLAPrintStep step : steps)
 | |
|         invalidated |= this->invalidate_step(step);
 | |
|     sort_remove_duplicates(osteps);
 | |
|     for (SLAPrintObjectStep ostep : osteps)
 | |
|         for (SLAPrintObject *object : m_objects)
 | |
|             invalidated |= object->invalidate_step(ostep);
 | |
|     return invalidated;
 | |
| }
 | |
| 
 | |
| // Returns true if an object step is done on all objects and there's at least one object.
 | |
| bool SLAPrint::is_step_done(SLAPrintObjectStep step) const
 | |
| {
 | |
|     if (m_objects.empty())
 | |
|         return false;
 | |
|     tbb::mutex::scoped_lock lock(this->state_mutex());
 | |
|     for (const SLAPrintObject *object : m_objects)
 | |
|         if (! object->is_step_done_unguarded(step))
 | |
|             return false;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| SLAPrintObject::SLAPrintObject(SLAPrint *print, ModelObject *model_object):
 | |
|     Inherited(print, model_object),
 | |
|     m_stepmask(slaposCount, true),
 | |
|     m_transformed_rmesh( [this](TriangleMesh& obj){
 | |
|             obj = m_model_object->raw_mesh(); obj.transform(m_trafo);
 | |
|         })
 | |
| {
 | |
| }
 | |
| 
 | |
| SLAPrintObject::~SLAPrintObject() {}
 | |
| 
 | |
| // Called by SLAPrint::apply_config().
 | |
| // This method only accepts SLAPrintObjectConfig option keys.
 | |
| bool SLAPrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
 | |
| {
 | |
|     if (opt_keys.empty())
 | |
|         return false;
 | |
| 
 | |
|     std::vector<SLAPrintObjectStep> steps;
 | |
|     bool invalidated = false;
 | |
|     for (const t_config_option_key &opt_key : opt_keys) {
 | |
|         if (   opt_key == "layer_height"
 | |
|             || opt_key == "faded_layers"
 | |
|             || opt_key == "pad_enable"
 | |
|             || opt_key == "pad_wall_thickness"
 | |
|             || opt_key == "supports_enable"
 | |
|             || opt_key == "support_object_elevation"
 | |
|             || opt_key == "slice_closing_radius") {
 | |
|             steps.emplace_back(slaposObjectSlice);
 | |
|         } else if (
 | |
| 
 | |
|                opt_key == "support_points_density_relative"
 | |
|             || opt_key == "support_points_minimal_distance") {
 | |
|             steps.emplace_back(slaposSupportPoints);
 | |
|         } else if (
 | |
|                opt_key == "support_head_front_diameter"
 | |
|             || opt_key == "support_head_penetration"
 | |
|             || opt_key == "support_head_width"
 | |
|             || opt_key == "support_pillar_diameter"
 | |
|             || opt_key == "support_pillar_connection_mode"
 | |
|             || opt_key == "support_buildplate_only"
 | |
|             || opt_key == "support_base_diameter"
 | |
|             || opt_key == "support_base_height"
 | |
|             || opt_key == "support_critical_angle"
 | |
|             || opt_key == "support_max_bridge_length"
 | |
|             || opt_key == "support_max_pillar_link_distance"
 | |
|             ) {
 | |
|             steps.emplace_back(slaposSupportTree);
 | |
|         } else if (
 | |
|                opt_key == "pad_wall_height"
 | |
|             || opt_key == "pad_max_merge_distance"
 | |
|             || opt_key == "pad_wall_slope"
 | |
|             || opt_key == "pad_edge_radius") {
 | |
|             steps.emplace_back(slaposBasePool);
 | |
|         } else {
 | |
|             // All keys should be covered.
 | |
|             assert(false);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     sort_remove_duplicates(steps);
 | |
|     for (SLAPrintObjectStep step : steps)
 | |
|         invalidated |= this->invalidate_step(step);
 | |
|     return invalidated;
 | |
| }
 | |
| 
 | |
| bool SLAPrintObject::invalidate_step(SLAPrintObjectStep step)
 | |
| {
 | |
|     bool invalidated = Inherited::invalidate_step(step);
 | |
|     // propagate to dependent steps
 | |
|     if (step == slaposObjectSlice) {
 | |
|         invalidated |= this->invalidate_all_steps();
 | |
|     } else if (step == slaposSupportPoints) {
 | |
|         invalidated |= this->invalidate_steps({ slaposSupportTree, slaposBasePool, slaposSliceSupports });
 | |
|         invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
 | |
|     } else if (step == slaposSupportTree) {
 | |
|         invalidated |= this->invalidate_steps({ slaposBasePool, slaposSliceSupports });
 | |
|         invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
 | |
|     } else if (step == slaposBasePool) {
 | |
|         invalidated |= this->invalidate_steps({slaposSliceSupports});
 | |
|         invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
 | |
|     } else if (step == slaposSliceSupports) {
 | |
|         invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
 | |
|     }
 | |
|     return invalidated;
 | |
| }
 | |
| 
 | |
| bool SLAPrintObject::invalidate_all_steps()
 | |
| {
 | |
|     return Inherited::invalidate_all_steps() | m_print->invalidate_all_steps();
 | |
| }
 | |
| 
 | |
| double SLAPrintObject::get_elevation() const {
 | |
|     bool se = m_config.supports_enable.getBool();
 | |
|     double ret = se? m_config.support_object_elevation.getFloat() : 0;
 | |
| 
 | |
|     // if the pad is enabled, then half of the pad height is its base plate
 | |
|     if(m_config.pad_enable.getBool()) {
 | |
|         // Normally the elevation for the pad itself would be the thickness of
 | |
|         // its walls but currently it is half of its thickness. Whatever it
 | |
|         // will be in the future, we provide the config to the get_pad_elevation
 | |
|         // method and we will have the correct value
 | |
|         sla::PoolConfig pcfg = make_pool_config(m_config);
 | |
|         ret += sla::get_pad_elevation(pcfg);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| double SLAPrintObject::get_current_elevation() const
 | |
| {
 | |
|     bool se = m_config.supports_enable.getBool();
 | |
|     bool has_supports = is_step_done(slaposSupportTree);
 | |
|     bool has_pad = is_step_done(slaposBasePool);
 | |
| 
 | |
|     if(!has_supports && !has_pad)
 | |
|         return 0;
 | |
|     else if(has_supports && !has_pad)
 | |
|         return se ? m_config.support_object_elevation.getFloat() : 0;
 | |
| 
 | |
|     return get_elevation();
 | |
| }
 | |
| 
 | |
| Vec3d SLAPrint::relative_correction() const
 | |
| {
 | |
|     Vec3d corr(1., 1., 1.);
 | |
| 
 | |
|     if(printer_config().relative_correction.values.size() == 2) {
 | |
|         corr(X) = printer_config().relative_correction.values[0];
 | |
|         corr(Y) = printer_config().relative_correction.values[0];
 | |
|         corr(Z) = printer_config().relative_correction.values[1];
 | |
|     }
 | |
| 
 | |
|     if(material_config().material_correction.values.size() == 2) {
 | |
|         corr(X) *= material_config().material_correction.values[0];
 | |
|         corr(Y) *= material_config().material_correction.values[0];
 | |
|         corr(Z) *= material_config().material_correction.values[1];
 | |
|     }
 | |
| 
 | |
|     return corr;
 | |
| }
 | |
| 
 | |
| namespace { // dummy empty static containers for return values in some methods
 | |
| const std::vector<ExPolygons> EMPTY_SLICES;
 | |
| const TriangleMesh EMPTY_MESH;
 | |
| const ExPolygons EMPTY_SLICE;
 | |
| }
 | |
| 
 | |
| const SliceRecord SliceRecord::EMPTY(0, std::nanf(""), 0.f);
 | |
| 
 | |
| const std::vector<sla::SupportPoint>& SLAPrintObject::get_support_points() const
 | |
| {
 | |
|     return m_supportdata->support_points;
 | |
| }
 | |
| 
 | |
| const std::vector<ExPolygons> &SLAPrintObject::get_support_slices() const
 | |
| {
 | |
|     // assert(is_step_done(slaposSliceSupports));
 | |
|     if (!m_supportdata) return EMPTY_SLICES;
 | |
|     return m_supportdata->support_slices;
 | |
| }
 | |
| 
 | |
| const ExPolygons &SliceRecord::get_slice(SliceOrigin o) const
 | |
| {
 | |
|     size_t idx = o == soModel ? m_model_slices_idx :
 | |
|                                 m_support_slices_idx;
 | |
| 
 | |
|     if(m_po == nullptr) return EMPTY_SLICE;
 | |
| 
 | |
|     const std::vector<ExPolygons>& v = o == soModel? m_po->get_model_slices() :
 | |
|                                                      m_po->get_support_slices();
 | |
| 
 | |
|     if(idx >= v.size()) return EMPTY_SLICE;
 | |
| 
 | |
|     return idx >= v.size() ? EMPTY_SLICE : v[idx];
 | |
| }
 | |
| 
 | |
| bool SLAPrintObject::has_mesh(SLAPrintObjectStep step) const
 | |
| {
 | |
|     switch (step) {
 | |
|     case slaposSupportTree:
 | |
|         return ! this->support_mesh().empty();
 | |
|     case slaposBasePool:
 | |
|         return ! this->pad_mesh().empty();
 | |
|     default:
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| TriangleMesh SLAPrintObject::get_mesh(SLAPrintObjectStep step) const
 | |
| {
 | |
|     switch (step) {
 | |
|     case slaposSupportTree:
 | |
|         return this->support_mesh();
 | |
|     case slaposBasePool:
 | |
|         return this->pad_mesh();
 | |
|     default:
 | |
|         return TriangleMesh();
 | |
|     }
 | |
| }
 | |
| 
 | |
| const TriangleMesh& SLAPrintObject::support_mesh() const
 | |
| {
 | |
|     if(m_config.supports_enable.getBool() && m_supportdata &&
 | |
|        m_supportdata->support_tree_ptr) {
 | |
|         return m_supportdata->support_tree_ptr->merged_mesh();
 | |
|     }
 | |
| 
 | |
|     return EMPTY_MESH;
 | |
| }
 | |
| 
 | |
| const TriangleMesh& SLAPrintObject::pad_mesh() const
 | |
| {
 | |
|     if(m_config.pad_enable.getBool() && m_supportdata && m_supportdata->support_tree_ptr)
 | |
|         return m_supportdata->support_tree_ptr->get_pad();
 | |
| 
 | |
|     return EMPTY_MESH;
 | |
| }
 | |
| 
 | |
| const TriangleMesh &SLAPrintObject::transformed_mesh() const {
 | |
|     // we need to transform the raw mesh...
 | |
|     // currently all the instances share the same x and y rotation and scaling
 | |
|     // so we have to extract those from e.g. the first instance and apply to the
 | |
|     // raw mesh. This is also true for the support points.
 | |
|     // BUT: when the support structure is spawned for each instance than it has
 | |
|     // to omit the X, Y rotation and scaling as those have been already applied
 | |
|     // or apply an inverse transformation on the support structure after it
 | |
|     // has been created.
 | |
| 
 | |
|     return m_transformed_rmesh.get();
 | |
| }
 | |
| 
 | |
| std::vector<sla::SupportPoint> SLAPrintObject::transformed_support_points() const
 | |
| {
 | |
|     assert(m_model_object != nullptr);
 | |
|     std::vector<sla::SupportPoint>& spts = m_model_object->sla_support_points;
 | |
| 
 | |
|     // this could be cached as well
 | |
|     std::vector<sla::SupportPoint> ret;
 | |
|     ret.reserve(spts.size());
 | |
| 
 | |
|     for(sla::SupportPoint& sp : spts) {
 | |
|         Vec3d transformed_pos = trafo() * Vec3d(sp.pos(0), sp.pos(1), sp.pos(2));
 | |
|         ret.emplace_back(transformed_pos(0), transformed_pos(1), transformed_pos(2), sp.head_front_radius, sp.is_new_island);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| DynamicConfig SLAPrintStatistics::config() const
 | |
| {
 | |
|     DynamicConfig config;
 | |
|     const std::string print_time = Slic3r::short_time(this->estimated_print_time);
 | |
|     config.set_key_value("print_time", new ConfigOptionString(print_time));
 | |
|     config.set_key_value("objects_used_material", new ConfigOptionFloat(this->objects_used_material));
 | |
|     config.set_key_value("support_used_material", new ConfigOptionFloat(this->support_used_material));
 | |
|     config.set_key_value("total_cost", new ConfigOptionFloat(this->total_cost));
 | |
|     config.set_key_value("total_weight", new ConfigOptionFloat(this->total_weight));
 | |
|     return config;
 | |
| }
 | |
| 
 | |
| DynamicConfig SLAPrintStatistics::placeholders()
 | |
| {
 | |
|     DynamicConfig config;
 | |
|     for (const std::string &key : {
 | |
|         "print_time", "total_cost", "total_weight",
 | |
|         "objects_used_material", "support_used_material" })
 | |
|         config.set_key_value(key, new ConfigOptionString(std::string("{") + key + "}"));
 | |
| 
 | |
|     return config;
 | |
| }
 | |
| 
 | |
| std::string SLAPrintStatistics::finalize_output_path(const std::string &path_in) const
 | |
| {
 | |
|     std::string final_path;
 | |
|     try {
 | |
|         boost::filesystem::path path(path_in);
 | |
|         DynamicConfig cfg = this->config();
 | |
|         PlaceholderParser pp;
 | |
|         std::string new_stem = pp.process(path.stem().string(), 0, &cfg);
 | |
|         final_path = (path.parent_path() / (new_stem + path.extension().string())).string();
 | |
|     }
 | |
|     catch (const std::exception &ex) {
 | |
|         BOOST_LOG_TRIVIAL(error) << "Failed to apply the print statistics to the export file name: " << ex.what();
 | |
|         final_path = path_in;
 | |
|     }
 | |
|     return final_path;
 | |
| }
 | |
| 
 | |
| void SLAPrint::StatusReporter::operator()(
 | |
|         SLAPrint &p, double st, const std::string &msg, unsigned flags)
 | |
| {
 | |
|     m_st = st;
 | |
|     BOOST_LOG_TRIVIAL(info) << st << "% " << msg;
 | |
|     p.set_status(int(std::round(st)), msg, flags);
 | |
| }
 | |
| 
 | |
| } // namespace Slic3r
 | 
