mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	 eb6392dccd
			
		
	
	
		eb6392dccd
		
	
	
	
	
		
			
			on a single thread only (not parallelized). The new slice_mesh() is used to calculate contour of objects sunken below the print bed.
		
			
				
	
	
		
			252 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			252 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef slic3r_TriangleMesh_hpp_
 | |
| #define slic3r_TriangleMesh_hpp_
 | |
| 
 | |
| #include "libslic3r.h"
 | |
| #include <admesh/stl.h>
 | |
| #include <functional>
 | |
| #include <vector>
 | |
| #include "BoundingBox.hpp"
 | |
| #include "Line.hpp"
 | |
| #include "Point.hpp"
 | |
| #include "Polygon.hpp"
 | |
| #include "ExPolygon.hpp"
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| class TriangleMesh;
 | |
| class TriangleMeshSlicer;
 | |
| typedef std::vector<TriangleMesh*> TriangleMeshPtrs;
 | |
| 
 | |
| class TriangleMesh
 | |
| {
 | |
| public:
 | |
|     TriangleMesh() : repaired(false) {}
 | |
|     TriangleMesh(const Pointf3s &points, const std::vector<Vec3i> &facets);
 | |
|     explicit TriangleMesh(const indexed_triangle_set &M);
 | |
|     void clear() { this->stl.clear(); this->its.clear(); this->repaired = false; }
 | |
|     bool ReadSTLFile(const char* input_file) { return stl_open(&stl, input_file); }
 | |
|     bool write_ascii(const char* output_file) { return stl_write_ascii(&this->stl, output_file, ""); }
 | |
|     bool write_binary(const char* output_file) { return stl_write_binary(&this->stl, output_file, ""); }
 | |
|     void repair(bool update_shared_vertices = true);
 | |
|     float volume();
 | |
|     void check_topology();
 | |
|     bool is_manifold() const { return this->stl.stats.connected_facets_3_edge == (int)this->stl.stats.number_of_facets; }
 | |
|     void WriteOBJFile(const char* output_file) const;
 | |
|     void scale(float factor);
 | |
|     void scale(const Vec3d &versor);
 | |
|     void translate(float x, float y, float z);
 | |
|     void translate(const Vec3f &displacement);
 | |
|     void rotate(float angle, const Axis &axis);
 | |
|     void rotate(float angle, const Vec3d& axis);
 | |
|     void rotate_x(float angle) { this->rotate(angle, X); }
 | |
|     void rotate_y(float angle) { this->rotate(angle, Y); }
 | |
|     void rotate_z(float angle) { this->rotate(angle, Z); }
 | |
|     void mirror(const Axis &axis);
 | |
|     void mirror_x() { this->mirror(X); }
 | |
|     void mirror_y() { this->mirror(Y); }
 | |
|     void mirror_z() { this->mirror(Z); }
 | |
|     void transform(const Transform3d& t, bool fix_left_handed = false);
 | |
|     void transform(const Matrix3d& t, bool fix_left_handed = false);
 | |
|     void align_to_origin();
 | |
|     void rotate(double angle, Point* center);
 | |
|     TriangleMeshPtrs split() const;
 | |
|     void merge(const TriangleMesh &mesh);
 | |
|     ExPolygons horizontal_projection() const;
 | |
|     const float* first_vertex() const { return this->stl.facet_start.empty() ? nullptr : &this->stl.facet_start.front().vertex[0](0); }
 | |
|     // 2D convex hull of a 3D mesh projected into the Z=0 plane.
 | |
|     Polygon convex_hull();
 | |
|     BoundingBoxf3 bounding_box() const;
 | |
|     // Returns the bbox of this TriangleMesh transformed by the given transformation
 | |
|     BoundingBoxf3 transformed_bounding_box(const Transform3d &trafo) const;
 | |
|     // Return the size of the mesh in coordinates.
 | |
|     Vec3d size() const { return stl.stats.size.cast<double>(); }
 | |
|     /// Return the center of the related bounding box.
 | |
|     Vec3d center() const { return this->bounding_box().center(); }
 | |
|     // Returns the convex hull of this TriangleMesh
 | |
|     TriangleMesh convex_hull_3d() const;
 | |
|     // Slice this mesh at the provided Z levels and return the vector
 | |
|     std::vector<ExPolygons> slice(const std::vector<double>& z) const;
 | |
|     void reset_repair_stats();
 | |
|     bool needed_repair() const;
 | |
|     void require_shared_vertices();
 | |
|     bool   has_shared_vertices() const { return ! this->its.vertices.empty(); }
 | |
|     size_t facets_count() const { return this->stl.stats.number_of_facets; }
 | |
|     bool   empty() const { return this->facets_count() == 0; }
 | |
|     bool is_splittable() const;
 | |
|     // Estimate of the memory occupied by this structure, important for keeping an eye on the Undo / Redo stack allocation.
 | |
|     size_t memsize() const;
 | |
|     // Release optional data from the mesh if the object is on the Undo / Redo stack only. Returns the amount of memory released.
 | |
|     size_t release_optional();
 | |
|     // Restore optional data possibly released by release_optional().
 | |
|     void restore_optional();
 | |
| 
 | |
|     stl_file stl;
 | |
|     indexed_triangle_set its;
 | |
|     bool repaired;
 | |
| 
 | |
| private:
 | |
|     std::deque<uint32_t> find_unvisited_neighbors(std::vector<unsigned char> &facet_visited) const;
 | |
| };
 | |
| 
 | |
| // Index of face indices incident with a vertex index.
 | |
| struct VertexFaceIndex
 | |
| {
 | |
| public:
 | |
|     using iterator = std::vector<size_t>::const_iterator;
 | |
| 
 | |
|     VertexFaceIndex(const indexed_triangle_set &its) { this->create(its); }
 | |
|     VertexFaceIndex() {}
 | |
| 
 | |
|     void create(const indexed_triangle_set &its);
 | |
|     void clear() { m_vertex_to_face_start.clear(); m_vertex_faces_all.clear(); }
 | |
| 
 | |
|     // Iterators of face indices incident with the input vertex_id.
 | |
|     iterator begin(size_t vertex_id) const throw() { return m_vertex_faces_all.begin() + m_vertex_to_face_start[vertex_id]; }
 | |
|     iterator end  (size_t vertex_id) const throw() { return m_vertex_faces_all.begin() + m_vertex_to_face_start[vertex_id + 1]; }
 | |
|     // Vertex incidence.
 | |
|     size_t   count(size_t vertex_id) const throw() { return m_vertex_to_face_start[vertex_id + 1] - m_vertex_to_face_start[vertex_id]; }
 | |
| 
 | |
|     const Range<iterator> operator[](size_t vertex_id) const { return {begin(vertex_id), end(vertex_id)}; }
 | |
| 
 | |
| private:
 | |
|     std::vector<size_t>     m_vertex_to_face_start;
 | |
|     std::vector<size_t>     m_vertex_faces_all;
 | |
| };
 | |
| 
 | |
| // Map from a face edge to a unique edge identifier or -1 if no neighbor exists.
 | |
| // Two neighbor faces share a unique edge identifier even if they are flipped.
 | |
| // Used for chaining slice lines into polygons.
 | |
| std::vector<Vec3i> its_face_edge_ids(const indexed_triangle_set &its);
 | |
| std::vector<Vec3i> its_face_edge_ids(const indexed_triangle_set &its, std::function<void()> throw_on_cancel_callback);
 | |
| std::vector<Vec3i> its_face_edge_ids(const indexed_triangle_set &its, const std::vector<bool> &face_mask);
 | |
| // Having the face neighbors available, assign unique edge IDs to face edges for chaining of polygons over slices.
 | |
| std::vector<Vec3i> its_face_edge_ids(const indexed_triangle_set &its, std::vector<Vec3i> &face_neighbors, bool assign_unbound_edges = false, int *num_edges = nullptr);
 | |
| 
 | |
| // Create index that gives neighbor faces for each face. Ignores face orientations.
 | |
| std::vector<Vec3i> its_face_neighbors(const indexed_triangle_set &its);
 | |
| std::vector<Vec3i> its_face_neighbors_par(const indexed_triangle_set &its);
 | |
| 
 | |
| // After applying a transformation with negative determinant, flip the faces to keep the transformed mesh volume positive.
 | |
| void its_flip_triangles(indexed_triangle_set &its);
 | |
| 
 | |
| // Merge duplicate vertices, return number of vertices removed.
 | |
| // This function will happily create non-manifolds if more than two faces share the same vertex position
 | |
| // or more than two faces share the same edge position!
 | |
| int its_merge_vertices(indexed_triangle_set &its, bool shrink_to_fit = true);
 | |
| 
 | |
| // Remove degenerate faces, return number of faces removed.
 | |
| int its_remove_degenerate_faces(indexed_triangle_set &its, bool shrink_to_fit = true);
 | |
| 
 | |
| // Remove vertices, which none of the faces references. Return number of freed vertices.
 | |
| int its_compactify_vertices(indexed_triangle_set &its, bool shrink_to_fit = true);
 | |
| 
 | |
| std::vector<indexed_triangle_set> its_split(const indexed_triangle_set &its);
 | |
| 
 | |
| bool its_is_splittable(const indexed_triangle_set &its);
 | |
| 
 | |
| // Shrink the vectors of its.vertices and its.faces to a minimum size by reallocating the two vectors.
 | |
| void its_shrink_to_fit(indexed_triangle_set &its);
 | |
| 
 | |
| // For convex hull calculation: Transform mesh, trim it by the Z plane and collect all vertices. Duplicate vertices will be produced.
 | |
| void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const Matrix3f &m, const float z, Points &all_pts);
 | |
| void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const Transform3f &t, const float z, Points &all_pts);
 | |
| 
 | |
| // Calculate 2D convex hull of a transformed and clipped mesh. Uses the function above.
 | |
| Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const Matrix3f &m, const float z);
 | |
| Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const Transform3f &t, const float z);
 | |
| 
 | |
| // Index of a vertex inside triangle_indices.
 | |
| inline int its_triangle_vertex_index(const stl_triangle_vertex_indices &triangle_indices, int vertex_idx)
 | |
| {
 | |
|     return vertex_idx == triangle_indices[0] ? 0 :
 | |
|            vertex_idx == triangle_indices[1] ? 1 :
 | |
|            vertex_idx == triangle_indices[2] ? 2 : -1;
 | |
| }
 | |
| 
 | |
| inline Vec2i its_triangle_edge(const stl_triangle_vertex_indices &triangle_indices, int edge_idx)
 | |
| {
 | |
|     int next_edge_idx = (edge_idx == 2) ? 0 : edge_idx + 1;
 | |
|     return { triangle_indices[edge_idx], triangle_indices[next_edge_idx] };
 | |
| }
 | |
| 
 | |
| // Index of an edge inside triangle.
 | |
| inline int its_triangle_edge_index(const stl_triangle_vertex_indices &triangle_indices, const Vec2i &triangle_edge)
 | |
| {
 | |
|     return triangle_edge(0) == triangle_indices[0] && triangle_edge(1) == triangle_indices[1] ? 0 :
 | |
|            triangle_edge(0) == triangle_indices[1] && triangle_edge(1) == triangle_indices[2] ? 1 :
 | |
|            triangle_edge(0) == triangle_indices[2] && triangle_edge(1) == triangle_indices[0] ? 2 : -1;
 | |
| }
 | |
| 
 | |
| using its_triangle = std::array<stl_vertex, 3>;
 | |
| 
 | |
| inline its_triangle its_triangle_vertices(const indexed_triangle_set &its,
 | |
|                                           size_t                      face_id)
 | |
| {
 | |
|     return {its.vertices[its.indices[face_id](0)],
 | |
|             its.vertices[its.indices[face_id](1)],
 | |
|             its.vertices[its.indices[face_id](2)]};
 | |
| }
 | |
| 
 | |
| inline stl_normal its_unnormalized_normal(const indexed_triangle_set &its,
 | |
|                                           size_t                      face_id)
 | |
| {
 | |
|     its_triangle tri = its_triangle_vertices(its, face_id);
 | |
|     return (tri[1] - tri[0]).cross(tri[2] - tri[0]);
 | |
| }
 | |
| 
 | |
| float its_volume(const indexed_triangle_set &its);
 | |
| 
 | |
| void its_merge(indexed_triangle_set &A, const indexed_triangle_set &B);
 | |
| void its_merge(indexed_triangle_set &A, const std::vector<Vec3f> &triangles);
 | |
| void its_merge(indexed_triangle_set &A, const Pointf3s &triangles);
 | |
| 
 | |
| indexed_triangle_set its_make_cube(double x, double y, double z);
 | |
| TriangleMesh make_cube(double x, double y, double z);
 | |
| 
 | |
| // Generate a TriangleMesh of a cylinder
 | |
| indexed_triangle_set its_make_cylinder(double r, double h, double fa=(2*PI/360));
 | |
| TriangleMesh make_cylinder(double r, double h, double fa=(2*PI/360));
 | |
| 
 | |
| indexed_triangle_set its_make_sphere(double rho, double fa=(2*PI/360));
 | |
| TriangleMesh make_cone(double r, double h, double fa=(2*PI/360));
 | |
| TriangleMesh make_sphere(double rho, double fa=(2*PI/360));
 | |
| 
 | |
| inline BoundingBoxf3 bounding_box(const TriangleMesh &m) { return m.bounding_box(); }
 | |
| inline BoundingBoxf3 bounding_box(const indexed_triangle_set& its)
 | |
| {
 | |
|     if (its.vertices.empty())
 | |
|         return {};
 | |
| 
 | |
|     Vec3f bmin = its.vertices.front(), bmax = its.vertices.front();
 | |
| 
 | |
|     for (const Vec3f &p : its.vertices) {
 | |
|         bmin = p.cwiseMin(bmin);
 | |
|         bmax = p.cwiseMax(bmax);
 | |
|     }
 | |
| 
 | |
|     return {bmin.cast<double>(), bmax.cast<double>()};
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| // Serialization through the Cereal library
 | |
| #include <cereal/access.hpp>
 | |
| namespace cereal {
 | |
|     template <class Archive> struct specialize<Archive, Slic3r::TriangleMesh, cereal::specialization::non_member_load_save> {};
 | |
|     template<class Archive> void load(Archive &archive, Slic3r::TriangleMesh &mesh) {
 | |
|         stl_file &stl = mesh.stl;
 | |
|         stl.stats.type = inmemory;
 | |
|         archive(stl.stats.number_of_facets, stl.stats.original_num_facets);
 | |
|         stl_allocate(&stl);
 | |
|         archive.loadBinary((char*)stl.facet_start.data(), stl.facet_start.size() * 50);
 | |
|         stl_get_size(&stl);
 | |
|         mesh.repair();
 | |
|     }
 | |
|     template<class Archive> void save(Archive &archive, const Slic3r::TriangleMesh &mesh) {
 | |
|         const stl_file& stl = mesh.stl;
 | |
|         archive(stl.stats.number_of_facets, stl.stats.original_num_facets);
 | |
|         archive.saveBinary((char*)stl.facet_start.data(), stl.facet_start.size() * 50);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 |