mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			447 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			447 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "IndexedMesh.hpp"
 | |
| #include "Concurrency.hpp"
 | |
| 
 | |
| #include <libslic3r/AABBTreeIndirect.hpp>
 | |
| #include <libslic3r/TriangleMesh.hpp>
 | |
| 
 | |
| #include <numeric>
 | |
| 
 | |
| #ifdef SLIC3R_HOLE_RAYCASTER
 | |
| #include <libslic3r/SLA/Hollowing.hpp>
 | |
| #endif
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| namespace sla {
 | |
| 
 | |
| class IndexedMesh::AABBImpl {
 | |
| private:
 | |
|     AABBTreeIndirect::Tree3f m_tree;
 | |
| 
 | |
| public:
 | |
|     void init(const indexed_triangle_set &its)
 | |
|     {
 | |
|         m_tree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(
 | |
|             its.vertices, its.indices);
 | |
|     }
 | |
| 
 | |
|     void intersect_ray(const indexed_triangle_set &its,
 | |
|                        const Vec3d &               s,
 | |
|                        const Vec3d &               dir,
 | |
|                        igl::Hit &                  hit)
 | |
|     {
 | |
|         AABBTreeIndirect::intersect_ray_first_hit(its.vertices, its.indices,
 | |
|                                                   m_tree, s, dir, hit);
 | |
|     }
 | |
| 
 | |
|     void intersect_ray(const indexed_triangle_set &its,
 | |
|                        const Vec3d &               s,
 | |
|                        const Vec3d &               dir,
 | |
|                        std::vector<igl::Hit> &     hits)
 | |
|     {
 | |
|         AABBTreeIndirect::intersect_ray_all_hits(its.vertices, its.indices,
 | |
|                                                  m_tree, s, dir, hits);
 | |
|     }
 | |
| 
 | |
|     double squared_distance(const indexed_triangle_set & its,
 | |
|                             const Vec3d &                point,
 | |
|                             int &                        i,
 | |
|                             Eigen::Matrix<double, 1, 3> &closest)
 | |
|     {
 | |
|         size_t idx_unsigned = 0;
 | |
|         Vec3d  closest_vec3d(closest);
 | |
|         double dist =
 | |
|             AABBTreeIndirect::squared_distance_to_indexed_triangle_set(
 | |
|                 its.vertices, its.indices, m_tree, point, idx_unsigned,
 | |
|                 closest_vec3d);
 | |
|         i       = int(idx_unsigned);
 | |
|         closest = closest_vec3d;
 | |
|         return dist;
 | |
|     }
 | |
| };
 | |
| 
 | |
| template<class M> void IndexedMesh::init(const M &mesh)
 | |
| {
 | |
|     BoundingBoxf3 bb = bounding_box(mesh);
 | |
|     m_ground_level += bb.min(Z);
 | |
| 
 | |
|     // Build the AABB accelaration tree
 | |
|     m_aabb->init(*m_tm);
 | |
| }
 | |
| 
 | |
| IndexedMesh::IndexedMesh(const indexed_triangle_set& tmesh)
 | |
|     : m_aabb(new AABBImpl()), m_tm(&tmesh)
 | |
| {
 | |
|     init(tmesh);
 | |
| }
 | |
| 
 | |
| IndexedMesh::IndexedMesh(const TriangleMesh &mesh)
 | |
|     : m_aabb(new AABBImpl()), m_tm(&mesh.its)
 | |
| {
 | |
|     init(mesh);
 | |
| }
 | |
| 
 | |
| IndexedMesh::~IndexedMesh() {}
 | |
| 
 | |
| IndexedMesh::IndexedMesh(const IndexedMesh &other):
 | |
|     m_tm(other.m_tm), m_ground_level(other.m_ground_level),
 | |
|     m_aabb( new AABBImpl(*other.m_aabb) ) {}
 | |
| 
 | |
| 
 | |
| IndexedMesh &IndexedMesh::operator=(const IndexedMesh &other)
 | |
| {
 | |
|     m_tm = other.m_tm;
 | |
|     m_ground_level = other.m_ground_level;
 | |
|     m_aabb.reset(new AABBImpl(*other.m_aabb)); return *this;
 | |
| }
 | |
| 
 | |
| IndexedMesh &IndexedMesh::operator=(IndexedMesh &&other) = default;
 | |
| 
 | |
| IndexedMesh::IndexedMesh(IndexedMesh &&other) = default;
 | |
| 
 | |
| 
 | |
| 
 | |
| const std::vector<Vec3f>& IndexedMesh::vertices() const
 | |
| {
 | |
|     return m_tm->vertices;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| const std::vector<Vec3i>& IndexedMesh::indices()  const
 | |
| {
 | |
|     return m_tm->indices;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| const Vec3f& IndexedMesh::vertices(size_t idx) const
 | |
| {
 | |
|     return m_tm->vertices[idx];
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| const Vec3i& IndexedMesh::indices(size_t idx) const
 | |
| {
 | |
|     return m_tm->indices[idx];
 | |
| }
 | |
| 
 | |
| 
 | |
| Vec3d IndexedMesh::normal_by_face_id(int face_id) const {
 | |
| 
 | |
|     return its_unnormalized_normal(*m_tm, face_id).cast<double>().normalized();
 | |
| }
 | |
| 
 | |
| 
 | |
| IndexedMesh::hit_result
 | |
| IndexedMesh::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
 | |
| {
 | |
|     assert(is_approx(dir.norm(), 1.));
 | |
|     igl::Hit hit{-1, -1, 0.f, 0.f, 0.f};
 | |
|     hit.t = std::numeric_limits<float>::infinity();
 | |
| 
 | |
| #ifdef SLIC3R_HOLE_RAYCASTER
 | |
|     if (! m_holes.empty()) {
 | |
| 
 | |
|         // If there are holes, the hit_results will be made by
 | |
|         // query_ray_hits (object) and filter_hits (holes):
 | |
|         return filter_hits(query_ray_hits(s, dir));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     m_aabb->intersect_ray(*m_tm, s, dir, hit);
 | |
|     hit_result ret(*this);
 | |
|     ret.m_t = double(hit.t);
 | |
|     ret.m_dir = dir;
 | |
|     ret.m_source = s;
 | |
|     if(!std::isinf(hit.t) && !std::isnan(hit.t)) {
 | |
|         ret.m_normal = this->normal_by_face_id(hit.id);
 | |
|         ret.m_face_id = hit.id;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| std::vector<IndexedMesh::hit_result>
 | |
| IndexedMesh::query_ray_hits(const Vec3d &s, const Vec3d &dir) const
 | |
| {
 | |
|     std::vector<IndexedMesh::hit_result> outs;
 | |
|     std::vector<igl::Hit> hits;
 | |
|     m_aabb->intersect_ray(*m_tm, s, dir, hits);
 | |
| 
 | |
|     // The sort is necessary, the hits are not always sorted.
 | |
|     std::sort(hits.begin(), hits.end(),
 | |
|               [](const igl::Hit& a, const igl::Hit& b) { return a.t < b.t; });
 | |
| 
 | |
|     // Remove duplicates. They sometimes appear, for example when the ray is cast
 | |
|     // along an axis of a cube due to floating-point approximations in igl (?)
 | |
|     hits.erase(std::unique(hits.begin(), hits.end(),
 | |
|                            [](const igl::Hit& a, const igl::Hit& b)
 | |
|                            { return a.t == b.t; }),
 | |
|                hits.end());
 | |
| 
 | |
|     //  Convert the igl::Hit into hit_result
 | |
|     outs.reserve(hits.size());
 | |
|     for (const igl::Hit& hit : hits) {
 | |
|         outs.emplace_back(IndexedMesh::hit_result(*this));
 | |
|         outs.back().m_t = double(hit.t);
 | |
|         outs.back().m_dir = dir;
 | |
|         outs.back().m_source = s;
 | |
|         if(!std::isinf(hit.t) && !std::isnan(hit.t)) {
 | |
|             outs.back().m_normal = this->normal_by_face_id(hit.id);
 | |
|             outs.back().m_face_id = hit.id;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return outs;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef SLIC3R_HOLE_RAYCASTER
 | |
| IndexedMesh::hit_result IndexedMesh::filter_hits(
 | |
|     const std::vector<IndexedMesh::hit_result>& object_hits) const
 | |
| {
 | |
|     assert(! m_holes.empty());
 | |
|     hit_result out(*this);
 | |
| 
 | |
|     if (object_hits.empty())
 | |
|         return out;
 | |
| 
 | |
|     const Vec3d& s = object_hits.front().source();
 | |
|     const Vec3d& dir = object_hits.front().direction();
 | |
| 
 | |
|     // A helper struct to save an intersetion with a hole
 | |
|     struct HoleHit {
 | |
|         HoleHit(float t_p, const Vec3d& normal_p, bool entry_p) :
 | |
|             t(t_p), normal(normal_p), entry(entry_p) {}
 | |
|         float t;
 | |
|         Vec3d normal;
 | |
|         bool entry;
 | |
|     };
 | |
|     std::vector<HoleHit> hole_isects;
 | |
|     hole_isects.reserve(m_holes.size());
 | |
| 
 | |
|     auto sf = s.cast<float>();
 | |
|     auto dirf = dir.cast<float>();
 | |
| 
 | |
|     // Collect hits on all holes, preserve information about entry/exit
 | |
|     for (const sla::DrainHole& hole : m_holes) {
 | |
|         std::array<std::pair<float, Vec3d>, 2> isects;
 | |
|         if (hole.get_intersections(sf, dirf, isects)) {
 | |
|             // Ignore hole hits behind the source
 | |
|             if (isects[0].first > 0.f) hole_isects.emplace_back(isects[0].first, isects[0].second, true);
 | |
|             if (isects[1].first > 0.f) hole_isects.emplace_back(isects[1].first, isects[1].second, false);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Holes can intersect each other, sort the hits by t
 | |
|     std::sort(hole_isects.begin(), hole_isects.end(),
 | |
|               [](const HoleHit& a, const HoleHit& b) { return a.t < b.t; });
 | |
| 
 | |
|     // Now inspect the intersections with object and holes, in the order of
 | |
|     // increasing distance. Keep track how deep are we nested in mesh/holes and
 | |
|     // pick the correct intersection.
 | |
|     // This needs to be done twice - first to find out how deep in the structure
 | |
|     // the source is, then to pick the correct intersection.
 | |
|     int hole_nested = 0;
 | |
|     int object_nested = 0;
 | |
|     for (int dry_run=1; dry_run>=0; --dry_run) {
 | |
|         hole_nested = -hole_nested;
 | |
|         object_nested = -object_nested;
 | |
| 
 | |
|         bool is_hole = false;
 | |
|         bool is_entry = false;
 | |
|         const HoleHit* next_hole_hit = hole_isects.empty() ? nullptr : &hole_isects.front();
 | |
|         const hit_result* next_mesh_hit = &object_hits.front();
 | |
| 
 | |
|         while (next_hole_hit || next_mesh_hit) {
 | |
|             if (next_hole_hit && next_mesh_hit) // still have hole and obj hits
 | |
|                 is_hole = (next_hole_hit->t < next_mesh_hit->m_t);
 | |
|             else
 | |
|                 is_hole = next_hole_hit; // one or the other ran out
 | |
| 
 | |
|             // Is this entry or exit hit?
 | |
|             is_entry = is_hole ? next_hole_hit->entry : ! next_mesh_hit->is_inside();
 | |
| 
 | |
|             if (! dry_run) {
 | |
|                 if (! is_hole && hole_nested == 0) {
 | |
|                     // This is a valid object hit
 | |
|                     return *next_mesh_hit;
 | |
|                 }
 | |
|                 if (is_hole && ! is_entry && object_nested != 0) {
 | |
|                     // This holehit is the one we seek
 | |
|                     out.m_t = next_hole_hit->t;
 | |
|                     out.m_normal = next_hole_hit->normal;
 | |
|                     out.m_source = s;
 | |
|                     out.m_dir = dir;
 | |
|                     return out;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Increase/decrease the counter
 | |
|             (is_hole ? hole_nested : object_nested) += (is_entry ? 1 : -1);
 | |
| 
 | |
|             // Advance the respective pointer
 | |
|             if (is_hole && next_hole_hit++ == &hole_isects.back())
 | |
|                 next_hole_hit = nullptr;
 | |
|             if (! is_hole && next_mesh_hit++ == &object_hits.back())
 | |
|                 next_mesh_hit = nullptr;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // if we got here, the ray ended up in infinity
 | |
|     return out;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| double IndexedMesh::squared_distance(const Vec3d &p, int& i, Vec3d& c) const {
 | |
|     double sqdst = 0;
 | |
|     Eigen::Matrix<double, 1, 3> pp = p;
 | |
|     Eigen::Matrix<double, 1, 3> cc;
 | |
|     sqdst = m_aabb->squared_distance(*m_tm, pp, i, cc);
 | |
|     c = cc;
 | |
|     return sqdst;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool point_on_edge(const Vec3d& p, const Vec3d& e1, const Vec3d& e2,
 | |
|                           double eps = 0.05)
 | |
| {
 | |
|     using Line3D = Eigen::ParametrizedLine<double, 3>;
 | |
| 
 | |
|     auto line = Line3D::Through(e1, e2);
 | |
|     double d = line.distance(p);
 | |
|     return std::abs(d) < eps;
 | |
| }
 | |
| 
 | |
| PointSet normals(const PointSet& points,
 | |
|                  const IndexedMesh& mesh,
 | |
|                  double eps,
 | |
|                  std::function<void()> thr, // throw on cancel
 | |
|                  const std::vector<unsigned>& pt_indices)
 | |
| {
 | |
|     if (points.rows() == 0 || mesh.vertices().empty() || mesh.indices().empty())
 | |
|         return {};
 | |
| 
 | |
|     std::vector<unsigned> range = pt_indices;
 | |
|     if (range.empty()) {
 | |
|         range.resize(size_t(points.rows()), 0);
 | |
|         std::iota(range.begin(), range.end(), 0);
 | |
|     }
 | |
| 
 | |
|     PointSet ret(range.size(), 3);
 | |
| 
 | |
|     //    for (size_t ridx = 0; ridx < range.size(); ++ridx)
 | |
|     ccr::for_each(size_t(0), range.size(),
 | |
|         [&ret, &mesh, &points, thr, eps, &range](size_t ridx) {
 | |
|             thr();
 | |
|             unsigned el = range[ridx];
 | |
|             auto  eidx   = Eigen::Index(el);
 | |
|             int   faceid = 0;
 | |
|             Vec3d p;
 | |
| 
 | |
|             mesh.squared_distance(points.row(eidx), faceid, p);
 | |
| 
 | |
|             auto trindex = mesh.indices(faceid);
 | |
| 
 | |
|             const Vec3d &p1 = mesh.vertices(trindex(0)).cast<double>();
 | |
|             const Vec3d &p2 = mesh.vertices(trindex(1)).cast<double>();
 | |
|             const Vec3d &p3 = mesh.vertices(trindex(2)).cast<double>();
 | |
| 
 | |
|             // We should check if the point lies on an edge of the hosting
 | |
|             // triangle. If it does then all the other triangles using the
 | |
|             // same two points have to be searched and the final normal should
 | |
|             // be some kind of aggregation of the participating triangle
 | |
|             // normals. We should also consider the cases where the support
 | |
|             // point lies right on a vertex of its triangle. The procedure is
 | |
|             // the same, get the neighbor triangles and calculate an average
 | |
|             // normal.
 | |
| 
 | |
|             // mark the vertex indices of the edge. ia and ib marks and edge
 | |
|             // ic will mark a single vertex.
 | |
|             int ia = -1, ib = -1, ic = -1;
 | |
| 
 | |
|             if (std::abs((p - p1).norm()) < eps) {
 | |
|                 ic = trindex(0);
 | |
|             } else if (std::abs((p - p2).norm()) < eps) {
 | |
|                 ic = trindex(1);
 | |
|             } else if (std::abs((p - p3).norm()) < eps) {
 | |
|                 ic = trindex(2);
 | |
|             } else if (point_on_edge(p, p1, p2, eps)) {
 | |
|                 ia = trindex(0);
 | |
|                 ib = trindex(1);
 | |
|             } else if (point_on_edge(p, p2, p3, eps)) {
 | |
|                 ia = trindex(1);
 | |
|                 ib = trindex(2);
 | |
|             } else if (point_on_edge(p, p1, p3, eps)) {
 | |
|                 ia = trindex(0);
 | |
|                 ib = trindex(2);
 | |
|             }
 | |
| 
 | |
|             // vector for the neigboring triangles including the detected one.
 | |
|             std::vector<size_t> neigh;
 | |
|             if (ic >= 0) { // The point is right on a vertex of the triangle
 | |
|                 for (size_t n = 0; n < mesh.indices().size(); ++n) {
 | |
|                     thr();
 | |
|                     Vec3i ni = mesh.indices(n);
 | |
|                     if ((ni(X) == ic || ni(Y) == ic || ni(Z) == ic))
 | |
|                         neigh.emplace_back(n);
 | |
|                 }
 | |
|             } else if (ia >= 0 && ib >= 0) { // the point is on and edge
 | |
|                 // now get all the neigboring triangles
 | |
|                 for (size_t n = 0; n < mesh.indices().size(); ++n) {
 | |
|                     thr();
 | |
|                     Vec3i ni = mesh.indices(n);
 | |
|                     if ((ni(X) == ia || ni(Y) == ia || ni(Z) == ia) &&
 | |
|                         (ni(X) == ib || ni(Y) == ib || ni(Z) == ib))
 | |
|                         neigh.emplace_back(n);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Calculate the normals for the neighboring triangles
 | |
|             std::vector<Vec3d> neighnorms;
 | |
|             neighnorms.reserve(neigh.size());
 | |
|             for (size_t &tri_id : neigh)
 | |
|                 neighnorms.emplace_back(mesh.normal_by_face_id(tri_id));
 | |
| 
 | |
|             // Throw out duplicates. They would cause trouble with summing. We
 | |
|             // will use std::unique which works on sorted ranges. We will sort
 | |
|             // by the coefficient-wise sum of the normals. It should force the
 | |
|             // same elements to be consecutive.
 | |
|             std::sort(neighnorms.begin(), neighnorms.end(),
 | |
|                       [](const Vec3d &v1, const Vec3d &v2) {
 | |
|                           return v1.sum() < v2.sum();
 | |
|                       });
 | |
| 
 | |
|             auto lend = std::unique(neighnorms.begin(), neighnorms.end(),
 | |
|                                     [](const Vec3d &n1, const Vec3d &n2) {
 | |
|                                         // Compare normals for equivalence.
 | |
|                                         // This is controvers stuff.
 | |
|                                         auto deq = [](double a, double b) {
 | |
|                                             return std::abs(a - b) < 1e-3;
 | |
|                                         };
 | |
|                                         return deq(n1(X), n2(X)) &&
 | |
|                                                deq(n1(Y), n2(Y)) &&
 | |
|                                                deq(n1(Z), n2(Z));
 | |
|                                     });
 | |
| 
 | |
|             if (!neighnorms.empty()) { // there were neighbors to count with
 | |
|                 // sum up the normals and then normalize the result again.
 | |
|                 // This unification seems to be enough.
 | |
|                 Vec3d sumnorm(0, 0, 0);
 | |
|                 sumnorm = std::accumulate(neighnorms.begin(), lend, sumnorm);
 | |
|                 sumnorm.normalize();
 | |
|                 ret.row(long(ridx)) = sumnorm;
 | |
|             } else { // point lies safely within its triangle
 | |
|                 Eigen::Vector3d U   = p2 - p1;
 | |
|                 Eigen::Vector3d V   = p3 - p1;
 | |
|                 ret.row(long(ridx)) = U.cross(V).normalized();
 | |
|             }
 | |
|         });
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| }} // namespace Slic3r::sla
 | 
