mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			216 lines
		
	
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			216 lines
		
	
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "Point.hpp"
 | |
| #include "Line.hpp"
 | |
| #include "MultiPoint.hpp"
 | |
| #include "Int128.hpp"
 | |
| #include "BoundingBox.hpp"
 | |
| #include <algorithm>
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| std::vector<Vec3f> transform(const std::vector<Vec3f>& points, const Transform3f& t)
 | |
| {
 | |
|     unsigned int vertices_count = (unsigned int)points.size();
 | |
|     if (vertices_count == 0)
 | |
|         return std::vector<Vec3f>();
 | |
| 
 | |
|     unsigned int data_size = 3 * vertices_count * sizeof(float);
 | |
| 
 | |
|     Eigen::MatrixXf src(3, vertices_count);
 | |
|     ::memcpy((void*)src.data(), (const void*)points.data(), data_size);
 | |
| 
 | |
|     Eigen::MatrixXf dst(3, vertices_count);
 | |
|     dst = t * src.colwise().homogeneous();
 | |
| 
 | |
|     std::vector<Vec3f> ret_points(vertices_count, Vec3f::Zero());
 | |
|     ::memcpy((void*)ret_points.data(), (const void*)dst.data(), data_size);
 | |
|     return ret_points;
 | |
| }
 | |
| 
 | |
| Pointf3s transform(const Pointf3s& points, const Transform3d& t)
 | |
| {
 | |
|     unsigned int vertices_count = (unsigned int)points.size();
 | |
|     if (vertices_count == 0)
 | |
|         return Pointf3s();
 | |
| 
 | |
|     unsigned int data_size = 3 * vertices_count * sizeof(double);
 | |
| 
 | |
|     Eigen::MatrixXd src(3, vertices_count);
 | |
|     ::memcpy((void*)src.data(), (const void*)points.data(), data_size);
 | |
| 
 | |
|     Eigen::MatrixXd dst(3, vertices_count);
 | |
|     dst = t * src.colwise().homogeneous();
 | |
| 
 | |
|     Pointf3s ret_points(vertices_count, Vec3d::Zero());
 | |
|     ::memcpy((void*)ret_points.data(), (const void*)dst.data(), data_size);
 | |
|     return ret_points;
 | |
| }
 | |
| 
 | |
| void Point::rotate(double angle, const Point ¢er)
 | |
| {
 | |
|     double cur_x = (double)(*this)(0);
 | |
|     double cur_y = (double)(*this)(1);
 | |
|     double s     = ::sin(angle);
 | |
|     double c     = ::cos(angle);
 | |
|     double dx    = cur_x - (double)center(0);
 | |
|     double dy    = cur_y - (double)center(1);
 | |
|     (*this)(0) = (coord_t)round( (double)center(0) + c * dx - s * dy );
 | |
|     (*this)(1) = (coord_t)round( (double)center(1) + c * dy + s * dx );
 | |
| }
 | |
| 
 | |
| int Point::nearest_point_index(const Points &points) const
 | |
| {
 | |
|     PointConstPtrs p;
 | |
|     p.reserve(points.size());
 | |
|     for (Points::const_iterator it = points.begin(); it != points.end(); ++it)
 | |
|         p.push_back(&*it);
 | |
|     return this->nearest_point_index(p);
 | |
| }
 | |
| 
 | |
| int Point::nearest_point_index(const PointConstPtrs &points) const
 | |
| {
 | |
|     int idx = -1;
 | |
|     double distance = -1;  // double because long is limited to 2147483647 on some platforms and it's not enough
 | |
|     
 | |
|     for (PointConstPtrs::const_iterator it = points.begin(); it != points.end(); ++it) {
 | |
|         /* If the X distance of the candidate is > than the total distance of the
 | |
|            best previous candidate, we know we don't want it */
 | |
|         double d = sqr<double>((*this)(0) - (*it)->x());
 | |
|         if (distance != -1 && d > distance) continue;
 | |
|         
 | |
|         /* If the Y distance of the candidate is > than the total distance of the
 | |
|            best previous candidate, we know we don't want it */
 | |
|         d += sqr<double>((*this)(1) - (*it)->y());
 | |
|         if (distance != -1 && d > distance) continue;
 | |
|         
 | |
|         idx = it - points.begin();
 | |
|         distance = d;
 | |
|         
 | |
|         if (distance < EPSILON) break;
 | |
|     }
 | |
|     
 | |
|     return idx;
 | |
| }
 | |
| 
 | |
| int Point::nearest_point_index(const PointPtrs &points) const
 | |
| {
 | |
|     PointConstPtrs p;
 | |
|     p.reserve(points.size());
 | |
|     for (PointPtrs::const_iterator it = points.begin(); it != points.end(); ++it)
 | |
|         p.push_back(*it);
 | |
|     return this->nearest_point_index(p);
 | |
| }
 | |
| 
 | |
| bool Point::nearest_point(const Points &points, Point* point) const
 | |
| {
 | |
|     int idx = this->nearest_point_index(points);
 | |
|     if (idx == -1) return false;
 | |
|     *point = points.at(idx);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /* Three points are a counter-clockwise turn if ccw > 0, clockwise if
 | |
|  * ccw < 0, and collinear if ccw = 0 because ccw is a determinant that
 | |
|  * gives the signed area of the triangle formed by p1, p2 and this point.
 | |
|  * In other words it is the 2D cross product of p1-p2 and p1-this, i.e.
 | |
|  * z-component of their 3D cross product.
 | |
|  * We return double because it must be big enough to hold 2*max(|coordinate|)^2
 | |
|  */
 | |
| double Point::ccw(const Point &p1, const Point &p2) const
 | |
| {
 | |
|     static_assert(sizeof(coord_t) == 4, "Point::ccw() requires a 32 bit coord_t");
 | |
|     return cross2((p2 - p1).cast<int64_t>(), (*this - p1).cast<int64_t>());
 | |
| //    return cross2((p2 - p1).cast<double>(), (*this - p1).cast<double>());
 | |
| }
 | |
| 
 | |
| double Point::ccw(const Line &line) const
 | |
| {
 | |
|     return this->ccw(line.a, line.b);
 | |
| }
 | |
| 
 | |
| // returns the CCW angle between this-p1 and this-p2
 | |
| // i.e. this assumes a CCW rotation from p1 to p2 around this
 | |
| double Point::ccw_angle(const Point &p1, const Point &p2) const
 | |
| {
 | |
|     //FIXME this calculates an atan2 twice! Project one vector into the other!
 | |
|     double angle = atan2(p1.x() - (*this).x(), p1.y() - (*this).y())
 | |
|                  - atan2(p2.x() - (*this).x(), p2.y() - (*this).y());
 | |
|     // we only want to return only positive angles
 | |
|     return angle <= 0 ? angle + 2*PI : angle;
 | |
| }
 | |
| 
 | |
| Point Point::projection_onto(const MultiPoint &poly) const
 | |
| {
 | |
|     Point running_projection = poly.first_point();
 | |
|     double running_min = (running_projection - *this).cast<double>().norm();
 | |
|     
 | |
|     Lines lines = poly.lines();
 | |
|     for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) {
 | |
|         Point point_temp = this->projection_onto(*line);
 | |
|         if ((point_temp - *this).cast<double>().norm() < running_min) {
 | |
| 	        running_projection = point_temp;
 | |
| 	        running_min = (running_projection - *this).cast<double>().norm();
 | |
|         }
 | |
|     }
 | |
|     return running_projection;
 | |
| }
 | |
| 
 | |
| Point Point::projection_onto(const Line &line) const
 | |
| {
 | |
|     if (line.a == line.b) return line.a;
 | |
|     
 | |
|     /*
 | |
|         (Ported from VisiLibity by Karl J. Obermeyer)
 | |
|         The projection of point_temp onto the line determined by
 | |
|         line_segment_temp can be represented as an affine combination
 | |
|         expressed in the form projection of
 | |
|         Point = theta*line_segment_temp.first + (1.0-theta)*line_segment_temp.second.
 | |
|         If theta is outside the interval [0,1], then one of the Line_Segment's endpoints
 | |
|         must be closest to calling Point.
 | |
|     */
 | |
|     double lx = (double)(line.b(0) - line.a(0));
 | |
|     double ly = (double)(line.b(1) - line.a(1));
 | |
|     double theta = ( (double)(line.b(0) - (*this)(0))*lx + (double)(line.b(1)- (*this)(1))*ly ) 
 | |
|           / ( sqr<double>(lx) + sqr<double>(ly) );
 | |
|     
 | |
|     if (0.0 <= theta && theta <= 1.0)
 | |
|         return (theta * line.a.cast<coordf_t>() + (1.0-theta) * line.b.cast<coordf_t>()).cast<coord_t>();
 | |
|     
 | |
|     // Else pick closest endpoint.
 | |
|     return ((line.a - *this).cast<double>().squaredNorm() < (line.b - *this).cast<double>().squaredNorm()) ? line.a : line.b;
 | |
| }
 | |
| 
 | |
| BoundingBox get_extents(const Points &pts)
 | |
| { 
 | |
|     return BoundingBox(pts);
 | |
| }
 | |
| 
 | |
| BoundingBox get_extents(const std::vector<Points> &pts)
 | |
| {
 | |
|     BoundingBox bbox;
 | |
|     for (const Points &p : pts)
 | |
|         bbox.merge(get_extents(p));
 | |
|     return bbox;
 | |
| }
 | |
| 
 | |
| std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf)
 | |
| {
 | |
|     return stm << pointf(0) << "," << pointf(1);
 | |
| }
 | |
| 
 | |
| namespace int128 {
 | |
| 
 | |
| int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3)
 | |
| {
 | |
|     Slic3r::Vector v1(p2 - p1);
 | |
|     Slic3r::Vector v2(p3 - p1);
 | |
|     return Int128::sign_determinant_2x2_filtered(v1.x(), v1.y(), v2.x(), v2.y());
 | |
| }
 | |
| 
 | |
| int cross(const Vec2crd &v1, const Vec2crd &v2)
 | |
| {
 | |
|     return Int128::sign_determinant_2x2_filtered(v1.x(), v1.y(), v2.x(), v2.y());
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| }
 | 
