mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			1546 lines
		
	
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1546 lines
		
	
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "libslic3r.h"
 | |
| #include "Exception.hpp"
 | |
| #include "Geometry.hpp"
 | |
| #include "ClipperUtils.hpp"
 | |
| #include "ExPolygon.hpp"
 | |
| #include "Line.hpp"
 | |
| #include "clipper.hpp"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <list>
 | |
| #include <map>
 | |
| #include <numeric>
 | |
| #include <set>
 | |
| #include <utility>
 | |
| #include <stack>
 | |
| #include <vector>
 | |
| 
 | |
| #include <boost/algorithm/string/classification.hpp>
 | |
| #include <boost/algorithm/string/split.hpp>
 | |
| #include <boost/log/trivial.hpp>
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG
 | |
| #include "SVG.hpp"
 | |
| #endif
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG
 | |
| namespace boost { namespace polygon {
 | |
| 
 | |
| // The following code for the visualization of the boost Voronoi diagram is based on:
 | |
| //
 | |
| // Boost.Polygon library voronoi_graphic_utils.hpp header file
 | |
| //          Copyright Andrii Sydorchuk 2010-2012.
 | |
| // Distributed under the Boost Software License, Version 1.0.
 | |
| //    (See accompanying file LICENSE_1_0.txt or copy at
 | |
| //          http://www.boost.org/LICENSE_1_0.txt)
 | |
| template <typename CT>
 | |
| class voronoi_visual_utils {
 | |
|  public:
 | |
|   // Discretize parabolic Voronoi edge.
 | |
|   // Parabolic Voronoi edges are always formed by one point and one segment
 | |
|   // from the initial input set.
 | |
|   //
 | |
|   // Args:
 | |
|   //   point: input point.
 | |
|   //   segment: input segment.
 | |
|   //   max_dist: maximum discretization distance.
 | |
|   //   discretization: point discretization of the given Voronoi edge.
 | |
|   //
 | |
|   // Template arguments:
 | |
|   //   InCT: coordinate type of the input geometries (usually integer).
 | |
|   //   Point: point type, should model point concept.
 | |
|   //   Segment: segment type, should model segment concept.
 | |
|   //
 | |
|   // Important:
 | |
|   //   discretization should contain both edge endpoints initially.
 | |
|   template <class InCT1, class InCT2,
 | |
|             template<class> class Point,
 | |
|             template<class> class Segment>
 | |
|   static
 | |
|   typename enable_if<
 | |
|     typename gtl_and<
 | |
|       typename gtl_if<
 | |
|         typename is_point_concept<
 | |
|           typename geometry_concept< Point<InCT1> >::type
 | |
|         >::type
 | |
|       >::type,
 | |
|       typename gtl_if<
 | |
|         typename is_segment_concept<
 | |
|           typename geometry_concept< Segment<InCT2> >::type
 | |
|         >::type
 | |
|       >::type
 | |
|     >::type,
 | |
|     void
 | |
|   >::type discretize(
 | |
|       const Point<InCT1>& point,
 | |
|       const Segment<InCT2>& segment,
 | |
|       const CT max_dist,
 | |
|       std::vector< Point<CT> >* discretization) {
 | |
|     // Apply the linear transformation to move start point of the segment to
 | |
|     // the point with coordinates (0, 0) and the direction of the segment to
 | |
|     // coincide the positive direction of the x-axis.
 | |
|     CT segm_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
 | |
|     CT segm_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
 | |
|     CT sqr_segment_length = segm_vec_x * segm_vec_x + segm_vec_y * segm_vec_y;
 | |
| 
 | |
|     // Compute x-coordinates of the endpoints of the edge
 | |
|     // in the transformed space.
 | |
|     CT projection_start = sqr_segment_length *
 | |
|         get_point_projection((*discretization)[0], segment);
 | |
|     CT projection_end = sqr_segment_length *
 | |
|         get_point_projection((*discretization)[1], segment);
 | |
| 
 | |
|     // Compute parabola parameters in the transformed space.
 | |
|     // Parabola has next representation:
 | |
|     // f(x) = ((x-rot_x)^2 + rot_y^2) / (2.0*rot_y).
 | |
|     CT point_vec_x = cast(x(point)) - cast(x(low(segment)));
 | |
|     CT point_vec_y = cast(y(point)) - cast(y(low(segment)));
 | |
|     CT rot_x = segm_vec_x * point_vec_x + segm_vec_y * point_vec_y;
 | |
|     CT rot_y = segm_vec_x * point_vec_y - segm_vec_y * point_vec_x;
 | |
| 
 | |
|     // Save the last point.
 | |
|     Point<CT> last_point = (*discretization)[1];
 | |
|     discretization->pop_back();
 | |
| 
 | |
|     // Use stack to avoid recursion.
 | |
|     std::stack<CT> point_stack;
 | |
|     point_stack.push(projection_end);
 | |
|     CT cur_x = projection_start;
 | |
|     CT cur_y = parabola_y(cur_x, rot_x, rot_y);
 | |
| 
 | |
|     // Adjust max_dist parameter in the transformed space.
 | |
|     const CT max_dist_transformed = max_dist * max_dist * sqr_segment_length;
 | |
|     while (!point_stack.empty()) {
 | |
|       CT new_x = point_stack.top();
 | |
|       CT new_y = parabola_y(new_x, rot_x, rot_y);
 | |
| 
 | |
|       // Compute coordinates of the point of the parabola that is
 | |
|       // furthest from the current line segment.
 | |
|       CT mid_x = (new_y - cur_y) / (new_x - cur_x) * rot_y + rot_x;
 | |
|       CT mid_y = parabola_y(mid_x, rot_x, rot_y);
 | |
| 
 | |
|       // Compute maximum distance between the given parabolic arc
 | |
|       // and line segment that discretize it.
 | |
|       CT dist = (new_y - cur_y) * (mid_x - cur_x) -
 | |
|           (new_x - cur_x) * (mid_y - cur_y);
 | |
|       dist = dist * dist / ((new_y - cur_y) * (new_y - cur_y) +
 | |
|           (new_x - cur_x) * (new_x - cur_x));
 | |
|       if (dist <= max_dist_transformed) {
 | |
|         // Distance between parabola and line segment is less than max_dist.
 | |
|         point_stack.pop();
 | |
|         CT inter_x = (segm_vec_x * new_x - segm_vec_y * new_y) /
 | |
|             sqr_segment_length + cast(x(low(segment)));
 | |
|         CT inter_y = (segm_vec_x * new_y + segm_vec_y * new_x) /
 | |
|             sqr_segment_length + cast(y(low(segment)));
 | |
|         discretization->push_back(Point<CT>(inter_x, inter_y));
 | |
|         cur_x = new_x;
 | |
|         cur_y = new_y;
 | |
|       } else {
 | |
|         point_stack.push(mid_x);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Update last point.
 | |
|     discretization->back() = last_point;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Compute y(x) = ((x - a) * (x - a) + b * b) / (2 * b).
 | |
|   static CT parabola_y(CT x, CT a, CT b) {
 | |
|     return ((x - a) * (x - a) + b * b) / (b + b);
 | |
|   }
 | |
| 
 | |
|   // Get normalized length of the distance between:
 | |
|   //   1) point projection onto the segment
 | |
|   //   2) start point of the segment
 | |
|   // Return this length divided by the segment length. This is made to avoid
 | |
|   // sqrt computation during transformation from the initial space to the
 | |
|   // transformed one and vice versa. The assumption is made that projection of
 | |
|   // the point lies between the start-point and endpoint of the segment.
 | |
|   template <class InCT,
 | |
|             template<class> class Point,
 | |
|             template<class> class Segment>
 | |
|   static
 | |
|   typename enable_if<
 | |
|     typename gtl_and<
 | |
|       typename gtl_if<
 | |
|         typename is_point_concept<
 | |
|           typename geometry_concept< Point<int> >::type
 | |
|         >::type
 | |
|       >::type,
 | |
|       typename gtl_if<
 | |
|         typename is_segment_concept<
 | |
|           typename geometry_concept< Segment<long> >::type
 | |
|         >::type
 | |
|       >::type
 | |
|     >::type,
 | |
|     CT
 | |
|   >::type get_point_projection(
 | |
|       const Point<CT>& point, const Segment<InCT>& segment) {
 | |
|     CT segment_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
 | |
|     CT segment_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
 | |
|     CT point_vec_x = x(point) - cast(x(low(segment)));
 | |
|     CT point_vec_y = y(point) - cast(y(low(segment)));
 | |
|     CT sqr_segment_length =
 | |
|         segment_vec_x * segment_vec_x + segment_vec_y * segment_vec_y;
 | |
|     CT vec_dot = segment_vec_x * point_vec_x + segment_vec_y * point_vec_y;
 | |
|     return vec_dot / sqr_segment_length;
 | |
|   }
 | |
| 
 | |
|   template <typename InCT>
 | |
|   static CT cast(const InCT& value) {
 | |
|     return static_cast<CT>(value);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } } // namespace boost::polygon
 | |
| #endif
 | |
| 
 | |
| using namespace boost::polygon;  // provides also high() and low()
 | |
| 
 | |
| namespace Slic3r { namespace Geometry {
 | |
| 
 | |
| // This implementation is based on Andrew's monotone chain 2D convex hull algorithm
 | |
| Polygon convex_hull(Points pts)
 | |
| {
 | |
|     std::sort(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a.x() < b.x() || (a.x() == b.x() && a.y() < b.y()); });
 | |
|     pts.erase(std::unique(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a.x() == b.x() && a.y() == b.y(); }), pts.end());
 | |
| 
 | |
|     Polygon hull;
 | |
|     int n = (int)pts.size();
 | |
|     if (n >= 3) {
 | |
|         int k = 0;
 | |
|         hull.points.resize(2 * n);
 | |
|         // Build lower hull
 | |
|         for (int i = 0; i < n; ++ i) {
 | |
|             while (k >= 2 && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
 | |
|                 -- k;
 | |
|             hull[k ++] = pts[i];
 | |
|         }
 | |
|         // Build upper hull
 | |
|         for (int i = n-2, t = k+1; i >= 0; i--) {
 | |
|             while (k >= t && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
 | |
|                 -- k;
 | |
|             hull[k ++] = pts[i];
 | |
|         }
 | |
|         hull.points.resize(k);
 | |
|         assert(hull.points.front() == hull.points.back());
 | |
|         hull.points.pop_back();
 | |
|     }
 | |
|     return hull;
 | |
| }
 | |
| 
 | |
| Pointf3s convex_hull(Pointf3s points)
 | |
| {
 | |
|     assert(points.size() >= 3);
 | |
|     // sort input points
 | |
|     std::sort(points.begin(), points.end(), [](const Vec3d &a, const Vec3d &b){ return a.x() < b.x() || (a.x() == b.x() && a.y() < b.y()); });
 | |
| 
 | |
|     int n = points.size(), k = 0;
 | |
|     Pointf3s hull;
 | |
| 
 | |
|     if (n >= 3)
 | |
|     {
 | |
|         hull.resize(2 * n);
 | |
| 
 | |
|         // Build lower hull
 | |
|         for (int i = 0; i < n; ++i)
 | |
|         {
 | |
|             Point p = Point::new_scale(points[i](0), points[i](1));
 | |
|             while (k >= 2)
 | |
|             {
 | |
|                 Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
 | |
|                 Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
 | |
| 
 | |
|                 if (p.ccw(k2, k1) <= 0)
 | |
|                     --k;
 | |
|                 else
 | |
|                     break;
 | |
|             }
 | |
| 
 | |
|             hull[k++] = points[i];
 | |
|         }
 | |
| 
 | |
|         // Build upper hull
 | |
|         for (int i = n - 2, t = k + 1; i >= 0; --i)
 | |
|         {
 | |
|             Point p = Point::new_scale(points[i](0), points[i](1));
 | |
|             while (k >= t)
 | |
|             {
 | |
|                 Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
 | |
|                 Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
 | |
| 
 | |
|                 if (p.ccw(k2, k1) <= 0)
 | |
|                     --k;
 | |
|                 else
 | |
|                     break;
 | |
|             }
 | |
| 
 | |
|             hull[k++] = points[i];
 | |
|         }
 | |
| 
 | |
|         hull.resize(k);
 | |
| 
 | |
|         assert(hull.front() == hull.back());
 | |
|         hull.pop_back();
 | |
|     }
 | |
| 
 | |
|     return hull;
 | |
| }
 | |
| 
 | |
| Polygon convex_hull(const Polygons &polygons)
 | |
| {
 | |
|     Points pp;
 | |
|     for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) {
 | |
|         pp.insert(pp.end(), p->points.begin(), p->points.end());
 | |
|     }
 | |
|     return convex_hull(std::move(pp));
 | |
| }
 | |
| 
 | |
| bool directions_parallel(double angle1, double angle2, double max_diff)
 | |
| {
 | |
|     double diff = fabs(angle1 - angle2);
 | |
|     max_diff += EPSILON;
 | |
|     return diff < max_diff || fabs(diff - PI) < max_diff;
 | |
| }
 | |
| 
 | |
| template<class T>
 | |
| bool contains(const std::vector<T> &vector, const Point &point)
 | |
| {
 | |
|     for (typename std::vector<T>::const_iterator it = vector.begin(); it != vector.end(); ++it) {
 | |
|         if (it->contains(point)) return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| template bool contains(const ExPolygons &vector, const Point &point);
 | |
| 
 | |
| double rad2deg_dir(double angle)
 | |
| {
 | |
|     angle = (angle < PI) ? (-angle + PI/2.0) : (angle + PI/2.0);
 | |
|     if (angle < 0) angle += PI;
 | |
|     return rad2deg(angle);
 | |
| }
 | |
| 
 | |
| Point circle_center_taubin_newton(const Points::const_iterator& input_begin, const Points::const_iterator& input_end, size_t cycles)
 | |
| {
 | |
|     Vec2ds tmp;
 | |
|     tmp.reserve(std::distance(input_begin, input_end));
 | |
|     std::transform(input_begin, input_end, std::back_inserter(tmp), [] (const Point& in) { return unscale(in); } );
 | |
|     Vec2d center = circle_center_taubin_newton(tmp.cbegin(), tmp.end(), cycles);
 | |
| 	return Point::new_scale(center.x(), center.y());
 | |
| }
 | |
| 
 | |
| /// Adapted from work in "Circular and Linear Regression: Fitting circles and lines by least squares", pg 126
 | |
| /// Returns a point corresponding to the center of a circle for which all of the points from input_begin to input_end
 | |
| /// lie on.
 | |
| Vec2d circle_center_taubin_newton(const Vec2ds::const_iterator& input_begin, const Vec2ds::const_iterator& input_end, size_t cycles)
 | |
| {
 | |
|     // calculate the centroid of the data set
 | |
|     const Vec2d sum = std::accumulate(input_begin, input_end, Vec2d(0,0));
 | |
|     const size_t n = std::distance(input_begin, input_end);
 | |
|     const double n_flt = static_cast<double>(n);
 | |
|     const Vec2d centroid { sum / n_flt };
 | |
| 
 | |
|     // Compute the normalized moments of the data set.
 | |
|     double Mxx = 0, Myy = 0, Mxy = 0, Mxz = 0, Myz = 0, Mzz = 0;
 | |
|     for (auto it = input_begin; it < input_end; ++it) {
 | |
|         // center/normalize the data.
 | |
|         double Xi {it->x() - centroid.x()};
 | |
|         double Yi {it->y() - centroid.y()};
 | |
|         double Zi {Xi*Xi + Yi*Yi};
 | |
|         Mxy += (Xi*Yi);
 | |
|         Mxx += (Xi*Xi);
 | |
|         Myy += (Yi*Yi);
 | |
|         Mxz += (Xi*Zi);
 | |
|         Myz += (Yi*Zi);
 | |
|         Mzz += (Zi*Zi);
 | |
|     }
 | |
| 
 | |
|     // divide by number of points to get the moments
 | |
|     Mxx /= n_flt;
 | |
|     Myy /= n_flt;
 | |
|     Mxy /= n_flt;
 | |
|     Mxz /= n_flt;
 | |
|     Myz /= n_flt;
 | |
|     Mzz /= n_flt;
 | |
| 
 | |
|     // Compute the coefficients of the characteristic polynomial for the circle
 | |
|     // eq 5.60
 | |
|     const double Mz {Mxx + Myy}; // xx + yy = z
 | |
|     const double Cov_xy {Mxx*Myy - Mxy*Mxy}; // this shows up a couple times so cache it here.
 | |
|     const double C3 {4.0*Mz};
 | |
|     const double C2 {-3.0*(Mz*Mz) - Mzz};
 | |
|     const double C1 {Mz*(Mzz - (Mz*Mz)) + 4.0*Mz*Cov_xy - (Mxz*Mxz) - (Myz*Myz)};
 | |
|     const double C0 {(Mxz*Mxz)*Myy + (Myz*Myz)*Mxx - 2.0*Mxz*Myz*Mxy - Cov_xy*(Mzz - (Mz*Mz))};
 | |
| 
 | |
|     const double C22 = {C2 + C2};
 | |
|     const double C33 = {C3 + C3 + C3};
 | |
| 
 | |
|     // solve the characteristic polynomial with Newton's method.
 | |
|     double xnew = 0.0;
 | |
|     double ynew = 1e20;
 | |
| 
 | |
|     for (size_t i = 0; i < cycles; ++i) {
 | |
|         const double yold {ynew};
 | |
|         ynew = C0 + xnew * (C1 + xnew*(C2 + xnew * C3));
 | |
|         if (std::abs(ynew) > std::abs(yold)) {
 | |
| 			BOOST_LOG_TRIVIAL(error) << "Geometry: Fit is going in the wrong direction.\n";
 | |
|             return Vec2d(std::nan(""), std::nan(""));
 | |
|         }
 | |
|         const double Dy {C1 + xnew*(C22 + xnew*C33)};
 | |
| 
 | |
|         const double xold {xnew};
 | |
|         xnew = xold - (ynew / Dy);
 | |
| 
 | |
|         if (std::abs((xnew-xold) / xnew) < 1e-12) i = cycles; // converged, we're done here
 | |
| 
 | |
|         if (xnew < 0) {
 | |
|             // reset, we went negative
 | |
|             xnew = 0.0;
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     // compute the determinant and the circle's parameters now that we've solved.
 | |
|     double DET = xnew*xnew - xnew*Mz + Cov_xy;
 | |
| 
 | |
|     Vec2d center(Mxz * (Myy - xnew) - Myz * Mxy, Myz * (Mxx - xnew) - Mxz*Mxy);
 | |
|     center /= (DET * 2.);
 | |
|     return center + centroid;
 | |
| }
 | |
| 
 | |
| void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval)
 | |
| {
 | |
|     Polygons pp;
 | |
|     for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++it) {
 | |
|         Polygon p = *it;
 | |
|         p.points.push_back(p.points.front());
 | |
|         p.points = MultiPoint::_douglas_peucker(p.points, tolerance);
 | |
|         p.points.pop_back();
 | |
|         pp.push_back(p);
 | |
|     }
 | |
|     *retval = Slic3r::simplify_polygons(pp);
 | |
| }
 | |
| 
 | |
| double linint(double value, double oldmin, double oldmax, double newmin, double newmax)
 | |
| {
 | |
|     return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| // Point with a weight, by which the points are sorted.
 | |
| // If the points have the same weight, sort them lexicographically by their positions.
 | |
| struct ArrangeItem {
 | |
|     ArrangeItem() {}
 | |
|     Vec2d    pos;
 | |
|     coordf_t  weight;
 | |
|     bool operator<(const ArrangeItem &other) const {
 | |
|         return weight < other.weight ||
 | |
|             ((weight == other.weight) && (pos(1) < other.pos(1) || (pos(1) == other.pos(1) && pos(0) < other.pos(0))));
 | |
|     }
 | |
| };
 | |
| 
 | |
| Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box)
 | |
| {
 | |
|     // Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm.
 | |
|     const Vec2d       cell_size(part_size(0) + gap, part_size(1) + gap);
 | |
| 
 | |
|     const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ? 
 | |
|         *bed_bounding_box :
 | |
|         // Bogus bed size, large enough not to trigger the unsufficient bed size error.
 | |
|         BoundingBoxf(
 | |
|             Vec2d(0, 0),
 | |
|             Vec2d(cell_size(0) * num_parts, cell_size(1) * num_parts));
 | |
| 
 | |
|     // This is how many cells we have available into which to put parts.
 | |
|     size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0)));
 | |
|     size_t cellh = size_t(floor((bed_bbox.size()(1) + gap) / cell_size(1)));
 | |
|     if (num_parts > cellw * cellh)
 | |
|         throw Slic3r::InvalidArgument("%zu parts won't fit in your print area!\n", num_parts);
 | |
|     
 | |
|     // Get a bounding box of cellw x cellh cells, centered at the center of the bed.
 | |
|     Vec2d       cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);
 | |
|     Vec2d       cells_offset(bed_bbox.center() - 0.5 * cells_size);
 | |
|     BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset);
 | |
|     
 | |
|     // List of cells, sorted by distance from center.
 | |
|     std::vector<ArrangeItem> cellsorder(cellw * cellh, ArrangeItem());
 | |
|     for (size_t j = 0; j < cellh; ++ j) {
 | |
|         // Center of the jth row on the bed.
 | |
|         coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min(1), cells_bb.max(1));
 | |
|         // Offset from the bed center.
 | |
|         coordf_t yd = cells_bb.center()(1) - cy;
 | |
|         for (size_t i = 0; i < cellw; ++ i) {
 | |
|             // Center of the ith column on the bed.
 | |
|             coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min(0), cells_bb.max(0));
 | |
|             // Offset from the bed center.
 | |
|             coordf_t xd = cells_bb.center()(0) - cx;
 | |
|             // Cell with a distance from the bed center.
 | |
|             ArrangeItem &ci = cellsorder[j * cellw + i];
 | |
|             // Cell center
 | |
|             ci.pos(0) = cx;
 | |
|             ci.pos(1) = cy;
 | |
|             // Square distance of the cell center to the bed center.
 | |
|             ci.weight = xd * xd + yd * yd;
 | |
|         }
 | |
|     }
 | |
|     // Sort the cells lexicographically by their distances to the bed center and left to right / bttom to top.
 | |
|     std::sort(cellsorder.begin(), cellsorder.end());
 | |
|     cellsorder.erase(cellsorder.begin() + num_parts, cellsorder.end());
 | |
| 
 | |
|     // Return the (left,top) corners of the cells.
 | |
|     Pointfs positions;
 | |
|     positions.reserve(num_parts);
 | |
|     for (std::vector<ArrangeItem>::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it)
 | |
|         positions.push_back(Vec2d(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1)));
 | |
|     return positions;
 | |
| }
 | |
| #else
 | |
| class ArrangeItem {
 | |
| public:
 | |
|     Vec2d pos = Vec2d::Zero();
 | |
|     size_t index_x, index_y;
 | |
|     coordf_t dist;
 | |
| };
 | |
| class ArrangeItemIndex {
 | |
| public:
 | |
|     coordf_t index;
 | |
|     ArrangeItem item;
 | |
|     ArrangeItemIndex(coordf_t _index, ArrangeItem _item) : index(_index), item(_item) {};
 | |
| };
 | |
| 
 | |
| bool
 | |
| arrange(size_t total_parts, const Vec2d &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions)
 | |
| {
 | |
|     positions.clear();
 | |
| 
 | |
|     Vec2d part = part_size;
 | |
| 
 | |
|     // use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
 | |
|     part(0) += dist;
 | |
|     part(1) += dist;
 | |
|     
 | |
|     Vec2d area(Vec2d::Zero());
 | |
|     if (bb != NULL && bb->defined) {
 | |
|         area = bb->size();
 | |
|     } else {
 | |
|         // bogus area size, large enough not to trigger the error below
 | |
|         area(0) = part(0) * total_parts;
 | |
|         area(1) = part(1) * total_parts;
 | |
|     }
 | |
|     
 | |
|     // this is how many cells we have available into which to put parts
 | |
|     size_t cellw = floor((area(0) + dist) / part(0));
 | |
|     size_t cellh = floor((area(1) + dist) / part(1));
 | |
|     if (total_parts > (cellw * cellh))
 | |
|         return false;
 | |
|     
 | |
|     // total space used by cells
 | |
|     Vec2d cells(cellw * part(0), cellh * part(1));
 | |
|     
 | |
|     // bounding box of total space used by cells
 | |
|     BoundingBoxf cells_bb;
 | |
|     cells_bb.merge(Vec2d(0,0)); // min
 | |
|     cells_bb.merge(cells);  // max
 | |
|     
 | |
|     // center bounding box to area
 | |
|     cells_bb.translate(
 | |
|         (area(0) - cells(0)) / 2,
 | |
|         (area(1) - cells(1)) / 2
 | |
|     );
 | |
|     
 | |
|     // list of cells, sorted by distance from center
 | |
|     std::vector<ArrangeItemIndex> cellsorder;
 | |
|     
 | |
|     // work out distance for all cells, sort into list
 | |
|     for (size_t i = 0; i <= cellw-1; ++i) {
 | |
|         for (size_t j = 0; j <= cellh-1; ++j) {
 | |
|             coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min(0), cells_bb.max(0));
 | |
|             coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min(1), cells_bb.max(1));
 | |
|             
 | |
|             coordf_t xd = fabs((area(0) / 2) - cx);
 | |
|             coordf_t yd = fabs((area(1) / 2) - cy);
 | |
|             
 | |
|             ArrangeItem c;
 | |
|             c.pos(0) = cx;
 | |
|             c.pos(1) = cy;
 | |
|             c.index_x = i;
 | |
|             c.index_y = j;
 | |
|             c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5));
 | |
|             
 | |
|             // binary insertion sort
 | |
|             {
 | |
|                 coordf_t index = c.dist;
 | |
|                 size_t low = 0;
 | |
|                 size_t high = cellsorder.size();
 | |
|                 while (low < high) {
 | |
|                     size_t mid = (low + ((high - low) / 2)) | 0;
 | |
|                     coordf_t midval = cellsorder[mid].index;
 | |
|                     
 | |
|                     if (midval < index) {
 | |
|                         low = mid + 1;
 | |
|                     } else if (midval > index) {
 | |
|                         high = mid;
 | |
|                     } else {
 | |
|                         cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c));
 | |
|                         goto ENDSORT;
 | |
|                     }
 | |
|                 }
 | |
|                 cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c));
 | |
|             }
 | |
|             ENDSORT: ;
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     // the extents of cells actually used by objects
 | |
|     coordf_t lx = 0;
 | |
|     coordf_t ty = 0;
 | |
|     coordf_t rx = 0;
 | |
|     coordf_t by = 0;
 | |
| 
 | |
|     // now find cells actually used by objects, map out the extents so we can position correctly
 | |
|     for (size_t i = 1; i <= total_parts; ++i) {
 | |
|         ArrangeItemIndex c = cellsorder[i - 1];
 | |
|         coordf_t cx = c.item.index_x;
 | |
|         coordf_t cy = c.item.index_y;
 | |
|         if (i == 1) {
 | |
|             lx = rx = cx;
 | |
|             ty = by = cy;
 | |
|         } else {
 | |
|             if (cx > rx) rx = cx;
 | |
|             if (cx < lx) lx = cx;
 | |
|             if (cy > by) by = cy;
 | |
|             if (cy < ty) ty = cy;
 | |
|         }
 | |
|     }
 | |
|     // now we actually place objects into cells, positioned such that the left and bottom borders are at 0
 | |
|     for (size_t i = 1; i <= total_parts; ++i) {
 | |
|         ArrangeItemIndex c = cellsorder.front();
 | |
|         cellsorder.erase(cellsorder.begin());
 | |
|         coordf_t cx = c.item.index_x - lx;
 | |
|         coordf_t cy = c.item.index_y - ty;
 | |
|         
 | |
|         positions.push_back(Vec2d(cx * part(0), cy * part(1)));
 | |
|     }
 | |
|     
 | |
|     if (bb != NULL && bb->defined) {
 | |
|         for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) {
 | |
|             p->x() += bb->min(0);
 | |
|             p->y() += bb->min(1);
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef SLIC3R_DEBUG
 | |
| // The following code for the visualization of the boost Voronoi diagram is based on:
 | |
| //
 | |
| // Boost.Polygon library voronoi_visualizer.cpp file
 | |
| //          Copyright Andrii Sydorchuk 2010-2012.
 | |
| // Distributed under the Boost Software License, Version 1.0.
 | |
| //    (See accompanying file LICENSE_1_0.txt or copy at
 | |
| //          http://www.boost.org/LICENSE_1_0.txt)
 | |
| namespace Voronoi { namespace Internal {
 | |
| 
 | |
|     typedef double coordinate_type;
 | |
|     typedef boost::polygon::point_data<coordinate_type> point_type;
 | |
|     typedef boost::polygon::segment_data<coordinate_type> segment_type;
 | |
|     typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
 | |
|     typedef boost::polygon::voronoi_diagram<coordinate_type> VD;
 | |
|     typedef VD::cell_type cell_type;
 | |
|     typedef VD::cell_type::source_index_type source_index_type;
 | |
|     typedef VD::cell_type::source_category_type source_category_type;
 | |
|     typedef VD::edge_type edge_type;
 | |
|     typedef VD::cell_container_type cell_container_type;
 | |
|     typedef VD::cell_container_type vertex_container_type;
 | |
|     typedef VD::edge_container_type edge_container_type;
 | |
|     typedef VD::const_cell_iterator const_cell_iterator;
 | |
|     typedef VD::const_vertex_iterator const_vertex_iterator;
 | |
|     typedef VD::const_edge_iterator const_edge_iterator;
 | |
| 
 | |
|     static const std::size_t EXTERNAL_COLOR = 1;
 | |
| 
 | |
|     inline void color_exterior(const VD::edge_type* edge) 
 | |
|     {
 | |
|         if (edge->color() == EXTERNAL_COLOR)
 | |
|             return;
 | |
|         edge->color(EXTERNAL_COLOR);
 | |
|         edge->twin()->color(EXTERNAL_COLOR);
 | |
|         const VD::vertex_type* v = edge->vertex1();
 | |
|         if (v == NULL || !edge->is_primary())
 | |
|             return;
 | |
|         v->color(EXTERNAL_COLOR);
 | |
|         const VD::edge_type* e = v->incident_edge();
 | |
|         do {
 | |
|             color_exterior(e);
 | |
|             e = e->rot_next();
 | |
|         } while (e != v->incident_edge());
 | |
|     }
 | |
| 
 | |
|     inline point_type retrieve_point(const std::vector<segment_type> &segments, const cell_type& cell) 
 | |
|     {
 | |
|         assert(cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT || cell.source_category() == SOURCE_CATEGORY_SEGMENT_END_POINT);
 | |
|         return (cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) ? low(segments[cell.source_index()]) : high(segments[cell.source_index()]);
 | |
|     }
 | |
| 
 | |
|     inline void clip_infinite_edge(const std::vector<segment_type> &segments, const edge_type& edge, coordinate_type bbox_max_size, std::vector<point_type>* clipped_edge) 
 | |
|     {
 | |
|         const cell_type& cell1 = *edge.cell();
 | |
|         const cell_type& cell2 = *edge.twin()->cell();
 | |
|         point_type origin, direction;
 | |
|         // Infinite edges could not be created by two segment sites.
 | |
|         if (cell1.contains_point() && cell2.contains_point()) {
 | |
|             point_type p1 = retrieve_point(segments, cell1);
 | |
|             point_type p2 = retrieve_point(segments, cell2);
 | |
|             origin.x((p1.x() + p2.x()) * 0.5);
 | |
|             origin.y((p1.y() + p2.y()) * 0.5);
 | |
|             direction.x(p1.y() - p2.y());
 | |
|             direction.y(p2.x() - p1.x());
 | |
|         } else {
 | |
|             origin = cell1.contains_segment() ? retrieve_point(segments, cell2) : retrieve_point(segments, cell1);
 | |
|             segment_type segment = cell1.contains_segment() ? segments[cell1.source_index()] : segments[cell2.source_index()];
 | |
|             coordinate_type dx = high(segment).x() - low(segment).x();
 | |
|             coordinate_type dy = high(segment).y() - low(segment).y();
 | |
|             if ((low(segment) == origin) ^ cell1.contains_point()) {
 | |
|                 direction.x(dy);
 | |
|                 direction.y(-dx);
 | |
|             } else {
 | |
|                 direction.x(-dy);
 | |
|                 direction.y(dx);
 | |
|             }
 | |
|         }
 | |
|         coordinate_type koef = bbox_max_size / (std::max)(fabs(direction.x()), fabs(direction.y()));
 | |
|         if (edge.vertex0() == NULL) {
 | |
|             clipped_edge->push_back(point_type(
 | |
|                 origin.x() - direction.x() * koef,
 | |
|                 origin.y() - direction.y() * koef));
 | |
|         } else {
 | |
|             clipped_edge->push_back(
 | |
|                 point_type(edge.vertex0()->x(), edge.vertex0()->y()));
 | |
|         }
 | |
|         if (edge.vertex1() == NULL) {
 | |
|             clipped_edge->push_back(point_type(
 | |
|                 origin.x() + direction.x() * koef,
 | |
|                 origin.y() + direction.y() * koef));
 | |
|         } else {
 | |
|             clipped_edge->push_back(
 | |
|                 point_type(edge.vertex1()->x(), edge.vertex1()->y()));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     inline void sample_curved_edge(const std::vector<segment_type> &segments, const edge_type& edge, std::vector<point_type> &sampled_edge, coordinate_type max_dist) 
 | |
|     {
 | |
|         point_type point = edge.cell()->contains_point() ?
 | |
|             retrieve_point(segments, *edge.cell()) :
 | |
|             retrieve_point(segments, *edge.twin()->cell());
 | |
|         segment_type segment = edge.cell()->contains_point() ?
 | |
|             segments[edge.twin()->cell()->source_index()] :
 | |
|             segments[edge.cell()->source_index()];
 | |
|         ::boost::polygon::voronoi_visual_utils<coordinate_type>::discretize(point, segment, max_dist, &sampled_edge);
 | |
|     }
 | |
| 
 | |
| } /* namespace Internal */ } // namespace Voronoi
 | |
| 
 | |
| static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ boost::polygon::voronoi_diagram<double> &vd, const ThickPolylines *polylines, const char *path)
 | |
| {
 | |
|     const double        scale                       = 0.2;
 | |
|     const std::string   inputSegmentPointColor      = "lightseagreen";
 | |
|     const coord_t       inputSegmentPointRadius     = coord_t(0.09 * scale / SCALING_FACTOR); 
 | |
|     const std::string   inputSegmentColor           = "lightseagreen";
 | |
|     const coord_t       inputSegmentLineWidth       = coord_t(0.03 * scale / SCALING_FACTOR);
 | |
| 
 | |
|     const std::string   voronoiPointColor           = "black";
 | |
|     const coord_t       voronoiPointRadius          = coord_t(0.06 * scale / SCALING_FACTOR);
 | |
|     const std::string   voronoiLineColorPrimary     = "black";
 | |
|     const std::string   voronoiLineColorSecondary   = "green";
 | |
|     const std::string   voronoiArcColor             = "red";
 | |
|     const coord_t       voronoiLineWidth            = coord_t(0.02 * scale / SCALING_FACTOR);
 | |
| 
 | |
|     const bool          internalEdgesOnly           = false;
 | |
|     const bool          primaryEdgesOnly            = false;
 | |
| 
 | |
|     BoundingBox bbox = BoundingBox(lines);
 | |
|     bbox.min(0) -= coord_t(1. / SCALING_FACTOR);
 | |
|     bbox.min(1) -= coord_t(1. / SCALING_FACTOR);
 | |
|     bbox.max(0) += coord_t(1. / SCALING_FACTOR);
 | |
|     bbox.max(1) += coord_t(1. / SCALING_FACTOR);
 | |
| 
 | |
|     ::Slic3r::SVG svg(path, bbox);
 | |
| 
 | |
|     if (polylines != NULL)
 | |
|         svg.draw(*polylines, "lime", "lime", voronoiLineWidth);
 | |
| 
 | |
| //    bbox.scale(1.2);
 | |
|     // For clipping of half-lines to some reasonable value.
 | |
|     // The line will then be clipped by the SVG viewer anyway.
 | |
|     const double bbox_dim_max = double(bbox.max(0) - bbox.min(0)) + double(bbox.max(1) - bbox.min(1));
 | |
|     // For the discretization of the Voronoi parabolic segments.
 | |
|     const double discretization_step = 0.0005 * bbox_dim_max;
 | |
| 
 | |
|     // Make a copy of the input segments with the double type.
 | |
|     std::vector<Voronoi::Internal::segment_type> segments;
 | |
|     for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++ it)
 | |
|         segments.push_back(Voronoi::Internal::segment_type(
 | |
|             Voronoi::Internal::point_type(double(it->a(0)), double(it->a(1))), 
 | |
|             Voronoi::Internal::point_type(double(it->b(0)), double(it->b(1)))));
 | |
|     
 | |
|     // Color exterior edges.
 | |
|     for (boost::polygon::voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it)
 | |
|         if (!it->is_finite())
 | |
|             Voronoi::Internal::color_exterior(&(*it));
 | |
| 
 | |
|     // Draw the end points of the input polygon.
 | |
|     for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) {
 | |
|         svg.draw(it->a, inputSegmentPointColor, inputSegmentPointRadius);
 | |
|         svg.draw(it->b, inputSegmentPointColor, inputSegmentPointRadius);
 | |
|     }
 | |
|     // Draw the input polygon.
 | |
|     for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it)
 | |
|         svg.draw(Line(Point(coord_t(it->a(0)), coord_t(it->a(1))), Point(coord_t(it->b(0)), coord_t(it->b(1)))), inputSegmentColor, inputSegmentLineWidth);
 | |
| 
 | |
| #if 1
 | |
|     // Draw voronoi vertices.
 | |
|     for (boost::polygon::voronoi_diagram<double>::const_vertex_iterator it = vd.vertices().begin(); it != vd.vertices().end(); ++it)
 | |
|         if (! internalEdgesOnly || it->color() != Voronoi::Internal::EXTERNAL_COLOR)
 | |
|             svg.draw(Point(coord_t(it->x()), coord_t(it->y())), voronoiPointColor, voronoiPointRadius);
 | |
| 
 | |
|     for (boost::polygon::voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it) {
 | |
|         if (primaryEdgesOnly && !it->is_primary())
 | |
|             continue;
 | |
|         if (internalEdgesOnly && (it->color() == Voronoi::Internal::EXTERNAL_COLOR))
 | |
|             continue;
 | |
|         std::vector<Voronoi::Internal::point_type> samples;
 | |
|         std::string color = voronoiLineColorPrimary;
 | |
|         if (!it->is_finite()) {
 | |
|             Voronoi::Internal::clip_infinite_edge(segments, *it, bbox_dim_max, &samples);
 | |
|             if (! it->is_primary())
 | |
|                 color = voronoiLineColorSecondary;
 | |
|         } else {
 | |
|             // Store both points of the segment into samples. sample_curved_edge will split the initial line
 | |
|             // until the discretization_step is reached.
 | |
|             samples.push_back(Voronoi::Internal::point_type(it->vertex0()->x(), it->vertex0()->y()));
 | |
|             samples.push_back(Voronoi::Internal::point_type(it->vertex1()->x(), it->vertex1()->y()));
 | |
|             if (it->is_curved()) {
 | |
|                 Voronoi::Internal::sample_curved_edge(segments, *it, samples, discretization_step);
 | |
|                 color = voronoiArcColor;
 | |
|             } else if (! it->is_primary())
 | |
|                 color = voronoiLineColorSecondary;
 | |
|         }
 | |
|         for (std::size_t i = 0; i + 1 < samples.size(); ++i)
 | |
|             svg.draw(Line(Point(coord_t(samples[i].x()), coord_t(samples[i].y())), Point(coord_t(samples[i+1].x()), coord_t(samples[i+1].y()))), color, voronoiLineWidth);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (polylines != NULL)
 | |
|         svg.draw(*polylines, "blue", voronoiLineWidth);
 | |
| 
 | |
|     svg.Close();
 | |
| }
 | |
| #endif /* SLIC3R_DEBUG */
 | |
| 
 | |
| // Euclidian distance of two boost::polygon points.
 | |
| template<typename T>
 | |
| T dist(const boost::polygon::point_data<T> &p1,const boost::polygon::point_data<T> &p2)
 | |
| {
 | |
| 	T dx = p2(0) - p1(0);
 | |
| 	T dy = p2(1) - p1(1);
 | |
| 	return sqrt(dx*dx+dy*dy);
 | |
| }
 | |
| 
 | |
| // Find a foot point of "px" on a segment "seg".
 | |
| template<typename segment_type, typename point_type>
 | |
| inline point_type project_point_to_segment(segment_type &seg, point_type &px)
 | |
| {
 | |
|     typedef typename point_type::coordinate_type T;
 | |
|     const point_type &p0 = low(seg);
 | |
|     const point_type &p1 = high(seg);
 | |
|     const point_type  dir(p1(0)-p0(0), p1(1)-p0(1));
 | |
|     const point_type  dproj(px(0)-p0(0), px(1)-p0(1));
 | |
|     const T           t = (dir(0)*dproj(0) + dir(1)*dproj(1)) / (dir(0)*dir(0) + dir(1)*dir(1));
 | |
|     assert(t >= T(-1e-6) && t <= T(1. + 1e-6));
 | |
|     return point_type(p0(0) + t*dir(0), p0(1) + t*dir(1));
 | |
| }
 | |
| 
 | |
| template<typename VD, typename SEGMENTS>
 | |
| inline const typename VD::point_type retrieve_cell_point(const typename VD::cell_type& cell, const SEGMENTS &segments)
 | |
| {
 | |
|     assert(cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT || cell.source_category() == SOURCE_CATEGORY_SEGMENT_END_POINT);
 | |
|     return (cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) ? low(segments[cell.source_index()]) : high(segments[cell.source_index()]);
 | |
| }
 | |
| 
 | |
| template<typename VD, typename SEGMENTS>
 | |
| inline std::pair<typename VD::coord_type, typename VD::coord_type>
 | |
| measure_edge_thickness(const VD &vd, const typename VD::edge_type& edge, const SEGMENTS &segments)
 | |
| {
 | |
| 	typedef typename VD::coord_type T;
 | |
|     const typename VD::point_type  pa(edge.vertex0()->x(), edge.vertex0()->y());
 | |
|     const typename VD::point_type  pb(edge.vertex1()->x(), edge.vertex1()->y());
 | |
|     const typename VD::cell_type  &cell1 = *edge.cell();
 | |
|     const typename VD::cell_type  &cell2 = *edge.twin()->cell();
 | |
|     if (cell1.contains_segment()) {
 | |
|         if (cell2.contains_segment()) {
 | |
|             // Both cells contain a linear segment, the left / right cells are symmetric.
 | |
|             // Project pa, pb to the left segment.
 | |
|             const typename VD::segment_type segment1 = segments[cell1.source_index()];
 | |
|             const typename VD::point_type p1a = project_point_to_segment(segment1, pa);
 | |
|             const typename VD::point_type p1b = project_point_to_segment(segment1, pb);
 | |
|             return std::pair<T, T>(T(2.)*dist(pa, p1a), T(2.)*dist(pb, p1b));
 | |
|         } else {
 | |
|             // 1st cell contains a linear segment, 2nd cell contains a point.
 | |
|             // The medial axis between the cells is a parabolic arc.
 | |
|             // Project pa, pb to the left segment.
 | |
|             const typename  VD::point_type p2 = retrieve_cell_point<VD>(cell2, segments);
 | |
|             return std::pair<T, T>(T(2.)*dist(pa, p2), T(2.)*dist(pb, p2));
 | |
|         }
 | |
|     } else if (cell2.contains_segment()) {
 | |
|         // 1st cell contains a point, 2nd cell contains a linear segment.
 | |
|         // The medial axis between the cells is a parabolic arc.
 | |
|         const typename VD::point_type p1 = retrieve_cell_point<VD>(cell1, segments);
 | |
|         return std::pair<T, T>(T(2.)*dist(pa, p1), T(2.)*dist(pb, p1));
 | |
|     } else {
 | |
|         // Both cells contain a point. The left / right regions are triangular and symmetric.
 | |
|         const typename VD::point_type p1 = retrieve_cell_point<VD>(cell1, segments);
 | |
|         return std::pair<T, T>(T(2.)*dist(pa, p1), T(2.)*dist(pb, p1));
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Converts the Line instances of Lines vector to VD::segment_type.
 | |
| template<typename VD>
 | |
| class Lines2VDSegments
 | |
| {
 | |
| public:
 | |
|     Lines2VDSegments(const Lines &alines) : lines(alines) {}
 | |
|     typename VD::segment_type operator[](size_t idx) const {
 | |
|         return typename VD::segment_type(
 | |
|             typename VD::point_type(typename VD::coord_type(lines[idx].a(0)), typename VD::coord_type(lines[idx].a(1))),
 | |
|             typename VD::point_type(typename VD::coord_type(lines[idx].b(0)), typename VD::coord_type(lines[idx].b(1))));
 | |
|     }
 | |
| private:
 | |
|     const Lines &lines;
 | |
| };
 | |
| 
 | |
| void
 | |
| MedialAxis::build(ThickPolylines* polylines)
 | |
| {
 | |
|     construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd);
 | |
|     
 | |
|     /*
 | |
|     // DEBUG: dump all Voronoi edges
 | |
|     {
 | |
|         for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
 | |
|             if (edge->is_infinite()) continue;
 | |
|             
 | |
|             ThickPolyline polyline;
 | |
|             polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
 | |
|             polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
 | |
|             polylines->push_back(polyline);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
|     */
 | |
|     
 | |
|     //typedef const VD::vertex_type vert_t;
 | |
|     typedef const VD::edge_type   edge_t;
 | |
|     
 | |
|     // collect valid edges (i.e. prune those not belonging to MAT)
 | |
|     // note: this keeps twins, so it inserts twice the number of the valid edges
 | |
|     this->valid_edges.clear();
 | |
|     {
 | |
|         std::set<const VD::edge_type*> seen_edges;
 | |
|         for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
 | |
|             // if we only process segments representing closed loops, none if the
 | |
|             // infinite edges (if any) would be part of our MAT anyway
 | |
|             if (edge->is_secondary() || edge->is_infinite()) continue;
 | |
|         
 | |
|             // don't re-validate twins
 | |
|             if (seen_edges.find(&*edge) != seen_edges.end()) continue;  // TODO: is this needed?
 | |
|             seen_edges.insert(&*edge);
 | |
|             seen_edges.insert(edge->twin());
 | |
|             
 | |
|             if (!this->validate_edge(&*edge)) continue;
 | |
|             this->valid_edges.insert(&*edge);
 | |
|             this->valid_edges.insert(edge->twin());
 | |
|         }
 | |
|     }
 | |
|     this->edges = this->valid_edges;
 | |
|     
 | |
|     // iterate through the valid edges to build polylines
 | |
|     while (!this->edges.empty()) {
 | |
|         const edge_t* edge = *this->edges.begin();
 | |
|         
 | |
|         // start a polyline
 | |
|         ThickPolyline polyline;
 | |
|         polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
 | |
|         polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
 | |
|         polyline.width.push_back(this->thickness[edge].first);
 | |
|         polyline.width.push_back(this->thickness[edge].second);
 | |
|         
 | |
|         // remove this edge and its twin from the available edges
 | |
|         (void)this->edges.erase(edge);
 | |
|         (void)this->edges.erase(edge->twin());
 | |
|         
 | |
|         // get next points
 | |
|         this->process_edge_neighbors(edge, &polyline);
 | |
|         
 | |
|         // get previous points
 | |
|         {
 | |
|             ThickPolyline rpolyline;
 | |
|             this->process_edge_neighbors(edge->twin(), &rpolyline);
 | |
|             polyline.points.insert(polyline.points.begin(), rpolyline.points.rbegin(), rpolyline.points.rend());
 | |
|             polyline.width.insert(polyline.width.begin(), rpolyline.width.rbegin(), rpolyline.width.rend());
 | |
|             polyline.endpoints.first = rpolyline.endpoints.second;
 | |
|         }
 | |
|         
 | |
|         assert(polyline.width.size() == polyline.points.size()*2 - 2);
 | |
|         
 | |
|         // prevent loop endpoints from being extended
 | |
|         if (polyline.first_point() == polyline.last_point()) {
 | |
|             polyline.endpoints.first = false;
 | |
|             polyline.endpoints.second = false;
 | |
|         }
 | |
|         
 | |
|         // append polyline to result
 | |
|         polylines->push_back(polyline);
 | |
|     }
 | |
| 
 | |
|     #ifdef SLIC3R_DEBUG
 | |
|     {
 | |
|         static int iRun = 0;
 | |
|         dump_voronoi_to_svg(this->lines, this->vd, polylines, debug_out_path("MedialAxis-%d.svg", iRun ++).c_str());
 | |
|         printf("Thick lines: ");
 | |
|         for (ThickPolylines::const_iterator it = polylines->begin(); it != polylines->end(); ++ it) {
 | |
|             ThickLines lines = it->thicklines();
 | |
|             for (ThickLines::const_iterator it2 = lines.begin(); it2 != lines.end(); ++ it2) {
 | |
|                 printf("%f,%f ", it2->a_width, it2->b_width);
 | |
|             }
 | |
|         }
 | |
|         printf("\n");
 | |
|     }
 | |
|     #endif /* SLIC3R_DEBUG */
 | |
| }
 | |
| 
 | |
| void
 | |
| MedialAxis::build(Polylines* polylines)
 | |
| {
 | |
|     ThickPolylines tp;
 | |
|     this->build(&tp);
 | |
|     polylines->insert(polylines->end(), tp.begin(), tp.end());
 | |
| }
 | |
| 
 | |
| void
 | |
| MedialAxis::process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline)
 | |
| {
 | |
|     while (true) {
 | |
|         // Since rot_next() works on the edge starting point but we want
 | |
|         // to find neighbors on the ending point, we just swap edge with
 | |
|         // its twin.
 | |
|         const VD::edge_type* twin = edge->twin();
 | |
|     
 | |
|         // count neighbors for this edge
 | |
|         std::vector<const VD::edge_type*> neighbors;
 | |
|         for (const VD::edge_type* neighbor = twin->rot_next(); neighbor != twin;
 | |
|             neighbor = neighbor->rot_next()) {
 | |
|             if (this->valid_edges.count(neighbor) > 0) neighbors.push_back(neighbor);
 | |
|         }
 | |
|     
 | |
|         // if we have a single neighbor then we can continue recursively
 | |
|         if (neighbors.size() == 1) {
 | |
|             const VD::edge_type* neighbor = neighbors.front();
 | |
|             
 | |
|             // break if this is a closed loop
 | |
|             if (this->edges.count(neighbor) == 0) return;
 | |
|             
 | |
|             Point new_point(neighbor->vertex1()->x(), neighbor->vertex1()->y());
 | |
|             polyline->points.push_back(new_point);
 | |
|             polyline->width.push_back(this->thickness[neighbor].first);
 | |
|             polyline->width.push_back(this->thickness[neighbor].second);
 | |
|             (void)this->edges.erase(neighbor);
 | |
|             (void)this->edges.erase(neighbor->twin());
 | |
|             edge = neighbor;
 | |
|         } else if (neighbors.size() == 0) {
 | |
|             polyline->endpoints.second = true;
 | |
|             return;
 | |
|         } else {
 | |
|             // T-shaped or star-shaped joint
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool MedialAxis::validate_edge(const VD::edge_type* edge)
 | |
| {
 | |
|     // prevent overflows and detect almost-infinite edges
 | |
| #ifndef CLIPPERLIB_INT32
 | |
|     if (std::abs(edge->vertex0()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) || 
 | |
|         std::abs(edge->vertex0()->y()) > double(CLIPPER_MAX_COORD_UNSCALED) || 
 | |
|         std::abs(edge->vertex1()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
 | |
|         std::abs(edge->vertex1()->y()) > double(CLIPPER_MAX_COORD_UNSCALED))
 | |
|         return false;
 | |
| #endif // CLIPPERLIB_INT32
 | |
| 
 | |
|     // construct the line representing this edge of the Voronoi diagram
 | |
|     const Line line(
 | |
|         Point( edge->vertex0()->x(), edge->vertex0()->y() ),
 | |
|         Point( edge->vertex1()->x(), edge->vertex1()->y() )
 | |
|     );
 | |
|     
 | |
|     // discard edge if it lies outside the supplied shape
 | |
|     // this could maybe be optimized (checking inclusion of the endpoints
 | |
|     // might give false positives as they might belong to the contour itself)
 | |
|     if (this->expolygon != NULL) {
 | |
|         if (line.a == line.b) {
 | |
|             // in this case, contains(line) returns a false positive
 | |
|             if (!this->expolygon->contains(line.a)) return false;
 | |
|         } else {
 | |
|             if (!this->expolygon->contains(line)) return false;
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     // retrieve the original line segments which generated the edge we're checking
 | |
|     const VD::cell_type* cell_l = edge->cell();
 | |
|     const VD::cell_type* cell_r = edge->twin()->cell();
 | |
|     const Line &segment_l = this->retrieve_segment(cell_l);
 | |
|     const Line &segment_r = this->retrieve_segment(cell_r);
 | |
|     
 | |
|     /*
 | |
|     SVG svg("edge.svg");
 | |
|     svg.draw(*this->expolygon);
 | |
|     svg.draw(line);
 | |
|     svg.draw(segment_l, "red");
 | |
|     svg.draw(segment_r, "blue");
 | |
|     svg.Close();
 | |
|     */
 | |
|     
 | |
|     /*  Calculate thickness of the cross-section at both the endpoints of this edge.
 | |
|         Our Voronoi edge is part of a CCW sequence going around its Voronoi cell 
 | |
|         located on the left side. (segment_l).
 | |
|         This edge's twin goes around segment_r. Thus, segment_r is 
 | |
|         oriented in the same direction as our main edge, and segment_l is oriented
 | |
|         in the same direction as our twin edge.
 | |
|         We used to only consider the (half-)distances to segment_r, and that works
 | |
|         whenever segment_l and segment_r are almost specular and facing. However, 
 | |
|         at curves they are staggered and they only face for a very little length
 | |
|         (our very short edge represents such visibility).
 | |
|         Both w0 and w1 can be calculated either towards cell_l or cell_r with equal
 | |
|         results by Voronoi definition.
 | |
|         When cell_l or cell_r don't refer to the segment but only to an endpoint, we
 | |
|         calculate the distance to that endpoint instead.  */
 | |
|     
 | |
|     coordf_t w0 = cell_r->contains_segment()
 | |
|         ? segment_r.distance_to(line.a)*2
 | |
|         : (this->retrieve_endpoint(cell_r) - line.a).cast<double>().norm()*2;
 | |
|     
 | |
|     coordf_t w1 = cell_l->contains_segment()
 | |
|         ? segment_l.distance_to(line.b)*2
 | |
|         : (this->retrieve_endpoint(cell_l) - line.b).cast<double>().norm()*2;
 | |
|     
 | |
|     if (cell_l->contains_segment() && cell_r->contains_segment()) {
 | |
|         // calculate the relative angle between the two boundary segments
 | |
|         double angle = fabs(segment_r.orientation() - segment_l.orientation());
 | |
|         if (angle > PI) angle = 2*PI - angle;
 | |
|         assert(angle >= 0 && angle <= PI);
 | |
|         
 | |
|         // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction)
 | |
|         // we're interested only in segments close to the second case (facing segments)
 | |
|         // so we allow some tolerance.
 | |
|         // this filter ensures that we're dealing with a narrow/oriented area (longer than thick)
 | |
|         // we don't run it on edges not generated by two segments (thus generated by one segment
 | |
|         // and the endpoint of another segment), since their orientation would not be meaningful
 | |
|         if (PI - angle > PI/8) {
 | |
|             // angle is not narrow enough
 | |
|             
 | |
|             // only apply this filter to segments that are not too short otherwise their 
 | |
|             // angle could possibly be not meaningful
 | |
|             if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON || line.length() >= this->min_width)
 | |
|                 return false;
 | |
|         }
 | |
|     } else {
 | |
|         if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON)
 | |
|             return false;
 | |
|     }
 | |
|     
 | |
|     if (w0 < this->min_width && w1 < this->min_width)
 | |
|         return false;
 | |
|     
 | |
|     if (w0 > this->max_width && w1 > this->max_width)
 | |
|         return false;
 | |
|     
 | |
|     this->thickness[edge]         = std::make_pair(w0, w1);
 | |
|     this->thickness[edge->twin()] = std::make_pair(w1, w0);
 | |
|     
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| const Line& MedialAxis::retrieve_segment(const VD::cell_type* cell) const
 | |
| {
 | |
|     return this->lines[cell->source_index()];
 | |
| }
 | |
| 
 | |
| const Point& MedialAxis::retrieve_endpoint(const VD::cell_type* cell) const
 | |
| {
 | |
|     const Line& line = this->retrieve_segment(cell);
 | |
|     if (cell->source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) {
 | |
|         return line.a;
 | |
|     } else {
 | |
|         return line.b;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void assemble_transform(Transform3d& transform, const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror)
 | |
| {
 | |
|     transform = Transform3d::Identity();
 | |
|     transform.translate(translation);
 | |
|     transform.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rotation(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rotation(0), Vec3d::UnitX()));
 | |
|     transform.scale(scale.cwiseProduct(mirror));
 | |
| }
 | |
| 
 | |
| Transform3d assemble_transform(const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror)
 | |
| {
 | |
|     Transform3d transform;
 | |
|     assemble_transform(transform, translation, rotation, scale, mirror);
 | |
|     return transform;
 | |
| }
 | |
| 
 | |
| Vec3d extract_euler_angles(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>& rotation_matrix)
 | |
| {
 | |
|     // reference: http://www.gregslabaugh.net/publications/euler.pdf
 | |
|     Vec3d angles1 = Vec3d::Zero();
 | |
|     Vec3d angles2 = Vec3d::Zero();
 | |
|     if (std::abs(std::abs(rotation_matrix(2, 0)) - 1.0) < 1e-5)
 | |
|     {
 | |
|         angles1(2) = 0.0;
 | |
|         if (rotation_matrix(2, 0) < 0.0) // == -1.0
 | |
|         {
 | |
|             angles1(1) = 0.5 * (double)PI;
 | |
|             angles1(0) = angles1(2) + ::atan2(rotation_matrix(0, 1), rotation_matrix(0, 2));
 | |
|         }
 | |
|         else // == 1.0
 | |
|         {
 | |
|             angles1(1) = - 0.5 * (double)PI;
 | |
|             angles1(0) = - angles1(2) + ::atan2(- rotation_matrix(0, 1), - rotation_matrix(0, 2));
 | |
|         }
 | |
|         angles2 = angles1;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         angles1(1) = -::asin(rotation_matrix(2, 0));
 | |
|         double inv_cos1 = 1.0 / ::cos(angles1(1));
 | |
|         angles1(0) = ::atan2(rotation_matrix(2, 1) * inv_cos1, rotation_matrix(2, 2) * inv_cos1);
 | |
|         angles1(2) = ::atan2(rotation_matrix(1, 0) * inv_cos1, rotation_matrix(0, 0) * inv_cos1);
 | |
| 
 | |
|         angles2(1) = (double)PI - angles1(1);
 | |
|         double inv_cos2 = 1.0 / ::cos(angles2(1));
 | |
|         angles2(0) = ::atan2(rotation_matrix(2, 1) * inv_cos2, rotation_matrix(2, 2) * inv_cos2);
 | |
|         angles2(2) = ::atan2(rotation_matrix(1, 0) * inv_cos2, rotation_matrix(0, 0) * inv_cos2);
 | |
|     }
 | |
| 
 | |
|     // The following euristic is the best found up to now (in the sense that it works fine with the greatest number of edge use-cases)
 | |
|     // but there are other use-cases were it does not
 | |
|     // We need to improve it
 | |
|     double min_1 = angles1.cwiseAbs().minCoeff();
 | |
|     double min_2 = angles2.cwiseAbs().minCoeff();
 | |
|     bool use_1 = (min_1 < min_2) || (is_approx(min_1, min_2) && (angles1.norm() <= angles2.norm()));
 | |
| 
 | |
|     return use_1 ? angles1 : angles2;
 | |
| }
 | |
| 
 | |
| Vec3d extract_euler_angles(const Transform3d& transform)
 | |
| {
 | |
|     // use only the non-translational part of the transform
 | |
|     Eigen::Matrix<double, 3, 3, Eigen::DontAlign> m = transform.matrix().block(0, 0, 3, 3);
 | |
|     // remove scale
 | |
|     m.col(0).normalize();
 | |
|     m.col(1).normalize();
 | |
|     m.col(2).normalize();
 | |
|     return extract_euler_angles(m);
 | |
| }
 | |
| 
 | |
| Transformation::Flags::Flags()
 | |
|     : dont_translate(true)
 | |
|     , dont_rotate(true)
 | |
|     , dont_scale(true)
 | |
|     , dont_mirror(true)
 | |
| {
 | |
| }
 | |
| 
 | |
| bool Transformation::Flags::needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const
 | |
| {
 | |
|     return (this->dont_translate != dont_translate) || (this->dont_rotate != dont_rotate) || (this->dont_scale != dont_scale) || (this->dont_mirror != dont_mirror);
 | |
| }
 | |
| 
 | |
| void Transformation::Flags::set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror)
 | |
| {
 | |
|     this->dont_translate = dont_translate;
 | |
|     this->dont_rotate = dont_rotate;
 | |
|     this->dont_scale = dont_scale;
 | |
|     this->dont_mirror = dont_mirror;
 | |
| }
 | |
| 
 | |
| Transformation::Transformation()
 | |
| {
 | |
|     reset();
 | |
| }
 | |
| 
 | |
| Transformation::Transformation(const Transform3d& transform)
 | |
| {
 | |
|     set_from_transform(transform);
 | |
| }
 | |
| 
 | |
| void Transformation::set_offset(const Vec3d& offset)
 | |
| {
 | |
|     set_offset(X, offset(0));
 | |
|     set_offset(Y, offset(1));
 | |
|     set_offset(Z, offset(2));
 | |
| }
 | |
| 
 | |
| void Transformation::set_offset(Axis axis, double offset)
 | |
| {
 | |
|     if (m_offset(axis) != offset)
 | |
|     {
 | |
|         m_offset(axis) = offset;
 | |
|         m_dirty = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Transformation::set_rotation(const Vec3d& rotation)
 | |
| {
 | |
|     set_rotation(X, rotation(0));
 | |
|     set_rotation(Y, rotation(1));
 | |
|     set_rotation(Z, rotation(2));
 | |
| }
 | |
| 
 | |
| void Transformation::set_rotation(Axis axis, double rotation)
 | |
| {
 | |
|     rotation = angle_to_0_2PI(rotation);
 | |
|     if (is_approx(std::abs(rotation), 2.0 * (double)PI))
 | |
|         rotation = 0.0;
 | |
| 
 | |
|     if (m_rotation(axis) != rotation)
 | |
|     {
 | |
|         m_rotation(axis) = rotation;
 | |
|         m_dirty = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Transformation::set_scaling_factor(const Vec3d& scaling_factor)
 | |
| {
 | |
|     set_scaling_factor(X, scaling_factor(0));
 | |
|     set_scaling_factor(Y, scaling_factor(1));
 | |
|     set_scaling_factor(Z, scaling_factor(2));
 | |
| }
 | |
| 
 | |
| void Transformation::set_scaling_factor(Axis axis, double scaling_factor)
 | |
| {
 | |
|     if (m_scaling_factor(axis) != std::abs(scaling_factor))
 | |
|     {
 | |
|         m_scaling_factor(axis) = std::abs(scaling_factor);
 | |
|         m_dirty = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Transformation::set_mirror(const Vec3d& mirror)
 | |
| {
 | |
|     set_mirror(X, mirror(0));
 | |
|     set_mirror(Y, mirror(1));
 | |
|     set_mirror(Z, mirror(2));
 | |
| }
 | |
| 
 | |
| void Transformation::set_mirror(Axis axis, double mirror)
 | |
| {
 | |
|     double abs_mirror = std::abs(mirror);
 | |
|     if (abs_mirror == 0.0)
 | |
|         mirror = 1.0;
 | |
|     else if (abs_mirror != 1.0)
 | |
|         mirror /= abs_mirror;
 | |
| 
 | |
|     if (m_mirror(axis) != mirror)
 | |
|     {
 | |
|         m_mirror(axis) = mirror;
 | |
|         m_dirty = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Transformation::set_from_transform(const Transform3d& transform)
 | |
| {
 | |
|     // offset
 | |
|     set_offset(transform.matrix().block(0, 3, 3, 1));
 | |
| 
 | |
|     Eigen::Matrix<double, 3, 3, Eigen::DontAlign> m3x3 = transform.matrix().block(0, 0, 3, 3);
 | |
| 
 | |
|     // mirror
 | |
|     // it is impossible to reconstruct the original mirroring factors from a matrix,
 | |
|     // we can only detect if the matrix contains a left handed reference system
 | |
|     // in which case we reorient it back to right handed by mirroring the x axis
 | |
|     Vec3d mirror = Vec3d::Ones();
 | |
|     if (m3x3.col(0).dot(m3x3.col(1).cross(m3x3.col(2))) < 0.0)
 | |
|     {
 | |
|         mirror(0) = -1.0;
 | |
|         // remove mirror
 | |
|         m3x3.col(0) *= -1.0;
 | |
|     }
 | |
|     set_mirror(mirror);
 | |
| 
 | |
|     // scale
 | |
|     set_scaling_factor(Vec3d(m3x3.col(0).norm(), m3x3.col(1).norm(), m3x3.col(2).norm()));
 | |
| 
 | |
|     // remove scale
 | |
|     m3x3.col(0).normalize();
 | |
|     m3x3.col(1).normalize();
 | |
|     m3x3.col(2).normalize();
 | |
| 
 | |
|     // rotation
 | |
|     set_rotation(extract_euler_angles(m3x3));
 | |
| 
 | |
|     // forces matrix recalculation matrix
 | |
|     m_matrix = get_matrix();
 | |
| 
 | |
| //    // debug check
 | |
| //    if (!m_matrix.isApprox(transform))
 | |
| //        std::cout << "something went wrong in extracting data from matrix" << std::endl;
 | |
| }
 | |
| 
 | |
| void Transformation::reset()
 | |
| {
 | |
|     m_offset = Vec3d::Zero();
 | |
|     m_rotation = Vec3d::Zero();
 | |
|     m_scaling_factor = Vec3d::Ones();
 | |
|     m_mirror = Vec3d::Ones();
 | |
|     m_matrix = Transform3d::Identity();
 | |
|     m_dirty = false;
 | |
| }
 | |
| 
 | |
| const Transform3d& Transformation::get_matrix(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const
 | |
| {
 | |
|     if (m_dirty || m_flags.needs_update(dont_translate, dont_rotate, dont_scale, dont_mirror))
 | |
|     {
 | |
|         m_matrix = Geometry::assemble_transform(
 | |
|             dont_translate ? Vec3d::Zero() : m_offset, 
 | |
|             dont_rotate ? Vec3d::Zero() : m_rotation,
 | |
|             dont_scale ? Vec3d::Ones() : m_scaling_factor,
 | |
|             dont_mirror ? Vec3d::Ones() : m_mirror
 | |
|             );
 | |
| 
 | |
|         m_flags.set(dont_translate, dont_rotate, dont_scale, dont_mirror);
 | |
|         m_dirty = false;
 | |
|     }
 | |
| 
 | |
|     return m_matrix;
 | |
| }
 | |
| 
 | |
| Transformation Transformation::operator * (const Transformation& other) const
 | |
| {
 | |
|     return Transformation(get_matrix() * other.get_matrix());
 | |
| }
 | |
| 
 | |
| Transformation Transformation::volume_to_bed_transformation(const Transformation& instance_transformation, const BoundingBoxf3& bbox)
 | |
| {
 | |
|     Transformation out;
 | |
| 
 | |
|     if (instance_transformation.is_scaling_uniform()) {
 | |
|         // No need to run the non-linear least squares fitting for uniform scaling.
 | |
|         // Just set the inverse.
 | |
|         out.set_from_transform(instance_transformation.get_matrix(true).inverse());
 | |
|     }
 | |
|     else if (is_rotation_ninety_degrees(instance_transformation.get_rotation()))
 | |
|     {
 | |
|         // Anisotropic scaling, rotation by multiples of ninety degrees.
 | |
|         Eigen::Matrix3d instance_rotation_trafo =
 | |
|             (Eigen::AngleAxisd(instance_transformation.get_rotation().z(), Vec3d::UnitZ()) *
 | |
|             Eigen::AngleAxisd(instance_transformation.get_rotation().y(), Vec3d::UnitY()) *
 | |
|             Eigen::AngleAxisd(instance_transformation.get_rotation().x(), Vec3d::UnitX())).toRotationMatrix();
 | |
|         Eigen::Matrix3d volume_rotation_trafo =
 | |
|             (Eigen::AngleAxisd(-instance_transformation.get_rotation().x(), Vec3d::UnitX()) *
 | |
|             Eigen::AngleAxisd(-instance_transformation.get_rotation().y(), Vec3d::UnitY()) *
 | |
|             Eigen::AngleAxisd(-instance_transformation.get_rotation().z(), Vec3d::UnitZ())).toRotationMatrix();
 | |
| 
 | |
|         // 8 corners of the bounding box.
 | |
|         auto pts = Eigen::MatrixXd(8, 3);
 | |
|         pts(0, 0) = bbox.min.x(); pts(0, 1) = bbox.min.y(); pts(0, 2) = bbox.min.z();
 | |
|         pts(1, 0) = bbox.min.x(); pts(1, 1) = bbox.min.y(); pts(1, 2) = bbox.max.z();
 | |
|         pts(2, 0) = bbox.min.x(); pts(2, 1) = bbox.max.y(); pts(2, 2) = bbox.min.z();
 | |
|         pts(3, 0) = bbox.min.x(); pts(3, 1) = bbox.max.y(); pts(3, 2) = bbox.max.z();
 | |
|         pts(4, 0) = bbox.max.x(); pts(4, 1) = bbox.min.y(); pts(4, 2) = bbox.min.z();
 | |
|         pts(5, 0) = bbox.max.x(); pts(5, 1) = bbox.min.y(); pts(5, 2) = bbox.max.z();
 | |
|         pts(6, 0) = bbox.max.x(); pts(6, 1) = bbox.max.y(); pts(6, 2) = bbox.min.z();
 | |
|         pts(7, 0) = bbox.max.x(); pts(7, 1) = bbox.max.y(); pts(7, 2) = bbox.max.z();
 | |
| 
 | |
|         // Corners of the bounding box transformed into the modifier mesh coordinate space, with inverse rotation applied to the modifier.
 | |
|         auto qs = pts *
 | |
|             (instance_rotation_trafo *
 | |
|             Eigen::Scaling(instance_transformation.get_scaling_factor().cwiseProduct(instance_transformation.get_mirror())) *
 | |
|             volume_rotation_trafo).inverse().transpose();
 | |
|         // Fill in scaling based on least squares fitting of the bounding box corners.
 | |
|         Vec3d scale;
 | |
|         for (int i = 0; i < 3; ++i)
 | |
|             scale(i) = pts.col(i).dot(qs.col(i)) / pts.col(i).dot(pts.col(i));
 | |
| 
 | |
|         out.set_rotation(Geometry::extract_euler_angles(volume_rotation_trafo));
 | |
|         out.set_scaling_factor(Vec3d(std::abs(scale(0)), std::abs(scale(1)), std::abs(scale(2))));
 | |
|         out.set_mirror(Vec3d(scale(0) > 0 ? 1. : -1, scale(1) > 0 ? 1. : -1, scale(2) > 0 ? 1. : -1));
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // General anisotropic scaling, general rotation.
 | |
|         // Keep the modifier mesh in the instance coordinate system, so the modifier mesh will not be aligned with the world.
 | |
|         // Scale it to get the required size.
 | |
|         out.set_scaling_factor(instance_transformation.get_scaling_factor().cwiseInverse());
 | |
|     }
 | |
| 
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| // For parsing a transformation matrix from 3MF / AMF.
 | |
| Transform3d transform3d_from_string(const std::string& transform_str)
 | |
| {
 | |
|     assert(is_decimal_separator_point()); // for atof
 | |
|     Transform3d transform = Transform3d::Identity();
 | |
| 
 | |
|     if (!transform_str.empty())
 | |
|     {
 | |
|         std::vector<std::string> mat_elements_str;
 | |
|         boost::split(mat_elements_str, transform_str, boost::is_any_of(" "), boost::token_compress_on);
 | |
| 
 | |
|         unsigned int size = (unsigned int)mat_elements_str.size();
 | |
|         if (size == 16)
 | |
|         {
 | |
|             unsigned int i = 0;
 | |
|             for (unsigned int r = 0; r < 4; ++r)
 | |
|             {
 | |
|                 for (unsigned int c = 0; c < 4; ++c)
 | |
|                 {
 | |
|                     transform(r, c) = ::atof(mat_elements_str[i++].c_str());
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return transform;
 | |
| }
 | |
| 
 | |
| Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
 | |
| {
 | |
|     return
 | |
|         // From the current coordinate system to world.
 | |
|         Eigen::AngleAxisd(rot_xyz_to(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rot_xyz_to(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rot_xyz_to(0), Vec3d::UnitX()) *
 | |
|         // From world to the initial coordinate system.
 | |
|         Eigen::AngleAxisd(-rot_xyz_from(0), Vec3d::UnitX()) * Eigen::AngleAxisd(-rot_xyz_from(1), Vec3d::UnitY()) * Eigen::AngleAxisd(-rot_xyz_from(2), Vec3d::UnitZ());
 | |
| }
 | |
| 
 | |
| // This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
 | |
| double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
 | |
| {
 | |
|     Eigen::AngleAxisd angle_axis(rotation_xyz_diff(rot_xyz_from, rot_xyz_to));
 | |
|     Vec3d  axis  = angle_axis.axis();
 | |
|     double angle = angle_axis.angle();
 | |
| #ifndef NDEBUG
 | |
|     if (std::abs(angle) > 1e-8) {
 | |
|         assert(std::abs(axis.x()) < 1e-8);
 | |
|         assert(std::abs(axis.y()) < 1e-8);
 | |
|     }
 | |
| #endif /* NDEBUG */
 | |
|     return (axis.z() < 0) ? -angle : angle;
 | |
| }
 | |
| 
 | |
| } }
 | 
