OrcaSlicer/src/libslic3r/BoundingBox.hpp
SoftFever 88fb8187d9
Some checks are pending
Build all / Build All (push) Waiting to run
Build all / Flatpak (push) Waiting to run
Allow specifying rotation patterns for Sparse and Solid infill (#9924)
* SPE-2405: Add Zig Zag infill that is rectilinear infill but with a consistent pattern between layers.

This Zig Zag infill is inspired by the Zig Zag infill in Cura.

Change-Id: I798affa99f4b5c3bd67f47643e67530fb7c3e0cb
(cherry picked from commit 2808d04d5deef6f99f9618648e46f11de03efc98)

* Add Cross zag and locked-zag for shoes

Ported from BambuStudio

* wip

* sparse infill roratation template

* solid_infill_rotate_template

* remove rotate_solid_infill_direction

* hide sparse infill rotation template for non applicable infill pattern

* hide solid_infill_rotate_template for non supported solid infill patterns

* update icon

* support empty string for ConfigOptionFloats deserialize

* fix build errors

---------

Co-authored-by: Lukáš Hejl <hejl.lukas@gmail.com>
2025-06-22 23:10:35 +08:00

308 lines
14 KiB
C++

#ifndef slic3r_BoundingBox_hpp_
#define slic3r_BoundingBox_hpp_
#include "libslic3r.h"
#include "Exception.hpp"
#include "Point.hpp"
#include "Polygon.hpp"
#include <ostream>
namespace Slic3r {
template <typename PointType, typename APointsType = std::vector<PointType>>
class BoundingBoxBase
{
public:
using PointsType = APointsType;
PointType min;
PointType max;
bool defined;
BoundingBoxBase() : min(PointType::Zero()), max(PointType::Zero()), defined(false) {}
BoundingBoxBase(const PointType &pmin, const PointType &pmax) :
min(pmin), max(pmax), defined(pmin.x() < pmax.x() && pmin.y() < pmax.y()) {}
BoundingBoxBase(const PointType &p1, const PointType &p2, const PointType &p3) :
min(p1), max(p1), defined(false) { merge(p2); merge(p3); }
template<class It, class = IteratorOnly<It>>
BoundingBoxBase(It from, It to)
{ construct(*this, from, to); }
BoundingBoxBase(const PointsType &points)
: BoundingBoxBase(points.begin(), points.end())
{}
void reset() { this->defined = false; this->min = PointType::Zero(); this->max = PointType::Zero(); }
void merge(const PointType &point);
void merge(const PointsType &points);
void merge(const BoundingBoxBase<PointType, PointsType> &bb);
void scale(double factor);
PointType size() const;
double radius() const;
double area() const { return double(this->max(0) - this->min(0)) * (this->max(1) - this->min(1)); } // BBS
void translate(coordf_t x, coordf_t y) { assert(this->defined); PointType v(x, y); this->min += v; this->max += v; }
void translate(const PointType &v) { this->min += v; this->max += v; }
void offset(coordf_t delta);
BoundingBoxBase<PointType, PointsType> inflated(coordf_t delta) const throw() { BoundingBoxBase<PointType, PointsType> out(*this); out.offset(delta); return out; }
PointType center() const;
bool contains(const PointType &point) const {
return point.x() >= this->min.x() && point.x() <= this->max.x()
&& point.y() >= this->min.y() && point.y() <= this->max.y();
}
bool contains(const BoundingBoxBase<PointType, PointsType> &other) const {
return contains(other.min) && contains(other.max);
}
bool overlap(const BoundingBoxBase<PointType, PointsType> &other) const {
return ! (this->max.x() < other.min.x() || this->min.x() > other.max.x() ||
this->max.y() < other.min.y() || this->min.y() > other.max.y());
}
PointType operator[](size_t idx) const {
switch (idx) {
case 0:
return min;
break;
case 1:
return PointType(max(0), min(1));
break;
case 2:
return max;
break;
case 3:
return PointType(min(0), max(1));
break;
default:
return PointType();
break;
}
return PointType();
}
bool operator==(const BoundingBoxBase<PointType, PointsType> &rhs) { return this->min == rhs.min && this->max == rhs.max; }
bool operator!=(const BoundingBoxBase<PointType, PointsType> &rhs) { return ! (*this == rhs); }
friend std::ostream &operator<<(std::ostream &os, const BoundingBoxBase &bbox)
{
os << "[" << bbox.max(0) - bbox.min(0) << " x " << bbox.max(1) - bbox.min(1) << "] from (" << bbox.min(0) << ", " << bbox.min(1) << ")";
return os;
}
private:
// to access construct()
friend BoundingBox get_extents<false>(const Points &pts);
friend BoundingBox get_extents<true>(const Points &pts);
// if IncludeBoundary, then a bounding box is defined even for a single point.
// otherwise a bounding box is only defined if it has a positive area.
// The output bounding box is expected to be set to "undefined" initially.
template<bool IncludeBoundary = false, class BoundingBoxType, class It, class = IteratorOnly<It>>
static void construct(BoundingBoxType &out, It from, It to)
{
if (from != to) {
auto it = from;
out.min = it->template cast<typename PointType::Scalar>();
out.max = out.min;
for (++ it; it != to; ++ it) {
auto vec = it->template cast<typename PointType::Scalar>();
out.min = out.min.cwiseMin(vec);
out.max = out.max.cwiseMax(vec);
}
out.defined = IncludeBoundary || (out.min.x() < out.max.x() && out.min.y() < out.max.y());
}
}
};
template <class PointType>
class BoundingBox3Base : public BoundingBoxBase<PointType, std::vector<PointType>>
{
public:
using PointsType = std::vector<PointType>;
BoundingBox3Base() : BoundingBoxBase<PointType>() {}
BoundingBox3Base(const PointType &pmin, const PointType &pmax) :
BoundingBoxBase<PointType>(pmin, pmax)
{ if (pmin.z() >= pmax.z()) BoundingBoxBase<PointType>::defined = false; }
BoundingBox3Base(const PointType &p1, const PointType &p2, const PointType &p3) :
BoundingBoxBase<PointType>(p1, p1) { merge(p2); merge(p3); }
template<class It, class = IteratorOnly<It> > BoundingBox3Base(It from, It to)
{
if (from == to)
throw Slic3r::InvalidArgument("Empty point set supplied to BoundingBox3Base constructor");
auto it = from;
this->min = it->template cast<typename PointType::Scalar>();
this->max = this->min;
for (++ it; it != to; ++ it) {
auto vec = it->template cast<typename PointType::Scalar>();
this->min = this->min.cwiseMin(vec);
this->max = this->max.cwiseMax(vec);
}
this->defined = (this->min.x() < this->max.x()) && (this->min.y() < this->max.y()) && (this->min.z() < this->max.z());
}
BoundingBox3Base(const PointsType &points)
: BoundingBox3Base(points.begin(), points.end())
{}
Polygon polygon(bool is_scaled = false) const;//BBS: 2D footprint polygon
void merge(const PointType &point);
void merge(const PointsType &points);
void merge(const BoundingBox3Base<PointType> &bb);
PointType size() const;
double radius() const;
void translate(coordf_t x, coordf_t y, coordf_t z) { assert(this->defined); PointType v(x, y, z); this->min += v; this->max += v; }
void translate(const Vec3d &v) { this->min += v; this->max += v; }
void offset(coordf_t delta);
BoundingBox3Base<PointType> inflated(coordf_t delta) const throw() { BoundingBox3Base<PointType> out(*this); out.offset(delta); return out; }
PointType center() const;
coordf_t max_size() const;
bool contains(const PointType &point) const {
return BoundingBoxBase<PointType>::contains(point) && point.z() >= this->min.z() && point.z() <= this->max.z();
}
bool contains(const BoundingBox3Base<PointType>& other) const {
return contains(other.min) && contains(other.max);
}
// Intersects without boundaries.
bool intersects(const BoundingBox3Base<PointType>& other) const {
return this->min.x() < other.max.x() && this->max.x() > other.min.x() && this->min.y() < other.max.y() && this->max.y() > other.min.y() &&
this->min.z() < other.max.z() && this->max.z() > other.min.z();
}
};
// Will prevent warnings caused by non existing definition of template in hpp
extern template void BoundingBoxBase<Point, Points>::scale(double factor);
extern template void BoundingBoxBase<Vec2d>::scale(double factor);
extern template void BoundingBoxBase<Vec3d>::scale(double factor);
extern template void BoundingBoxBase<Point, Points>::offset(coordf_t delta);
extern template void BoundingBoxBase<Vec2d>::offset(coordf_t delta);
extern template void BoundingBoxBase<Point, Points>::merge(const Point &point);
extern template void BoundingBoxBase<Vec2f>::merge(const Vec2f &point);
extern template void BoundingBoxBase<Vec2d>::merge(const Vec2d &point);
extern template void BoundingBoxBase<Point, Points>::merge(const Points &points);
extern template void BoundingBoxBase<Vec2d>::merge(const Pointfs &points);
extern template void BoundingBoxBase<Point, Points>::merge(const BoundingBoxBase<Point, Points> &bb);
extern template void BoundingBoxBase<Vec2f>::merge(const BoundingBoxBase<Vec2f> &bb);
extern template void BoundingBoxBase<Vec2d>::merge(const BoundingBoxBase<Vec2d> &bb);
extern template Point BoundingBoxBase<Point, Points>::size() const;
extern template Vec2f BoundingBoxBase<Vec2f>::size() const;
extern template Vec2d BoundingBoxBase<Vec2d>::size() const;
extern template double BoundingBoxBase<Point, Points>::radius() const;
extern template double BoundingBoxBase<Vec2d>::radius() const;
extern template Point BoundingBoxBase<Point, Points>::center() const;
extern template Vec2f BoundingBoxBase<Vec2f>::center() const;
extern template Vec2d BoundingBoxBase<Vec2d>::center() const;
extern template void BoundingBox3Base<Vec3f>::merge(const Vec3f &point);
extern template void BoundingBox3Base<Vec3d>::merge(const Vec3d &point);
extern template void BoundingBox3Base<Vec3d>::merge(const Pointf3s &points);
extern template void BoundingBox3Base<Vec3d>::merge(const BoundingBox3Base<Vec3d> &bb);
extern template Vec3f BoundingBox3Base<Vec3f>::size() const;
extern template Vec3d BoundingBox3Base<Vec3d>::size() const;
extern template double BoundingBox3Base<Vec3d>::radius() const;
extern template void BoundingBox3Base<Vec3d>::offset(coordf_t delta);
extern template Vec3f BoundingBox3Base<Vec3f>::center() const;
extern template Vec3d BoundingBox3Base<Vec3d>::center() const;
extern template coordf_t BoundingBox3Base<Vec3f>::max_size() const;
extern template coordf_t BoundingBox3Base<Vec3d>::max_size() const;
class BoundingBox : public BoundingBoxBase<Point, Points>
{
public:
void polygon(Polygon* polygon) const;
Polygon polygon() const;
BoundingBox rotated(double angle) const;
BoundingBox rotated(double angle, const Point &center) const;
void rotate(double angle) { (*this) = this->rotated(angle); }
void rotate(double angle, const Point &center) { (*this) = this->rotated(angle, center); }
// Align the min corner to a grid of cell_size x cell_size cells,
// to encompass the original bounding box.
void align_to_grid(const coord_t cell_size);
BoundingBox() : BoundingBoxBase<Point, Points>() {}
BoundingBox(const Point &pmin, const Point &pmax) : BoundingBoxBase<Point, Points>(pmin, pmax) {}
BoundingBox(const Points &points) : BoundingBoxBase<Point, Points>(points) {}
BoundingBox inflated(coordf_t delta) const noexcept { BoundingBox out(*this); out.offset(delta); return out; }
BoundingBox scaled(double factor) const;
friend BoundingBox get_extents_rotated(const Points &points, double angle);
};
using BoundingBoxes = std::vector<BoundingBox>;
class BoundingBox3 : public BoundingBox3Base<Vec3crd>
{
public:
BoundingBox3() : BoundingBox3Base<Vec3crd>() {}
BoundingBox3(const Vec3crd &pmin, const Vec3crd &pmax) : BoundingBox3Base<Vec3crd>(pmin, pmax) {}
BoundingBox3(const Points3& points) : BoundingBox3Base<Vec3crd>(points) {}
};
class BoundingBoxf : public BoundingBoxBase<Vec2d>
{
public:
BoundingBoxf() : BoundingBoxBase<Vec2d>() {}
BoundingBoxf(const Vec2d &pmin, const Vec2d &pmax) : BoundingBoxBase<Vec2d>(pmin, pmax) {}
BoundingBoxf(const std::vector<Vec2d> &points) : BoundingBoxBase<Vec2d>(points) {}
};
class BoundingBoxf3 : public BoundingBox3Base<Vec3d>
{
public:
using BoundingBox3Base::BoundingBox3Base;
BoundingBoxf3 transformed(const Transform3d& matrix) const;
};
template<typename PointType, typename PointsType>
inline bool empty(const BoundingBoxBase<PointType, PointsType> &bb)
{
return ! bb.defined || bb.min.x() >= bb.max.x() || bb.min.y() >= bb.max.y();
}
template<typename PointType>
inline bool empty(const BoundingBox3Base<PointType> &bb)
{
return ! bb.defined || bb.min.x() >= bb.max.x() || bb.min.y() >= bb.max.y() || bb.min.z() >= bb.max.z();
}
inline BoundingBox scaled(const BoundingBoxf &bb) { return {scaled(bb.min), scaled(bb.max)}; }
template<class T = coord_t>
BoundingBoxBase<Vec<2, T>> scaled(const BoundingBoxf &bb) { return {scaled<T>(bb.min), scaled<T>(bb.max)}; }
template<class T = coord_t>
BoundingBox3Base<Vec<3, T>> scaled(const BoundingBoxf3 &bb) { return {scaled<T>(bb.min), scaled<T>(bb.max)}; }
template<class T = double>
BoundingBoxBase<Vec<2, T>> unscaled(const BoundingBox &bb) { return {unscaled<T>(bb.min), unscaled<T>(bb.max)}; }
template<class T = double>
BoundingBox3Base<Vec<3, T>> unscaled(const BoundingBox3 &bb) { return {unscaled<T>(bb.min), unscaled<T>(bb.max)}; }
template<class Tout, class Tin>
auto cast(const BoundingBoxBase<Tin> &b)
{
return BoundingBoxBase<Vec<2, Tout>>{b.min.template cast<Tout>(),
b.max.template cast<Tout>()};
}
template<class Tout, class Tin>
auto cast(const BoundingBox3Base<Tin> &b)
{
return BoundingBox3Base<Vec<3, Tout>>{b.min.template cast<Tout>(),
b.max.template cast<Tout>()};
}
} // namespace Slic3r
// Serialization through the Cereal library
namespace cereal {
template<class Archive> void serialize(Archive& archive, Slic3r::BoundingBox &bb) { archive(bb.min, bb.max, bb.defined); }
template<class Archive> void serialize(Archive& archive, Slic3r::BoundingBox3 &bb) { archive(bb.min, bb.max, bb.defined); }
template<class Archive> void serialize(Archive& archive, Slic3r::BoundingBoxf &bb) { archive(bb.min, bb.max, bb.defined); }
template<class Archive> void serialize(Archive& archive, Slic3r::BoundingBoxf3 &bb) { archive(bb.min, bb.max, bb.defined); }
}
#endif