OrcaSlicer/src/slic3r/GUI/3DScene.hpp

524 lines
24 KiB
C++

#ifndef slic3r_3DScene_hpp_
#define slic3r_3DScene_hpp_
#include "libslic3r/libslic3r.h"
#include "libslic3r/Point.hpp"
#include "libslic3r/Line.hpp"
#include "libslic3r/TriangleMesh.hpp"
#include "libslic3r/Utils.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Color.hpp"
// BBS
#include "libslic3r/ObjectID.hpp"
#include "GLModel.hpp"
#include "GLShader.hpp"
#include "MeshUtils.hpp"
#include <functional>
#include <optional>
#ifndef NDEBUG
#define HAS_GLSAFE
#endif // NDEBUG
#ifdef HAS_GLSAFE
extern void glAssertRecentCallImpl(const char *file_name, unsigned int line, const char *function_name);
inline void glAssertRecentCall() { glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); }
#define glsafe(cmd) do { cmd; glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); } while (false)
#define glcheck() do { glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); } while (false)
#else // HAS_GLSAFE
inline void glAssertRecentCall() { }
#define glsafe(cmd) cmd
#define glcheck()
#endif // HAS_GLSAFE
extern std::vector<Slic3r::ColorRGBA> get_extruders_colors();
extern float FullyTransparentMaterialThreshold;
extern float FullTransparentModdifiedToFixAlpha;
extern Slic3r::ColorRGBA adjust_color_for_rendering(const Slic3r::ColorRGBA &colors);
namespace Slic3r {
class SLAPrintObject;
enum SLAPrintObjectStep : unsigned int;
class BuildVolume;
class DynamicPrintConfig;
class ExtrusionPath;
class ExtrusionMultiPath;
class ExtrusionLoop;
class ExtrusionEntity;
class ExtrusionEntityCollection;
class ModelObject;
class ModelVolume;
class GLShaderProgram;
enum ModelInstanceEPrintVolumeState : unsigned char;
using ModelObjectPtrs = std::vector<ModelObject*>;
// Return appropriate color based on the ModelVolume.
extern ColorRGBA color_from_model_volume(const ModelVolume& model_volume);
class GLVolume {
public:
std::string name;
static ColorRGBA DISABLED_COLOR;
static ColorRGBA SLA_SUPPORT_COLOR;
static ColorRGBA SLA_PAD_COLOR;
static ColorRGBA NEUTRAL_COLOR;
static ColorRGBA UNPRINTABLE_COLOR;
static std::array<ColorRGBA, 5> MODEL_COLOR;
static ColorRGBA MODEL_MIDIFIER_COL;
static ColorRGBA MODEL_NEGTIVE_COL;
static ColorRGBA SUPPORT_ENFORCER_COL;
static ColorRGBA SUPPORT_BLOCKER_COL;
static ColorRGBA MODEL_HIDDEN_COL;
static void update_render_colors();
static void load_render_colors();
static float explosion_ratio;
static float last_explosion_ratio;
enum EHoverState : unsigned char
{
HS_None,
HS_Hover,
HS_Select,
HS_Deselect
};
GLVolume(float r = 1.f, float g = 1.f, float b = 1.f, float a = 1.f);
GLVolume(const ColorRGBA& color) : GLVolume(color.r(), color.g(), color.b(), color.a()) {}
virtual ~GLVolume() = default;
// BBS
protected:
Geometry::Transformation m_instance_transformation;
Geometry::Transformation m_volume_transformation;
// BBS
Vec3d m_offset_to_assembly{ 0.0, 0.0, 0.0 };
// Shift in z required by sla supports+pad
double m_sla_shift_z;
// Bounding box of this volume, in unscaled coordinates.
std::optional<BoundingBoxf3> m_transformed_bounding_box;
// Convex hull of the volume, if any.
std::shared_ptr<const TriangleMesh> m_convex_hull;
// Bounding box of this volume, in unscaled coordinates.
std::optional<BoundingBoxf3> m_transformed_convex_hull_bounding_box;
// Bounding box of the non sinking part of this volume, in unscaled coordinates.
std::optional<BoundingBoxf3> m_transformed_non_sinking_bounding_box;
class SinkingContours
{
static const float HalfWidth;
GLVolume& m_parent;
GUI::GLModel m_model;
BoundingBoxf3 m_old_box;
Vec3d m_shift{ Vec3d::Zero() };
public:
SinkingContours(GLVolume& volume) : m_parent(volume) {}
void render();
private:
void update();
};
SinkingContours m_sinking_contours;
public:
// Color of the triangles / quads held by this volume.
ColorRGBA color;
// Color used to render this volume.
ColorRGBA render_color;
struct CompositeID {
CompositeID(int object_id, int volume_id, int instance_id) : object_id(object_id), volume_id(volume_id), instance_id(instance_id) {}
CompositeID() : object_id(-1), volume_id(-1), instance_id(-1) {}
// Object ID, which is equal to the index of the respective ModelObject in Model.objects array.
int object_id;
// Volume ID, which is equal to the index of the respective ModelVolume in ModelObject.volumes array.
// If negative, it is an index of a geometry produced by the PrintObject for the respective ModelObject,
// and which has no associated ModelVolume in ModelObject.volumes. For example, SLA supports.
// Volume with a negative volume_id cannot be picked independently, it will pick the associated instance.
int volume_id;
// Instance ID, which is equal to the index of the respective ModelInstance in ModelObject.instances array.
int instance_id;
bool operator==(const CompositeID &rhs) const { return object_id == rhs.object_id && volume_id == rhs.volume_id && instance_id == rhs.instance_id; }
bool operator!=(const CompositeID &rhs) const { return ! (*this == rhs); }
bool operator< (const CompositeID &rhs) const
{ return object_id < rhs.object_id || (object_id == rhs.object_id && (volume_id < rhs.volume_id || (volume_id == rhs.volume_id && instance_id < rhs.instance_id))); }
};
CompositeID composite_id;
// Fingerprint of the source geometry. For ModelVolumes, it is the ModelVolume::ID and ModelInstanceID,
// for generated volumes it is the timestamp generated by PrintState::invalidate() or PrintState::set_done(),
// and the associated ModelInstanceID.
// Valid geometry_id should always be positive.
std::pair<size_t, size_t> geometry_id;
// An ID containing the extruder ID (used to select color).
int extruder_id;
size_t model_object_ID{0};
// Various boolean flags.
struct {
// Is this object selected?
bool selected : 1;
// Is this object disabled from selection?
bool disabled : 1;
// Is this object printable?
bool printable : 1;
// Is this object visible(in assemble view)?
bool visible : 1;
// Whether or not this volume is active for rendering
bool is_active : 1;
// Whether or not to use this volume when applying zoom_to_volumes()
bool zoom_to_volumes : 1;
// Wheter or not this volume is enabled for outside print volume detection in shader.
bool shader_outside_printer_detection_enabled : 1;
// Wheter or not this volume is outside print volume.
bool is_outside : 1;
bool partly_inside : 1;
// Wheter or not this volume has been generated from a modifier
bool is_modifier : 1;
// Wheter or not this volume has been generated from the wipe tower
bool is_wipe_tower : 1;
// Wheter or not this volume has been generated from an extrusion path
bool is_extrusion_path : 1;
// Wheter or not to always render this volume using its own alpha
bool force_transparent : 1;
// Whether or not always use the volume's own color (not using SELECTED/HOVER/DISABLED/OUTSIDE)
bool force_native_color : 1;
// Whether or not render this volume in neutral
bool force_neutral_color : 1;
// Whether or not to force rendering of sinking contours
bool force_sinking_contours : 1;
// Is render for picking
bool picking : 1;
};
// Is mouse or rectangle selection over this object to select/deselect it ?
EHoverState hover;
GUI::GLModel model;
// raycaster used for picking
std::unique_ptr<GUI::MeshRaycaster> mesh_raycaster;
// BBS
mutable std::vector<GUI::GLModel> mmuseg_models;
mutable ObjectBase::Timestamp mmuseg_ts;
// Ranges of triangle and quad indices to be rendered.
std::pair<size_t, size_t> tverts_range;
// If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts
// of the extrusions per layer.
std::vector<coordf_t> print_zs;
// Offset into qverts & tverts, or offsets into indices stored into an OpenGL name_index_buffer.
std::vector<size_t> offsets;
// Bounding box of this volume, in unscaled coordinates.
BoundingBoxf3 bounding_box() const {
return this->model.get_bounding_box();
}
void set_color(const ColorRGBA& rgba) { color = rgba; }
void set_render_color(const ColorRGBA& rgba) { render_color = rgba; }
// Sets render color in dependence of current state
void set_render_color();
// set color according to model volume
void set_color_from_model_volume(const ModelVolume& model_volume);
const Geometry::Transformation& get_instance_transformation() const { return m_instance_transformation; }
void set_instance_transformation(const Geometry::Transformation& transformation) { m_instance_transformation = transformation; set_bounding_boxes_as_dirty(); }
const Vec3d& get_instance_offset() const { return m_instance_transformation.get_offset(); }
double get_instance_offset(Axis axis) const { return m_instance_transformation.get_offset(axis); }
void set_instance_offset(const Vec3d& offset) { m_instance_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); }
void set_instance_offset(Axis axis, double offset) { m_instance_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); }
const Vec3d& get_instance_rotation() const { return m_instance_transformation.get_rotation(); }
double get_instance_rotation(Axis axis) const { return m_instance_transformation.get_rotation(axis); }
void set_instance_rotation(const Vec3d& rotation) { m_instance_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); }
void set_instance_rotation(Axis axis, double rotation) { m_instance_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); }
Vec3d get_instance_scaling_factor() const { return m_instance_transformation.get_scaling_factor(); }
double get_instance_scaling_factor(Axis axis) const { return m_instance_transformation.get_scaling_factor(axis); }
void set_instance_scaling_factor(const Vec3d& scaling_factor) { m_instance_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); }
void set_instance_scaling_factor(Axis axis, double scaling_factor) { m_instance_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); }
const Vec3d& get_instance_mirror() const { return m_instance_transformation.get_mirror(); }
double get_instance_mirror(Axis axis) const { return m_instance_transformation.get_mirror(axis); }
void set_instance_mirror(const Vec3d& mirror) { m_instance_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); }
void set_instance_mirror(Axis axis, double mirror) { m_instance_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); }
const Geometry::Transformation& get_volume_transformation() const { return m_volume_transformation; }
void set_volume_transformation(const Geometry::Transformation& transformation) { m_volume_transformation = transformation; set_bounding_boxes_as_dirty(); }
const Vec3d& get_volume_offset() const { return m_volume_transformation.get_offset(); }
double get_volume_offset(Axis axis) const { return m_volume_transformation.get_offset(axis); }
void set_volume_offset(const Vec3d& offset) { m_volume_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); }
void set_volume_offset(Axis axis, double offset) { m_volume_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); }
const Vec3d& get_volume_rotation() const { return m_volume_transformation.get_rotation(); }
double get_volume_rotation(Axis axis) const { return m_volume_transformation.get_rotation(axis); }
void set_volume_rotation(const Vec3d& rotation) { m_volume_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); }
void set_volume_rotation(Axis axis, double rotation) { m_volume_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); }
const Vec3d& get_volume_scaling_factor() const { return m_volume_transformation.get_scaling_factor(); }
double get_volume_scaling_factor(Axis axis) const { return m_volume_transformation.get_scaling_factor(axis); }
void set_volume_scaling_factor(const Vec3d& scaling_factor) { m_volume_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); }
void set_volume_scaling_factor(Axis axis, double scaling_factor) { m_volume_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); }
const Vec3d& get_volume_mirror() const { return m_volume_transformation.get_mirror(); }
double get_volume_mirror(Axis axis) const { return m_volume_transformation.get_mirror(axis); }
void set_volume_mirror(const Vec3d& mirror) { m_volume_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); }
void set_volume_mirror(Axis axis, double mirror) { m_volume_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); }
double get_sla_shift_z() const { return m_sla_shift_z; }
void set_sla_shift_z(double z) { m_sla_shift_z = z; }
void set_convex_hull(std::shared_ptr<const TriangleMesh> convex_hull) { m_convex_hull = std::move(convex_hull); }
void set_convex_hull(const TriangleMesh &convex_hull) { m_convex_hull = std::make_shared<const TriangleMesh>(convex_hull); }
void set_convex_hull(TriangleMesh &&convex_hull) { m_convex_hull = std::make_shared<const TriangleMesh>(std::move(convex_hull)); }
void set_offset_to_assembly(const Vec3d& offset) { m_offset_to_assembly = offset; set_bounding_boxes_as_dirty(); }
Vec3d get_offset_to_assembly() { return m_offset_to_assembly; }
int object_idx() const { return this->composite_id.object_id; }
int volume_idx() const { return this->composite_id.volume_id; }
int instance_idx() const { return this->composite_id.instance_id; }
Transform3d world_matrix() const;
bool is_left_handed() const;
const BoundingBoxf3& transformed_bounding_box() const;
// non-caching variant
BoundingBoxf3 transformed_convex_hull_bounding_box(const Transform3d &trafo) const;
// caching variant
const BoundingBoxf3& transformed_convex_hull_bounding_box() const;
// non-caching variant
BoundingBoxf3 transformed_non_sinking_bounding_box(const Transform3d& trafo) const;
// caching variant
const BoundingBoxf3& transformed_non_sinking_bounding_box() const;
// convex hull
const TriangleMesh* convex_hull() const { return m_convex_hull.get(); }
bool empty() const { return this->model.is_empty(); }
void set_range(double low, double high);
virtual void render();
//BBS: add outline related logic and add virtual specifier
virtual void render_with_outline(const Transform3d &view_model_matrix);
//BBS: add simple render function for thumbnail
void simple_render(GLShaderProgram* shader, ModelObjectPtrs& model_objects, std::vector<ColorRGBA> extruder_colors);
void set_bounding_boxes_as_dirty() {
m_transformed_bounding_box.reset();
m_transformed_convex_hull_bounding_box.reset();
m_transformed_non_sinking_bounding_box.reset();
}
bool is_sla_support() const;
bool is_sla_pad() const;
bool is_sinking() const;
bool is_below_printbed() const;
void render_sinking_contours();
// Return an estimate of the memory consumed by this class.
size_t cpu_memory_used() const {
return sizeof(*this) + this->model.cpu_memory_used() + this->print_zs.capacity() * sizeof(coordf_t) +
this->offsets.capacity() * sizeof(size_t);
}
// Return an estimate of the memory held by GPU vertex buffers.
size_t gpu_memory_used() const { return this->model.gpu_memory_used(); }
size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); }
};
// BBS
class GLWipeTowerVolume : public GLVolume {
public:
GLWipeTowerVolume(const std::vector<ColorRGBA>& colors);
void render() override;
void render_with_outline(const Transform3d &view_model_matrix) override { render(); }
std::vector<GUI::GLModel> model_per_colors;
bool IsTransparent();
private:
std::vector<ColorRGBA> m_colors;
};
typedef std::vector<GLVolume*> GLVolumePtrs;
typedef std::pair<GLVolume*, std::pair<unsigned int, double>> GLVolumeWithIdAndZ;
typedef std::vector<GLVolumeWithIdAndZ> GLVolumeWithIdAndZList;
class GLVolumeCollection
{
public:
enum class ERenderType : unsigned char
{
Opaque,
Transparent,
All
};
struct PrintVolume
{
// see: Bed3D::EShapeType
int type{ 0 };
// data contains:
// Rectangle:
// [0] = min.x, [1] = min.y, [2] = max.x, [3] = max.y
// Circle:
// [0] = center.x, [1] = center.y, [3] = radius
std::array<float, 4> data;
// [0] = min z, [1] = max z
std::array<float, 2> zs;
};
private:
PrintVolume m_print_volume;
PrintVolume m_render_volume;
// z range for clipping in shaders
std::array<float, 2> m_z_range;
// plane coeffs for clipping in shaders
std::array<double, 4> m_clipping_plane;
struct Slope
{
// toggle for slope rendering
bool active{ false };//local active
bool isGlobalActive{false};
float normal_z;
};
Slope m_slope;
bool m_show_sinking_contours = false;
public:
GLVolumePtrs volumes;
GLVolumeCollection() {
set_default_slope_normal_z();
//BBS init render volume
m_render_volume.type = -1;
}
~GLVolumeCollection() { clear(); }
std::vector<int> load_object(
const ModelObject* model_object,
int obj_idx,
const std::vector<int>& instance_idxs);
int load_object_volume(
const ModelObject* model_object,
int obj_idx,
int volume_idx,
int instance_idx,
bool in_assemble_view = false,
bool use_loaded_id = false);
// Load SLA auxiliary GLVolumes (for support trees or pad).
void load_object_auxiliary(
const SLAPrintObject *print_object,
int obj_idx,
// pairs of <instance_idx, print_instance_idx>
const std::vector<std::pair<size_t, size_t>>& instances,
SLAPrintObjectStep milestone,
// Timestamp of the last change of the milestone
size_t timestamp);
int load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool size_unknown, float brim_width);
GLVolume* new_toolpath_volume(const ColorRGBA& rgba);
GLVolume* new_nontoolpath_volume(const ColorRGBA& rgba);
int get_selection_support_threshold_angle(bool&) const;
// Render the volumes by OpenGL.
//BBS: add outline drawing logic
void render(ERenderType type, bool disable_cullface, const Transform3d& view_matrix, const Transform3d& projection_matrix,
std::function<bool(const GLVolume &)> filter_func = std::function<bool(const GLVolume &)>(), bool with_outline = true) const;
// Clear the geometry
void clear() { for (auto *v : volumes) delete v; volumes.clear(); }
bool empty() const { return volumes.empty(); }
void set_range(double low, double high) { for (GLVolume *vol : this->volumes) vol->set_range(low, high); }
void set_print_volume(const PrintVolume& print_volume) { m_print_volume = print_volume; }
void set_z_range(float min_z, float max_z) { m_z_range[0] = min_z; m_z_range[1] = max_z; }
void set_clipping_plane(const std::array<double, 4>& coeffs) { m_clipping_plane = coeffs; }
const std::array<float, 2>& get_z_range() const { return m_z_range; }
const std::array<double, 4>& get_clipping_plane() const { return m_clipping_plane; }
bool is_slope_GlobalActive() const { return m_slope.isGlobalActive; }
bool is_slope_active() const { return m_slope.active; }
void set_slope_active(bool active) { m_slope.active = active; }
void set_slope_GlobalActive(bool active) { m_slope.isGlobalActive = active; }
float get_slope_normal_z() const { return m_slope.normal_z; }
void set_slope_normal_z(float normal_z) { m_slope.normal_z = normal_z; }
void set_default_slope_normal_z() { m_slope.normal_z = -::cos(Geometry::deg2rad(90.0f - 45.0f)); }
void set_show_sinking_contours(bool show) { m_show_sinking_contours = show; }
// returns true if all the volumes are completely contained in the print volume
// returns the containment state in the given out_state, if non-null
bool check_outside_state(const Slic3r::BuildVolume& build_volume, ModelInstanceEPrintVolumeState* out_state) const;
void reset_outside_state();
void update_colors_by_extruder(const DynamicPrintConfig *config, bool is_update_alpha = true);
// Returns a vector containing the sorted list of all the print_zs of the volumes contained in this collection
std::vector<double> get_current_print_zs(bool active_only) const;
// Return an estimate of the memory consumed by this class.
size_t cpu_memory_used() const;
// Return an estimate of the memory held by GPU vertex buffers.
size_t gpu_memory_used() const;
size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); }
// Return CPU, GPU and total memory log line.
std::string log_memory_info() const;
void set_transparency(float alpha);
private:
GLVolumeCollection(const GLVolumeCollection &other);
GLVolumeCollection& operator=(const GLVolumeCollection &);
};
GLVolumeWithIdAndZList volumes_to_render(const GLVolumePtrs& volumes, GLVolumeCollection::ERenderType type, const Transform3d& view_matrix, std::function<bool(const GLVolume&)> filter_func = nullptr);
struct _3DScene
{
static void thick_lines_to_verts(const Lines& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, double top_z, GUI::GLModel::Geometry& geometry);
static void thick_lines_to_verts(const Lines3& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, GUI::GLModel::Geometry& geometry);
static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry);
static void extrusionentity_to_verts(const ExtrusionLoop& extrusion_loop, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry);
static void extrusionentity_to_verts(const ExtrusionMultiPath& extrusion_multi_path, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry);
static void extrusionentity_to_verts(const ExtrusionEntityCollection& extrusion_entity_collection, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry);
static void extrusionentity_to_verts(const ExtrusionEntity* extrusion_entity, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry);
};
}
#endif