mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 12:41:20 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			370 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			370 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of libigl, a simple c++ geometry processing library.
 | |
| //
 | |
| // Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla Public License
 | |
| // v. 2.0. If a copy of the MPL was not distributed with this file, You can
 | |
| // obtain one at http://mozilla.org/MPL/2.0/.
 | |
| #include "active_set.h"
 | |
| #include "min_quad_with_fixed.h"
 | |
| #include "slice.h"
 | |
| #include "slice_into.h"
 | |
| #include "cat.h"
 | |
| //#include "matlab_format.h"
 | |
| 
 | |
| #include <iostream>
 | |
| #include <limits>
 | |
| #include <algorithm>
 | |
| 
 | |
| template <
 | |
|   typename AT,
 | |
|   typename DerivedB,
 | |
|   typename Derivedknown,
 | |
|   typename DerivedY,
 | |
|   typename AeqT,
 | |
|   typename DerivedBeq,
 | |
|   typename AieqT,
 | |
|   typename DerivedBieq,
 | |
|   typename Derivedlx,
 | |
|   typename Derivedux,
 | |
|   typename DerivedZ
 | |
|   >
 | |
| IGL_INLINE igl::SolverStatus igl::active_set(
 | |
|   const Eigen::SparseMatrix<AT>& A,
 | |
|   const Eigen::PlainObjectBase<DerivedB> & B,
 | |
|   const Eigen::PlainObjectBase<Derivedknown> & known,
 | |
|   const Eigen::PlainObjectBase<DerivedY> & Y,
 | |
|   const Eigen::SparseMatrix<AeqT>& Aeq,
 | |
|   const Eigen::PlainObjectBase<DerivedBeq> & Beq,
 | |
|   const Eigen::SparseMatrix<AieqT>& Aieq,
 | |
|   const Eigen::PlainObjectBase<DerivedBieq> & Bieq,
 | |
|   const Eigen::PlainObjectBase<Derivedlx> & p_lx,
 | |
|   const Eigen::PlainObjectBase<Derivedux> & p_ux,
 | |
|   const igl::active_set_params & params,
 | |
|   Eigen::PlainObjectBase<DerivedZ> & Z
 | |
|   )
 | |
| {
 | |
| //#define ACTIVE_SET_CPP_DEBUG
 | |
| #if defined(ACTIVE_SET_CPP_DEBUG) && !defined(_MSC_VER)
 | |
| #  warning "ACTIVE_SET_CPP_DEBUG"
 | |
| #endif
 | |
|   using namespace Eigen;
 | |
|   using namespace std;
 | |
|   SolverStatus ret = SOLVER_STATUS_ERROR;
 | |
|   const int n = A.rows();
 | |
|   assert(n == A.cols() && "A must be square");
 | |
|   // Discard const qualifiers
 | |
|   //if(B.size() == 0)
 | |
|   //{
 | |
|   //  B = DerivedB::Zero(n,1);
 | |
|   //}
 | |
|   assert(n == B.rows() && "B.rows() must match A.rows()");
 | |
|   assert(B.cols() == 1 && "B must be a column vector");
 | |
|   assert(Y.cols() == 1 && "Y must be a column vector");
 | |
|   assert((Aeq.size() == 0 && Beq.size() == 0) || Aeq.cols() == n);
 | |
|   assert((Aeq.size() == 0 && Beq.size() == 0) || Aeq.rows() == Beq.rows());
 | |
|   assert((Aeq.size() == 0 && Beq.size() == 0) || Beq.cols() == 1);
 | |
|   assert((Aieq.size() == 0 && Bieq.size() == 0) || Aieq.cols() == n);
 | |
|   assert((Aieq.size() == 0 && Bieq.size() == 0) || Aieq.rows() == Bieq.rows());
 | |
|   assert((Aieq.size() == 0 && Bieq.size() == 0) || Bieq.cols() == 1);
 | |
|   Eigen::Matrix<typename Derivedlx::Scalar,Eigen::Dynamic,1> lx;
 | |
|   Eigen::Matrix<typename Derivedux::Scalar,Eigen::Dynamic,1> ux;
 | |
|   if(p_lx.size() == 0)
 | |
|   {
 | |
|     lx = Derivedlx::Constant(
 | |
|       n,1,-numeric_limits<typename Derivedlx::Scalar>::max());
 | |
|   }else
 | |
|   {
 | |
|     lx = p_lx;
 | |
|   }
 | |
|   if(p_ux.size() == 0)
 | |
|   {
 | |
|     ux = Derivedux::Constant(
 | |
|       n,1,numeric_limits<typename Derivedux::Scalar>::max());
 | |
|   }else
 | |
|   {
 | |
|     ux = p_ux;
 | |
|   }
 | |
|   assert(lx.rows() == n && "lx must have n rows");
 | |
|   assert(ux.rows() == n && "ux must have n rows");
 | |
|   assert(ux.cols() == 1 && "lx must be a column vector");
 | |
|   assert(lx.cols() == 1 && "ux must be a column vector");
 | |
|   assert((ux.array()-lx.array()).minCoeff() > 0 && "ux(i) must be > lx(i)");
 | |
|   if(Z.size() != 0)
 | |
|   {
 | |
|     // Initial guess should have correct size
 | |
|     assert(Z.rows() == n && "Z must have n rows");
 | |
|     assert(Z.cols() == 1 && "Z must be a column vector");
 | |
|   }
 | |
|   assert(known.cols() == 1 && "known must be a column vector");
 | |
|   // Number of knowns
 | |
|   const int nk = known.size();
 | |
| 
 | |
|   // Initialize active sets
 | |
|   typedef int BOOL;
 | |
| #define TRUE 1
 | |
| #define FALSE 0
 | |
|   Matrix<BOOL,Dynamic,1> as_lx = Matrix<BOOL,Dynamic,1>::Constant(n,1,FALSE);
 | |
|   Matrix<BOOL,Dynamic,1> as_ux = Matrix<BOOL,Dynamic,1>::Constant(n,1,FALSE);
 | |
|   Matrix<BOOL,Dynamic,1> as_ieq = Matrix<BOOL,Dynamic,1>::Constant(Aieq.rows(),1,FALSE);
 | |
| 
 | |
|   // Keep track of previous Z for comparison
 | |
|   DerivedZ old_Z;
 | |
|   old_Z = DerivedZ::Constant(
 | |
|       n,1,numeric_limits<typename DerivedZ::Scalar>::max());
 | |
| 
 | |
|   int iter = 0;
 | |
|   while(true)
 | |
|   {
 | |
| #ifdef ACTIVE_SET_CPP_DEBUG
 | |
|     cout<<"Iteration: "<<iter<<":"<<endl;
 | |
|     cout<<"  pre"<<endl;
 | |
| #endif
 | |
|     // FIND BREACHES OF CONSTRAINTS
 | |
|     int new_as_lx = 0;
 | |
|     int new_as_ux = 0;
 | |
|     int new_as_ieq = 0;
 | |
|     if(Z.size() > 0)
 | |
|     {
 | |
|       for(int z = 0;z < n;z++)
 | |
|       {
 | |
|         if(Z(z) < lx(z))
 | |
|         {
 | |
|           new_as_lx += (as_lx(z)?0:1);
 | |
|           //new_as_lx++;
 | |
|           as_lx(z) = TRUE;
 | |
|         }
 | |
|         if(Z(z) > ux(z))
 | |
|         {
 | |
|           new_as_ux += (as_ux(z)?0:1);
 | |
|           //new_as_ux++;
 | |
|           as_ux(z) = TRUE;
 | |
|         }
 | |
|       }
 | |
|       if(Aieq.rows() > 0)
 | |
|       {
 | |
|         DerivedZ AieqZ;
 | |
|         AieqZ = Aieq*Z;
 | |
|         for(int a = 0;a<Aieq.rows();a++)
 | |
|         {
 | |
|           if(AieqZ(a) > Bieq(a))
 | |
|           {
 | |
|             new_as_ieq += (as_ieq(a)?0:1);
 | |
|             as_ieq(a) = TRUE;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| #ifdef ACTIVE_SET_CPP_DEBUG
 | |
|       cout<<"  new_as_lx: "<<new_as_lx<<endl;
 | |
|       cout<<"  new_as_ux: "<<new_as_ux<<endl;
 | |
| #endif
 | |
|       const double diff = (Z-old_Z).squaredNorm();
 | |
| #ifdef ACTIVE_SET_CPP_DEBUG
 | |
|       cout<<"diff: "<<diff<<endl;
 | |
| #endif
 | |
|       if(diff < params.solution_diff_threshold)
 | |
|       {
 | |
|         ret = SOLVER_STATUS_CONVERGED;
 | |
|         break;
 | |
|       }
 | |
|       old_Z = Z;
 | |
|     }
 | |
| 
 | |
|     const int as_lx_count = std::count(as_lx.data(),as_lx.data()+n,TRUE);
 | |
|     const int as_ux_count = std::count(as_ux.data(),as_ux.data()+n,TRUE);
 | |
|     const int as_ieq_count =
 | |
|       std::count(as_ieq.data(),as_ieq.data()+as_ieq.size(),TRUE);
 | |
| #ifndef NDEBUG
 | |
|     {
 | |
|       int count = 0;
 | |
|       for(int a = 0;a<as_ieq.size();a++)
 | |
|       {
 | |
|         if(as_ieq(a))
 | |
|         {
 | |
|           assert(as_ieq(a) == TRUE);
 | |
|           count++;
 | |
|         }
 | |
|       }
 | |
|       assert(as_ieq_count == count);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // PREPARE FIXED VALUES
 | |
|     Derivedknown known_i;
 | |
|     known_i.resize(nk + as_lx_count + as_ux_count,1);
 | |
|     DerivedY Y_i;
 | |
|     Y_i.resize(nk + as_lx_count + as_ux_count,1);
 | |
|     {
 | |
|       known_i.block(0,0,known.rows(),known.cols()) = known;
 | |
|       Y_i.block(0,0,Y.rows(),Y.cols()) = Y;
 | |
|       int k = nk;
 | |
|       // Then all lx
 | |
|       for(int z = 0;z < n;z++)
 | |
|       {
 | |
|         if(as_lx(z))
 | |
|         {
 | |
|           known_i(k) = z;
 | |
|           Y_i(k) = lx(z);
 | |
|           k++;
 | |
|         }
 | |
|       }
 | |
|       // Finally all ux
 | |
|       for(int z = 0;z < n;z++)
 | |
|       {
 | |
|         if(as_ux(z))
 | |
|         {
 | |
|           known_i(k) = z;
 | |
|           Y_i(k) = ux(z);
 | |
|           k++;
 | |
|         }
 | |
|       }
 | |
|       assert(k==Y_i.size());
 | |
|       assert(k==known_i.size());
 | |
|     }
 | |
|     //cout<<matlab_format((known_i.array()+1).eval(),"known_i")<<endl;
 | |
|     // PREPARE EQUALITY CONSTRAINTS
 | |
|     VectorXi as_ieq_list(as_ieq_count,1);
 | |
|     // Gather active constraints and resp. rhss
 | |
|     DerivedBeq Beq_i;
 | |
|     Beq_i.resize(Beq.rows()+as_ieq_count,1);
 | |
|     Beq_i.head(Beq.rows()) = Beq;
 | |
|     {
 | |
|       int k =0;
 | |
|       for(int a=0;a<as_ieq.size();a++)
 | |
|       {
 | |
|         if(as_ieq(a))
 | |
|         {
 | |
|           assert(k<as_ieq_list.size());
 | |
|           as_ieq_list(k)=a;
 | |
|           Beq_i(Beq.rows()+k,0) = Bieq(k,0);
 | |
|           k++;
 | |
|         }
 | |
|       }
 | |
|       assert(k == as_ieq_count);
 | |
|     }
 | |
|     // extract active constraint rows
 | |
|     SparseMatrix<AeqT> Aeq_i,Aieq_i;
 | |
|     slice(Aieq,as_ieq_list,1,Aieq_i);
 | |
|     // Append to equality constraints
 | |
|     cat(1,Aeq,Aieq_i,Aeq_i);
 | |
| 
 | |
| 
 | |
|     min_quad_with_fixed_data<AT> data;
 | |
| #ifndef NDEBUG
 | |
|     {
 | |
|       // NO DUPES!
 | |
|       Matrix<BOOL,Dynamic,1> fixed = Matrix<BOOL,Dynamic,1>::Constant(n,1,FALSE);
 | |
|       for(int k = 0;k<known_i.size();k++)
 | |
|       {
 | |
|         assert(!fixed[known_i(k)]);
 | |
|         fixed[known_i(k)] = TRUE;
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     DerivedZ sol;
 | |
|     if(known_i.size() == A.rows())
 | |
|     {
 | |
|       // Everything's fixed?
 | |
| #ifdef ACTIVE_SET_CPP_DEBUG
 | |
|       cout<<"  everything's fixed."<<endl;
 | |
| #endif
 | |
|       Z.resize(A.rows(),Y_i.cols());
 | |
|       slice_into(Y_i,known_i,1,Z);
 | |
|       sol.resize(0,Y_i.cols());
 | |
|       assert(Aeq_i.rows() == 0 && "All fixed but linearly constrained");
 | |
|     }else
 | |
|     {
 | |
| #ifdef ACTIVE_SET_CPP_DEBUG
 | |
|       cout<<"  min_quad_with_fixed_precompute"<<endl;
 | |
| #endif
 | |
|       if(!min_quad_with_fixed_precompute(A,known_i,Aeq_i,params.Auu_pd,data))
 | |
|       {
 | |
|         cerr<<"Error: min_quad_with_fixed precomputation failed."<<endl;
 | |
|         if(iter > 0 && Aeq_i.rows() > Aeq.rows())
 | |
|         {
 | |
|           cerr<<"  *Are you sure rows of [Aeq;Aieq] are linearly independent?*"<<
 | |
|             endl;
 | |
|         }
 | |
|         ret = SOLVER_STATUS_ERROR;
 | |
|         break;
 | |
|       }
 | |
| #ifdef ACTIVE_SET_CPP_DEBUG
 | |
|       cout<<"  min_quad_with_fixed_solve"<<endl;
 | |
| #endif
 | |
|       if(!min_quad_with_fixed_solve(data,B,Y_i,Beq_i,Z,sol))
 | |
|       {
 | |
|         cerr<<"Error: min_quad_with_fixed solve failed."<<endl;
 | |
|         ret = SOLVER_STATUS_ERROR;
 | |
|         break;
 | |
|       }
 | |
|       //cout<<matlab_format((Aeq*Z-Beq).eval(),"cr")<<endl;
 | |
|       //cout<<matlab_format(Z,"Z")<<endl;
 | |
| #ifdef ACTIVE_SET_CPP_DEBUG
 | |
|       cout<<"  post"<<endl;
 | |
| #endif
 | |
|       // Computing Lagrange multipliers needs to be adjusted slightly if A is not symmetric
 | |
|       assert(data.Auu_sym);
 | |
|     }
 | |
| 
 | |
|     // Compute Lagrange multiplier values for known_i
 | |
|     SparseMatrix<AT> Ak;
 | |
|     // Slow
 | |
|     slice(A,known_i,1,Ak);
 | |
|     DerivedB Bk;
 | |
|     slice(B,known_i,Bk);
 | |
|     MatrixXd Lambda_known_i = -(0.5*Ak*Z + 0.5*Bk);
 | |
|     // reverse the lambda values for lx
 | |
|     Lambda_known_i.block(nk,0,as_lx_count,1) =
 | |
|       (-1*Lambda_known_i.block(nk,0,as_lx_count,1)).eval();
 | |
| 
 | |
|     // Extract Lagrange multipliers for Aieq_i (always at back of sol)
 | |
|     VectorXd Lambda_Aieq_i(Aieq_i.rows(),1);
 | |
|     for(int l = 0;l<Aieq_i.rows();l++)
 | |
|     {
 | |
|       Lambda_Aieq_i(Aieq_i.rows()-1-l) = sol(sol.rows()-1-l);
 | |
|     }
 | |
| 
 | |
|     // Remove from active set
 | |
|     for(int l = 0;l<as_lx_count;l++)
 | |
|     {
 | |
|       if(Lambda_known_i(nk + l) < params.inactive_threshold)
 | |
|       {
 | |
|         as_lx(known_i(nk + l)) = FALSE;
 | |
|       }
 | |
|     }
 | |
|     for(int u = 0;u<as_ux_count;u++)
 | |
|     {
 | |
|       if(Lambda_known_i(nk + as_lx_count + u) <
 | |
|         params.inactive_threshold)
 | |
|       {
 | |
|         as_ux(known_i(nk + as_lx_count + u)) = FALSE;
 | |
|       }
 | |
|     }
 | |
|     for(int a = 0;a<as_ieq_count;a++)
 | |
|     {
 | |
|       if(Lambda_Aieq_i(a) < params.inactive_threshold)
 | |
|       {
 | |
|         as_ieq(as_ieq_list(a)) = FALSE;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     iter++;
 | |
|     //cout<<iter<<endl;
 | |
|     if(params.max_iter>0 && iter>=params.max_iter)
 | |
|     {
 | |
|       ret = SOLVER_STATUS_MAX_ITER;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef IGL_STATIC_LIBRARY
 | |
| // Explicit template instantiation
 | |
| template igl::SolverStatus igl::active_set<double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, igl::active_set_params const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
 | |
| template igl::SolverStatus igl::active_set<double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, igl::active_set_params const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
 | |
| #endif
 | 
