OrcaSlicer/src/libigl/igl/doublearea.cpp
tamasmeszaros 2ae2672ee9 Building igl statically and moving to the dep scripts
Fixing dep build script on Windows and removing some warnings.

Use bundled igl by default.

Not building with the dependency scripts if not explicitly stated. This way, it will stay in
Fix the libigl patch to include C source files in header only mode.
2019-06-19 14:52:55 +02:00

263 lines
16 KiB
C++

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "doublearea.h"
#include "edge_lengths.h"
#include "parallel_for.h"
#include "sort.h"
#include <cassert>
#include <iostream>
#include <limits>
template <typename DerivedV, typename DerivedF, typename DeriveddblA>
IGL_INLINE void igl::doublearea(
const Eigen::MatrixBase<DerivedV> & V,
const Eigen::MatrixBase<DerivedF> & F,
Eigen::PlainObjectBase<DeriveddblA> & dblA)
{
// quads are handled by a specialized function
if (F.cols() == 4) return doublearea_quad(V,F,dblA);
const int dim = V.cols();
// Only support triangles
assert(F.cols() == 3);
const size_t m = F.rows();
// Compute edge lengths
Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 3> l;
// Projected area helper
const auto & proj_doublearea =
[&V,&F](const int x, const int y, const int f)
->typename DerivedV::Scalar
{
auto rx = V(F(f,0),x)-V(F(f,2),x);
auto sx = V(F(f,1),x)-V(F(f,2),x);
auto ry = V(F(f,0),y)-V(F(f,2),y);
auto sy = V(F(f,1),y)-V(F(f,2),y);
return rx*sy - ry*sx;
};
switch(dim)
{
case 3:
{
dblA = DeriveddblA::Zero(m,1);
for(size_t f = 0;f<m;f++)
{
for(int d = 0;d<3;d++)
{
const auto dblAd = proj_doublearea(d,(d+1)%3,f);
dblA(f) += dblAd*dblAd;
}
}
dblA = dblA.array().sqrt().eval();
break;
}
case 2:
{
dblA.resize(m,1);
for(size_t f = 0;f<m;f++)
{
dblA(f) = proj_doublearea(0,1,f);
}
break;
}
default:
{
edge_lengths(V,F,l);
return doublearea(l,0.,dblA);
}
}
}
template <
typename DerivedA,
typename DerivedB,
typename DerivedC,
typename DerivedD>
IGL_INLINE void igl::doublearea(
const Eigen::MatrixBase<DerivedA> & A,
const Eigen::MatrixBase<DerivedB> & B,
const Eigen::MatrixBase<DerivedC> & C,
Eigen::PlainObjectBase<DerivedD> & D)
{
assert((B.cols() == A.cols()) && "dimensions of A and B should match");
assert((C.cols() == A.cols()) && "dimensions of A and C should match");
assert(A.rows() == B.rows() && "corners should have same length");
assert(A.rows() == C.rows() && "corners should have same length");
switch(A.cols())
{
case 2:
{
// For 2d compute signed area
const auto & R = A-C;
const auto & S = B-C;
D = (R.col(0).array()*S.col(1).array() -
R.col(1).array()*S.col(0).array()).template cast<
typename DerivedD::Scalar>();
break;
}
default:
{
Eigen::Matrix<typename DerivedD::Scalar,DerivedD::RowsAtCompileTime,3>
uL(A.rows(),3);
uL.col(0) = ((B-C).rowwise().norm()).template cast<typename DerivedD::Scalar>();
uL.col(1) = ((C-A).rowwise().norm()).template cast<typename DerivedD::Scalar>();
uL.col(2) = ((A-B).rowwise().norm()).template cast<typename DerivedD::Scalar>();
doublearea(uL,D);
}
}
}
template <
typename DerivedA,
typename DerivedB,
typename DerivedC>
IGL_INLINE typename DerivedA::Scalar igl::doublearea_single(
const Eigen::MatrixBase<DerivedA> & A,
const Eigen::MatrixBase<DerivedB> & B,
const Eigen::MatrixBase<DerivedC> & C)
{
assert(A.size() == 2 && "Vertices should be 2D");
assert(B.size() == 2 && "Vertices should be 2D");
assert(C.size() == 2 && "Vertices should be 2D");
auto r = A-C;
auto s = B-C;
return r(0)*s(1) - r(1)*s(0);
}
template <typename Derivedl, typename DeriveddblA>
IGL_INLINE void igl::doublearea(
const Eigen::MatrixBase<Derivedl> & ul,
Eigen::PlainObjectBase<DeriveddblA> & dblA)
{
// Default is to leave NaNs and fire asserts in debug mode
return doublearea(
ul,std::numeric_limits<typename Derivedl::Scalar>::quiet_NaN(),dblA);
}
template <typename Derivedl, typename DeriveddblA>
IGL_INLINE void igl::doublearea(
const Eigen::MatrixBase<Derivedl> & ul,
const typename Derivedl::Scalar nan_replacement,
Eigen::PlainObjectBase<DeriveddblA> & dblA)
{
using namespace Eigen;
using namespace std;
typedef typename Derivedl::Index Index;
// Only support triangles
assert(ul.cols() == 3);
// Number of triangles
const Index m = ul.rows();
Eigen::Matrix<typename Derivedl::Scalar, Eigen::Dynamic, 3> l;
MatrixXi _;
//
// "Miscalculating Area and Angles of a Needle-like Triangle"
// https://people.eecs.berkeley.edu/~wkahan/Triangle.pdf
igl::sort(ul,2,false,l,_);
// semiperimeters
//Matrix<typename Derivedl::Scalar,Dynamic,1> s = l.rowwise().sum()*0.5;
//assert((Index)s.rows() == m);
// resize output
dblA.resize(l.rows(),1);
parallel_for(
m,
[&l,&dblA,&nan_replacement](const int i)
{
// Kahan's Heron's formula
typedef typename Derivedl::Scalar Scalar;
const Scalar arg =
(l(i,0)+(l(i,1)+l(i,2)))*
(l(i,2)-(l(i,0)-l(i,1)))*
(l(i,2)+(l(i,0)-l(i,1)))*
(l(i,0)+(l(i,1)-l(i,2)));
dblA(i) = 2.0*0.25*sqrt(arg);
// Alec: If the input edge lengths were computed from floating point
// vertex positions then there's no guarantee that they fulfill the
// triangle inequality (in their floating point approximations). For
// nearly degenerate triangles the round-off error during side-length
// computation may be larger than (or rather smaller) than the height of
// the triangle. In "Lecture Notes on Geometric Robustness" Shewchuck 09,
// Section 3.1 http://www.cs.berkeley.edu/~jrs/meshpapers/robnotes.pdf,
// he recommends computing the triangle areas for 2D and 3D using 2D
// signed areas computed with determinants.
assert(
(nan_replacement == nan_replacement ||
(l(i,2) - (l(i,0)-l(i,1)))>=0)
&& "Side lengths do not obey the triangle inequality.");
if(dblA(i) != dblA(i))
{
dblA(i) = nan_replacement;
}
assert(dblA(i) == dblA(i) && "DOUBLEAREA() PRODUCED NaN");
},
1000l);
}
template <typename DerivedV, typename DerivedF, typename DeriveddblA>
IGL_INLINE void igl::doublearea_quad(
const Eigen::MatrixBase<DerivedV> & V,
const Eigen::MatrixBase<DerivedF> & F,
Eigen::PlainObjectBase<DeriveddblA> & dblA)
{
assert(V.cols() == 3); // Only supports points in 3D
assert(F.cols() == 4); // Only support quads
const size_t m = F.rows();
// Split the quads into triangles
Eigen::MatrixXi Ft(F.rows()*2,3);
for(size_t i=0; i<m;++i)
{
Ft.row(i*2 ) << F(i,0), F(i,1), F(i,2);
Ft.row(i*2 + 1) << F(i,2), F(i,3), F(i,0);
}
// Compute areas
Eigen::VectorXd doublearea_tri;
igl::doublearea(V,Ft,doublearea_tri);
dblA.resize(F.rows(),1);
for(unsigned i=0; i<F.rows();++i)
{
dblA(i) = doublearea_tri(i*2) + doublearea_tri(i*2 + 1);
}
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
// generated by autoexplicit.sh
template void igl::doublearea<Eigen::Matrix<float, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<float, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<float, -1, 3, 0, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<float, -1, 1, 0, -1, 1> >&);
// generated by autoexplicit.sh
template void igl::doublearea<Eigen::Matrix<float, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<float, -1, 3, 0, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
// generated by autoexplicit.sh
template void igl::doublearea<Eigen::Matrix<float, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<float, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<float, -1, 3, 0, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<float, -1, 1, 0, -1, 1> >&);
// generated by autoexplicit.sh
template void igl::doublearea<Eigen::Matrix<float, -1, 3, 1, -1, 3>, Eigen::Matrix<int, -1, 3, 1, -1, 3>, Eigen::Matrix<float, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<float, -1, 3, 1, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 1, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<float, -1, 1, 0, -1, 1> >&);
template void igl::doublearea<Eigen::Matrix<float, -1, 3, 1, -1, 3>, Eigen::Matrix<int, -1, 3, 1, -1, 3>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<float, -1, 3, 1, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 1, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template void igl::doublearea<Eigen::Matrix<float, 1, 3, 1, 1, 3>, Eigen::Matrix<float, 1, 3, 1, 1, 3>, Eigen::Matrix<float, 1, 3, 1, 1, 3>, Eigen::Matrix<double, 1, 1, 0, 1, 1> >(Eigen::MatrixBase<Eigen::Matrix<float, 1, 3, 1, 1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<float, 1, 3, 1, 1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<float, 1, 3, 1, 1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, 1, 1, 0, 1, 1> >&);
template void igl::doublearea<Eigen::Matrix<float, -1, 3, 1, -1, 3>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<float, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<float, -1, 3, 1, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<float, -1, 1, 0, -1, 1> >&);
template void igl::doublearea<Eigen::Matrix<double, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 1, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template void igl::doublearea<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template void igl::doublearea<Eigen::Matrix<float, -1, 3, 1, -1, 3>, Eigen::Matrix<unsigned int, -1, 3, 1, -1, 3>, Eigen::Matrix<float, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<float, -1, 3, 1, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<unsigned int, -1, 3, 1, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<float, -1, 1, 0, -1, 1> >&);
template void igl::doublearea<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template void igl::doublearea<Eigen::Matrix<float, -1, 3, 1, -1, 3>, Eigen::Matrix<unsigned int, -1, -1, 1, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<float, -1, 3, 1, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<unsigned int, -1, -1, 1, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template void igl::doublearea<Eigen::Matrix<double, -1, 3, 1, -1, 3>, Eigen::Matrix<unsigned int, -1, -1, 1, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, 3, 1, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<unsigned int, -1, -1, 1, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template void igl::doublearea<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template void igl::doublearea<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template void igl::doublearea<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&);
template void igl::doublearea<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template void igl::doublearea<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
template void igl::doublearea<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
template void igl::doublearea<Eigen::Matrix<double, 1, 3, 1, 1, 3>, Eigen::Matrix<double, 1, 3, 1, 1, 3>, Eigen::Matrix<double, 1, 3, 1, 1, 3>, Eigen::Matrix<double, 1, 1, 0, 1, 1> >(Eigen::MatrixBase<Eigen::Matrix<double, 1, 3, 1, 1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<double, 1, 3, 1, 1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<double, 1, 3, 1, 1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, 1, 1, 0, 1, 1> >&);
template void igl::doublearea<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
template void igl::doublearea<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
template void igl::doublearea<Eigen::Matrix<double, -1, 3, 1, -1, 3>, Eigen::Matrix<int, -1, 3, 1, -1, 3>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, 3, 1, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 1, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template Eigen::Matrix<double, -1, -1, 0, -1, -1>::Scalar igl::doublearea_single<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&);
template Eigen::Matrix<double, 2, 1, 0, 2, 1>::Scalar igl::doublearea_single<Eigen::Matrix<double, 2, 1, 0, 2, 1>, Eigen::Matrix<double, 2, 1, 0, 2, 1>, Eigen::Matrix<double, 2, 1, 0, 2, 1> >(Eigen::MatrixBase<Eigen::Matrix<double, 2, 1, 0, 2, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, 2, 1, 0, 2, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, 2, 1, 0, 2, 1> > const&);
#endif