OrcaSlicer/src/libslic3r/Fill/FillAdaptive.cpp
Rodrigo a8141ef360
Some checks failed
Build all / Build All (push) Has been cancelled
Build all / Flatpak (push) Has been cancelled
Infill Line Multiplier (#9432)
* Infill Line Multiplier

* Modular Offset Function

* Lightning multiline

* Crosshatch Multiline

ipCrosshatch

* cleaning

Cleaning

clean2

* 3d Honeycomb

cut poliline ends

* Fill Tpmsd Multiline

Fill Tpmsd Multiline

* Update Multiline function

multiline funcion simplify

* Update FillTpmsD

* FillHoneycomb

* Update src/libslic3r/PrintConfig.cpp

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Fix Honeycomb Multiline

Simplify polylines in honeycomb infill generation

* Improve multiline infill support and pattern simplification

Moved multiline infill application after pattern translation and simplification in Fill3DHoneycomb, and added multiline support to FillAdaptive. Updated honeycomb and 3D honeycomb infill to simplify polylines to 5x line width. Extended GUI and config to support multiline for Adaptive Cubic infill pattern and clarified max value comment.

minimum changes

Co-Authored-By: Ian Bassi <12130714+ianalexis@users.noreply.github.com>

* Increase multiline fill spacing in honeycomb infill

Adjusts the spacing parameter in the multiline_fill function to 1.1 times the original spacing, potentially improving infill distribution or print quality.

* Refine fill_multiline tooltip and pattern support logic

Updated the tooltip for the 'fill_multiline' parameter to improve clarity and punctuation. Refactored the logic in ConfigManipulation.cpp to clarify which infill patterns support multiline infill.

* better management of non supported infill patterns

---------

Co-authored-by: SoftFever <softfeverever@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Ian Bassi <ian.bassi@outlook.com>
Co-authored-by: Ian Bassi <12130714+ianalexis@users.noreply.github.com>
2025-06-30 23:07:33 +08:00

1553 lines
73 KiB
C++

#include "../ClipperUtils.hpp"
#include "../ExPolygon.hpp"
#include "../Surface.hpp"
#include "../Geometry.hpp"
#include "../Layer.hpp"
#include "../Print.hpp"
#include "../ShortestPath.hpp"
#include "FillAdaptive.hpp"
// for indexed_triangle_set
#include <admesh/stl.h>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <numeric>
// Boost pool: Don't use mutexes to synchronize memory allocation.
#define BOOST_POOL_NO_MT
#include <boost/pool/object_pool.hpp>
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/point.hpp>
#include <boost/geometry/geometries/segment.hpp>
#include <boost/geometry/index/rtree.hpp>
namespace Slic3r {
namespace FillAdaptive {
// Derived from https://github.com/juj/MathGeoLib/blob/master/src/Geometry/Triangle.cpp
// The AABB-Triangle test implementation is based on the pseudo-code in
// Christer Ericson's Real-Time Collision Detection, pp. 169-172. It is
// practically a standard SAT test.
//
// Original MathGeoLib benchmark:
// Best: 17.282 nsecs / 46.496 ticks, Avg: 17.804 nsecs, Worst: 18.434 nsecs
//
//FIXME Vojtech: The MathGeoLib contains a vectorized implementation.
template<typename Vector>
bool triangle_AABB_intersects(const Vector &a, const Vector &b, const Vector &c, const BoundingBoxBase<Vector> &aabb)
{
using Scalar = typename Vector::Scalar;
Vector tMin = a.cwiseMin(b.cwiseMin(c));
Vector tMax = a.cwiseMax(b.cwiseMax(c));
if (tMin.x() >= aabb.max.x() || tMax.x() <= aabb.min.x()
|| tMin.y() >= aabb.max.y() || tMax.y() <= aabb.min.y()
|| tMin.z() >= aabb.max.z() || tMax.z() <= aabb.min.z())
return false;
Vector center = (aabb.min + aabb.max) * 0.5f;
Vector h = aabb.max - center;
const Vector t[3] { b-a, c-a, c-b };
Vector ac = a - center;
Vector n = t[0].cross(t[1]);
Scalar s = n.dot(ac);
Scalar r = std::abs(h.dot(n.cwiseAbs()));
if (abs(s) >= r)
return false;
const Vector at[3] = { t[0].cwiseAbs(), t[1].cwiseAbs(), t[2].cwiseAbs() };
Vector bc = b - center;
Vector cc = c - center;
// SAT test all cross-axes.
// The following is a fully unrolled loop of this code, stored here for reference:
/*
Scalar d1, d2, a1, a2;
const Vector e[3] = { DIR_VEC(1, 0, 0), DIR_VEC(0, 1, 0), DIR_VEC(0, 0, 1) };
for(int i = 0; i < 3; ++i)
for(int j = 0; j < 3; ++j)
{
Vector axis = Cross(e[i], t[j]);
ProjectToAxis(axis, d1, d2);
aabb.ProjectToAxis(axis, a1, a2);
if (d2 <= a1 || d1 >= a2) return false;
}
*/
// eX <cross> t[0]
Scalar d1 = t[0].y() * ac.z() - t[0].z() * ac.y();
Scalar d2 = t[0].y() * cc.z() - t[0].z() * cc.y();
Scalar tc = (d1 + d2) * 0.5f;
r = std::abs(h.y() * at[0].z() + h.z() * at[0].y());
if (r + std::abs(tc - d1) < std::abs(tc))
return false;
// eX <cross> t[1]
d1 = t[1].y() * ac.z() - t[1].z() * ac.y();
d2 = t[1].y() * bc.z() - t[1].z() * bc.y();
tc = (d1 + d2) * 0.5f;
r = std::abs(h.y() * at[1].z() + h.z() * at[1].y());
if (r + std::abs(tc - d1) < std::abs(tc))
return false;
// eX <cross> t[2]
d1 = t[2].y() * ac.z() - t[2].z() * ac.y();
d2 = t[2].y() * bc.z() - t[2].z() * bc.y();
tc = (d1 + d2) * 0.5f;
r = std::abs(h.y() * at[2].z() + h.z() * at[2].y());
if (r + std::abs(tc - d1) < std::abs(tc))
return false;
// eY <cross> t[0]
d1 = t[0].z() * ac.x() - t[0].x() * ac.z();
d2 = t[0].z() * cc.x() - t[0].x() * cc.z();
tc = (d1 + d2) * 0.5f;
r = std::abs(h.x() * at[0].z() + h.z() * at[0].x());
if (r + std::abs(tc - d1) < std::abs(tc))
return false;
// eY <cross> t[1]
d1 = t[1].z() * ac.x() - t[1].x() * ac.z();
d2 = t[1].z() * bc.x() - t[1].x() * bc.z();
tc = (d1 + d2) * 0.5f;
r = std::abs(h.x() * at[1].z() + h.z() * at[1].x());
if (r + std::abs(tc - d1) < std::abs(tc))
return false;
// eY <cross> t[2]
d1 = t[2].z() * ac.x() - t[2].x() * ac.z();
d2 = t[2].z() * bc.x() - t[2].x() * bc.z();
tc = (d1 + d2) * 0.5f;
r = std::abs(h.x() * at[2].z() + h.z() * at[2].x());
if (r + std::abs(tc - d1) < std::abs(tc))
return false;
// eZ <cross> t[0]
d1 = t[0].x() * ac.y() - t[0].y() * ac.x();
d2 = t[0].x() * cc.y() - t[0].y() * cc.x();
tc = (d1 + d2) * 0.5f;
r = std::abs(h.y() * at[0].x() + h.x() * at[0].y());
if (r + std::abs(tc - d1) < std::abs(tc))
return false;
// eZ <cross> t[1]
d1 = t[1].x() * ac.y() - t[1].y() * ac.x();
d2 = t[1].x() * bc.y() - t[1].y() * bc.x();
tc = (d1 + d2) * 0.5f;
r = std::abs(h.y() * at[1].x() + h.x() * at[1].y());
if (r + std::abs(tc - d1) < std::abs(tc))
return false;
// eZ <cross> t[2]
d1 = t[2].x() * ac.y() - t[2].y() * ac.x();
d2 = t[2].x() * bc.y() - t[2].y() * bc.x();
tc = (d1 + d2) * 0.5f;
r = std::abs(h.y() * at[2].x() + h.x() * at[2].y());
if (r + std::abs(tc - d1) < std::abs(tc))
return false;
// No separating axis exists, the AABB and triangle intersect.
return true;
}
// static double dist2_to_triangle(const Vec3d &a, const Vec3d &b, const Vec3d &c, const Vec3d &p)
// {
// double out = std::numeric_limits<double>::max();
// const Vec3d v1 = b - a;
// auto l1 = v1.squaredNorm();
// const Vec3d v2 = c - b;
// auto l2 = v2.squaredNorm();
// const Vec3d v3 = a - c;
// auto l3 = v3.squaredNorm();
// // Is the triangle valid?
// if (l1 > 0. && l2 > 0. && l3 > 0.)
// {
// // 1) Project point into the plane of the triangle.
// const Vec3d n = v1.cross(v2);
// double d = (p - a).dot(n);
// const Vec3d foot_pt = p - n * d / n.squaredNorm();
// // 2) Maximum projection of n.
// int proj_axis;
// n.array().cwiseAbs().maxCoeff(&proj_axis);
// // 3) Test whether the foot_pt is inside the triangle.
// {
// auto inside_triangle = [](const Vec2d& v1, const Vec2d& v2, const Vec2d& v3, const Vec2d& pt) {
// const double d1 = cross2(v1, pt);
// const double d2 = cross2(v2, pt);
// const double d3 = cross2(v3, pt);
// // Testing both CCW and CW orientations.
// return (d1 >= 0. && d2 >= 0. && d3 >= 0.) || (d1 <= 0. && d2 <= 0. && d3 <= 0.);
// };
// bool inside;
// switch (proj_axis) {
// case 0:
// inside = inside_triangle({v1.y(), v1.z()}, {v2.y(), v2.z()}, {v3.y(), v3.z()}, {foot_pt.y(), foot_pt.z()}); break;
// case 1:
// inside = inside_triangle({v1.z(), v1.x()}, {v2.z(), v2.x()}, {v3.z(), v3.x()}, {foot_pt.z(), foot_pt.x()}); break;
// default:
// assert(proj_axis == 2);
// inside = inside_triangle({v1.x(), v1.y()}, {v2.x(), v2.y()}, {v3.x(), v3.y()}, {foot_pt.x(), foot_pt.y()}); break;
// }
// if (inside)
// return (p - foot_pt).squaredNorm();
// }
// // 4) Find minimum distance to triangle vertices and edges.
// out = std::min((p - a).squaredNorm(), std::min((p - b).squaredNorm(), (p - c).squaredNorm()));
// auto t = (p - a).dot(v1);
// if (t > 0. && t < l1)
// out = std::min(out, (a + v1 * (t / l1) - p).squaredNorm());
// t = (p - b).dot(v2);
// if (t > 0. && t < l2)
// out = std::min(out, (b + v2 * (t / l2) - p).squaredNorm());
// t = (p - c).dot(v3);
// if (t > 0. && t < l3)
// out = std::min(out, (c + v3 * (t / l3) - p).squaredNorm());
// }
// return out;
// }
// Ordering of children cubes.
static const std::array<Vec3d, 8> child_centers {
Vec3d(-1, -1, -1), Vec3d( 1, -1, -1), Vec3d(-1, 1, -1), Vec3d( 1, 1, -1),
Vec3d(-1, -1, 1), Vec3d( 1, -1, 1), Vec3d(-1, 1, 1), Vec3d( 1, 1, 1)
};
// Traversal order of octree children cells for three infill directions,
// so that a single line will be discretized in a strictly monotonic order.
static constexpr std::array<std::array<int, 8>, 3> child_traversal_order {
std::array<int, 8>{ 2, 3, 0, 1, 6, 7, 4, 5 },
std::array<int, 8>{ 4, 0, 6, 2, 5, 1, 7, 3 },
std::array<int, 8>{ 1, 5, 0, 4, 3, 7, 2, 6 },
};
struct Cube
{
Vec3d center;
#ifndef NDEBUG
Vec3d center_octree;
#endif // NDEBUG
std::array<Cube*, 8> children {}; // initialized to nullptrs
Cube(const Vec3d &center) : center(center) {}
};
struct CubeProperties
{
double edge_length; // Lenght of edge of a cube
double height; // Height of rotated cube (standing on the corner)
double diagonal_length; // Length of diagonal of a cube a face
double line_z_distance; // Defines maximal distance from a center of a cube on Z axis on which lines will be created
double line_xy_distance;// Defines maximal distance from a center of a cube on X and Y axis on which lines will be created
};
struct Octree
{
// Octree will allocate its Cubes from the pool. The pool only supports deletion of the complete pool,
// perfect for building up our octree.
boost::object_pool<Cube> pool;
Cube* root_cube { nullptr };
Vec3d origin;
std::vector<CubeProperties> cubes_properties;
Octree(const Vec3d &origin, const std::vector<CubeProperties> &cubes_properties)
: root_cube(pool.construct(origin)), origin(origin), cubes_properties(cubes_properties) {}
void insert_triangle(const Vec3d &a, const Vec3d &b, const Vec3d &c, Cube *current_cube, const BoundingBoxf3 &current_bbox, int depth);
};
void OctreeDeleter::operator()(Octree *p) {
delete p;
}
std::pair<double, double> adaptive_fill_line_spacing(const PrintObject &print_object)
{
// Output, spacing for icAdaptiveCubic and icSupportCubic
double adaptive_line_spacing = 0.;
double support_line_spacing = 0.;
enum class Tristate {
Yes,
No,
Maybe
};
struct RegionFillData {
Tristate has_adaptive_infill;
Tristate has_support_infill;
double density;
double extrusion_width;
};
std::vector<RegionFillData> region_fill_data;
region_fill_data.reserve(print_object.num_printing_regions());
bool build_octree = false;
const std::vector<double> &nozzle_diameters = print_object.print()->config().nozzle_diameter.values;
double max_nozzle_diameter = *std::max_element(nozzle_diameters.begin(), nozzle_diameters.end());
double default_infill_extrusion_width = Flow::auto_extrusion_width(FlowRole::frInfill, float(max_nozzle_diameter));
for (size_t region_id = 0; region_id < print_object.num_printing_regions(); ++ region_id) {
const PrintRegionConfig &config = print_object.printing_region(region_id).config();
bool nonempty = config.sparse_infill_density > 0;
bool has_adaptive_infill = nonempty && config.sparse_infill_pattern == ipAdaptiveCubic;
bool has_support_infill = nonempty && config.sparse_infill_pattern == ipSupportCubic;
double sparse_infill_line_width = config.sparse_infill_line_width.get_abs_value(max_nozzle_diameter);
region_fill_data.push_back(RegionFillData({
has_adaptive_infill ? Tristate::Maybe : Tristate::No,
has_support_infill ? Tristate::Maybe : Tristate::No,
config.sparse_infill_density,
sparse_infill_line_width != 0. ? sparse_infill_line_width : default_infill_extrusion_width
}));
build_octree |= has_adaptive_infill || has_support_infill;
}
if (build_octree) {
// Compute the average of above parameters over all layers
for (const Layer *layer : print_object.layers())
for (size_t region_id = 0; region_id < layer->regions().size(); ++ region_id) {
RegionFillData &rd = region_fill_data[region_id];
if (rd.has_adaptive_infill == Tristate::Maybe && ! layer->regions()[region_id]->fill_surfaces.empty())
rd.has_adaptive_infill = Tristate::Yes;
if (rd.has_support_infill == Tristate::Maybe && ! layer->regions()[region_id]->fill_surfaces.empty())
rd.has_support_infill = Tristate::Yes;
}
double adaptive_fill_density = 0.;
double adaptive_infill_extrusion_width = 0.;
int adaptive_cnt = 0;
double support_fill_density = 0.;
double support_infill_extrusion_width = 0.;
int support_cnt = 0;
for (const RegionFillData &rd : region_fill_data) {
if (rd.has_adaptive_infill == Tristate::Yes) {
adaptive_fill_density += rd.density;
adaptive_infill_extrusion_width += rd.extrusion_width;
++ adaptive_cnt;
} else if (rd.has_support_infill == Tristate::Yes) {
support_fill_density += rd.density;
support_infill_extrusion_width += rd.extrusion_width;
++ support_cnt;
}
}
auto to_line_spacing = [](int cnt, double density, double extrusion_width) {
if (cnt) {
density /= double(cnt);
extrusion_width /= double(cnt);
return extrusion_width / ((density / 100.0f) * 0.333333333f);
} else
return 0.;
};
adaptive_line_spacing = to_line_spacing(adaptive_cnt, adaptive_fill_density, adaptive_infill_extrusion_width);
support_line_spacing = to_line_spacing(support_cnt, support_fill_density, support_infill_extrusion_width);
}
return std::make_pair(adaptive_line_spacing, support_line_spacing);
}
// Context used by generate_infill_lines() when recursively traversing an octree in a DDA fashion
// (Digital Differential Analyzer).
struct FillContext
{
// The angles have to agree with child_traversal_order.
static constexpr double direction_angles[3] {
0.,
(2.0 * M_PI) / 3.0,
-(2.0 * M_PI) / 3.0
};
FillContext(const Octree &octree, double z_position, int direction_idx) :
cubes_properties(octree.cubes_properties),
z_position(z_position),
traversal_order(child_traversal_order[direction_idx]),
cos_a(cos(direction_angles[direction_idx])),
sin_a(sin(direction_angles[direction_idx]))
{
static constexpr auto unused = std::numeric_limits<coord_t>::max();
temp_lines.assign((1 << octree.cubes_properties.size()) - 1, Line(Point(unused, unused), Point(unused, unused)));
}
// Rotate the point, uses the same convention as Point::rotate().
Vec2d rotate(const Vec2d& v) { return Vec2d(this->cos_a * v.x() - this->sin_a * v.y(), this->sin_a * v.x() + this->cos_a * v.y()); }
const std::vector<CubeProperties> &cubes_properties;
// Top of the current layer.
const double z_position;
// Order of traversal for this line direction.
const std::array<int, 8> traversal_order;
// Rotation of the generated line for this line direction.
const double cos_a;
const double sin_a;
// Linearized tree spanning a single Octree wall, used to connect lines spanning
// neighboring Octree cells. Unused lines have the Line::a::x set to infinity.
std::vector<Line> temp_lines;
// Final output
std::vector<Line> output_lines;
};
static constexpr double octree_rot[3] = { 5.0 * M_PI / 4.0, Geometry::deg2rad(215.264), M_PI / 6.0 };
Eigen::Quaterniond transform_to_world()
{
return Eigen::AngleAxisd(octree_rot[2], Vec3d::UnitZ()) * Eigen::AngleAxisd(octree_rot[1], Vec3d::UnitY()) * Eigen::AngleAxisd(octree_rot[0], Vec3d::UnitX());
}
Eigen::Quaterniond transform_to_octree()
{
return Eigen::AngleAxisd(- octree_rot[0], Vec3d::UnitX()) * Eigen::AngleAxisd(- octree_rot[1], Vec3d::UnitY()) * Eigen::AngleAxisd(- octree_rot[2], Vec3d::UnitZ());
}
#ifndef NDEBUG
// Verify that the traversal order of the octree children matches the line direction,
// therefore the infill line may get extended with O(1) time & space complexity.
static bool verify_traversal_order(
FillContext &context,
const Cube *cube,
int depth,
const Vec2d &line_from,
const Vec2d &line_to)
{
std::array<Vec3d, 8> c;
Eigen::Quaterniond to_world = transform_to_world();
for (int i = 0; i < 8; ++i) {
int j = context.traversal_order[i];
Vec3d cntr = to_world * (cube->center_octree + (child_centers[j] * (context.cubes_properties[depth].edge_length / 4.)));
assert(!cube->children[j] || cube->children[j]->center.isApprox(cntr));
c[i] = cntr;
}
std::array<Vec3d, 10> dirs = {
c[1] - c[0], c[2] - c[0], c[3] - c[1], c[3] - c[2], c[3] - c[0],
c[5] - c[4], c[6] - c[4], c[7] - c[5], c[7] - c[6], c[7] - c[4]
};
assert(std::abs(dirs[4].z()) < 0.005);
assert(std::abs(dirs[9].z()) < 0.005);
assert(dirs[0].isApprox(dirs[3]));
assert(dirs[1].isApprox(dirs[2]));
assert(dirs[5].isApprox(dirs[8]));
assert(dirs[6].isApprox(dirs[7]));
Vec3d line_dir = Vec3d(line_to.x() - line_from.x(), line_to.y() - line_from.y(), 0.).normalized();
for (auto& dir : dirs) {
double d = dir.normalized().dot(line_dir);
assert(d > 0.7);
}
return true;
}
#endif // NDEBUG
static void generate_infill_lines_recursive(
FillContext &context,
const Cube *cube,
// Address of this wall in the octree, used to address context.temp_lines.
int address,
int depth)
{
assert(cube != nullptr);
const std::vector<CubeProperties> &cubes_properties = context.cubes_properties;
const double z_diff = context.z_position - cube->center.z();
const double z_diff_abs = std::abs(z_diff);
if (z_diff_abs > cubes_properties[depth].height / 2.)
return;
if (z_diff_abs < cubes_properties[depth].line_z_distance) {
// Discretize a single wall splitting the cube into two.
const double zdist = cubes_properties[depth].line_z_distance;
Vec2d from(
0.5 * cubes_properties[depth].diagonal_length * (zdist - z_diff_abs) / zdist,
cubes_properties[depth].line_xy_distance - (zdist + z_diff) / sqrt(2.));
Vec2d to(-from.x(), from.y());
from = context.rotate(from);
to = context.rotate(to);
// Relative to cube center
const Vec2d offset(cube->center.x(), cube->center.y());
from += offset;
to += offset;
// Verify that the traversal order of the octree children matches the line direction,
// therefore the infill line may get extended with O(1) time & space complexity.
assert(verify_traversal_order(context, cube, depth, from, to));
// Either extend an existing line or start a new one.
Line &last_line = context.temp_lines[address];
Line new_line(Point::new_scale(from), Point::new_scale(to));
if (last_line.a.x() == std::numeric_limits<coord_t>::max()) {
last_line.a = new_line.a;
} else if ((new_line.a - last_line.b).cwiseAbs().maxCoeff() > 1000) { // SCALED_EPSILON is 100 and it is not enough
context.output_lines.emplace_back(last_line);
last_line.a = new_line.a;
}
last_line.b = new_line.b;
}
// left child index
address = address * 2 + 1;
-- depth;
size_t i = 0;
for (const int child_idx : context.traversal_order) {
const Cube *child = cube->children[child_idx];
if (child != nullptr)
generate_infill_lines_recursive(context, child, address, depth);
if (++ i == 4)
// right child index
++ address;
}
}
#ifndef NDEBUG
// #define ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
#endif
#ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
static void export_infill_lines_to_svg(const ExPolygon &expoly, const Polylines &polylines, const std::string &path, const Points &pts = Points())
{
BoundingBox bbox = get_extents(expoly);
bbox.offset(scale_(3.));
::Slic3r::SVG svg(path, bbox);
svg.draw(expoly);
svg.draw_outline(expoly, "green");
svg.draw(polylines, "red");
static constexpr double trim_length = scale_(0.4);
for (Polyline polyline : polylines)
if (! polyline.empty()) {
Vec2d a = polyline.points.front().cast<double>();
Vec2d d = polyline.points.back().cast<double>();
if (polyline.size() == 2) {
Vec2d v = d - a;
double l = v.norm();
if (l > 2. * trim_length) {
a += v * trim_length / l;
d -= v * trim_length / l;
polyline.points.front() = a.cast<coord_t>();
polyline.points.back() = d.cast<coord_t>();
} else
polyline.points.clear();
} else if (polyline.size() > 2) {
Vec2d b = polyline.points[1].cast<double>();
Vec2d c = polyline.points[polyline.points.size() - 2].cast<double>();
Vec2d v = b - a;
double l = v.norm();
if (l > trim_length) {
a += v * trim_length / l;
polyline.points.front() = a.cast<coord_t>();
} else
polyline.points.erase(polyline.points.begin());
v = d - c;
l = v.norm();
if (l > trim_length)
polyline.points.back() = (d - v * trim_length / l).cast<coord_t>();
else
polyline.points.pop_back();
}
svg.draw(polyline, "black");
}
svg.draw(pts, "magenta");
}
#endif /* ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT */
// Representing a T-joint (in general case) between two infill lines
// (between one end point of intersect_pl/intersect_line and
struct Intersection
{
// Closest line to intersect_point.
const Line *closest_line;
// The line for which is computed closest line from intersect_point to closest_line
const Line *intersect_line;
// Pointer to the polyline from which is computed closest_line
Polyline *intersect_pl;
// Point for which is computed closest line (closest_line)
Point intersect_point;
// Indicate if intersect_point is the first or the last point of intersect_pl
bool front;
// Signum of intersect_line_dir.cross(closest_line.dir()):
bool left;
// Indication if this intersection has been proceed
bool used = false;
bool fresh() const throw() { return ! used && ! intersect_pl->empty(); }
Intersection(const Line &closest_line, const Line &intersect_line, Polyline *intersect_pl, const Point &intersect_point, bool front) :
closest_line(&closest_line), intersect_line(&intersect_line), intersect_pl(intersect_pl), intersect_point(intersect_point), front(front)
{
// Calculate side of this intersection line of the closest line.
Vec2d v1((this->closest_line->b - this->closest_line->a).cast<double>());
Vec2d v2(this->intersect_line_dir());
#ifndef NDEBUG
{
Vec2d v1n = v1.normalized();
Vec2d v2n = v2.normalized();
double c = cross2(v1n, v2n);
assert(std::abs(c) > sin(M_PI / 12.));
}
#endif // NDEBUG
this->left = cross2(v1, v2) > 0.;
}
std::optional<Line> other_hook() const {
std::optional<Line> out;
const Points &pts = intersect_pl->points;
if (pts.size() >= 3)
out = this->front ? Line(pts[1], pts[2]) : Line(pts[pts.size() - 2], pts[pts.size() - 3]);
return out;
}
bool other_hook_intersects(const Line &l, Point &pt) {
std::optional<Line> h = other_hook();
return h && h->intersection(l, &pt);
}
bool other_hook_intersects(const Line &l) { Point pt; return this->other_hook_intersects(l, pt); }
// Direction to intersect_point.
Vec2d intersect_line_dir() const throw() {
return (this->intersect_point == intersect_line->a ? intersect_line->b - intersect_line->a : intersect_line->a - intersect_line->b).cast<double>();
}
};
static inline Intersection* get_nearest_intersection(std::vector<std::pair<Intersection*, double>>& intersect_line, const size_t first_idx)
{
assert(intersect_line.size() >= 2);
bool take_next = false;
if (first_idx == 0)
take_next = true;
else if (first_idx + 1 == intersect_line.size())
take_next = false;
else {
// Has both prev and next.
const std::pair<Intersection*, double> &ithis = intersect_line[first_idx];
const std::pair<Intersection*, double> &iprev = intersect_line[first_idx - 1];
const std::pair<Intersection*, double> &inext = intersect_line[first_idx + 1];
take_next = iprev.first->fresh() && inext.first->fresh() ?
inext.second - ithis.second < ithis.second - iprev.second :
inext.first->fresh();
}
return intersect_line[take_next ? first_idx + 1 : first_idx - 1].first;
}
// Create a line representing the anchor aka hook extrusion based on line_to_offset
// translated in the direction of the intersection line (intersection.intersect_line).
static Line create_offset_line(Line offset_line, const Intersection &intersection, const double scaled_offset)
{
offset_line.translate((perp(intersection.closest_line->vector().cast<double>().normalized()) * (intersection.left ? scaled_offset : - scaled_offset)).cast<coord_t>());
// Extend the line by a small value to guarantee a collision with adjacent lines
offset_line.extend(coord_t(scaled_offset * 1.16)); // / cos(PI/6)
return offset_line;
}
namespace bg = boost::geometry;
namespace bgm = boost::geometry::model;
namespace bgi = boost::geometry::index;
// float is needed because for coord_t bgi::intersects throws "bad numeric conversion: positive overflow"
using rtree_point_t = bgm::point<float, 2, boost::geometry::cs::cartesian>;
using rtree_segment_t = bgm::segment<rtree_point_t>;
using rtree_t = bgi::rtree<std::pair<rtree_segment_t, size_t>, bgi::rstar<16, 4>>;
static inline rtree_point_t mk_rtree_point(const Point &pt) {
return rtree_point_t(float(pt.x()), float(pt.y()));
}
static inline rtree_segment_t mk_rtree_seg(const Point &a, const Point &b) {
return { mk_rtree_point(a), mk_rtree_point(b) };
}
static inline rtree_segment_t mk_rtree_seg(const Line &l) {
return mk_rtree_seg(l.a, l.b);
}
// Create a hook based on hook_line and append it to the begin or end of the polyline in the intersection
static void add_hook(
const Intersection &intersection, const double scaled_offset,
const coordf_t hook_length, double scaled_trim_distance,
const rtree_t &rtree, const Lines &lines_src)
{
if (hook_length < SCALED_EPSILON)
// Ignore open hooks.
return;
#ifndef NDEBUG
{
const Vec2d v = (intersection.closest_line->b - intersection.closest_line->a).cast<double>();
const Vec2d va = (intersection.intersect_point - intersection.closest_line->a).cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
assert(l2 > 0.);
const double t = va.dot(v) / l2;
assert(t > 0. && t < 1.);
const double d = (t * v - va).norm();
assert(d < 1000.);
}
#endif // NDEBUG
// Trim the hook start by the infill line it will connect to.
Point hook_start;
[[maybe_unused]] bool intersection_found = intersection.intersect_line->intersection(
create_offset_line(*intersection.closest_line, intersection, scaled_offset),
&hook_start);
assert(intersection_found);
std::optional<Line> other_hook = intersection.other_hook();
Vec2d hook_vector_norm = intersection.closest_line->vector().cast<double>().normalized();
// hook_vector is extended by the thickness of the infill line, so that a collision is found against
// the infill centerline to be later trimmed by the thickened line.
Vector hook_vector = ((hook_length + 1.16 * scaled_trim_distance) * hook_vector_norm).cast<coord_t>();
Line hook_forward(hook_start, hook_start + hook_vector);
auto filter_itself = [&intersection, &lines_src](const auto &item) { return item.second != (long unsigned int)(intersection.intersect_line - lines_src.data()); };
std::vector<std::pair<rtree_segment_t, size_t>> hook_intersections;
rtree.query(bgi::intersects(mk_rtree_seg(hook_forward)) && bgi::satisfies(filter_itself), std::back_inserter(hook_intersections));
Point self_intersection_point;
bool self_intersection = other_hook && other_hook->intersection(hook_forward, &self_intersection_point);
// Find closest intersection of a line segment starting with pt pointing in dir
// with any of the hook_intersections, returns Euclidian distance.
// dir is normalized.
auto max_hook_length = [hook_length, scaled_trim_distance, &lines_src](
const Vec2d &pt, const Vec2d &dir,
const std::vector<std::pair<rtree_segment_t, size_t>> &hook_intersections,
bool self_intersection, const std::optional<Line> &self_intersection_line, const Point &self_intersection_point) {
// No hook is longer than hook_length, there shouldn't be any intersection closer than that.
auto max_length = hook_length;
auto update_max_length = [&max_length](double d) {
if (d < max_length)
max_length = d;
};
// Shift the trimming point away from the colliding thick line.
auto shift_from_thick_line = [&dir, scaled_trim_distance](const Vec2d& dir2) {
return scaled_trim_distance * std::abs(cross2(dir, dir2.normalized()));
};
for (const auto &hook_intersection : hook_intersections) {
const rtree_segment_t &segment = hook_intersection.first;
// Segment start and end points, segment vector.
Vec2d pt2(bg::get<0, 0>(segment), bg::get<0, 1>(segment));
Vec2d dir2 = Vec2d(bg::get<1, 0>(segment), bg::get<1, 1>(segment)) - pt2;
// Find intersection of (pt, dir) with (pt2, dir2), where dir is normalized.
double denom = cross2(dir, dir2);
assert(std::abs(denom) > EPSILON);
double t = cross2(pt2 - pt, dir2) / denom;
if (hook_intersection.second < lines_src.size())
// Trimming by another infill line. Reduce overlap.
t -= shift_from_thick_line(dir2);
update_max_length(t);
}
if (self_intersection) {
double t = (self_intersection_point.cast<double>() - pt).dot(dir) - shift_from_thick_line((*self_intersection_line).vector().cast<double>());
max_length = std::min(max_length, t);
}
return std::max(0., max_length);
};
Vec2d hook_startf = hook_start.cast<double>();
double hook_forward_max_length = max_hook_length(hook_startf, hook_vector_norm, hook_intersections, self_intersection, other_hook, self_intersection_point);
double hook_backward_max_length = 0.;
if (hook_forward_max_length < hook_length - SCALED_EPSILON) {
// Try the other side.
hook_intersections.clear();
Line hook_backward(hook_start, hook_start - hook_vector);
rtree.query(bgi::intersects(mk_rtree_seg(hook_backward)) && bgi::satisfies(filter_itself), std::back_inserter(hook_intersections));
self_intersection = other_hook && other_hook->intersection(hook_backward, &self_intersection_point);
hook_backward_max_length = max_hook_length(hook_startf, - hook_vector_norm, hook_intersections, self_intersection, other_hook, self_intersection_point);
}
// Take the longer hook.
Vec2d hook_dir = (hook_forward_max_length > hook_backward_max_length ? hook_forward_max_length : - hook_backward_max_length) * hook_vector_norm;
Point hook_end = hook_start + hook_dir.cast<coord_t>();
Points &pl = intersection.intersect_pl->points;
if (intersection.front) {
pl.front() = hook_start;
pl.emplace(pl.begin(), hook_end);
} else {
pl.back() = hook_start;
pl.emplace_back(hook_end);
}
}
#ifndef NDEBUG
bool validate_intersection_t_joint(const Intersection &intersection)
{
const Vec2d v = (intersection.closest_line->b - intersection.closest_line->a).cast<double>();
const Vec2d va = (intersection.intersect_point - intersection.closest_line->a).cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
assert(l2 > 0.);
const double t = va.dot(v);
assert(t > SCALED_EPSILON && t < l2 - SCALED_EPSILON);
const double d = ((t / l2) * v - va).norm();
assert(d < 1000.);
return true;
}
bool validate_intersections(const std::vector<Intersection> &intersections)
{
for (const Intersection& intersection : intersections)
assert(validate_intersection_t_joint(intersection));
return true;
}
#endif // NDEBUG
static Polylines connect_lines_using_hooks(Polylines &&lines, const ExPolygon &boundary, const double spacing, const coordf_t hook_length, const coordf_t hook_length_max)
{
rtree_t rtree;
size_t poly_idx = 0;
// 19% overlap, slightly lower than the allowed overlap in Fill::connect_infill()
const float scaled_offset = float(scale_(spacing) * 0.81);
// 25% overlap
const float scaled_trim_distance = float(scale_(spacing) * 0.5 * 0.75);
// Keeping the vector of closest points outside the loop, so the vector does not need to be reallocated.
std::vector<std::pair<rtree_segment_t, size_t>> closest;
// Pairs of lines touching at one end point. The pair is sorted to make the end point connection test symmetric.
std::vector<std::pair<const Polyline*, const Polyline*>> lines_touching_at_endpoints;
{
// Insert infill lines into rtree, merge close collinear segments split by the infill boundary,
// collect lines_touching_at_endpoints.
double r2_close = Slic3r::sqr(1200.);
for (Polyline &poly : lines) {
assert(poly.points.size() == 2);
if (&poly != lines.data()) {
// Join collinear segments separated by a tiny gap. These gaps were likely created by clipping the infill lines with a concave dent in an infill boundary.
auto collinear_segment = [&rtree, &closest, &lines, &lines_touching_at_endpoints, r2_close](const Point& pt, const Point& pt_other, const Polyline* polyline) -> std::pair<Polyline*, bool> {
closest.clear();
rtree.query(bgi::nearest(mk_rtree_point(pt), 1), std::back_inserter(closest));
const Polyline *other = &lines[closest.front().second];
double dist2_front = (other->points.front() - pt).cast<double>().squaredNorm();
double dist2_back = (other->points.back() - pt).cast<double>().squaredNorm();
double dist2_min = std::min(dist2_front, dist2_back);
if (dist2_min < r2_close) {
// Don't connect the segments in an opposite direction.
double dist2_min_other = std::min((other->points.front() - pt_other).cast<double>().squaredNorm(), (other->points.back() - pt_other).cast<double>().squaredNorm());
if (dist2_min_other > dist2_min) {
// End points of the two lines are very close, they should have been merged together if they are collinear.
Vec2d v1 = (pt_other - pt).cast<double>();
Vec2d v2 = (other->points.back() - other->points.front()).cast<double>();
Vec2d v1n = v1.normalized();
Vec2d v2n = v2.normalized();
// The vectors must not be collinear.
double d = v1n.dot(v2n);
if (std::abs(d) > 0.99f) {
// Lines are collinear, merge them.
rtree.remove(closest.front());
return std::make_pair(const_cast<Polyline*>(other), dist2_min == dist2_front);
} else {
if (polyline > other)
std::swap(polyline, other);
lines_touching_at_endpoints.emplace_back(polyline, other);
}
}
}
return std::make_pair(static_cast<Polyline*>(nullptr), false);
};
auto collinear_front = collinear_segment(poly.points.front(), poly.points.back(), &poly);
auto collinear_back = collinear_segment(poly.points.back(), poly.points.front(), &poly);
assert(! collinear_front.first || ! collinear_back.first || collinear_front.first != collinear_back.first);
if (collinear_front.first) {
Polyline &other = *collinear_front.first;
assert(&other != &poly);
poly.points.front() = collinear_front.second ? other.points.back() : other.points.front();
other.points.clear();
}
if (collinear_back.first) {
Polyline &other = *collinear_back.first;
assert(&other != &poly);
poly.points.back() = collinear_back.second ? other.points.back() : other.points.front();
other.points.clear();
}
}
rtree.insert(std::make_pair(mk_rtree_seg(poly.points.front(), poly.points.back()), poly_idx++));
}
}
// Convert input polylines to lines_src after the colinear segments were merged.
Lines lines_src;
lines_src.reserve(lines.size());
std::transform(lines.begin(), lines.end(), std::back_inserter(lines_src), [](const Polyline &pl) {
return pl.empty() ? Line(Point(0, 0), Point(0, 0)) : Line(pl.points.front(), pl.points.back()); });
sort_remove_duplicates(lines_touching_at_endpoints);
std::vector<Intersection> intersections;
{
// Minimum lenght of an infill line to anchor. Very short lines cannot be trimmed from both sides,
// it does not help to anchor extremely short infill lines, it consumes too much plastic while not adding
// to the object rigidity.
assert(scaled_offset > scaled_trim_distance);
const double line_len_threshold_drop_both_sides = scaled_offset * (2. / cos(PI / 6.) + 0.5) + SCALED_EPSILON;
const double line_len_threshold_anchor_both_sides = line_len_threshold_drop_both_sides + scaled_offset;
const double line_len_threshold_drop_single_side = scaled_offset * (1. / cos(PI / 6.) + 1.5) + SCALED_EPSILON;
const double line_len_threshold_anchor_single_side = line_len_threshold_drop_single_side + scaled_offset;
for (size_t line_idx = 0; line_idx < lines.size(); ++ line_idx) {
Polyline &line = lines[line_idx];
if (line.points.empty())
continue;
Point &front_point = line.points.front();
Point &back_point = line.points.back();
// Find the nearest line from the start point of the line.
std::optional<size_t> tjoint_front, tjoint_back;
{
auto has_tjoint = [&closest, line_idx, &rtree, &lines, &lines_src](const Point &pt) {
auto filter_t_joint = [line_idx, &lines_src, pt](const auto &item) {
if (item.second != line_idx) {
// Verify that the point projects onto the line.
const Line &line = lines_src[item.second];
const Vec2d v = (line.b - line.a).cast<double>();
const Vec2d va = (pt - line.a).cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
if (l2 > 0.) {
const double t = va.dot(v);
return t > SCALED_EPSILON && t < l2 - SCALED_EPSILON;
}
}
return false;
};
closest.clear();
rtree.query(bgi::nearest(mk_rtree_point(pt), 1) && bgi::satisfies(filter_t_joint), std::back_inserter(closest));
std::optional<size_t> out;
if (! closest.empty()) {
const Polyline &pl = lines[closest.front().second];
if (pl.points.empty()) {
// The closest infill line was already dropped as it was too short.
// Such an infill line should not make a T-joint anyways.
#if 0 // #ifndef NDEBUG
const auto &seg = closest.front().first;
struct Linef { Vec2d a; Vec2d b; };
Linef l { { bg::get<0, 0>(seg), bg::get<0, 1>(seg) }, { bg::get<1, 0>(seg), bg::get<1, 1>(seg) } };
assert(line_alg::distance_to_squared(l, Vec2d(pt.cast<double>())) > 1000 * 1000);
#endif // NDEBUG
} else if (pl.size() >= 2 &&
//FIXME Hoping that pl is really a line, trimmed by a polygon using ClipperUtils. Sometimes Clipper leaves some additional collinear points on the polyline, let's hope it is all right.
Line{ pl.front(), pl.back() }.distance_to_squared(pt) <= 1000 * 1000)
out = closest.front().second;
}
return out;
};
// Refuse to create a T-joint if the infill lines touch at their ends.
auto filter_end_point_connections = [&lines_touching_at_endpoints, &lines, &line](std::optional<size_t> in) {
std::optional<size_t> out;
if (in) {
const Polyline *lo = &line;
const Polyline *hi = &lines[*in];
if (lo > hi)
std::swap(lo, hi);
if (! std::binary_search(lines_touching_at_endpoints.begin(), lines_touching_at_endpoints.end(), std::make_pair(lo, hi)))
// Not an end-point connection, it is a valid T-joint.
out = in;
}
return out;
};
tjoint_front = filter_end_point_connections(has_tjoint(front_point));
tjoint_back = filter_end_point_connections(has_tjoint(back_point));
}
int num_tjoints = int(tjoint_front.has_value()) + int(tjoint_back.has_value());
if (num_tjoints > 0) {
double line_len = line.length();
bool drop = false;
bool anchor = false;
if (num_tjoints == 1) {
// Connected to perimeters on a single side only, connected to another infill line on the other side.
drop = line_len < line_len_threshold_drop_single_side;
anchor = line_len > line_len_threshold_anchor_single_side;
} else {
// Not connected to perimeters at all, connected to two infill lines.
assert(num_tjoints == 2);
drop = line_len < line_len_threshold_drop_both_sides;
anchor = line_len > line_len_threshold_anchor_both_sides;
}
if (drop) {
// Drop a very short line if connected to another infill line.
// Lines shorter than spacing are skipped because it is needed to shrink a line by the value of spacing.
// A shorter line than spacing could produce a degenerate polyline.
line.points.clear();
} else if (anchor) {
if (tjoint_front) {
// T-joint of line's front point with the 'closest' line.
intersections.emplace_back(lines_src[*tjoint_front], lines_src[line_idx], &line, front_point, true);
assert(validate_intersection_t_joint(intersections.back()));
}
if (tjoint_back) {
// T-joint of line's back point with the 'closest' line.
intersections.emplace_back(lines_src[*tjoint_back], lines_src[line_idx], &line, back_point, false);
assert(validate_intersection_t_joint(intersections.back()));
}
} else {
if (tjoint_front)
// T joint at the front at a 60 degree angle, the line is very short.
// Trim the front side.
front_point += ((scaled_trim_distance * 1.155) * (back_point - front_point).cast<double>().normalized()).cast<coord_t>();
if (tjoint_back)
// T joint at the front at a 60 degree angle, the line is very short.
// Trim the front side.
back_point += ((scaled_trim_distance * 1.155) * (front_point - back_point).cast<double>().normalized()).cast<coord_t>();
}
}
}
// Remove those intersections, that point to a dropped line.
for (auto it = intersections.begin(); it != intersections.end(); ) {
assert(! lines[it->intersect_line - lines_src.data()].points.empty());
if (lines[it->closest_line - lines_src.data()].points.empty()) {
*it = intersections.back();
intersections.pop_back();
} else
++ it;
}
}
assert(validate_intersections(intersections));
#ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
static int iRun = 0;
int iStep = 0;
{
Points pts;
for (const Intersection &i : intersections)
pts.emplace_back(i.intersect_point);
export_infill_lines_to_svg(boundary, lines, debug_out_path("FillAdaptive-Tjoints-%d.svg", iRun++), pts);
}
#endif /* ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT */
// Sort lexicographically by closest_line_idx and left/right orientation.
std::sort(intersections.begin(), intersections.end(),
[](const Intersection &i1, const Intersection &i2) {
return (i1.closest_line == i2.closest_line) ?
int(i1.left) < int(i2.left) :
i1.closest_line < i2.closest_line;
});
std::vector<size_t> merged_with(lines.size());
std::iota(merged_with.begin(), merged_with.end(), 0);
// Appends the boundary polygon with all holes to rtree for detection to check whether hooks are not crossing the boundary
{
Point prev = boundary.contour.points.back();
for (const Point &point : boundary.contour.points) {
rtree.insert(std::make_pair(mk_rtree_seg(prev, point), poly_idx++));
prev = point;
}
for (const Polygon &polygon : boundary.holes) {
Point prev = polygon.points.back();
for (const Point &point : polygon.points) {
rtree.insert(std::make_pair(mk_rtree_seg(prev, point), poly_idx++));
prev = point;
}
}
}
auto update_merged_polyline_idx = [&merged_with](size_t pl_idx) {
// Update the polyline index to index which is merged
for (size_t last = pl_idx;;) {
size_t lower = merged_with[last];
if (lower == last) {
merged_with[pl_idx] = lower;
return lower;
}
last = lower;
}
assert(false);
return size_t(0);
};
auto update_merged_polyline = [&lines, update_merged_polyline_idx](Intersection& intersection) {
// Update the polyline index to index which is merged
size_t intersect_pl_idx = update_merged_polyline_idx(intersection.intersect_pl - lines.data());
intersection.intersect_pl = &lines[intersect_pl_idx];
// After polylines are merged, it is necessary to update "forward" based on if intersect_point is the first or the last point of intersect_pl.
if (intersection.fresh()) {
assert(intersection.intersect_pl->points.front() == intersection.intersect_point ||
intersection.intersect_pl->points.back() == intersection.intersect_point);
intersection.front = intersection.intersect_pl->points.front() == intersection.intersect_point;
}
};
// Merge polylines touching at their ends. This should be a very rare case, but it happens surprisingly often.
for (auto it = lines_touching_at_endpoints.rbegin(); it != lines_touching_at_endpoints.rend(); ++ it) {
Polyline *pl1 = const_cast<Polyline*>(it->first);
Polyline *pl2 = const_cast<Polyline*>(it->second);
assert(pl1 < pl2);
// pl1 was visited for the 1st time.
// pl2 may have alread been merged with another polyline, even with this one.
pl2 = &lines[update_merged_polyline_idx(pl2 - lines.data())];
assert(pl1 <= pl2);
// Avoid closing a loop, ignore dropped infill lines.
if (pl1 != pl2 && ! pl1->points.empty() && ! pl2->points.empty()) {
// Merge the polylines.
assert(pl1 < pl2);
assert(pl1->points.size() >= 2);
assert(pl2->points.size() >= 2);
double d11 = (pl1->points.front() - pl2->points.front()).cast<double>().squaredNorm();
double d12 = (pl1->points.front() - pl2->points.back()) .cast<double>().squaredNorm();
double d21 = (pl1->points.back() - pl2->points.front()).cast<double>().squaredNorm();
double d22 = (pl1->points.back() - pl2->points.back()) .cast<double>().squaredNorm();
double d1min = std::min(d11, d12);
double d2min = std::min(d21, d22);
if (d1min < d2min) {
pl1->reverse();
if (d12 == d1min)
pl2->reverse();
} else if (d22 == d2min)
pl2->reverse();
pl1->points.back() = (pl1->points.back() + pl2->points.front()) / 2;
pl1->append(pl2->points.begin() + 1, pl2->points.end());
pl2->points.clear();
merged_with[pl2 - lines.data()] = pl1 - lines.data();
}
}
// Keep intersect_line outside the loop, so it does not get reallocated.
std::vector<std::pair<Intersection*, double>> intersect_line;
for (size_t min_idx = 0; min_idx < intersections.size();) {
intersect_line.clear();
// All the nearest points (T-joints) ending at the same line are projected onto this line. Because of it, it can easily find the nearest point.
{
const Vec2d line_dir = intersections[min_idx].closest_line->vector().cast<double>();
size_t max_idx = min_idx;
for (; max_idx < intersections.size() &&
intersections[min_idx].closest_line == intersections[max_idx].closest_line &&
intersections[min_idx].left == intersections[max_idx].left;
++ max_idx)
intersect_line.emplace_back(&intersections[max_idx], line_dir.dot(intersections[max_idx].intersect_point.cast<double>()));
min_idx = max_idx;
assert(intersect_line.size() > 0);
// Sort the intersections along line_dir.
std::sort(intersect_line.begin(), intersect_line.end(), [](const auto &i1, const auto &i2) { return i1.second < i2.second; });
}
if (intersect_line.size() == 1) {
// Simple case: The current intersection is the only one touching its adjacent line.
Intersection &first_i = *intersect_line.front().first;
update_merged_polyline(first_i);
if (first_i.fresh()) {
// Try to connect left or right. If not enough space for hook_length, take the longer side.
#ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
export_infill_lines_to_svg(boundary, lines, debug_out_path("FillAdaptive-add_hook0-pre-%d-%d.svg", iRun, iStep), { first_i.intersect_point });
#endif // ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
add_hook(first_i, scaled_offset, hook_length, scaled_trim_distance, rtree, lines_src);
#ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
export_infill_lines_to_svg(boundary, lines, debug_out_path("FillAdaptive-add_hook0-pre-%d-%d.svg", iRun, iStep), { first_i.intersect_point });
++ iStep;
#endif // ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
first_i.used = true;
}
continue;
}
for (size_t first_idx = 0; first_idx < intersect_line.size(); ++ first_idx) {
Intersection &first_i = *intersect_line[first_idx].first;
update_merged_polyline(first_i);
if (! first_i.fresh())
// The intersection has been processed, or the polyline has been merged to another polyline.
continue;
// Get the previous or next intersection on the same line, pick the closer one.
if (first_idx > 0)
update_merged_polyline(*intersect_line[first_idx - 1].first);
if (first_idx + 1 < intersect_line.size())
update_merged_polyline(*intersect_line[first_idx + 1].first);
Intersection &nearest_i = *get_nearest_intersection(intersect_line, first_idx);
assert(first_i.closest_line == nearest_i.closest_line);
assert(first_i.intersect_line != nearest_i.intersect_line);
assert(first_i.intersect_line != first_i.closest_line);
assert(nearest_i.intersect_line != first_i.closest_line);
// A line between two intersections points
Line offset_line = create_offset_line(Line(first_i.intersect_point, nearest_i.intersect_point), first_i, scaled_offset);
// Check if both intersections lie on the offset_line and simultaneously get their points of intersecting.
// These points are used as start and end of the hook
Point first_i_point, nearest_i_point;
bool could_connect = false;
if (nearest_i.fresh()) {
could_connect = first_i.intersect_line->intersection(offset_line, &first_i_point) &&
nearest_i.intersect_line->intersection(offset_line, &nearest_i_point);
assert(could_connect);
}
Points &first_points = first_i.intersect_pl->points;
Points &second_points = nearest_i.intersect_pl->points;
could_connect &= (nearest_i_point - first_i_point).cast<double>().squaredNorm() <= Slic3r::sqr(hook_length_max);
if (could_connect) {
// Both intersections are so close that their polylines can be connected.
// Verify that no other infill line intersects this anchor line.
closest.clear();
rtree.query(
bgi::intersects(mk_rtree_seg(first_i_point, nearest_i_point)) &&
bgi::satisfies([&first_i, &nearest_i, &lines_src](const auto &item)
{ return item.second != (long unsigned int)(first_i.intersect_line - lines_src.data())
&& item.second != (long unsigned int)(nearest_i.intersect_line - lines_src.data()); }),
std::back_inserter(closest));
could_connect = closest.empty();
#if 0
// Avoid self intersections. Maybe it is better to trim the self intersection after the connection?
if (could_connect && first_i.intersect_pl != nearest_i.intersect_pl) {
Line l(first_i_point, nearest_i_point);
could_connect = ! first_i.other_hook_intersects(l) && ! nearest_i.other_hook_intersects(l);
}
#endif
}
bool connected = false;
if (could_connect) {
#ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
export_infill_lines_to_svg(boundary, lines, debug_out_path("FillAdaptive-connecting-pre-%d-%d.svg", iRun, iStep), { first_i.intersect_point, nearest_i.intersect_point });
#endif // ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
// No other infill line intersects this anchor line. Extrude it as a whole.
if (first_i.intersect_pl == nearest_i.intersect_pl) {
// Both intersections are on the same polyline, that means a loop is being closed.
assert(first_i.front != nearest_i.front);
if (! first_i.front)
std::swap(first_i_point, nearest_i_point);
first_points.front() = first_i_point;
first_points.back() = nearest_i_point;
//FIXME trim the end of a closed loop a bit?
first_points.emplace(first_points.begin(), nearest_i_point);
} else {
// Both intersections are on different polylines
Line l(first_i_point, nearest_i_point);
l.translate((perp(first_i.closest_line->vector().cast<double>().normalized()) * (first_i.left ? scaled_trim_distance : - scaled_trim_distance)).cast<coord_t>());
Point pt_start, pt_end;
bool trim_start = first_i .intersect_pl->points.size() == 3 && first_i .other_hook_intersects(l, pt_start);
bool trim_end = nearest_i.intersect_pl->points.size() == 3 && nearest_i.other_hook_intersects(l, pt_end);
first_points.reserve(first_points.size() + second_points.size());
if (first_i.front)
std::reverse(first_points.begin(), first_points.end());
if (trim_start)
first_points.front() = pt_start;
first_points.back() = first_i_point;
first_points.emplace_back(nearest_i_point);
if (nearest_i.front)
first_points.insert(first_points.end(), second_points.begin() + 1, second_points.end());
else
first_points.insert(first_points.end(), second_points.rbegin() + 1, second_points.rend());
if (trim_end)
first_points.back() = pt_end;
// Keep the polyline at the lower index slot.
if (first_i.intersect_pl < nearest_i.intersect_pl) {
second_points.clear();
merged_with[nearest_i.intersect_pl - lines.data()] = first_i.intersect_pl - lines.data();
} else {
second_points = std::move(first_points);
first_points.clear();
merged_with[first_i.intersect_pl - lines.data()] = nearest_i.intersect_pl - lines.data();
}
}
nearest_i.used = true;
connected = true;
#ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
export_infill_lines_to_svg(boundary, lines, debug_out_path("FillAdaptive-connecting-post-%d-%d.svg", iRun, iStep), { first_i.intersect_point, nearest_i.intersect_point });
#endif // ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
}
if (! connected) {
// Try to connect left or right. If not enough space for hook_length, take the longer side.
#ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
export_infill_lines_to_svg(boundary, lines, debug_out_path("FillAdaptive-add_hook-pre-%d-%d.svg", iRun, iStep), { first_i.intersect_point });
#endif // ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
add_hook(first_i, scaled_offset, hook_length, scaled_trim_distance, rtree, lines_src);
#ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
export_infill_lines_to_svg(boundary, lines, debug_out_path("FillAdaptive-add_hook-post-%d-%d.svg", iRun, iStep), { first_i.intersect_point });
#endif // ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
}
#ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
++ iStep;
#endif // ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
first_i.used = true;
}
}
Polylines polylines_out;
polylines_out.reserve(polylines_out.size() + std::count_if(lines.begin(), lines.end(), [](const Polyline &pl) { return !pl.empty(); }));
for (Polyline &pl : lines)
if (!pl.empty()) polylines_out.emplace_back(std::move(pl));
return polylines_out;
}
#ifndef NDEBUG
bool has_no_collinear_lines(const Polylines &polylines)
{
// Create line end point lookup.
struct LineEnd {
LineEnd(const Polyline *line, bool start) : line(line), start(start) {}
const Polyline *line;
// Is it the start or end point?
bool start;
const Point& point() const { return start ? line->points.front() : line->points.back(); }
const Point& other_point() const { return start ? line->points.back() : line->points.front(); }
LineEnd other_end() const { return LineEnd(line, !start); }
Vec2d vec() const { return Vec2d((this->other_point() - this->point()).cast<double>()); }
bool operator==(const LineEnd &rhs) const { return this->line == rhs.line && this->start == rhs.start; }
};
struct LineEndAccessor {
const Point* operator()(const LineEnd &pt) const { return &pt.point(); }
};
typedef ClosestPointInRadiusLookup<LineEnd, LineEndAccessor> ClosestPointLookupType;
ClosestPointLookupType closest_end_point_lookup(coord_t(1001. * sqrt(2.)));
for (const Polyline& pl : polylines) {
// assert(pl.points.size() == 2);
auto line_start = LineEnd(&pl, true);
auto line_end = LineEnd(&pl, false);
auto assert_not_collinear = [&closest_end_point_lookup](const LineEnd &line_start) {
std::vector<std::pair<const LineEnd*, double>> hits = closest_end_point_lookup.find_all(line_start.point());
for (const std::pair<const LineEnd*, double> &hit : hits)
if ((line_start.point() - hit.first->point()).cwiseAbs().maxCoeff() <= 1000) {
// End points of the two lines are very close, they should have been merged together if they are collinear.
Vec2d v1 = line_start.vec();
Vec2d v2 = hit.first->vec();
Vec2d v1n = v1.normalized();
Vec2d v2n = v2.normalized();
// The vectors must not be collinear.
assert(std::abs(v1n.dot(v2n)) < cos(M_PI / 12.));
}
};
assert_not_collinear(line_start);
assert_not_collinear(line_end);
closest_end_point_lookup.insert(line_start);
closest_end_point_lookup.insert(line_end);
}
return true;
}
#endif
void Filler::_fill_surface_single(
const FillParams &params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon expolygon,
Polylines &polylines_out)
{
assert (this->adapt_fill_octree);
Polylines all_polylines;
{
// 3 contexts for three directions of infill lines
std::array<FillContext, 3> contexts {
FillContext { *adapt_fill_octree, this->z, 0 },
FillContext { *adapt_fill_octree, this->z, 1 },
FillContext { *adapt_fill_octree, this->z, 2 }
};
// Generate the infill lines along the octree cells, merge touching lines of the same direction.
size_t num_lines = 0;
for (auto &context : contexts) {
generate_infill_lines_recursive(context, adapt_fill_octree->root_cube, 0, int(adapt_fill_octree->cubes_properties.size()) - 1);
num_lines += context.output_lines.size() + context.temp_lines.size();
}
#if 0
// Collect the lines, trim them by the expolygon.
all_polylines.reserve(num_lines);
auto boundary = to_polygons(expolygon);
for (auto &context : contexts) {
Polylines lines;
lines.reserve(context.output_lines.size() + context.temp_lines.size());
std::transform(context.output_lines.begin(), context.output_lines.end(), std::back_inserter(lines), [](const Line& l) { return Polyline{ l.a, l.b }; });
for (const Line &l : context.temp_lines)
if (l.a.x() != std::numeric_limits<coord_t>::max())
lines.push_back({ l.a, l.b });
// Crop all polylines
append(all_polylines, intersection_pl(std::move(lines), boundary));
}
// assert(has_no_collinear_lines(all_polylines));
#else
// Collect the lines.
std::vector<Line> lines;
lines.reserve(num_lines);
for (auto &context : contexts) {
append(lines, context.output_lines);
for (const Line &line : context.temp_lines)
if (line.a.x() != std::numeric_limits<coord_t>::max())
lines.emplace_back(line);
}
// Convert lines to polylines.
all_polylines.reserve(lines.size());
std::transform(lines.begin(), lines.end(), std::back_inserter(all_polylines), [](const Line& l) { return Polyline{ l.a, l.b }; });
// Apply multiline offset if needed
multiline_fill(all_polylines, params, spacing);
// Crop all polylines
all_polylines = intersection_pl(std::move(all_polylines), expolygon);
#endif
}
// After intersection_pl some polylines with only one line are split into more lines
for (Polyline &polyline : all_polylines) {
//FIXME assert that all the points are collinear and in between the start and end point.
if (polyline.points.size() > 2)
polyline.points.erase(polyline.points.begin() + 1, polyline.points.end() - 1);
}
// assert(has_no_collinear_lines(all_polylines));
#ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
{
static int iRun = 0;
export_infill_lines_to_svg(expolygon, all_polylines, debug_out_path("FillAdaptive-initial-%d.svg", iRun++));
}
#endif /* ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT */
const auto hook_length = coordf_t(std::min<float>(std::numeric_limits<coord_t>::max(), scale_(params.anchor_length)));
const auto hook_length_max = coordf_t(std::min<float>(std::numeric_limits<coord_t>::max(), scale_(params.anchor_length_max)));
Polylines all_polylines_with_hooks = all_polylines.size() > 1 ? connect_lines_using_hooks(std::move(all_polylines), expolygon, this->spacing, hook_length, hook_length_max) : std::move(all_polylines);
#ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
{
static int iRun = 0;
export_infill_lines_to_svg(expolygon, all_polylines_with_hooks, debug_out_path("FillAdaptive-hooks-%d.svg", iRun++));
}
#endif /* ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT */
chain_or_connect_infill(std::move(all_polylines_with_hooks), expolygon, polylines_out, this->spacing, params);
#ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
{
static int iRun = 0;
export_infill_lines_to_svg(expolygon, polylines_out, debug_out_path("FillAdaptive-final-%d.svg", iRun ++));
}
#endif /* ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT */
}
//static double bbox_max_radius(const BoundingBoxf3 &bbox, const Vec3d &center)
//{
// const auto p = (bbox.min - center);
// const auto s = bbox.size();
// double r2max = 0.;
// for (int i = 0; i < 8; ++ i)
// r2max = std::max(r2max, (p + Vec3d(s.x() * double(i & 1), s.y() * double(i & 2), s.z() * double(i & 4))).squaredNorm());
// return sqrt(r2max);
//}
static std::vector<CubeProperties> make_cubes_properties(double max_cube_edge_length, double line_spacing)
{
max_cube_edge_length += EPSILON;
std::vector<CubeProperties> cubes_properties;
for (double edge_length = line_spacing * 2.;; edge_length *= 2.)
{
CubeProperties props{};
props.edge_length = edge_length;
props.height = edge_length * sqrt(3);
props.diagonal_length = edge_length * sqrt(2);
props.line_z_distance = edge_length / sqrt(3);
props.line_xy_distance = edge_length / sqrt(6);
cubes_properties.emplace_back(props);
if (edge_length > max_cube_edge_length)
break;
}
return cubes_properties;
}
static inline bool is_overhang_triangle(const Vec3d &a, const Vec3d &b, const Vec3d &c, const Vec3d &up)
{
// Calculate triangle normal.
Vec3d n = (b - a).cross(c - b);
return n.dot(up) > 0.707 * n.norm();
}
static void transform_center(Cube *current_cube, const Eigen::Matrix3d &rot)
{
#ifndef NDEBUG
current_cube->center_octree = current_cube->center;
#endif // NDEBUG
current_cube->center = rot * current_cube->center;
for (auto *child : current_cube->children)
if (child)
transform_center(child, rot);
}
OctreePtr build_octree(
// Mesh is rotated to the coordinate system of the octree.
const indexed_triangle_set &triangle_mesh,
// Overhang triangles extracted from fill surfaces with stInternalBridge type,
// rotated to the coordinate system of the octree.
const std::vector<Vec3d> &overhang_triangles,
coordf_t line_spacing,
bool support_overhangs_only)
{
assert(line_spacing > 0);
assert(! std::isnan(line_spacing));
BoundingBox3Base<Vec3f> bbox(triangle_mesh.vertices);
Vec3d cube_center = bbox.center().cast<double>();
std::vector<CubeProperties> cubes_properties = make_cubes_properties(double(bbox.size().maxCoeff()), line_spacing);
auto octree = OctreePtr(new Octree(cube_center, cubes_properties));
if (cubes_properties.size() > 1) {
Octree *octree_ptr = octree.get();
double edge_length_half = 0.5 * cubes_properties.back().edge_length;
Vec3d diag_half(edge_length_half, edge_length_half, edge_length_half);
int max_depth = int(cubes_properties.size()) - 1;
auto process_triangle = [octree_ptr, max_depth, diag_half](const Vec3d &a, const Vec3d &b, const Vec3d &c) {
octree_ptr->insert_triangle(
a, b, c,
octree_ptr->root_cube,
BoundingBoxf3(octree_ptr->root_cube->center - diag_half, octree_ptr->root_cube->center + diag_half),
max_depth);
};
auto up_vector = support_overhangs_only ? Vec3d(transform_to_octree() * Vec3d(0., 0., 1.)) : Vec3d();
for (auto &tri : triangle_mesh.indices) {
Vec3d a = triangle_mesh.vertices[tri[0]].cast<double>();
Vec3d b = triangle_mesh.vertices[tri[1]].cast<double>();
Vec3d c = triangle_mesh.vertices[tri[2]].cast<double>();
if (! support_overhangs_only || is_overhang_triangle(a, b, c, up_vector))
process_triangle(a, b, c);
}
for (size_t i = 0; i < overhang_triangles.size(); i += 3)
process_triangle(overhang_triangles[i], overhang_triangles[i + 1], overhang_triangles[i + 2]);
{
// Transform the octree to world coordinates to reduce computation when extracting infill lines.
auto rot = transform_to_world().toRotationMatrix();
transform_center(octree->root_cube, rot);
octree->origin = rot * octree->origin;
}
}
return octree;
}
void Octree::insert_triangle(const Vec3d &a, const Vec3d &b, const Vec3d &c, Cube *current_cube, const BoundingBoxf3 &current_bbox, int depth)
{
assert(current_cube);
assert(depth > 0);
--depth;
// Squared radius of a sphere around the child cube.
// const double r2_cube = Slic3r::sqr(0.5 * this->cubes_properties[depth].height + EPSILON);
for (size_t i = 0; i < 8; ++ i) {
const Vec3d &child_center_dir = child_centers[i];
// Calculate a slightly expanded bounding box of a child cube to cope with triangles touching a cube wall and other numeric errors.
// We will rather densify the octree a bit more than necessary instead of missing a triangle.
BoundingBoxf3 bbox;
for (int k = 0; k < 3; ++ k) {
if (child_center_dir[k] == -1.) {
bbox.min[k] = current_bbox.min[k];
bbox.max[k] = current_cube->center[k] + EPSILON;
} else {
bbox.min[k] = current_cube->center[k] - EPSILON;
bbox.max[k] = current_bbox.max[k];
}
}
Vec3d child_center = current_cube->center + (child_center_dir * (this->cubes_properties[depth].edge_length / 2.));
//if (dist2_to_triangle(a, b, c, child_center) < r2_cube) {
// dist2_to_triangle and r2_cube are commented out too.
if (triangle_AABB_intersects(a, b, c, bbox)) {
if (! current_cube->children[i])
current_cube->children[i] = this->pool.construct(child_center);
if (depth > 0)
this->insert_triangle(a, b, c, current_cube->children[i], bbox, depth);
}
}
}
} // namespace FillAdaptive
} // namespace Slic3r