OrcaSlicer/src/libslic3r/SLA/SLABasePool.cpp

1030 lines
34 KiB
C++

#include "SLABasePool.hpp"
#include "SLABoilerPlate.hpp"
#include "boost/log/trivial.hpp"
#include "SLABoostAdapter.hpp"
#include "ClipperUtils.hpp"
#include <fstream>
#include "SVG.hpp"
//#include "benchmark.h"
namespace Slic3r { namespace sla {
/// Convert the triangulation output to an intermediate mesh.
Contour3D convert(const Polygons& triangles, coord_t z, bool dir) {
Pointf3s points;
points.reserve(3*triangles.size());
Indices indices;
indices.reserve(points.size());
for(auto& tr : triangles) {
auto c = coord_t(points.size()), b = c++, a = c++;
if(dir) indices.emplace_back(a, b, c);
else indices.emplace_back(c, b, a);
for(auto& p : tr.points) {
points.emplace_back(unscale(x(p), y(p), z));
}
}
return {points, indices};
}
// // step 1: find the leftmost bottom vertex of each plate.
//// auto vcmp = [](const Point& v1, const Point& v2) {
//// if(v1.y() == v2.y()) return v1.x() < v2.x();
//// return v1.y() < v2.y();
//// };
// // lb stands for Leftmost Bottom
// //auto iit = inner.points.begin(); //std::min_element(inner.points.begin(), inner.points.end(), vcmp);
// //auto oit = outer.points.begin();//std::min_element(outer.points.begin(), outer.points.end(), vcmp);
// // step 2: find the centroid of the inner polygon
// auto bb = inner.bounding_box();
// Point center = bb.center();
// const double Pi_2 = 2*PI;
// // This will return the angle of a segment (p1, p2) to the X axis
// // from 0 to 2*PI
// auto anglefn = [Pi_2, center](const Point& p) {
// coord_t dx = p.x() - center.x(), dy = p.y() - center.y();
// double a = std::atan2(dy, dx);
// auto s = std::signbit(a);
// if(s) a += Pi_2;
// return a;
// };
// ret.points.reserve(inner.points.size() + outer.points.size());
// for(auto& p : inner.points)
// ret.points.emplace_back(unscale(p.x(), p.y(), mm(ceiling_z_mm)));
// for(auto& p : outer.points)
// ret.points.emplace_back(unscale(p.x(), p.y(), mm(floor_z_mm)));
// std::vector<std::pair<long, double>> anglediagram;
// anglediagram.reserve(inner.size() + outer.size());
// for(size_t i = 0; i < inner.size(); ++i)
// anglediagram.emplace_back(
// std::make_pair(long(i), anglefn(inner.points[i]) )
// );
// const auto offs = long(inner.points.size());
// for(size_t i = 0; i < outer.size(); ++i)
// anglediagram.emplace_back(
// std::make_pair(offs + long(i), anglefn(outer.points[i]) )
// );
// std::sort(anglediagram.begin(), anglediagram.end(),
// [](const std::pair<long, double>& v1,
// const std::pair<long, double>& v2)
// {
// return v1.second < v2.second;
// });
// for(size_t i = 0; i < anglediagram.size() - 3; ++i) {
// long t1 = anglediagram[i].first;
// long t2 = anglediagram[i + 1].first;
// if(t1 >= offs && t2 >= offs) {
// // search for an inner vertex
// size_t jd = i;
// size_t ju = i + 1;
// while(anglediagram[jd].first >= offs) {
// if(jd == 0) jd = anglediagram.size() - 1;
// else --jd;
// }
// while(anglediagram[ju].first >= offs) {
// if(ju >= anglediagram.size() - 1) ju = 0;
// else ++ju;
// if(ju > anglediagram.size()) {
// std::cout << "mi eeez????" << std::endl;
// }
// }
// assert(jd != i || ju != i + 1);
// long t3 = -1;
// if(ju > anglediagram.size() || jd > anglediagram.size()) {
// std::cout << "baj van" << std::endl;
// }
// if(jd == i) t3 = anglediagram[ju].first;
// else if(ju == i + 1) t3 = anglediagram[jd].first;
// else {
// double ad = anglediagram[jd].second;
// double au = anglediagram[ju].second;
// double dd = std::abs(ad - anglediagram[i].second);
// if(dd > PI) dd = Pi_2 - dd;
// double du = std::abs(au - anglediagram[i + 1].second);
// if(du > PI) du = Pi_2 - du;
// t3 = dd < du ? anglediagram[jd].first: anglediagram[ju].first;
// }
// ret.indices.emplace_back(t1, t3, t2);
// }
// }
// This function will return a triangulation of a sheet connecting an upper
// and a lower plate given as input polygons. It will not triangulate the plates
// themselves only the robe.
Contour3D walls(const ExPolygon& floor_plate, const ExPolygon& ceiling,
double floor_z_mm, double ceiling_z_mm,
ThrowOnCancel thr, double offset_difference_mm = 0)
{
Contour3D ret;
const Polygon& inner = ceiling.contour;
const Polygon& outer = floor_plate.contour;
if(inner.points.size() < 3 || outer.size() < 3) return ret;
const auto offs = long(inner.points.size());
ret.points.reserve(inner.points.size() + outer.points.size());
for(auto& p : inner.points)
ret.points.emplace_back(unscale(p.x(), p.y(), mm(ceiling_z_mm)));
for(auto& p : outer.points)
ret.points.emplace_back(unscale(p.x(), p.y(), mm(floor_z_mm)));
auto iit = inner.points.begin();
auto oit = outer.points.begin();
// We need to find the closest point on outer polygon to the first point on
// the inner polygon. These will be our starting points.
double distmin = std::numeric_limits<double>::max();
for(auto ot = outer.points.begin(); ot != outer.points.end(); ++ot) {
Vec2d p = (*ot - *iit).cast<double>();
double d = p.transpose() * p;
if(d < distmin) { oit = ot; distmin = d; }
}
auto inext = std::next(iit);
auto onext = std::next(oit);
if(onext == outer.points.end()) onext = outer.points.begin();
auto iidx = iit - inner.points.begin();
auto inextidx = inext - inner.points.begin();
auto oidx = offs + oit - outer.points.begin();
auto onextidx = offs + onext - outer.points.begin();
auto nextinp = [&iit, &inext, &inner, &iidx, &inextidx] () {
++iit; ++inext;
if(inext == inner.points.end()) inext = inner.points.begin();
if(iit == inner.points.end()) iit = inner.points.begin();
inextidx = inext - inner.points.begin();
iidx = iit - inner.points.begin();
};
auto nextoutp = [&oit, &onext, &outer, &onextidx, &oidx, offs] () {
++oit; ++onext;
if(onext == outer.points.end()) onext = outer.points.begin();
if(oit == outer.points.end()) oit = outer.points.begin();
onextidx = offs + onext - outer.points.begin();
oidx = offs + oit - outer.points.begin();
};
bool isinsider = true;
bool idirty = false, odirty = false;
double obtusity = 0;
double prev_obtusity = 0;
auto distfn = [](const Vec2d& p1, const Vec2d& p2) {
auto p = p1 - p2;
return p.transpose() * p;
};
double cd = ceiling_z_mm - floor_z_mm;
double slope = offset_difference_mm / std::sqrt(std::pow(offset_difference_mm, 2) + std::pow(cd, 2));
auto obtusityfn = [distfn](const Vec2d& p1, const Vec2d& p2, const Vec2d& p3)
{
double a = distfn(p1, p2);
double b = distfn(p2, p3);
double c = distfn(p1, p3);
double aa = std::sqrt(a);
double bb = std::sqrt(b);
double cc = std::sqrt(c);
// std::array<double, 3> sides = {aa, bb, cc};
// std::sort(sides.begin(), sides.end());
// double thinness = -1 + 2 * std::pow(sides.front() / sides.back(), 2);
// assert(thinness <= 1.0 && thinness >= -1.0);
std::array<double, 3> coses;
coses[0] = (a + b - c) / (2*aa*bb);
coses[1] = (a + c - b) / (2*aa*cc);
coses[2] = (c + b - a) / (2*cc*bb);
bool isobt = a + b < c || b + c < a || c + a < b;
double minval = *std::min_element(coses.begin(), coses.end());
assert(isobt && minval <= 0 || !isobt && minval >= 0);
return minval;
// return 0.5 * (minval + thinness);
};
#ifndef NDEBUG
Polygons top_plate_triangles, bottom_plate_triangles;
ceiling.triangulate_p2t(&top_plate_triangles);
floor_plate.triangulate_p2t(&bottom_plate_triangles);
auto top_plate_mesh = sla::convert(top_plate_triangles, coord_t(3.0/SCALING_FACTOR), false);
auto bottom_plate_mesh = sla::convert(bottom_plate_triangles, 0, true);
Contour3D dmesh;
dmesh.merge(top_plate_mesh);
dmesh.merge(bottom_plate_mesh);
#endif
double idist = 0, odist = 0;
double ilen = inner.length(), olen = outer.length();
double doffs = offset_difference_mm;
auto iend = iit; auto oend = oit;
do {
#ifndef NDEBUG
std::fstream fout("dout.obj", std::fstream::out);
Contour3D dmeshout = dmesh;
#endif
prev_obtusity = obtusity;
double distfactor = idist/ilen - odist/olen;
if(isinsider) {
Vec3d p1(iit->x()*SCALING_FACTOR, iit->y()*SCALING_FACTOR, ceiling_z_mm);
Vec3d p2(oit->x()*SCALING_FACTOR, oit->y()*SCALING_FACTOR, floor_z_mm);
Vec3d p3(inext->x()*SCALING_FACTOR, inext->y()*SCALING_FACTOR, ceiling_z_mm);
if(idirty && iit == iend) { isinsider = false; continue; }
double t1 = doffs / std::sqrt((p1 - p2).transpose() * (p1 - p2));
t1 = slope - t1;
double t2 = doffs / std::sqrt((p3 - p2).transpose() * (p3 - p2));
t2 = slope - t2;
double t = std::max(std::abs(t1), std::abs(t2));
obtusity = t;
// obtusity = obtusityfn(p1, p2, p3);
// obtusity = 0.9 * obtusity - 0.1 * distfactor;
if(obtusity > prev_obtusity) {
isinsider = false;
} else {
ret.indices.emplace_back(iidx, oidx, inextidx);
nextinp();
Vec2d tmp = (*iit - *inext).cast<double>();
idist += std::sqrt(tmp.transpose() * tmp);
idirty = true;
}
} else {
Vec3d p1(oit->x()*SCALING_FACTOR, oit->y()*SCALING_FACTOR, floor_z_mm);
Vec3d p2(onext->x()*SCALING_FACTOR, onext->y()*SCALING_FACTOR, floor_z_mm);
Vec3d p3(iit->x()*SCALING_FACTOR, iit->y()*SCALING_FACTOR, ceiling_z_mm);
if(odirty && oit == oend) { isinsider = true; continue; }
double t1 = slope - doffs / std::sqrt((p3 - p1).transpose() * (p3 - p1));
double t2 = slope - doffs / std::sqrt((p3 - p2).transpose() * (p3 - p2));
double t = std::max(std::abs(t1), std::abs(t2));
obtusity = t;
// obtusity = obtusityfn(p1, p2, p3);
// obtusity = 0.9 * obtusity + 0.1 * distfactor;
if(obtusity > prev_obtusity) {
isinsider = true;
} else {
ret.indices.emplace_back(oidx, onextidx, iidx);
nextoutp();
Vec2d tmp = (*oit - *onext).cast<double>();
odist += std::sqrt(tmp.transpose() * tmp);
odirty = true;
}
}
#ifndef NDEBUG
dmeshout.merge(ret);
dmeshout.to_obj(fout);
fout.close();
std::cout << "triangle written" << std::endl;
#endif
} while(!idirty || !odirty || iit != iend || oit != oend);
return ret;
// using std::transform; using std::back_inserter;
// ExPolygon poly;
// poly.contour.points = floor_plate.contour.points;
// poly.holes.emplace_back(ceiling.contour);
// auto& h = poly.holes.front();
// std::reverse(h.points.begin(), h.points.end());
// Polygons tri = triangulate(poly);
// Contour3D ret;
// ret.points.reserve(tri.size() * 3);
// double fz = floor_z_mm;
// double cz = ceiling_z_mm;
// auto& rp = ret.points;
// auto& rpi = ret.indices;
// ret.indices.reserve(tri.size() * 3);
// coord_t idx = 0;
// auto hlines = h.lines();
// auto is_upper = [&hlines](const Point& p) {
// return std::any_of(hlines.begin(), hlines.end(),
// [&p](const Line& l) {
// return l.distance_to(p) < mm(1e-6);
// });
// };
// for(const Polygon& pp : tri) {
// thr(); // may throw if cancellation was requested
// for(auto& p : pp.points)
// if(is_upper(p))
// rp.emplace_back(unscale(x(p), y(p), mm(cz)));
// else rp.emplace_back(unscale(x(p), y(p), mm(fz)));
// coord_t a = idx++, b = idx++, c = idx++;
// if(fz > cz) rpi.emplace_back(c, b, a);
// else rpi.emplace_back(a, b, c);
// }
// return ret;
}
// const auto offs = long(inner.points.size());
// auto inext = std::next(iit);
// auto onext = std::next(oit);
// auto nextinp = [&iit, &inext, &inner] () {
// ++iit; ++inext;
// if(inext == inner.points.end()) inext = inner.points.begin();
// if(iit == inner.points.end()) iit = inner.points.begin();
// };
// auto nextoutp = [&oit, &onext, &outer] () {
// ++oit; ++onext;
// if(onext == outer.points.end()) onext = outer.points.begin();
// if(oit == outer.points.end()) oit = outer.points.begin();
// };
// double aonext = anglefn(*onext);
// size_t n = 0;
// while(n < inner.size()) {
// double a1 = anglefn(*iit);
// double a2 = anglefn(*inext);
// if(inext < iit) a2 += Pi_2;
// double amin = std::min(a1, a2);
// double amax = std::max(a1, a2);
// // We have to dial the outer vertex pair to the range of the inner
// // pair
// size_t i = 0;
// while((aonext <= amin || aonext > amax) && i < outer.size())
// { // search for the first outer vertex that is suitable
// nextoutp();
// aonext = anglefn(*onext);
// if(inext < iit) aonext += Pi_2;
// ++i;
// }
// // If we arrived at the end of the outer ring, and the inner is not
// // completed, we will rotate the outer.
// if(i == outer.size()) {
// nextinp(); ++n;
// continue;
// }
// auto iidx = iit - inner.points.begin();
// auto inextidx = inext - inner.points.begin();
// auto oidx = offs + oit - outer.points.begin();
// auto onextidx = offs + onext - outer.points.begin();
// ret.indices.emplace_back(onextidx, iidx, oidx);
// ret.indices.emplace_back(onextidx, inextidx, iidx);
// while(true)
// {
// nextoutp();
// onextidx = offs + onext - outer.points.begin();
// oidx = offs + oit - outer.points.begin();
// aonext = anglefn(*onext);
// if(aonext > amin && aonext <= amax) {
// ret.indices.emplace_back(onextidx, inextidx, oidx);
// } else break;
// }
// nextinp(); ++n;
// }
// using std::transform; using std::back_inserter;
// ExPolygon poly;
// poly.contour.points = floor_plate.contour.points;
// poly.holes.emplace_back(ceiling.contour);
// auto& h = poly.holes.front();
// std::reverse(h.points.begin(), h.points.end());
// Polygons tri = triangulate(poly);
// Contour3D ret;
// ret.points.reserve(tri.size() * 3);
// double fz = floor_z_mm;
// double cz = ceiling_z_mm;
// auto& rp = ret.points;
// auto& rpi = ret.indices;
// ret.indices.reserve(tri.size() * 3);
// coord_t idx = 0;
// auto hlines = h.lines();
// auto is_upper = [&hlines](const Point& p) {
// return std::any_of(hlines.begin(), hlines.end(),
// [&p](const Line& l) {
// return l.distance_to(p) < mm(1e-6);
// });
// };
// for(const Polygon& pp : tri) {
// thr(); // may throw if cancellation was requested
// for(auto& p : pp.points)
// if(is_upper(p))
// rp.emplace_back(unscale(x(p), y(p), mm(cz)));
// else rp.emplace_back(unscale(x(p), y(p), mm(fz)));
// coord_t a = idx++, b = idx++, c = idx++;
// if(fz > cz) rpi.emplace_back(c, b, a);
// else rpi.emplace_back(a, b, c);
// }
// return ret;
/// Offsetting with clipper and smoothing the edges into a curvature.
void offset(ExPolygon& sh, coord_t distance) {
using ClipperLib::ClipperOffset;
using ClipperLib::jtRound;
using ClipperLib::etClosedPolygon;
using ClipperLib::Paths;
using ClipperLib::Path;
auto&& ctour = Slic3rMultiPoint_to_ClipperPath(sh.contour);
auto&& holes = Slic3rMultiPoints_to_ClipperPaths(sh.holes);
// If the input is not at least a triangle, we can not do this algorithm
if(ctour.size() < 3 ||
std::any_of(holes.begin(), holes.end(),
[](const Path& p) { return p.size() < 3; })
) {
BOOST_LOG_TRIVIAL(error) << "Invalid geometry for offsetting!";
return;
}
ClipperOffset offs;
offs.ArcTolerance = 0.01*mm(1);
Paths result;
offs.AddPath(ctour, jtRound, etClosedPolygon);
offs.AddPaths(holes, jtRound, etClosedPolygon);
offs.Execute(result, static_cast<double>(distance));
// Offsetting reverts the orientation and also removes the last vertex
// so boost will not have a closed polygon.
bool found_the_contour = false;
sh.holes.clear();
for(auto& r : result) {
if(ClipperLib::Orientation(r)) {
// We don't like if the offsetting generates more than one contour
// but throwing would be an overkill. Instead, we should warn the
// caller about the inability to create correct geometries
if(!found_the_contour) {
auto rr = ClipperPath_to_Slic3rPolygon(r);
sh.contour.points.swap(rr.points);
found_the_contour = true;
} else {
BOOST_LOG_TRIVIAL(warning)
<< "Warning: offsetting result is invalid!";
}
} else {
// TODO If there are multiple contours we can't be sure which hole
// belongs to the first contour. (But in this case the situation is
// bad enough to let it go...)
sh.holes.emplace_back(ClipperPath_to_Slic3rPolygon(r));
}
}
}
/// Unification of polygons (with clipper) preserving holes as well.
ExPolygons unify(const ExPolygons& shapes) {
using ClipperLib::ptSubject;
ExPolygons retv;
bool closed = true;
bool valid = true;
ClipperLib::Clipper clipper;
for(auto& path : shapes) {
auto clipperpath = Slic3rMultiPoint_to_ClipperPath(path.contour);
if(!clipperpath.empty())
valid &= clipper.AddPath(clipperpath, ptSubject, closed);
auto clipperholes = Slic3rMultiPoints_to_ClipperPaths(path.holes);
for(auto& hole : clipperholes) {
if(!hole.empty())
valid &= clipper.AddPath(hole, ptSubject, closed);
}
}
if(!valid) BOOST_LOG_TRIVIAL(warning) << "Unification of invalid shapes!";
ClipperLib::PolyTree result;
clipper.Execute(ClipperLib::ctUnion, result, ClipperLib::pftNonZero);
retv.reserve(static_cast<size_t>(result.Total()));
// Now we will recursively traverse the polygon tree and serialize it
// into an ExPolygon with holes. The polygon tree has the clipper-ish
// PolyTree structure which alternates its nodes as contours and holes
// A "declaration" of function for traversing leafs which are holes
std::function<void(ClipperLib::PolyNode*, ExPolygon&)> processHole;
// Process polygon which calls processHoles which than calls processPoly
// again until no leafs are left.
auto processPoly = [&retv, &processHole](ClipperLib::PolyNode *pptr) {
ExPolygon poly;
poly.contour.points = ClipperPath_to_Slic3rPolygon(pptr->Contour);
for(auto h : pptr->Childs) { processHole(h, poly); }
retv.push_back(poly);
};
// Body of the processHole function
processHole = [&processPoly](ClipperLib::PolyNode *pptr, ExPolygon& poly)
{
poly.holes.emplace_back();
poly.holes.back().points = ClipperPath_to_Slic3rPolygon(pptr->Contour);
for(auto c : pptr->Childs) processPoly(c);
};
// Wrapper for traversing.
auto traverse = [&processPoly] (ClipperLib::PolyNode *node)
{
for(auto ch : node->Childs) {
processPoly(ch);
}
};
// Here is the actual traverse
traverse(&result);
return retv;
}
/// Only a debug function to generate top and bottom plates from a 2D shape.
/// It is not used in the algorithm directly.
inline Contour3D roofs(const ExPolygon& poly, coord_t z_distance) {
Polygons triangles = triangulate(poly);
auto lower = convert(triangles, 0, false);
auto upper = convert(triangles, z_distance, true);
lower.merge(upper);
return lower;
}
Contour3D round_edges(const ExPolygon& base_plate,
double radius_mm,
double degrees,
double ceilheight_mm,
bool dir,
ThrowOnCancel throw_on_cancel,
ExPolygon& last_offset, double& last_height)
{
auto ob = base_plate;
auto ob_prev = ob;
double wh = ceilheight_mm, wh_prev = wh;
Contour3D curvedwalls;
int steps = 30;
double stepx = radius_mm / steps;
coord_t s = dir? 1 : -1;
degrees = std::fmod(degrees, 180);
// we use sin for x distance because we interpret the angle starting from
// PI/2
int tos = degrees < 90?
int(radius_mm*std::cos(degrees * PI / 180 - PI/2) / stepx) : steps;
for(int i = 1; i <= tos; ++i) {
throw_on_cancel();
ob = base_plate;
double r2 = radius_mm * radius_mm;
double xx = i*stepx;
double x2 = xx*xx;
double stepy = std::sqrt(r2 - x2);
offset(ob, s*mm(xx));
wh = ceilheight_mm - radius_mm + stepy;
Contour3D pwalls;
pwalls = walls(ob, ob_prev, wh, wh_prev, throw_on_cancel);
curvedwalls.merge(pwalls);
ob_prev = ob;
wh_prev = wh;
}
if(degrees > 90) {
double tox = radius_mm - radius_mm*std::cos(degrees * PI / 180 - PI/2);
int tos = int(tox / stepx);
for(int i = 1; i <= tos; ++i) {
throw_on_cancel();
ob = base_plate;
double r2 = radius_mm * radius_mm;
double xx = radius_mm - i*stepx;
double x2 = xx*xx;
double stepy = std::sqrt(r2 - x2);
offset(ob, s*mm(xx));
wh = ceilheight_mm - radius_mm - stepy;
Contour3D pwalls;
pwalls = walls(ob_prev, ob, wh_prev, wh, throw_on_cancel);
curvedwalls.merge(pwalls);
ob_prev = ob;
wh_prev = wh;
}
}
last_offset = std::move(ob);
last_height = wh;
return curvedwalls;
}
/// Generating the concave part of the 3D pool with the bottom plate and the
/// side walls.
Contour3D inner_bed(const ExPolygon& poly, double depth_mm,
double begin_h_mm = 0) {
Polygons triangles = triangulate(poly);
coord_t depth = mm(depth_mm);
coord_t begin_h = mm(begin_h_mm);
auto bottom = convert(triangles, -depth + begin_h, false);
auto lines = poly.lines();
// Generate outer walls
auto fp = [](const Point& p, Point::coord_type z) {
return unscale(x(p), y(p), z);
};
for(auto& l : lines) {
auto s = coord_t(bottom.points.size());
bottom.points.emplace_back(fp(l.a, -depth + begin_h));
bottom.points.emplace_back(fp(l.b, -depth + begin_h));
bottom.points.emplace_back(fp(l.a, begin_h));
bottom.points.emplace_back(fp(l.b, begin_h));
bottom.indices.emplace_back(s + 3, s + 1, s);
bottom.indices.emplace_back(s + 2, s + 3, s);
}
return bottom;
}
inline Point centroid(Points& pp) {
Point c;
switch(pp.size()) {
case 0: break;
case 1: c = pp.front(); break;
case 2: c = (pp[0] + pp[1]) / 2; break;
default: {
auto MAX = std::numeric_limits<Point::coord_type>::max();
auto MIN = std::numeric_limits<Point::coord_type>::min();
Point min = {MAX, MAX}, max = {MIN, MIN};
for(auto& p : pp) {
if(p(0) < min(0)) min(0) = p(0);
if(p(1) < min(1)) min(1) = p(1);
if(p(0) > max(0)) max(0) = p(0);
if(p(1) > max(1)) max(1) = p(1);
}
c(0) = min(0) + (max(0) - min(0)) / 2;
c(1) = min(1) + (max(1) - min(1)) / 2;
// TODO: fails for non convex cluster
// c = std::accumulate(pp.begin(), pp.end(), Point{0, 0});
// x(c) /= coord_t(pp.size()); y(c) /= coord_t(pp.size());
break;
}
}
return c;
}
inline Point centroid(const ExPolygon& poly) {
return poly.contour.centroid();
}
/// A fake concave hull that is constructed by connecting separate shapes
/// with explicit bridges. Bridges are generated from each shape's centroid
/// to the center of the "scene" which is the centroid calculated from the shape
/// centroids (a star is created...)
ExPolygons concave_hull(const ExPolygons& polys, double max_dist_mm = 50,
ThrowOnCancel throw_on_cancel = [](){})
{
namespace bgi = boost::geometry::index;
using SpatElement = std::pair<BoundingBox, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
if(polys.empty()) return ExPolygons();
ExPolygons punion = unify(polys); // could be redundant
if(punion.size() == 1) return punion;
// We get the centroids of all the islands in the 2D slice
Points centroids; centroids.reserve(punion.size());
std::transform(punion.begin(), punion.end(), std::back_inserter(centroids),
[](const ExPolygon& poly) { return centroid(poly); });
SpatIndex boxindex; unsigned idx = 0;
std::for_each(punion.begin(), punion.end(),
[&boxindex, &idx](const ExPolygon& expo) {
BoundingBox bb(expo);
boxindex.insert(std::make_pair(bb, idx++));
});
// Centroid of the centroids of islands. This is where the additional
// connector sticks are routed.
Point cc = centroid(centroids);
punion.reserve(punion.size() + centroids.size());
idx = 0;
std::transform(centroids.begin(), centroids.end(),
std::back_inserter(punion),
[&punion, &boxindex, cc, max_dist_mm, &idx, throw_on_cancel]
(const Point& c)
{
throw_on_cancel();
double dx = x(c) - x(cc), dy = y(c) - y(cc);
double l = std::sqrt(dx * dx + dy * dy);
double nx = dx / l, ny = dy / l;
double max_dist = mm(max_dist_mm);
ExPolygon& expo = punion[idx++];
BoundingBox querybb(expo);
querybb.offset(max_dist);
std::vector<SpatElement> result;
boxindex.query(bgi::intersects(querybb), std::back_inserter(result));
if(result.size() <= 1) return ExPolygon();
ExPolygon r;
auto& ctour = r.contour.points;
ctour.reserve(3);
ctour.emplace_back(cc);
Point d(coord_t(mm(1)*nx), coord_t(mm(1)*ny));
ctour.emplace_back(c + Point( -y(d), x(d) ));
ctour.emplace_back(c + Point( y(d), -x(d) ));
offset(r, mm(1));
return r;
});
// This is unavoidable...
punion = unify(punion);
return punion;
}
void base_plate(const TriangleMesh &mesh, ExPolygons &output, float h,
float layerh, ThrowOnCancel thrfn)
{
TriangleMesh m = mesh;
TriangleMeshSlicer slicer(&m);
auto bb = mesh.bounding_box();
float gnd = float(bb.min(Z));
std::vector<float> heights = {float(bb.min(Z))};
for(float hi = gnd + layerh; hi <= gnd + h; hi += layerh)
heights.emplace_back(hi);
std::vector<ExPolygons> out; out.reserve(size_t(std::ceil(h/layerh)));
slicer.slice(heights, &out, thrfn);
size_t count = 0; for(auto& o : out) count += o.size();
// Now we have to unify all slice layers which can be an expensive operation
// so we will try to simplify the polygons
ExPolygons tmp; tmp.reserve(count);
for(ExPolygons& o : out) for(ExPolygon& e : o) {
auto&& exss = e.simplify(0.1/SCALING_FACTOR);
for(ExPolygon& ep : exss) tmp.emplace_back(std::move(ep));
}
ExPolygons utmp = unify(tmp);
for(auto& o : utmp) {
auto&& smp = o.simplify(0.1/SCALING_FACTOR);
output.insert(output.end(), smp.begin(), smp.end());
}
}
void create_base_pool(const ExPolygons &ground_layer, TriangleMesh& out,
const PoolConfig& cfg)
{
double mergedist = 2*(1.8*cfg.min_wall_thickness_mm + 4*cfg.edge_radius_mm)+
cfg.max_merge_distance_mm;
// Here we get the base polygon from which the pad has to be generated.
// We create an artificial concave hull from this polygon and that will
// serve as the bottom plate of the pad. We will offset this concave hull
// and then offset back the result with clipper with rounding edges ON. This
// trick will create a nice rounded pad shape.
auto concavehs = concave_hull(ground_layer, mergedist, cfg.throw_on_cancel);
const double thickness = cfg.min_wall_thickness_mm;
const double wingheight = cfg.min_wall_height_mm;
const double fullheight = wingheight + thickness;
const double tilt = PI/4;
const double wingdist = wingheight / std::tan(tilt);
// scaled values
const coord_t s_thickness = mm(thickness);
const coord_t s_eradius = mm(cfg.edge_radius_mm);
const coord_t s_safety_dist = 2*s_eradius + coord_t(0.8*s_thickness);
// const coord_t wheight = mm(cfg.min_wall_height_mm);
coord_t s_wingdist = mm(wingdist);
auto& thrcl = cfg.throw_on_cancel;
for(ExPolygon& concaveh : concavehs) {
if(concaveh.contour.points.empty()) return;
// Get rif of any holes in the concave hull output.
concaveh.holes.clear();
// Here lies the trick that does the smooting only with clipper offset
// calls. The offset is configured to round edges. Inner edges will
// be rounded because we offset twice: ones to get the outer (top) plate
// and again to get the inner (bottom) plate
auto outer_base = concaveh;
outer_base.holes.clear();
offset(outer_base, s_safety_dist + s_wingdist + s_thickness);
auto inner_base = outer_base;
offset(inner_base, -(s_thickness + s_wingdist));
// Punching a hole in the top plate for the cavity
ExPolygon top_poly;
ExPolygon middle_base;
top_poly.contour = outer_base.contour;
if(wingheight > 0) {
middle_base = outer_base;
offset(middle_base, -s_thickness);
top_poly.holes.emplace_back(middle_base.contour);
auto& tph = top_poly.holes.back().points;
std::reverse(tph.begin(), tph.end());
}
Contour3D pool;
ExPolygon ob = outer_base; double wh = 0;
// now we will calculate the angle or portion of the circle from
// pi/2 that will connect perfectly with the bottom plate.
// this is a tangent point calculation problem and the equation can
// be found for example here:
// http://www.ambrsoft.com/TrigoCalc/Circles2/CirclePoint/CirclePointDistance.htm
// the y coordinate would be:
// y = cy + (r^2*py - r*px*sqrt(px^2 + py^2 - r^2) / (px^2 + py^2)
// where px and py are the coordinates of the point outside the circle
// cx and cy are the circle center, r is the radius
// We place the circle center to (0, 0) in the calculation the make
// things easier.
// to get the angle we use arcsin function and subtract 90 degrees then
// flip the sign to get the right input to the round_edge function.
double r = cfg.edge_radius_mm;
double cy = 0;
double cx = 0;
double px = thickness + wingdist;
double py = r - fullheight;
double pxcx = px - cx;
double pycy = py - cy;
double b_2 = pxcx*pxcx + pycy*pycy;
double r_2 = r*r;
double D = std::sqrt(b_2 - r_2);
double vy = (r_2*pycy - r*pxcx*D) / b_2;
double phi = -(std::asin(vy/r) * 180 / PI - 90);
// Generate the smoothed edge geometry
auto walledges = round_edges(ob,
r,
phi,
0, // z position of the input plane
true,
thrcl,
ob, wh);
pool.merge(walledges);
// Now that we have the rounded edge connencting the top plate with
// the outer side walls, we can generate and merge the sidewall geometry
auto pwalls = walls(ob, inner_base, wh, -fullheight, thrcl);
pool.merge(pwalls);
if(wingheight > 0) {
// Generate the smoothed edge geometry
auto cavityedges = round_edges(middle_base,
r,
phi - 90, // from tangent lines
0,
false,
thrcl,
ob, wh);
pool.merge(cavityedges);
// Next is the cavity walls connecting to the top plate's
// artificially created hole.
auto cavitywalls = walls(inner_base, ob, -wingheight, wh, thrcl);
pool.merge(cavitywalls);
}
// Now we need to triangulate the top and bottom plates as well as the
// cavity bottom plate which is the same as the bottom plate but it is
// eleveted by the thickness.
Polygons top_triangles, bottom_triangles;
triangulate(top_poly, top_triangles);
triangulate(inner_base, bottom_triangles);
auto top_plate = convert(top_triangles, 0, false);
auto bottom_plate = convert(bottom_triangles, -mm(fullheight), true);
pool.merge(top_plate);
pool.merge(bottom_plate);
if(wingheight > 0) {
Polygons middle_triangles;
triangulate(inner_base, middle_triangles);
auto middle_plate = convert(middle_triangles, -mm(wingheight), false);
pool.merge(middle_plate);
}
out.merge(mesh(pool));
}
}
}
}