mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 12:11:15 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			323 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			323 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef slic3r_ExtrusionEntity_hpp_
 | |
| #define slic3r_ExtrusionEntity_hpp_
 | |
| 
 | |
| #include "libslic3r.h"
 | |
| #include "Polygon.hpp"
 | |
| #include "Polyline.hpp"
 | |
| 
 | |
| namespace Slic3r {
 | |
| 
 | |
| class ExPolygonCollection;
 | |
| class ExtrusionEntityCollection;
 | |
| class Extruder;
 | |
| 
 | |
| /* Each ExtrusionRole value identifies a distinct set of { extruder, speed } */
 | |
| enum ExtrusionRole {
 | |
|     erNone,
 | |
|     erPerimeter,
 | |
|     erExternalPerimeter,
 | |
|     erOverhangPerimeter,
 | |
|     erInternalInfill,
 | |
|     erSolidInfill,
 | |
|     erTopSolidInfill,
 | |
|     erBridgeInfill,
 | |
|     erGapFill,
 | |
|     erSkirt,
 | |
|     erSupportMaterial,
 | |
|     erSupportMaterialInterface,
 | |
|     erWipeTower,
 | |
|     erCustom,
 | |
|     // Extrusion role for a collection with multiple extrusion roles.
 | |
|     erMixed,
 | |
| };
 | |
| 
 | |
| inline bool is_perimeter(ExtrusionRole role)
 | |
| {
 | |
|     return role == erPerimeter
 | |
|         || role == erExternalPerimeter
 | |
|         || role == erOverhangPerimeter;
 | |
| }
 | |
| 
 | |
| inline bool is_infill(ExtrusionRole role)
 | |
| {
 | |
|     return role == erBridgeInfill
 | |
|         || role == erInternalInfill
 | |
|         || role == erSolidInfill
 | |
|         || role == erTopSolidInfill;
 | |
| }
 | |
| 
 | |
| inline bool is_solid_infill(ExtrusionRole role)
 | |
| {
 | |
|     return role == erBridgeInfill
 | |
|         || role == erSolidInfill
 | |
|         || role == erTopSolidInfill;
 | |
| }
 | |
| 
 | |
| inline bool is_bridge(ExtrusionRole role) {
 | |
|     return role == erBridgeInfill
 | |
|         || role == erOverhangPerimeter;
 | |
| }
 | |
| 
 | |
| /* Special flags describing loop */
 | |
| enum ExtrusionLoopRole {
 | |
|     elrDefault,
 | |
|     elrContourInternalPerimeter,
 | |
|     elrSkirt,
 | |
| };
 | |
| 
 | |
| class ExtrusionEntity
 | |
| {
 | |
| public:
 | |
|     virtual ExtrusionRole role() const = 0;
 | |
|     virtual bool is_collection() const { return false; }
 | |
|     virtual bool is_loop() const { return false; }
 | |
|     virtual bool can_reverse() const { return true; }
 | |
|     virtual ExtrusionEntity* clone() const = 0;
 | |
|     virtual ~ExtrusionEntity() {};
 | |
|     virtual void reverse() = 0;
 | |
|     virtual Point first_point() const = 0;
 | |
|     virtual Point last_point() const = 0;
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     virtual void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const = 0;
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
 | |
|     virtual void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const = 0;
 | |
|     Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
 | |
|     Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
 | |
|     // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
 | |
|     virtual double min_mm3_per_mm() const = 0;
 | |
|     virtual Polyline as_polyline() const = 0;
 | |
|     virtual void   collect_polylines(Polylines &dst) const = 0;
 | |
|     virtual Polylines as_polylines() const { Polylines dst; this->collect_polylines(dst); return dst; }
 | |
|     virtual double length() const = 0;
 | |
|     virtual double total_volume() const = 0;
 | |
| };
 | |
| 
 | |
| typedef std::vector<ExtrusionEntity*> ExtrusionEntitiesPtr;
 | |
| 
 | |
| class ExtrusionPath : public ExtrusionEntity
 | |
| {
 | |
| public:
 | |
|     Polyline polyline;
 | |
|     // Volumetric velocity. mm^3 of plastic per mm of linear head motion. Used by the G-code generator.
 | |
|     double mm3_per_mm;
 | |
|     // Width of the extrusion, used for visualization purposes.
 | |
|     float width;
 | |
|     // Height of the extrusion, used for visualization purposed.
 | |
|     float height;
 | |
|     // Feedrate of the extrusion, used for visualization purposed.
 | |
|     float feedrate;
 | |
|     // Id of the extruder, used for visualization purposed.
 | |
|     unsigned int extruder_id;
 | |
|     // Id of the color, used for visualization purposed in the color printing case.
 | |
|     unsigned int cp_color_id;
 | |
| 
 | |
|     ExtrusionPath(ExtrusionRole role) : mm3_per_mm(-1), width(-1), height(-1), feedrate(0.0f), extruder_id(0), cp_color_id(0), m_role(role) {};
 | |
|     ExtrusionPath(ExtrusionRole role, double mm3_per_mm, float width, float height) : mm3_per_mm(mm3_per_mm), width(width), height(height), feedrate(0.0f), extruder_id(0), cp_color_id(0), m_role(role) {};
 | |
|     ExtrusionPath(const ExtrusionPath &rhs) : polyline(rhs.polyline), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), feedrate(rhs.feedrate), extruder_id(rhs.extruder_id), cp_color_id(rhs.cp_color_id), m_role(rhs.m_role) {}
 | |
|     ExtrusionPath(ExtrusionPath &&rhs) : polyline(std::move(rhs.polyline)), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), feedrate(rhs.feedrate), extruder_id(rhs.extruder_id), cp_color_id(rhs.cp_color_id), m_role(rhs.m_role) {}
 | |
| //    ExtrusionPath(ExtrusionRole role, const Flow &flow) : m_role(role), mm3_per_mm(flow.mm3_per_mm()), width(flow.width), height(flow.height), feedrate(0.0f), extruder_id(0) {};
 | |
| 
 | |
|     ExtrusionPath& operator=(const ExtrusionPath &rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height; this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->cp_color_id = rhs.cp_color_id, this->polyline = rhs.polyline; return *this; }
 | |
|     ExtrusionPath& operator=(ExtrusionPath &&rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height; this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->cp_color_id = rhs.cp_color_id, this->polyline = std::move(rhs.polyline); return *this; }
 | |
| 
 | |
|     ExtrusionPath* clone() const { return new ExtrusionPath (*this); }
 | |
|     void reverse() { this->polyline.reverse(); }
 | |
|     Point first_point() const override { return this->polyline.points.front(); }
 | |
|     Point last_point() const override { return this->polyline.points.back(); }
 | |
|     size_t size() const { return this->polyline.size(); }
 | |
|     bool empty() const { return this->polyline.empty(); }
 | |
|     bool is_closed() const { return ! this->empty() && this->polyline.points.front() == this->polyline.points.back(); }
 | |
|     // Produce a list of extrusion paths into retval by clipping this path by ExPolygonCollection.
 | |
|     // Currently not used.
 | |
|     void intersect_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const;
 | |
|     // Produce a list of extrusion paths into retval by removing parts of this path by ExPolygonCollection.
 | |
|     // Currently not used.
 | |
|     void subtract_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const;
 | |
|     void clip_end(double distance);
 | |
|     void simplify(double tolerance);
 | |
|     double length() const override;
 | |
|     ExtrusionRole role() const override { return m_role; }
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const;
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
 | |
|     void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const;
 | |
|     Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
 | |
|     Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
 | |
|     // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
 | |
|     double min_mm3_per_mm() const { return this->mm3_per_mm; }
 | |
|     Polyline as_polyline() const { return this->polyline; }
 | |
|     void   collect_polylines(Polylines &dst) const override { if (! this->polyline.empty()) dst.emplace_back(this->polyline); }
 | |
|     double total_volume() const override { return mm3_per_mm * unscale<double>(length()); }
 | |
| 
 | |
| private:
 | |
|     void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const;
 | |
| 
 | |
|     ExtrusionRole m_role;
 | |
| };
 | |
| 
 | |
| typedef std::vector<ExtrusionPath> ExtrusionPaths;
 | |
| 
 | |
| // Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
 | |
| class ExtrusionMultiPath : public ExtrusionEntity
 | |
| {
 | |
| public:
 | |
|     ExtrusionPaths paths;
 | |
|     
 | |
|     ExtrusionMultiPath() {};
 | |
|     ExtrusionMultiPath(const ExtrusionMultiPath &rhs) : paths(rhs.paths) {}
 | |
|     ExtrusionMultiPath(ExtrusionMultiPath &&rhs) : paths(std::move(rhs.paths)) {}
 | |
|     ExtrusionMultiPath(const ExtrusionPaths &paths) : paths(paths) {};
 | |
|     ExtrusionMultiPath(const ExtrusionPath &path) { this->paths.push_back(path); }
 | |
| 
 | |
|     ExtrusionMultiPath& operator=(const ExtrusionMultiPath &rhs) { this->paths = rhs.paths; return *this; }
 | |
|     ExtrusionMultiPath& operator=(ExtrusionMultiPath &&rhs) { this->paths = std::move(rhs.paths); return *this; }
 | |
| 
 | |
|     bool is_loop() const { return false; }
 | |
|     bool can_reverse() const { return true; }
 | |
|     ExtrusionMultiPath* clone() const { return new ExtrusionMultiPath(*this); }
 | |
|     void reverse();
 | |
|     Point first_point() const override { return this->paths.front().polyline.points.front(); }
 | |
|     Point last_point() const override { return this->paths.back().polyline.points.back(); }
 | |
|     double length() const override;
 | |
|     ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); }
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const;
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
 | |
|     void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const;
 | |
|     Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
 | |
|     Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
 | |
|     // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
 | |
|     double min_mm3_per_mm() const;
 | |
|     Polyline as_polyline() const;
 | |
|     void   collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); }
 | |
|     double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
 | |
| };
 | |
| 
 | |
| // Single continuous extrusion loop, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
 | |
| class ExtrusionLoop : public ExtrusionEntity
 | |
| {
 | |
| public:
 | |
|     ExtrusionPaths paths;
 | |
|     
 | |
|     ExtrusionLoop(ExtrusionLoopRole role = elrDefault) : m_loop_role(role) {};
 | |
|     ExtrusionLoop(const ExtrusionPaths &paths, ExtrusionLoopRole role = elrDefault) : paths(paths), m_loop_role(role) {};
 | |
|     ExtrusionLoop(ExtrusionPaths &&paths, ExtrusionLoopRole role = elrDefault) : paths(std::move(paths)), m_loop_role(role) {};
 | |
|     ExtrusionLoop(const ExtrusionPath &path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role) 
 | |
|         { this->paths.push_back(path); };
 | |
|     ExtrusionLoop(const ExtrusionPath &&path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role)
 | |
|         { this->paths.emplace_back(std::move(path)); };
 | |
|     bool is_loop() const { return true; }
 | |
|     bool can_reverse() const { return false; }
 | |
|     ExtrusionLoop* clone() const { return new ExtrusionLoop (*this); }
 | |
|     bool make_clockwise();
 | |
|     bool make_counter_clockwise();
 | |
|     void reverse();
 | |
|     Point first_point() const override { return this->paths.front().polyline.points.front(); }
 | |
|     Point last_point() const override { assert(first_point() == this->paths.back().polyline.points.back()); return first_point(); }
 | |
|     Polygon polygon() const;
 | |
|     double length() const override;
 | |
|     bool split_at_vertex(const Point &point);
 | |
|     void split_at(const Point &point, bool prefer_non_overhang);
 | |
|     void clip_end(double distance, ExtrusionPaths* paths) const;
 | |
|     // Test, whether the point is extruded by a bridging flow.
 | |
|     // This used to be used to avoid placing seams on overhangs, but now the EdgeGrid is used instead.
 | |
|     bool has_overhang_point(const Point &point) const;
 | |
|     ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); }
 | |
|     ExtrusionLoopRole loop_role() const { return m_loop_role; }
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const;
 | |
|     // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
 | |
|     // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
 | |
|     // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
 | |
|     void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const;
 | |
|     Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
 | |
|     Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
 | |
|         { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
 | |
|     // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
 | |
|     double min_mm3_per_mm() const;
 | |
|     Polyline as_polyline() const { return this->polygon().split_at_first_point(); }
 | |
|     void   collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); }
 | |
|     double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
 | |
| 
 | |
| private:
 | |
|     ExtrusionLoopRole m_loop_role;
 | |
| };
 | |
| 
 | |
| inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
 | |
| {
 | |
|     dst.reserve(dst.size() + polylines.size());
 | |
|     for (Polyline &polyline : polylines)
 | |
|         if (polyline.is_valid()) {
 | |
|             dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
 | |
|             dst.back().polyline = polyline;
 | |
|         }
 | |
| }
 | |
| 
 | |
| inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
 | |
| {
 | |
|     dst.reserve(dst.size() + polylines.size());
 | |
|     for (Polyline &polyline : polylines)
 | |
|         if (polyline.is_valid()) {
 | |
|             dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
 | |
|             dst.back().polyline = std::move(polyline);
 | |
|         }
 | |
|     polylines.clear();
 | |
| }
 | |
| 
 | |
| inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
 | |
| {
 | |
|     dst.reserve(dst.size() + polylines.size());
 | |
|     for (Polyline &polyline : polylines)
 | |
|         if (polyline.is_valid()) {
 | |
|             ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
 | |
|             dst.push_back(extrusion_path);
 | |
|             extrusion_path->polyline = polyline;
 | |
|         }
 | |
| }
 | |
| 
 | |
| inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
 | |
| {
 | |
|     dst.reserve(dst.size() + polylines.size());
 | |
|     for (Polyline &polyline : polylines)
 | |
|         if (polyline.is_valid()) {
 | |
|             ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
 | |
|             dst.push_back(extrusion_path);
 | |
|             extrusion_path->polyline = std::move(polyline);
 | |
|         }
 | |
|     polylines.clear();
 | |
| }
 | |
| 
 | |
| inline void extrusion_entities_append_loops(ExtrusionEntitiesPtr &dst, Polygons &&loops, ExtrusionRole role, double mm3_per_mm, float width, float height)
 | |
| {
 | |
|     dst.reserve(dst.size() + loops.size());
 | |
|     for (Polygon &poly : loops) {
 | |
|         if (poly.is_valid()) {
 | |
|             ExtrusionPath path(role, mm3_per_mm, width, height);
 | |
|             path.polyline.points = std::move(poly.points);
 | |
|             path.polyline.points.push_back(path.polyline.points.front());
 | |
|             dst.emplace_back(new ExtrusionLoop(std::move(path)));
 | |
|         }
 | |
|     }
 | |
|     loops.clear();
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | 
