mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-24 09:11:23 -06:00
Fixing dep build script on Windows and removing some warnings. Use bundled igl by default. Not building with the dependency scripts if not explicitly stated. This way, it will stay in Fix the libigl patch to include C source files in header only mode.
243 lines
8.8 KiB
C++
243 lines
8.8 KiB
C++
// This file is part of libigl, a simple c++ geometry processing library.
|
|
//
|
|
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
|
#include "grad.h"
|
|
#include <Eigen/Geometry>
|
|
#include <vector>
|
|
|
|
#include "PI.h"
|
|
#include "per_face_normals.h"
|
|
#include "volume.h"
|
|
#include "doublearea.h"
|
|
|
|
template <typename DerivedV, typename DerivedF>
|
|
IGL_INLINE void grad_tet(const Eigen::PlainObjectBase<DerivedV>&V,
|
|
const Eigen::PlainObjectBase<DerivedF>&T,
|
|
Eigen::SparseMatrix<typename DerivedV::Scalar> &G,
|
|
bool uniform) {
|
|
using namespace Eigen;
|
|
assert(T.cols() == 4);
|
|
const int n = V.rows(); int m = T.rows();
|
|
|
|
/*
|
|
F = [ ...
|
|
T(:,1) T(:,2) T(:,3); ...
|
|
T(:,1) T(:,3) T(:,4); ...
|
|
T(:,1) T(:,4) T(:,2); ...
|
|
T(:,2) T(:,4) T(:,3)]; */
|
|
MatrixXi F(4*m,3);
|
|
for (int i = 0; i < m; i++) {
|
|
F.row(0*m + i) << T(i,0), T(i,1), T(i,2);
|
|
F.row(1*m + i) << T(i,0), T(i,2), T(i,3);
|
|
F.row(2*m + i) << T(i,0), T(i,3), T(i,1);
|
|
F.row(3*m + i) << T(i,1), T(i,3), T(i,2);
|
|
}
|
|
// compute volume of each tet
|
|
Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 1> vol;
|
|
igl::volume(V,T,vol);
|
|
|
|
Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 1> A(F.rows());
|
|
Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> N(F.rows(),3);
|
|
if (!uniform) {
|
|
// compute tetrahedron face normals
|
|
igl::per_face_normals(V,F,N); int norm_rows = N.rows();
|
|
for (int i = 0; i < norm_rows; i++)
|
|
N.row(i) /= N.row(i).norm();
|
|
igl::doublearea(V,F,A); A/=2.;
|
|
} else {
|
|
// Use a uniform tetrahedra as a reference, with the same volume as the original one:
|
|
//
|
|
// Use normals of the uniform tet (V = h*[0,0,0;1,0,0;0.5,sqrt(3)/2.,0;0.5,sqrt(3)/6.,sqrt(2)/sqrt(3)])
|
|
// 0 0 1.0000
|
|
// 0.8165 -0.4714 -0.3333
|
|
// 0 0.9428 -0.3333
|
|
// -0.8165 -0.4714 -0.3333
|
|
for (int i = 0; i < m; i++) {
|
|
N.row(0*m+i) << 0,0,1;
|
|
double a = sqrt(2)*std::cbrt(3*vol(i)); // area of a face in a uniform tet with volume = vol(i)
|
|
A(0*m+i) = (pow(a,2)*sqrt(3))/4.;
|
|
}
|
|
for (int i = 0; i < m; i++) {
|
|
N.row(1*m+i) << 0.8165,-0.4714,-0.3333;
|
|
double a = sqrt(2)*std::cbrt(3*vol(i));
|
|
A(1*m+i) = (pow(a,2)*sqrt(3))/4.;
|
|
}
|
|
for (int i = 0; i < m; i++) {
|
|
N.row(2*m+i) << 0,0.9428,-0.3333;
|
|
double a = sqrt(2)*std::cbrt(3*vol(i));
|
|
A(2*m+i) = (pow(a,2)*sqrt(3))/4.;
|
|
}
|
|
for (int i = 0; i < m; i++) {
|
|
N.row(3*m+i) << -0.8165,-0.4714,-0.3333;
|
|
double a = sqrt(2)*std::cbrt(3*vol(i));
|
|
A(3*m+i) = (pow(a,2)*sqrt(3))/4.;
|
|
}
|
|
|
|
}
|
|
|
|
/* G = sparse( ...
|
|
[0*m + repmat(1:m,1,4) ...
|
|
1*m + repmat(1:m,1,4) ...
|
|
2*m + repmat(1:m,1,4)], ...
|
|
repmat([T(:,4);T(:,2);T(:,3);T(:,1)],3,1), ...
|
|
repmat(A./(3*repmat(vol,4,1)),3,1).*N(:), ...
|
|
3*m,n);*/
|
|
std::vector<Triplet<double> > G_t;
|
|
for (int i = 0; i < 4*m; i++) {
|
|
int T_j; // j indexes : repmat([T(:,4);T(:,2);T(:,3);T(:,1)],3,1)
|
|
switch (i/m) {
|
|
case 0:
|
|
T_j = 3;
|
|
break;
|
|
case 1:
|
|
T_j = 1;
|
|
break;
|
|
case 2:
|
|
T_j = 2;
|
|
break;
|
|
case 3:
|
|
T_j = 0;
|
|
break;
|
|
}
|
|
int i_idx = i%m;
|
|
int j_idx = T(i_idx,T_j);
|
|
|
|
double val_before_n = A(i)/(3*vol(i_idx));
|
|
G_t.push_back(Triplet<double>(0*m+i_idx, j_idx, val_before_n * N(i,0)));
|
|
G_t.push_back(Triplet<double>(1*m+i_idx, j_idx, val_before_n * N(i,1)));
|
|
G_t.push_back(Triplet<double>(2*m+i_idx, j_idx, val_before_n * N(i,2)));
|
|
}
|
|
G.resize(3*m,n);
|
|
G.setFromTriplets(G_t.begin(), G_t.end());
|
|
}
|
|
|
|
template <typename DerivedV, typename DerivedF>
|
|
IGL_INLINE void grad_tri(const Eigen::PlainObjectBase<DerivedV>&V,
|
|
const Eigen::PlainObjectBase<DerivedF>&F,
|
|
Eigen::SparseMatrix<typename DerivedV::Scalar> &G,
|
|
bool uniform)
|
|
{
|
|
Eigen::Matrix<typename DerivedV::Scalar,Eigen::Dynamic,3>
|
|
eperp21(F.rows(),3), eperp13(F.rows(),3);
|
|
|
|
for (int i=0;i<F.rows();++i)
|
|
{
|
|
// renaming indices of vertices of triangles for convenience
|
|
int i1 = F(i,0);
|
|
int i2 = F(i,1);
|
|
int i3 = F(i,2);
|
|
|
|
// #F x 3 matrices of triangle edge vectors, named after opposite vertices
|
|
Eigen::Matrix<typename DerivedV::Scalar, 1, 3> v32 = V.row(i3) - V.row(i2);
|
|
Eigen::Matrix<typename DerivedV::Scalar, 1, 3> v13 = V.row(i1) - V.row(i3);
|
|
Eigen::Matrix<typename DerivedV::Scalar, 1, 3> v21 = V.row(i2) - V.row(i1);
|
|
Eigen::Matrix<typename DerivedV::Scalar, 1, 3> n = v32.cross(v13);
|
|
// area of parallelogram is twice area of triangle
|
|
// area of parallelogram is || v1 x v2 ||
|
|
// This does correct l2 norm of rows, so that it contains #F list of twice
|
|
// triangle areas
|
|
double dblA = std::sqrt(n.dot(n));
|
|
Eigen::Matrix<typename DerivedV::Scalar, 1, 3> u(0,0,1);
|
|
if (!uniform) {
|
|
// now normalize normals to get unit normals
|
|
u = n / dblA;
|
|
} else {
|
|
// Abstract equilateral triangle v1=(0,0), v2=(h,0), v3=(h/2, (sqrt(3)/2)*h)
|
|
|
|
// get h (by the area of the triangle)
|
|
double h = sqrt( (dblA)/sin(igl::PI / 3.0)); // (h^2*sin(60))/2. = Area => h = sqrt(2*Area/sin_60)
|
|
|
|
Eigen::Matrix<typename DerivedV::Scalar, 3, 1> v1,v2,v3;
|
|
v1 << 0,0,0;
|
|
v2 << h,0,0;
|
|
v3 << h/2.,(sqrt(3)/2.)*h,0;
|
|
|
|
// now fix v32,v13,v21 and the normal
|
|
v32 = v3-v2;
|
|
v13 = v1-v3;
|
|
v21 = v2-v1;
|
|
n = v32.cross(v13);
|
|
}
|
|
|
|
// rotate each vector 90 degrees around normal
|
|
double norm21 = std::sqrt(v21.dot(v21));
|
|
double norm13 = std::sqrt(v13.dot(v13));
|
|
eperp21.row(i) = u.cross(v21);
|
|
eperp21.row(i) = eperp21.row(i) / std::sqrt(eperp21.row(i).dot(eperp21.row(i)));
|
|
eperp21.row(i) *= norm21 / dblA;
|
|
eperp13.row(i) = u.cross(v13);
|
|
eperp13.row(i) = eperp13.row(i) / std::sqrt(eperp13.row(i).dot(eperp13.row(i)));
|
|
eperp13.row(i) *= norm13 / dblA;
|
|
}
|
|
|
|
std::vector<int> rs;
|
|
rs.reserve(F.rows()*4*3);
|
|
std::vector<int> cs;
|
|
cs.reserve(F.rows()*4*3);
|
|
std::vector<double> vs;
|
|
vs.reserve(F.rows()*4*3);
|
|
|
|
// row indices
|
|
for(int r=0;r<3;r++)
|
|
{
|
|
for(int j=0;j<4;j++)
|
|
{
|
|
for(int i=r*F.rows();i<(r+1)*F.rows();i++) rs.push_back(i);
|
|
}
|
|
}
|
|
|
|
// column indices
|
|
for(int r=0;r<3;r++)
|
|
{
|
|
for(int i=0;i<F.rows();i++) cs.push_back(F(i,1));
|
|
for(int i=0;i<F.rows();i++) cs.push_back(F(i,0));
|
|
for(int i=0;i<F.rows();i++) cs.push_back(F(i,2));
|
|
for(int i=0;i<F.rows();i++) cs.push_back(F(i,0));
|
|
}
|
|
|
|
// values
|
|
for(int i=0;i<F.rows();i++) vs.push_back(eperp13(i,0));
|
|
for(int i=0;i<F.rows();i++) vs.push_back(-eperp13(i,0));
|
|
for(int i=0;i<F.rows();i++) vs.push_back(eperp21(i,0));
|
|
for(int i=0;i<F.rows();i++) vs.push_back(-eperp21(i,0));
|
|
for(int i=0;i<F.rows();i++) vs.push_back(eperp13(i,1));
|
|
for(int i=0;i<F.rows();i++) vs.push_back(-eperp13(i,1));
|
|
for(int i=0;i<F.rows();i++) vs.push_back(eperp21(i,1));
|
|
for(int i=0;i<F.rows();i++) vs.push_back(-eperp21(i,1));
|
|
for(int i=0;i<F.rows();i++) vs.push_back(eperp13(i,2));
|
|
for(int i=0;i<F.rows();i++) vs.push_back(-eperp13(i,2));
|
|
for(int i=0;i<F.rows();i++) vs.push_back(eperp21(i,2));
|
|
for(int i=0;i<F.rows();i++) vs.push_back(-eperp21(i,2));
|
|
|
|
// create sparse gradient operator matrix
|
|
G.resize(3*F.rows(),V.rows());
|
|
std::vector<Eigen::Triplet<typename DerivedV::Scalar> > triplets;
|
|
for (int i=0;i<(int)vs.size();++i)
|
|
{
|
|
triplets.push_back(Eigen::Triplet<typename DerivedV::Scalar>(rs[i],cs[i],vs[i]));
|
|
}
|
|
G.setFromTriplets(triplets.begin(), triplets.end());
|
|
}
|
|
|
|
template <typename DerivedV, typename DerivedF>
|
|
IGL_INLINE void igl::grad(const Eigen::PlainObjectBase<DerivedV>&V,
|
|
const Eigen::PlainObjectBase<DerivedF>&F,
|
|
Eigen::SparseMatrix<typename DerivedV::Scalar> &G,
|
|
bool uniform)
|
|
{
|
|
assert(F.cols() == 3 || F.cols() == 4);
|
|
if (F.cols() == 3)
|
|
return grad_tri(V,F,G,uniform);
|
|
if (F.cols() == 4)
|
|
return grad_tet(V,F,G,uniform);
|
|
}
|
|
|
|
#ifdef IGL_STATIC_LIBRARY
|
|
// Explicit template instantiation
|
|
template void igl::grad<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<Eigen::Matrix<double, -1, -1, 0, -1, -1>::Scalar, 0, int>&, bool);
|
|
template void igl::grad<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::SparseMatrix<Eigen::Matrix<double, -1, 3, 0, -1, 3>::Scalar, 0, int>&, bool);
|
|
#endif
|