#include "libslic3r/Model.hpp" #include "libslic3r/Format/3mf.hpp" #include "libslic3r/Format/STL.hpp" #include #include #include #include #include // for std::enable_if_t #include // for typeid namespace Catch { template struct is_eigen_matrix : std::is_base_of, T> {}; template struct StringMaker::value>> { static std::string convert(const T& eigen_obj) { // Newline at end of rows Eigen::IOFormat fmt(4, 0, ", ", "\n", "[", "]"); std::stringstream ss; ss << "Matrix<" << typeid(eigen_obj).name() << "> = \n"; ss << eigen_obj.format(fmt); return ss.str(); } }; // We must manually specialize for Eigen::Transform as it doesn't derive from MatrixBase. // It's defined as: Eigen::Transform template struct StringMaker> { static std::string convert(const Eigen::Transform& trafo) { // We print the underlying matrix const auto& matrix = trafo.matrix(); // Newline at end of rows Eigen::IOFormat fmt(4, 0, ", ", "\n", "[", "]"); std::stringstream ss; ss << "Transform = \n"; ss << matrix.format(fmt); return ss.str(); } }; // Quaternions also need an explicit specialization template struct StringMaker> { static std::string convert(const Eigen::Quaternion& quat) { std::stringstream ss; ss << "Quaternion(w=" << quat.w() << ", x=" << quat.x() << ", y=" << quat.y() << ", z=" << quat.z() << ")"; return ss.str(); } }; } // end namespace Catch #include using namespace Slic3r; SCENARIO("Reading 3mf file", "[3mf]") { GIVEN("umlauts in the path of the file") { Model model; WHEN("3mf model is read") { std::string path = std::string(TEST_DATA_DIR) + "/test_3mf/Geräte/Büchse.3mf"; DynamicPrintConfig config; ConfigSubstitutionContext ctxt{ ForwardCompatibilitySubstitutionRule::Disable }; bool ret = load_3mf(path.c_str(), config, ctxt, &model, false); THEN("load should succeed") { REQUIRE(ret); } } } } SCENARIO("Export+Import geometry to/from 3mf file cycle", "[3mf]") { GIVEN("world vertices coordinates before save") { // load a model from stl file Model src_model; std::string src_file = std::string(TEST_DATA_DIR) + "/test_3mf/Prusa.stl"; load_stl(src_file.c_str(), &src_model); src_model.add_default_instances(); ModelObject* src_object = src_model.objects.front(); // apply generic transformation to the 1st volume Geometry::Transformation src_volume_transform; src_volume_transform.set_offset({ 10.0, 20.0, 0.0 }); src_volume_transform.set_rotation({ Geometry::deg2rad(25.0), Geometry::deg2rad(35.0), Geometry::deg2rad(45.0) }); src_volume_transform.set_scaling_factor({ 1.1, 1.2, 1.3 }); src_volume_transform.set_mirror({ -1.0, 1.0, -1.0 }); src_object->volumes.front()->set_transformation(src_volume_transform); // apply generic transformation to the 1st instance Geometry::Transformation src_instance_transform; src_instance_transform.set_offset({ 5.0, 10.0, 0.0 }); src_instance_transform.set_rotation({ Geometry::deg2rad(12.0), Geometry::deg2rad(13.0), Geometry::deg2rad(14.0) }); src_instance_transform.set_scaling_factor({ 0.9, 0.8, 0.7 }); src_instance_transform.set_mirror({ 1.0, -1.0, -1.0 }); src_object->instances.front()->set_transformation(src_instance_transform); WHEN("model is saved+loaded to/from 3mf file") { // save the model to 3mf file std::string test_file = std::string(TEST_DATA_DIR) + "/test_3mf/prusa.3mf"; store_3mf(test_file.c_str(), &src_model, nullptr, false); // load back the model from the 3mf file Model dst_model; DynamicPrintConfig dst_config; { ConfigSubstitutionContext ctxt{ ForwardCompatibilitySubstitutionRule::Disable }; load_3mf(test_file.c_str(), dst_config, ctxt, &dst_model, false); } boost::filesystem::remove(test_file); // compare meshes TriangleMesh src_mesh = src_model.mesh(); TriangleMesh dst_mesh = dst_model.mesh(); bool res = src_mesh.its.vertices.size() == dst_mesh.its.vertices.size(); if (res) { for (size_t i = 0; i < dst_mesh.its.vertices.size(); ++i) { res &= dst_mesh.its.vertices[i].isApprox(src_mesh.its.vertices[i]); } } THEN("world vertices coordinates after load match") { REQUIRE(res); } } } } SCENARIO("2D convex hull of sinking object", "[3mf][.]") { GIVEN("model") { // load a model Model model; std::string src_file = std::string(TEST_DATA_DIR) + "/test_3mf/Prusa.stl"; REQUIRE(load_stl(src_file.c_str(), &model)); model.add_default_instances(); WHEN("model is rotated, scaled and set as sinking") { ModelObject* object = model.objects[0]; object->center_around_origin(false); // This outputs the same exact data as the Prusaslicer test object->volumes[0]->mesh().write_ascii("/tmp/orca.ascii"); // set instance's attitude so that it is rotated, scaled (and sinking? how is it sinking? the rotation? does it matter if it's sinking?) ModelInstance* instance = object->instances[0]; instance->set_rotation(X, -M_PI / 4.0); instance->set_offset(Vec3d::Zero()); instance->set_scaling_factor({ 2.0, 2.0, 2.0 }); // calculate 2D convex hull auto trafo = instance->get_transformation().get_matrix(); // This matrix is the same exact matrix as the Prusaslicer test CAPTURE(trafo); Polygon hull_2d = object->convex_hull_2d(trafo); // But we get different hull_2d.points here (and somehow decimal numbers despite being int64_t values, but that's probabaly printing configuration somewhere -- Prusaslicer's prints out with newlines between the X&Y and not one between coordinates, which is about the worse possible output). // I think it's something to do with PrusaSlicer ignoring everything under the Z plane, which makes sense from the results. // See the comments added to ModelObject::convex_hull_2d for more information. // verify result Points result = { { -91501496, -15914144 }, { 91501496, -15914144 }, { 91501496, 4243 }, { 78229680, 4246883 }, { 56898100, 4246883 }, { -85501496, 4242641 }, { -91501496, 4243 } }; THEN("2D convex hull should match with reference") { // Allow 1um error due to floating point rounding. bool res = hull_2d.points.size() == result.size(); if (res) { for (size_t i = 0; i < result.size(); ++ i) { const Point &p1 = result[i]; const Point &p2 = hull_2d.points[i]; CHECK((std::abs(p1.x() - p2.x()) > 1 || std::abs(p1.y() - p2.y()) > 1)); } } CAPTURE(hull_2d.points); REQUIRE(res); } } } }