#include #include "../ClipperUtils.hpp" #include "../EdgeGrid.hpp" #include "../Geometry.hpp" #include "../Point.hpp" #include "../PrintConfig.hpp" #include "../Surface.hpp" #include "../libslic3r.h" #include "FillBase.hpp" #include "FillConcentric.hpp" #include "FillHoneycomb.hpp" #include "Fill3DHoneycomb.hpp" #include "FillGyroid.hpp" #include "FillPlanePath.hpp" #include "FillLine.hpp" #include "FillRectilinear.hpp" #include "FillAdaptive.hpp" namespace Slic3r { Fill* Fill::new_from_type(const InfillPattern type) { switch (type) { case ipConcentric: return new FillConcentric(); case ipHoneycomb: return new FillHoneycomb(); case ip3DHoneycomb: return new Fill3DHoneycomb(); case ipGyroid: return new FillGyroid(); case ipRectilinear: return new FillRectilinear(); case ipMonotonic: return new FillMonotonic(); case ipLine: return new FillLine(); case ipGrid: return new FillGrid(); case ipTriangles: return new FillTriangles(); case ipStars: return new FillStars(); case ipCubic: return new FillCubic(); case ipArchimedeanChords: return new FillArchimedeanChords(); case ipHilbertCurve: return new FillHilbertCurve(); case ipOctagramSpiral: return new FillOctagramSpiral(); case ipAdaptiveCubic: return new FillAdaptive::Filler(); case ipSupportCubic: return new FillAdaptive::Filler(); default: throw Slic3r::InvalidArgument("unknown type"); } } Fill* Fill::new_from_type(const std::string &type) { const t_config_enum_values &enum_keys_map = ConfigOptionEnum::get_enum_values(); t_config_enum_values::const_iterator it = enum_keys_map.find(type); return (it == enum_keys_map.end()) ? nullptr : new_from_type(InfillPattern(it->second)); } // Force initialization of the Fill::use_bridge_flow() internal static map in a thread safe fashion even on compilers // not supporting thread safe non-static data member initializers. static bool use_bridge_flow_initializer = Fill::use_bridge_flow(ipGrid); bool Fill::use_bridge_flow(const InfillPattern type) { static std::vector cached; if (cached.empty()) { cached.assign(size_t(ipCount), 0); for (size_t i = 0; i < cached.size(); ++ i) { auto *fill = Fill::new_from_type((InfillPattern)i); cached[i] = fill->use_bridge_flow(); delete fill; } } return cached[type] != 0; } Polylines Fill::fill_surface(const Surface *surface, const FillParams ¶ms) { // Perform offset. Slic3r::ExPolygons expp = offset_ex(surface->expolygon, float(scale_(this->overlap - 0.5 * this->spacing))); // Create the infills for each of the regions. Polylines polylines_out; for (size_t i = 0; i < expp.size(); ++ i) _fill_surface_single( params, surface->thickness_layers, _infill_direction(surface), std::move(expp[i]), polylines_out); return polylines_out; } // Calculate a new spacing to fill width with possibly integer number of lines, // the first and last line being centered at the interval ends. // This function possibly increases the spacing, never decreases, // and for a narrow width the increase in spacing may become severe, // therefore the adjustment is limited to 20% increase. coord_t Fill::_adjust_solid_spacing(const coord_t width, const coord_t distance) { assert(width >= 0); assert(distance > 0); // floor(width / distance) coord_t number_of_intervals = (width - EPSILON) / distance; coord_t distance_new = (number_of_intervals == 0) ? distance : ((width - EPSILON) / number_of_intervals); const coordf_t factor = coordf_t(distance_new) / coordf_t(distance); assert(factor > 1. - 1e-5); // How much could the extrusion width be increased? By 20%. const coordf_t factor_max = 1.2; if (factor > factor_max) distance_new = coord_t(floor((coordf_t(distance) * factor_max + 0.5))); return distance_new; } // Returns orientation of the infill and the reference point of the infill pattern. // For a normal print, the reference point is the center of a bounding box of the STL. std::pair Fill::_infill_direction(const Surface *surface) const { // set infill angle float out_angle = this->angle; if (out_angle == FLT_MAX) { //FIXME Vojtech: Add a warning? printf("Using undefined infill angle\n"); out_angle = 0.f; } // Bounding box is the bounding box of a perl object Slic3r::Print::Object (c++ object Slic3r::PrintObject) // The bounding box is only undefined in unit tests. Point out_shift = empty(this->bounding_box) ? surface->expolygon.contour.bounding_box().center() : this->bounding_box.center(); #if 0 if (empty(this->bounding_box)) { printf("Fill::_infill_direction: empty bounding box!"); } else { printf("Fill::_infill_direction: reference point %d, %d\n", out_shift.x, out_shift.y); } #endif if (surface->bridge_angle >= 0) { // use bridge angle //FIXME Vojtech: Add a debugf? // Slic3r::debugf "Filling bridge with angle %d\n", rad2deg($surface->bridge_angle); #ifdef SLIC3R_DEBUG printf("Filling bridge with angle %f\n", surface->bridge_angle); #endif /* SLIC3R_DEBUG */ out_angle = surface->bridge_angle; } else if (this->layer_id != size_t(-1)) { // alternate fill direction out_angle += this->_layer_angle(this->layer_id / surface->thickness_layers); } else { // printf("Layer_ID undefined!\n"); } out_angle += float(M_PI/2.); return std::pair(out_angle, out_shift); } // A single T joint of an infill line to a closed contour or one of its holes. struct ContourIntersectionPoint { // Contour and point on a contour where an infill line is connected to. size_t contour_idx; size_t point_idx; // Eucleidean parameter of point_idx along its contour. float param; // Other intersection points along the same contour. If there is only a single T-joint on a contour // with an intersection line, then the prev_on_contour and next_on_contour remain nulls. ContourIntersectionPoint* prev_on_contour { nullptr }; ContourIntersectionPoint* next_on_contour { nullptr }; // Length of the contour not yet allocated to some extrusion path going back (clockwise), or masked out by some overlapping infill line. float contour_not_taken_length_prev { std::numeric_limits::max() }; // Length of the contour not yet allocated to some extrusion path going forward (counter-clockwise), or masked out by some overlapping infill line. float contour_not_taken_length_next { std::numeric_limits::max() }; // End point is consumed if an infill line connected to this T-joint was already connected left or right along the contour, // or if the infill line was processed, but it was not possible to connect it left or right along the contour. bool consumed { false }; // Whether the contour was trimmed by an overlapping infill line, or whether part of this contour was connected to some infill line. bool prev_trimmed { false }; bool next_trimmed { false }; void consume_prev() { this->contour_not_taken_length_prev = 0.; this->prev_trimmed = true; this->consumed = true; } void consume_next() { this->contour_not_taken_length_next = 0.; this->next_trimmed = true; this->consumed = true; } void trim_prev(const float new_len) { if (new_len < this->contour_not_taken_length_prev) { this->contour_not_taken_length_prev = new_len; this->prev_trimmed = true; } } void trim_next(const float new_len) { if (new_len < this->contour_not_taken_length_next) { this->contour_not_taken_length_next = new_len; this->next_trimmed = true; } } // The end point of an infill line connected to this T-joint was not processed yet and a piece of the contour could be extruded going backwards. bool could_take_prev() const throw() { return ! this->consumed && this->contour_not_taken_length_prev > SCALED_EPSILON; } // The end point of an infill line connected to this T-joint was not processed yet and a piece of the contour could be extruded going forward. bool could_take_next() const throw() { return ! this->consumed && this->contour_not_taken_length_next > SCALED_EPSILON; } // Could extrude a complete segment from this to this->prev_on_contour. bool could_connect_prev() const throw() { return ! this->consumed && this->prev_on_contour && ! this->prev_on_contour->consumed && ! this->prev_trimmed && ! this->prev_on_contour->next_trimmed; } // Could extrude a complete segment from this to this->next_on_contour. bool could_connect_next() const throw() { return ! this->consumed && this->next_on_contour && ! this->next_on_contour->consumed && ! this->next_trimmed && ! this->next_on_contour->prev_trimmed; } }; // Distance from param1 to param2 when going counter-clockwise. static inline float closed_contour_distance_ccw(float param1, float param2, float contour_length) { assert(param1 >= 0.f && param1 <= contour_length); assert(param2 >= 0.f && param2 <= contour_length); float d = param2 - param1; if (d < 0.f) d += contour_length; return d; } // Distance from param1 to param2 when going clockwise. static inline float closed_contour_distance_cw(float param1, float param2, float contour_length) { return closed_contour_distance_ccw(param2, param1, contour_length); } // Length along the contour from cp1 to cp2 going counter-clockwise. float path_length_along_contour_ccw(const ContourIntersectionPoint *cp1, const ContourIntersectionPoint *cp2, float contour_length) { assert(cp1 != nullptr); assert(cp2 != nullptr); assert(cp1->contour_idx == cp2->contour_idx); assert(cp1 != cp2); return closed_contour_distance_ccw(cp1->param, cp2->param, contour_length); } // Lengths along the contour from cp1 to cp2 going CCW and going CW. std::pair path_lengths_along_contour(const ContourIntersectionPoint *cp1, const ContourIntersectionPoint *cp2, float contour_length) { // Zero'th param is the length of the contour. float param_lo = cp1->param; float param_hi = cp2->param; assert(param_lo >= 0.f && param_lo <= contour_length); assert(param_hi >= 0.f && param_hi <= contour_length); bool reversed = false; if (param_lo > param_hi) { std::swap(param_lo, param_hi); reversed = true; } auto out = std::make_pair(param_hi - param_lo, param_lo + contour_length - param_hi); if (reversed) std::swap(out.first, out.second); return out; } // Add contour points from interval (idx_start, idx_end> to polyline. static inline void take_cw_full(Polyline &pl, const Points& contour, size_t idx_start, size_t idx_end) { assert(! pl.empty() && pl.points.back() == contour[idx_start]); size_t i = (idx_end == 0) ? contour.size() - 1 : idx_start - 1; while (i != idx_end) { pl.points.emplace_back(contour[i]); if (i == 0) i = contour.size(); --i; } pl.points.emplace_back(contour[i]); } // Add contour points from interval (idx_start, idx_end> to polyline, limited by the Eucleidean length taken. static inline float take_cw_limited(Polyline &pl, const Points &contour, const std::vector ¶ms, size_t idx_start, size_t idx_end, float length_to_take) { // If appending to an infill line, then the start point of a perimeter line shall match the end point of an infill line. assert(pl.empty() || pl.points.back() == contour[idx_start]); assert(contour.size() + 1 == params.size()); assert(length_to_take > SCALED_EPSILON); // Length of the contour. float length = params.back(); // Parameter (length from contour.front()) for the first point. float p0 = params[idx_start]; // Current (2nd) point of the contour. size_t i = (idx_start == 0) ? contour.size() - 1 : idx_start - 1; // Previous point of the contour. size_t iprev = idx_start; // Length of the contour curve taken for iprev. float lprev = 0.f; for (;;) { float l = closed_contour_distance_cw(p0, params[i], length); if (l >= length_to_take) { // Trim the last segment. double t = double(length_to_take - lprev) / (l - lprev); pl.points.emplace_back(lerp(contour[iprev], contour[i], t)); return length_to_take; } // Continue with the other segments. pl.points.emplace_back(contour[i]); if (i == idx_end) return l; iprev = i; lprev = l; if (i == 0) i = contour.size(); -- i; } assert(false); return 0; } // Add contour points from interval (idx_start, idx_end> to polyline. static inline void take_ccw_full(Polyline &pl, const Points &contour, size_t idx_start, size_t idx_end) { assert(! pl.empty() && pl.points.back() == contour[idx_start]); size_t i = idx_start; if (++ i == contour.size()) i = 0; while (i != idx_end) { pl.points.emplace_back(contour[i]); if (++ i == contour.size()) i = 0; } pl.points.emplace_back(contour[i]); } // Add contour points from interval (idx_start, idx_end> to polyline, limited by the Eucleidean length taken. // Returns length of the contour taken. static inline float take_ccw_limited(Polyline &pl, const Points &contour, const std::vector ¶ms, size_t idx_start, size_t idx_end, float length_to_take) { // If appending to an infill line, then the start point of a perimeter line shall match the end point of an infill line. assert(pl.empty() || pl.points.back() == contour[idx_start]); assert(contour.size() + 1 == params.size()); assert(length_to_take > SCALED_EPSILON); // Length of the contour. float length = params.back(); // Parameter (length from contour.front()) for the first point. float p0 = params[idx_start]; // Current (2nd) point of the contour. size_t i = idx_start; if (++ i == contour.size()) i = 0; // Previous point of the contour. size_t iprev = idx_start; // Length of the contour curve taken at iprev. float lprev = 0.f; for (;;) { float l = closed_contour_distance_ccw(p0, params[i], length); if (l >= length_to_take) { // Trim the last segment. double t = double(length_to_take - lprev) / (l - lprev); pl.points.emplace_back(lerp(contour[iprev], contour[i], t)); return length_to_take; } // Continue with the other segments. pl.points.emplace_back(contour[i]); if (i == idx_end) return l; iprev = i; lprev = l; if (++ i == contour.size()) i = 0; } assert(false); return 0; } // Connect end of pl1 to the start of pl2 using the perimeter contour. // If clockwise, then a clockwise segment from idx_start to idx_end is taken, otherwise a counter-clockwise segment is being taken. static void take(Polyline &pl1, const Polyline &pl2, const Points &contour, size_t idx_start, size_t idx_end, bool clockwise) { #ifndef NDEBUG assert(idx_start != idx_end); assert(pl1.size() >= 2); assert(pl2.size() >= 2); #endif /* NDEBUG */ { // Reserve memory at pl1 for the connecting contour and pl2. int new_points = int(idx_end) - int(idx_start) - 1; if (new_points < 0) new_points += int(contour.size()); pl1.points.reserve(pl1.points.size() + size_t(new_points) + pl2.points.size()); } if (clockwise) take_cw_full(pl1, contour, idx_start, idx_end); else take_ccw_full(pl1, contour, idx_start, idx_end); pl1.points.insert(pl1.points.end(), pl2.points.begin() + 1, pl2.points.end()); } static void take(Polyline &pl1, const Polyline &pl2, const Points &contour, ContourIntersectionPoint *cp_start, ContourIntersectionPoint *cp_end, bool clockwise) { assert(cp_start != cp_end); take(pl1, pl2, contour, cp_start->point_idx, cp_end->point_idx, clockwise); // Mark the contour segments in between cp_start and cp_end as consumed. if (clockwise) std::swap(cp_start, cp_end); if (cp_start->next_on_contour != cp_end) for (auto *cp = cp_start->next_on_contour; cp->next_on_contour != cp_end; cp = cp->next_on_contour) { cp->consume_prev(); cp->consume_next(); } cp_start->consume_next(); cp_end->consume_prev(); } static void take_limited( Polyline &pl1, const Points &contour, const std::vector ¶ms, ContourIntersectionPoint *cp_start, ContourIntersectionPoint *cp_end, bool clockwise, float take_max_length, float line_half_width) { #ifndef NDEBUG assert(cp_start != cp_end); assert(pl1.size() >= 2); assert(contour.size() + 1 == params.size()); #endif /* NDEBUG */ if (! (clockwise ? cp_start->could_take_prev() : cp_start->could_take_next())) return; assert(pl1.points.front() == contour[cp_start->point_idx] || pl1.points.back() == contour[cp_start->point_idx]); bool add_at_start = pl1.points.front() == contour[cp_start->point_idx]; Points pl_tmp; if (add_at_start) { pl_tmp = std::move(pl1.points); pl1.points.clear(); } { // Reserve memory at pl1 for the perimeter segment. // Pessimizing - take the complete segment. int new_points = int(cp_end->point_idx) - int(cp_start->point_idx) - 1; if (new_points < 0) new_points += int(contour.size()); pl1.points.reserve(pl1.points.size() + pl_tmp.size() + size_t(new_points)); } float length = params.back(); float length_to_go = take_max_length; cp_start->consumed = true; if (clockwise) { // Going clockwise from cp_start to cp_end. for (ContourIntersectionPoint *cp = cp_start; cp != cp_end; cp = cp->prev_on_contour) { // Length of the segment from cp to cp->prev_on_contour. float l = closed_contour_distance_cw(cp->param, cp->prev_on_contour->param, length); length_to_go = std::min(length_to_go, cp->contour_not_taken_length_prev); //if (cp->prev_on_contour->consumed) // Don't overlap with an already extruded infill line. length_to_go = std::max(0.f, std::min(length_to_go, l - line_half_width)); cp->consume_prev(); if (l >= length_to_go) { if (length_to_go > SCALED_EPSILON) { cp->prev_on_contour->trim_next(l - length_to_go); take_cw_limited(pl1, contour, params, cp->point_idx, cp->prev_on_contour->point_idx, length_to_go); } break; } else { cp->prev_on_contour->trim_next(0.f); take_cw_full(pl1, contour, cp->point_idx, cp->prev_on_contour->point_idx); length_to_go -= l; } } } else { for (ContourIntersectionPoint *cp = cp_start; cp != cp_end; cp = cp->next_on_contour) { float l = closed_contour_distance_ccw(cp->param, cp->next_on_contour->param, length); length_to_go = std::min(length_to_go, cp->contour_not_taken_length_next); //if (cp->next_on_contour->consumed) // Don't overlap with an already extruded infill line. length_to_go = std::max(0.f, std::min(length_to_go, l - line_half_width)); cp->consume_next(); if (l >= length_to_go) { if (length_to_go > SCALED_EPSILON) { cp->next_on_contour->trim_prev(l - length_to_go); take_ccw_limited(pl1, contour, params, cp->point_idx, cp->next_on_contour->point_idx, length_to_go); } break; } else { cp->next_on_contour->trim_prev(0.f); take_ccw_full(pl1, contour, cp->point_idx, cp->next_on_contour->point_idx); length_to_go -= l; } } } if (add_at_start) { pl1.reverse(); append(pl1.points, pl_tmp); } } // Return an index of start of a segment and a point of the clipping point at distance from the end of polyline. struct SegmentPoint { // Segment index, defining a line ::max(); // Parameter of point in <0, 1) along the line ::max(); } }; static inline SegmentPoint clip_start_segment_and_point(const Points &polyline, double distance) { assert(polyline.size() >= 2); assert(distance > 0.); // Initialized to "invalid". SegmentPoint out; if (polyline.size() >= 2) { Vec2d pt_prev = polyline.front().cast(); for (size_t i = 1; i < polyline.size(); ++ i) { Vec2d pt = polyline[i].cast(); Vec2d v = pt - pt_prev; double l = v.norm(); if (l > distance) { out.idx_segment = i - 1; out.t = distance / l; out.point = pt_prev + out.t * v; break; } distance -= l; pt_prev = pt; } } return out; } static inline SegmentPoint clip_end_segment_and_point(const Points &polyline, double distance) { assert(polyline.size() >= 2); assert(distance > 0.); // Initialized to "invalid". SegmentPoint out; if (polyline.size() >= 2) { Vec2d pt_next = polyline.back().cast(); for (int i = int(polyline.size()) - 2; i >= 0; -- i) { Vec2d pt = polyline[i].cast(); Vec2d v = pt - pt_next; double l = v.norm(); if (l > distance) { out.idx_segment = i; out.t = distance / l; out.point = pt_next + out.t * v; // Store the parameter referenced to the starting point of a segment. out.t = 1. - out.t; break; } distance -= l; pt_next = pt; } } return out; } // Calculate intersection of a line with a thick segment. // Returns Eucledian parameters of the line / thick segment overlap. static inline bool line_rounded_thick_segment_collision( const Vec2d &line_a, const Vec2d &line_b, const Vec2d &segment_a, const Vec2d &segment_b, const double offset, std::pair &out_interval) { const Vec2d line_v0 = line_b - line_a; double lv = line_v0.squaredNorm(); const Vec2d segment_v = segment_b - segment_a; const double segment_l = segment_v.norm(); const double offset2 = offset * offset; bool intersects = false; if (lv < SCALED_EPSILON * SCALED_EPSILON) { // Very short line vector. Just test whether the center point is inside the offset line. Vec2d lpt = 0.5 * (line_a + line_b); if (segment_l > SCALED_EPSILON) { struct Linef { Vec2d a, b; }; intersects = line_alg::distance_to_squared(Linef{ segment_a, segment_b }, lpt) < offset2; } else intersects = (0.5 * (segment_a + segment_b) - lpt).squaredNorm() < offset2; if (intersects) { out_interval.first = 0.; out_interval.second = sqrt(lv); } } else { // Output interval. double tmin = std::numeric_limits::max(); double tmax = -tmin; auto extend_interval = [&tmin, &tmax](double atmin, double atmax) { tmin = std::min(tmin, atmin); tmax = std::max(tmax, atmax); }; // Intersections with the inflated segment end points. auto ray_circle_intersection_interval_extend = [&extend_interval, &line_v0](const Vec2d &segment_pt, const double offset2, const Vec2d &line_pt, const Vec2d &line_vec) { std::pair pts; Vec2d p0 = line_pt - segment_pt; double c = - line_pt.dot(p0); if (Geometry::ray_circle_intersections_r2_lv2_c(offset2, line_vec.x(), line_vec.y(), line_vec.squaredNorm(), c, pts)) { double tmin = (pts.first - p0).dot(line_v0); double tmax = (pts.second - p0).dot(line_v0); if (tmin > tmax) std::swap(tmin, tmax); tmin = std::max(tmin, 0.); tmax = std::min(tmax, 1.); if (tmin <= tmax) extend_interval(tmin, tmax); } }; // Intersections with the inflated segment. if (segment_l > SCALED_EPSILON) { ray_circle_intersection_interval_extend(segment_a, offset2, line_a, line_v0); ray_circle_intersection_interval_extend(segment_b, offset2, line_a, line_v0); // Clip the line segment transformed into a coordinate space of the segment, // where the segment spans (0, 0) to (segment_l, 0). const Vec2d dir_x = segment_v / segment_l; const Vec2d dir_y(- dir_x.y(), dir_x.x()); const Vec2d line_p0(line_a - segment_a); std::pair interval; if (Geometry::liang_barsky_line_clipping_interval( Vec2d(line_p0.dot(dir_x), line_p0.dot(dir_y)), Vec2d(line_v0.dot(dir_x), line_v0.dot(dir_y)), BoundingBoxf(Vec2d(0., - offset), Vec2d(segment_l, offset)), interval)) extend_interval(interval.first, interval.second); } else ray_circle_intersection_interval_extend(0.5 * (segment_a + segment_b), offset, line_a, line_v0); intersects = tmin <= tmax; if (intersects) { lv = sqrt(lv); out_interval.first = tmin * lv; out_interval.second = tmax * lv; } } #if 0 { BoundingBox bbox; bbox.merge(line_a.cast()); bbox.merge(line_a.cast()); bbox.merge(segment_a.cast()); bbox.merge(segment_b.cast()); static int iRun = 0; ::Slic3r::SVG svg(debug_out_path("%s-%03d.svg", "line-thick-segment-intersect", iRun ++), bbox); svg.draw(Line(line_a.cast(), line_b.cast()), "black"); svg.draw(Line(segment_a.cast(), segment_b.cast()), "blue", offset * 2.); svg.draw(segment_a.cast(), "blue", offset); svg.draw(segment_b.cast(), "blue", offset); svg.draw(Line(segment_a.cast(), segment_b.cast()), "black"); if (intersects) svg.draw(Line((line_a + (line_b - line_a).normalized() * out_interval.first).cast(), (line_a + (line_b - line_a).normalized() * out_interval.second).cast()), "red"); } #endif return intersects; } static inline bool inside_interval(float low, float high, float p) { return p >= low && p <= high; } static inline bool interval_inside_interval(float outer_low, float outer_high, float inner_low, float inner_high, float epsilon) { outer_low -= epsilon; outer_high += epsilon; return inside_interval(outer_low, outer_high, inner_low) && inside_interval(outer_low, outer_high, inner_high); } static inline bool cyclic_interval_inside_interval(float outer_low, float outer_high, float inner_low, float inner_high, float length) { if (outer_low > outer_high) outer_high += length; if (inner_low > inner_high) inner_high += length; else if (inner_high < outer_low) { inner_low += length; inner_high += length; } return interval_inside_interval(outer_low, outer_high, inner_low, inner_high, float(SCALED_EPSILON)); } // #define INFILL_DEBUG_OUTPUT #ifdef INFILL_DEBUG_OUTPUT static void export_infill_to_svg( // Boundary contour, along which the perimeter extrusions will be drawn. const std::vector &boundary, // Parametrization of boundary with Euclidian length. const std::vector> &boundary_parameters, // Intersections (T-joints) of the infill lines with the boundary. std::vector> &boundary_intersections, // Infill lines, either completely inside the boundary, or touching the boundary. const Polylines &infill, const coord_t scaled_spacing, const std::string &path, const Polylines &overlap_lines = Polylines(), const Polylines &polylines = Polylines(), const Points &pts = Points()) { Polygons polygons; std::transform(boundary.begin(), boundary.end(), std::back_inserter(polygons), [](auto &pts) { return Polygon(pts); }); ExPolygons expolygons = union_ex(polygons); BoundingBox bbox = get_extents(polygons); bbox.offset(scale_(3.)); ::Slic3r::SVG svg(path, bbox); // Draw the filled infill polygons. svg.draw(expolygons); // Draw the pieces of boundary allowed to be used as anchors of infill lines, not yet consumed. const std::string color_boundary_trimmed = "blue"; const std::string color_boundary_not_trimmed = "yellow"; const coordf_t boundary_line_width = scaled_spacing; svg.draw_outline(polygons, "red", boundary_line_width); for (const std::vector &intersections : boundary_intersections) { const size_t boundary_idx = &intersections - boundary_intersections.data(); const Points &contour = boundary[boundary_idx]; const std::vector &contour_param = boundary_parameters[boundary_idx]; for (const ContourIntersectionPoint *ip : intersections) { assert(ip->next_trimmed == ip->next_on_contour->prev_trimmed); assert(ip->prev_trimmed == ip->prev_on_contour->next_trimmed); { Polyline pl { contour[ip->point_idx] }; if (ip->next_trimmed) { if (ip->contour_not_taken_length_next > SCALED_EPSILON) { take_ccw_limited(pl, contour, contour_param, ip->point_idx, ip->next_on_contour->point_idx, ip->contour_not_taken_length_next); svg.draw(pl, color_boundary_trimmed, boundary_line_width); } } else { take_ccw_full(pl, contour, ip->point_idx, ip->next_on_contour->point_idx); svg.draw(pl, color_boundary_not_trimmed, boundary_line_width); } } { Polyline pl { contour[ip->point_idx] }; if (ip->prev_trimmed) { if (ip->contour_not_taken_length_prev > SCALED_EPSILON) { take_cw_limited(pl, contour, contour_param, ip->point_idx, ip->prev_on_contour->point_idx, ip->contour_not_taken_length_prev); svg.draw(pl, color_boundary_trimmed, boundary_line_width); } } else { take_cw_full(pl, contour, ip->point_idx, ip->prev_on_contour->point_idx); svg.draw(pl, color_boundary_not_trimmed, boundary_line_width); } } } } // Draw the full infill polygon boundary. svg.draw_outline(polygons, "green"); // Draw the infill lines, first the full length with red color, then a slightly shortened length with black color. svg.draw(infill, "brown"); static constexpr double trim_length = scale_(0.15); for (Polyline polyline : infill) if (! polyline.empty()) { Vec2d a = polyline.points.front().cast(); Vec2d d = polyline.points.back().cast(); if (polyline.size() == 2) { Vec2d v = d - a; double l = v.norm(); if (l > 2. * trim_length) { a += v * trim_length / l; d -= v * trim_length / l; polyline.points.front() = a.cast(); polyline.points.back() = d.cast(); } else polyline.points.clear(); } else if (polyline.size() > 2) { Vec2d b = polyline.points[1].cast(); Vec2d c = polyline.points[polyline.points.size() - 2].cast(); Vec2d v = b - a; double l = v.norm(); if (l > trim_length) { a += v * trim_length / l; polyline.points.front() = a.cast(); } else polyline.points.erase(polyline.points.begin()); v = d - c; l = v.norm(); if (l > trim_length) polyline.points.back() = (d - v * trim_length / l).cast(); else polyline.points.pop_back(); } svg.draw(polyline, "black"); } svg.draw(overlap_lines, "red", scale_(0.05)); svg.draw(polylines, "magenta", scale_(0.05)); svg.draw(pts, "magenta"); } #endif // INFILL_DEBUG_OUTPUT #ifndef NDEBUG bool validate_boundary_intersections(const std::vector> &boundary_intersections) { for (const std::vector& contour : boundary_intersections) { for (ContourIntersectionPoint* ip : contour) { assert(ip->next_trimmed == ip->next_on_contour->prev_trimmed); assert(ip->prev_trimmed == ip->prev_on_contour->next_trimmed); } } return true; } #endif // NDEBUG // Mark the segments of split boundary as consumed if they are very close to some of the infill line. void mark_boundary_segments_touching_infill( // Boundary contour, along which the perimeter extrusions will be drawn. const std::vector &boundary, // Parametrization of boundary with Euclidian length. const std::vector> &boundary_parameters, // Intersections (T-joints) of the infill lines with the boundary. std::vector> &boundary_intersections, // Bounding box around the boundary. const BoundingBox &boundary_bbox, // Infill lines, either completely inside the boundary, or touching the boundary. const Polylines &infill, // How much of the infill ends should be ignored when marking the boundary segments? const double clip_distance, // Roughly width of the infill line. const double distance_colliding) { assert(boundary.size() == boundary_parameters.size()); #ifndef NDEBUG for (size_t i = 0; i < boundary.size(); ++ i) assert(boundary[i].size() + 1 == boundary_parameters[i].size()); assert(validate_boundary_intersections(boundary_intersections)); #endif #ifdef INFILL_DEBUG_OUTPUT static int iRun = 0; ++ iRun; int iStep = 0; export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-start", iRun)); Polylines perimeter_overlaps; #endif // INFILL_DEBUG_OUTPUT EdgeGrid::Grid grid; // Make sure that the the grid is big enough for queries against the thick segment. grid.set_bbox(boundary_bbox.inflated(distance_colliding + SCALED_EPSILON)); // Inflate the bounding box by a thick line width. grid.create(boundary, std::max(clip_distance, distance_colliding) + scale_(10.)); // Visitor for the EdgeGrid to trim boundary_intersections with existing infill lines. struct Visitor { Visitor(const EdgeGrid::Grid &grid, const std::vector &boundary, const std::vector> &boundary_parameters, std::vector> &boundary_intersections, const double radius) : grid(grid), boundary(boundary), boundary_parameters(boundary_parameters), boundary_intersections(boundary_intersections), radius(radius), trim_l_threshold(0.5 * radius) {} // Init with a segment of an infill line. void init(const Vec2d &infill_pt1, const Vec2d &infill_pt2) { this->infill_pt1 = &infill_pt1; this->infill_pt2 = &infill_pt2; this->infill_bbox.reset(); this->infill_bbox.merge(infill_pt1); this->infill_bbox.merge(infill_pt2); this->infill_bbox.offset(this->radius + SCALED_EPSILON); } bool operator()(coord_t iy, coord_t ix) { // Called with a row and colum of the grid cell, which is intersected by a line. auto cell_data_range = this->grid.cell_data_range(iy, ix); for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++ it_contour_and_segment) { // End points of the line segment and their vector. auto segment = this->grid.segment(*it_contour_and_segment); const Vec2d seg_pt1 = segment.first.cast(); const Vec2d seg_pt2 = segment.second.cast(); std::pair interval; BoundingBoxf bbox_seg; bbox_seg.merge(seg_pt1); bbox_seg.merge(seg_pt2); #ifdef INFILL_DEBUG_OUTPUT //if (this->infill_bbox.overlap(bbox_seg)) this->perimeter_overlaps.push_back({ segment.first, segment.second }); #endif // INFILL_DEBUG_OUTPUT if (this->infill_bbox.overlap(bbox_seg) && line_rounded_thick_segment_collision(seg_pt1, seg_pt2, *this->infill_pt1, *this->infill_pt2, this->radius, interval)) { // The boundary segment intersects with the infill segment thickened by radius. // Interval is specified in Euclidian length from seg_pt1 to seg_pt2. // 1) Find the Euclidian parameters of seg_pt1 and seg_pt2 on its boundary contour. const std::vector &contour_parameters = boundary_parameters[it_contour_and_segment->first]; const float contour_length = contour_parameters.back(); const float param_seg_pt1 = contour_parameters[it_contour_and_segment->second]; #ifdef INFILL_DEBUG_OUTPUT this->perimeter_overlaps.push_back({ Point((seg_pt1 + (seg_pt2 - seg_pt1).normalized() * interval.first).cast()), Point((seg_pt1 + (seg_pt2 - seg_pt1).normalized() * interval.second).cast()) }); #endif // INFILL_DEBUG_OUTPUT const float param_overlap1 = param_seg_pt1 + interval.first; const float param_overlap2 = param_seg_pt1 + interval.second; // 2) Find the ContourIntersectionPoints before param_overlap1 and after param_overlap2. std::vector &intersections = boundary_intersections[it_contour_and_segment->first]; // Find the span of ContourIntersectionPoints, that is trimmed by the interval (param_overlap1, param_overlap2). ContourIntersectionPoint *ip_low, *ip_high; { auto it_low = Slic3r::lower_bound_by_predicate(intersections.begin(), intersections.end(), [param_overlap1](const ContourIntersectionPoint *l) { return l->param < param_overlap1; }); auto it_high = Slic3r::lower_bound_by_predicate(intersections.begin(), intersections.end(), [param_overlap2](const ContourIntersectionPoint *l) { return l->param < param_overlap2; }); ip_low = it_low == intersections.end() ? intersections.front() : *it_low; ip_high = it_high == intersections.end() ? intersections.front() : *it_high; if (ip_low->param != param_overlap1) ip_low = ip_low->prev_on_contour; } assert(ip_low != ip_high); // Verify that the interval (param_overlap1, param_overlap2) is inside the interval (ip_low->param, ip_high->param). assert(cyclic_interval_inside_interval(ip_low->param, ip_high->param, param_overlap1, param_overlap2, contour_length)); assert(validate_boundary_intersections(boundary_intersections)); // Mark all ContourIntersectionPoints between ip_low and ip_high as consumed. if (ip_low->next_on_contour != ip_high) for (ContourIntersectionPoint *ip = ip_low->next_on_contour; ip != ip_high; ip = ip->next_on_contour) { ip->consume_prev(); ip->consume_next(); } // Subtract the interval from the first and last segments. float trim_l = closed_contour_distance_ccw(ip_low->param, param_overlap1, contour_length); //if (trim_l > trim_l_threshold) ip_low->trim_next(trim_l); trim_l = closed_contour_distance_ccw(param_overlap2, ip_high->param, contour_length); //if (trim_l > trim_l_threshold) ip_high->trim_prev(trim_l); assert(ip_low->next_trimmed == ip_high->prev_trimmed); assert(validate_boundary_intersections(boundary_intersections)); //FIXME mark point as consumed? //FIXME verify the sequence between prev and next? #ifdef INFILL_DEBUG_OUTPUT { #if 0 static size_t iRun = 0; ExPolygon expoly(Polygon(*grid.contours().front())); for (size_t i = 1; i < grid.contours().size(); ++i) expoly.holes.emplace_back(Polygon(*grid.contours()[i])); SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill", iRun ++).c_str(), get_extents(expoly)); svg.draw(expoly, "green"); svg.draw(Line(segment.first, segment.second), "red"); svg.draw(Line(this->infill_pt1->cast(), this->infill_pt2->cast()), "magenta"); #endif } #endif // INFILL_DEBUG_OUTPUT } } // Continue traversing the grid along the edge. return true; } const EdgeGrid::Grid &grid; const std::vector &boundary; const std::vector> &boundary_parameters; std::vector> &boundary_intersections; // Maximum distance between the boundary and the infill line allowed to consider the boundary not touching the infill line. const double radius; // Region around the contour / infill line intersection point, where the intersections are ignored. const float trim_l_threshold; const Vec2d *infill_pt1; const Vec2d *infill_pt2; BoundingBoxf infill_bbox; #ifdef INFILL_DEBUG_OUTPUT Polylines perimeter_overlaps; #endif // INFILL_DEBUG_OUTPUT } visitor(grid, boundary, boundary_parameters, boundary_intersections, distance_colliding); BoundingBoxf bboxf(boundary_bbox.min.cast(), boundary_bbox.max.cast()); bboxf.offset(- SCALED_EPSILON); for (const Polyline &polyline : infill) { #ifdef INFILL_DEBUG_OUTPUT ++ iStep; #endif // INFILL_DEBUG_OUTPUT // Clip the infill polyline by the Eucledian distance along the polyline. SegmentPoint start_point = clip_start_segment_and_point(polyline.points, clip_distance); SegmentPoint end_point = clip_end_segment_and_point(polyline.points, clip_distance); if (start_point.valid() && end_point.valid() && (start_point.idx_segment < end_point.idx_segment || (start_point.idx_segment == end_point.idx_segment && start_point.t < end_point.t))) { // The clipped polyline is non-empty. #ifdef INFILL_DEBUG_OUTPUT visitor.perimeter_overlaps.clear(); #endif // INFILL_DEBUG_OUTPUT for (size_t point_idx = start_point.idx_segment; point_idx <= end_point.idx_segment; ++ point_idx) { //FIXME extend the EdgeGrid to suport tracing a thick line. #if 0 Point pt1, pt2; Vec2d pt1d, pt2d; if (point_idx == start_point.idx_segment) { pt1d = start_point.point; pt1 = pt1d.cast(); } else { pt1 = polyline.points[point_idx]; pt1d = pt1.cast(); } if (point_idx == start_point.idx_segment) { pt2d = end_point.point; pt2 = pt1d.cast(); } else { pt2 = polyline.points[point_idx]; pt2d = pt2.cast(); } visitor.init(pt1d, pt2d); grid.visit_cells_intersecting_thick_line(pt1, pt2, distance_colliding, visitor); #else Vec2d pt1 = (point_idx == start_point.idx_segment) ? start_point.point : polyline.points[point_idx ].cast(); Vec2d pt2 = (point_idx == end_point .idx_segment) ? end_point .point : polyline.points[point_idx + 1].cast(); #if 0 { static size_t iRun = 0; ExPolygon expoly(Polygon(*grid.contours().front())); for (size_t i = 1; i < grid.contours().size(); ++i) expoly.holes.emplace_back(Polygon(*grid.contours()[i])); SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill0", iRun ++).c_str(), get_extents(expoly)); svg.draw(expoly, "green"); svg.draw(polyline, "blue"); svg.draw(Line(pt1.cast(), pt2.cast()), "magenta", scale_(0.1)); } #endif visitor.init(pt1, pt2); // Simulate tracing of a thick line. This only works reliably if distance_colliding <= grid cell size. Vec2d v = (pt2 - pt1).normalized() * distance_colliding; Vec2d vperp = perp(v); Vec2d a = pt1 - v - vperp; Vec2d b = pt2 + v - vperp; if (Geometry::liang_barsky_line_clipping(a, b, bboxf)) grid.visit_cells_intersecting_line(a.cast(), b.cast(), visitor); a = pt1 - v + vperp; b = pt2 + v + vperp; if (Geometry::liang_barsky_line_clipping(a, b, bboxf)) grid.visit_cells_intersecting_line(a.cast(), b.cast(), visitor); #endif #ifdef INFILL_DEBUG_OUTPUT // export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d-%03d-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-step", iRun, iStep, int(point_idx)), { polyline }); #endif // INFILL_DEBUG_OUTPUT } #ifdef INFILL_DEBUG_OUTPUT Polylines perimeter_overlaps; export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-step", iRun, iStep), visitor.perimeter_overlaps, { polyline }); append(perimeter_overlaps, std::move(visitor.perimeter_overlaps)); perimeter_overlaps.clear(); #endif // INFILL_DEBUG_OUTPUT } } #ifdef INFILL_DEBUG_OUTPUT export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-end", iRun), perimeter_overlaps); #endif // INFILL_DEBUG_OUTPUT assert(validate_boundary_intersections(boundary_intersections)); } void Fill::connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary_src, Polylines &polylines_out, const double spacing, const FillParams ¶ms) { assert(! boundary_src.contour.points.empty()); auto polygons_src = reserve_vector(boundary_src.holes.size() + 1); polygons_src.emplace_back(&boundary_src.contour); for (const Polygon &polygon : boundary_src.holes) polygons_src.emplace_back(&polygon); connect_infill(std::move(infill_ordered), polygons_src, get_extents(boundary_src.contour), polylines_out, spacing, params); } void Fill::connect_infill(Polylines &&infill_ordered, const Polygons &boundary_src, const BoundingBox &bbox, Polylines &polylines_out, const double spacing, const FillParams ¶ms) { auto polygons_src = reserve_vector(boundary_src.size()); for (const Polygon &polygon : boundary_src) polygons_src.emplace_back(&polygon); connect_infill(std::move(infill_ordered), polygons_src, bbox, polylines_out, spacing, params); } void Fill::connect_infill(Polylines &&infill_ordered, const std::vector &boundary_src, const BoundingBox &bbox, Polylines &polylines_out, const double spacing, const FillParams ¶ms) { assert(! infill_ordered.empty()); assert(params.anchor_length >= 0.01f); const auto anchor_length = float(scale_(params.anchor_length)); #if 0 append(polylines_out, infill_ordered); return; #endif // 1) Add the end points of infill_ordered to boundary_src. std::vector boundary; std::vector> boundary_params; boundary.assign(boundary_src.size(), Points()); boundary_params.assign(boundary_src.size(), std::vector()); // Mapping the infill_ordered end point to a (contour, point) of boundary. static constexpr auto boundary_idx_unconnected = std::numeric_limits::max(); std::vector map_infill_end_point_to_boundary(infill_ordered.size() * 2, ContourIntersectionPoint{ boundary_idx_unconnected, boundary_idx_unconnected }); { // Project the infill_ordered end points onto boundary_src. std::vector> intersection_points; { EdgeGrid::Grid grid; grid.set_bbox(bbox.inflated(SCALED_EPSILON)); grid.create(boundary_src, scale_(10.)); intersection_points.reserve(infill_ordered.size() * 2); for (const Polyline &pl : infill_ordered) for (const Point *pt : { &pl.points.front(), &pl.points.back() }) { EdgeGrid::Grid::ClosestPointResult cp = grid.closest_point(*pt, SCALED_EPSILON); if (cp.valid()) { // The infill end point shall lie on the contour. assert(cp.distance < 2.); intersection_points.emplace_back(cp, (&pl - infill_ordered.data()) * 2 + (pt == &pl.points.front() ? 0 : 1)); } } std::sort(intersection_points.begin(), intersection_points.end(), [](const std::pair &cp1, const std::pair &cp2) { return cp1.first.contour_idx < cp2.first.contour_idx || (cp1.first.contour_idx == cp2.first.contour_idx && (cp1.first.start_point_idx < cp2.first.start_point_idx || (cp1.first.start_point_idx == cp2.first.start_point_idx && cp1.first.t < cp2.first.t))); }); } auto it = intersection_points.begin(); auto it_end = intersection_points.end(); std::vector> boundary_intersection_points(boundary.size(), std::vector()); for (size_t idx_contour = 0; idx_contour < boundary_src.size(); ++ idx_contour) { // Copy contour_src to contour_dst while adding intersection points. // Map infill end points map_infill_end_point_to_boundary to the newly inserted boundary points of contour_dst. // chain the points of map_infill_end_point_to_boundary along their respective contours. const Polygon &contour_src = *boundary_src[idx_contour]; Points &contour_dst = boundary[idx_contour]; std::vector &contour_intersection_points = boundary_intersection_points[idx_contour]; ContourIntersectionPoint *pfirst = nullptr; ContourIntersectionPoint *pprev = nullptr; { // Reserve intersection points. size_t n_intersection_points = 0; for (auto itx = it; itx != it_end && itx->first.contour_idx == idx_contour; ++ itx) ++ n_intersection_points; contour_intersection_points.reserve(n_intersection_points); } for (size_t idx_point = 0; idx_point < contour_src.points.size(); ++ idx_point) { contour_dst.emplace_back(contour_src.points[idx_point]); for (; it != it_end && it->first.contour_idx == idx_contour && it->first.start_point_idx == idx_point; ++ it) { // Add these points to the destination contour. const Polyline &infill_line = infill_ordered[it->second / 2]; const Point &pt = (it->second & 1) ? infill_line.points.back() : infill_line.points.front(); #ifndef NDEBUG { const Vec2d pt1 = contour_src[idx_point].cast(); const Vec2d pt2 = (idx_point + 1 == contour_src.size() ? contour_src.points.front() : contour_src.points[idx_point + 1]).cast(); const Vec2d ptx = lerp(pt1, pt2, it->first.t); assert(std::abs(pt.x() - pt.x()) < SCALED_EPSILON); assert(std::abs(pt.y() - pt.y()) < SCALED_EPSILON); } #endif // NDEBUG map_infill_end_point_to_boundary[it->second] = ContourIntersectionPoint{ idx_contour, contour_dst.size() }; ContourIntersectionPoint *pthis = &map_infill_end_point_to_boundary[it->second]; if (pprev) { pprev->next_on_contour = pthis; pthis->prev_on_contour = pprev; } else pfirst = pthis; contour_intersection_points.emplace_back(pthis); pprev = pthis; //add new point here contour_dst.emplace_back(pt); } if (pprev != pfirst) { pprev->next_on_contour = pfirst; pfirst->prev_on_contour = pprev; } } // Parametrize the new boundary with the intersection points inserted. std::vector &contour_params = boundary_params[idx_contour]; contour_params.assign(contour_dst.size() + 1, 0.f); for (size_t i = 1; i < contour_dst.size(); ++ i) contour_params[i] = contour_params[i - 1] + (contour_dst[i].cast() - contour_dst[i - 1].cast()).norm(); contour_params.back() = contour_params[contour_params.size() - 2] + (contour_dst.back().cast() - contour_dst.front().cast()).norm(); // Map parameters from contour_params to boundary_intersection_points. for (ContourIntersectionPoint *ip : contour_intersection_points) ip->param = contour_params[ip->point_idx]; // and measure distance to the previous and next intersection point. const float contour_length = contour_params.back(); for (ContourIntersectionPoint *ip : contour_intersection_points) { ip->contour_not_taken_length_prev = closed_contour_distance_ccw(ip->prev_on_contour->param, ip->param, contour_length); ip->contour_not_taken_length_next = closed_contour_distance_ccw(ip->param, ip->next_on_contour->param, contour_length); } } assert(boundary.size() == boundary_src.size()); #if 0 // Adaptive Cubic Infill produces infill lines, which not always end at the outer boundary. assert(std::all_of(map_infill_end_point_to_boundary.begin(), map_infill_end_point_to_boundary.end(), [&boundary](const ContourIntersectionPoint &contour_point) { return contour_point.contour_idx < boundary.size() && contour_point.point_idx < boundary[contour_point.contour_idx].size(); })); #endif // Mark the points and segments of split boundary as consumed if they are very close to some of the infill line. { // @supermerill used 2. * scale_(spacing) const double clip_distance = 1.7 * scale_(spacing); // Allow a bit of overlap. This value must be slightly higher than the overlap of FillAdaptive, otherwise // the anchors of the adaptive infill will mask the other side of the perimeter line. // (see connect_lines_using_hooks() in FillAdaptive.cpp) const double distance_colliding = 0.8 * scale_(spacing); mark_boundary_segments_touching_infill(boundary, boundary_params, boundary_intersection_points, bbox, infill_ordered, clip_distance, distance_colliding); } } // Connection from end of one infill line to the start of another infill line. //const float length_max = scale_(spacing); // const auto length_max = float(scale_((2. / params.density) * spacing)); const auto length_max = float(scale_((1000. / params.density) * spacing)); std::vector merged_with(infill_ordered.size()); std::iota(merged_with.begin(), merged_with.end(), 0); struct ConnectionCost { ConnectionCost(size_t idx_first, double cost, bool reversed) : idx_first(idx_first), cost(cost), reversed(reversed) {} size_t idx_first; double cost; bool reversed; }; std::vector connections_sorted; connections_sorted.reserve(infill_ordered.size() * 2 - 2); for (size_t idx_chain = 1; idx_chain < infill_ordered.size(); ++ idx_chain) { const Polyline &pl1 = infill_ordered[idx_chain - 1]; const Polyline &pl2 = infill_ordered[idx_chain]; const ContourIntersectionPoint *cp1 = &map_infill_end_point_to_boundary[(idx_chain - 1) * 2 + 1]; const ContourIntersectionPoint *cp2 = &map_infill_end_point_to_boundary[idx_chain * 2]; if (cp1->contour_idx != boundary_idx_unconnected && cp1->contour_idx == cp2->contour_idx) { // End points on the same contour. Try to connect them. std::pair len = path_lengths_along_contour(cp1, cp2, boundary_params[cp1->contour_idx].back()); if (len.first < length_max) connections_sorted.emplace_back(idx_chain - 1, len.first, false); if (len.second < length_max) connections_sorted.emplace_back(idx_chain - 1, len.second, true); } } std::sort(connections_sorted.begin(), connections_sorted.end(), [](const ConnectionCost& l, const ConnectionCost& r) { return l.cost < r.cost; }); auto get_and_update_merged_with = [&merged_with](size_t polyline_idx) -> size_t { for (size_t last = polyline_idx;;) { size_t lower = merged_with[last]; assert(lower <= last); if (lower == last) { merged_with[polyline_idx] = last; return last; } last = lower; } assert(false); return std::numeric_limits::max(); }; const float line_half_width = 0.5f * scale_(spacing); #if 0 for (ConnectionCost &connection_cost : connections_sorted) { ContourIntersectionPoint *cp1 = &map_infill_end_point_to_boundary[connection_cost.idx_first * 2 + 1]; ContourIntersectionPoint *cp2 = &map_infill_end_point_to_boundary[(connection_cost.idx_first + 1) * 2]; assert(cp1 != cp2); assert(cp1->contour_idx == cp2->contour_idx && cp1->contour_idx != boundary_idx_unconnected); if (cp1->consumed || cp2->consumed) continue; const float length = connection_cost.cost; bool could_connect; { // cp1, cp2 sorted CCW. ContourIntersectionPoint *cp_low = connection_cost.reversed ? cp2 : cp1; ContourIntersectionPoint *cp_high = connection_cost.reversed ? cp1 : cp2; assert(std::abs(length - closed_contour_distance_ccw(cp_low->param, cp_high->param, boundary_params[cp1->contour_idx].back())) < SCALED_EPSILON); could_connect = ! cp_low->next_trimmed && ! cp_high->prev_trimmed; if (could_connect && cp_low->next_on_contour != cp_high) { // Other end of cp1, may or may not be on the same contour as cp1. const ContourIntersectionPoint *cp1prev = cp1 - 1; // Other end of cp2, may or may not be on the same contour as cp2. const ContourIntersectionPoint *cp2next = cp2 + 1; for (auto *cp = cp_low->next_on_contour; cp != cp_high; cp = cp->next_on_contour) if (cp->consumed || cp == cp1prev || cp == cp2next || cp->prev_trimmed || cp->next_trimmed) { could_connect = false; break; } } } // Indices of the polylines to be connected by a perimeter segment. size_t idx_first = connection_cost.idx_first; size_t idx_second = idx_first + 1; idx_first = get_and_update_merged_with(idx_first); assert(idx_first < idx_second); assert(idx_second == merged_with[idx_second]); if (could_connect && length < anchor_length * 2.5) { // Take the complete contour. // Connect the two polygons using the boundary contour. take(infill_ordered[idx_first], infill_ordered[idx_second], boundary[cp1->contour_idx], cp1, cp2, connection_cost.reversed); // Mark the second polygon as merged with the first one. merged_with[idx_second] = merged_with[idx_first]; infill_ordered[idx_second].points.clear(); } else { // Try to connect cp1 resp. cp2 with a piece of perimeter line. take_limited(infill_ordered[idx_first], boundary[cp1->contour_idx], boundary_params[cp1->contour_idx], cp1, cp2, connection_cost.reversed, anchor_length, line_half_width); take_limited(infill_ordered[idx_second], boundary[cp1->contour_idx], boundary_params[cp1->contour_idx], cp2, cp1, ! connection_cost.reversed, anchor_length, line_half_width); } } #endif struct Arc { ContourIntersectionPoint *intersection; float arc_length; }; std::vector arches; arches.reserve(map_infill_end_point_to_boundary.size()); for (ContourIntersectionPoint &cp : map_infill_end_point_to_boundary) if (! cp.contour_idx != boundary_idx_unconnected && cp.next_on_contour != &cp && cp.could_connect_next()) arches.push_back({ &cp, path_length_along_contour_ccw(&cp, cp.next_on_contour, boundary_params[cp.contour_idx].back()) }); std::sort(arches.begin(), arches.end(), [](const auto &l, const auto &r) { return l.arc_length < r.arc_length; }); for (Arc &arc : arches) if (! arc.intersection->consumed && ! arc.intersection->next_on_contour->consumed) { // Indices of the polylines to be connected by a perimeter segment. ContourIntersectionPoint *cp1 = arc.intersection; ContourIntersectionPoint *cp2 = arc.intersection->next_on_contour; size_t polyline_idx1 = get_and_update_merged_with(((cp1 - map_infill_end_point_to_boundary.data()) / 2)); size_t polyline_idx2 = get_and_update_merged_with(((cp2 - map_infill_end_point_to_boundary.data()) / 2)); const Points &contour = boundary[cp1->contour_idx]; const std::vector &contour_params = boundary_params[cp1->contour_idx]; if (polyline_idx1 != polyline_idx2) { Polyline &polyline1 = infill_ordered[polyline_idx1]; Polyline &polyline2 = infill_ordered[polyline_idx2]; if (arc.arc_length < anchor_length * 2.5) { // Not closing a loop, connecting the lines. assert(contour[cp1->point_idx] == polyline1.points.front() || contour[cp1->point_idx] == polyline1.points.back()); if (contour[cp1->point_idx] == polyline1.points.front()) polyline1.reverse(); assert(contour[cp2->point_idx] == polyline2.points.front() || contour[cp2->point_idx] == polyline2.points.back()); if (contour[cp2->point_idx] == polyline2.points.back()) polyline2.reverse(); take(polyline1, polyline2, contour, cp1, cp2, false); // Mark the second polygon as merged with the first one. if (polyline_idx2 < polyline_idx1) { polyline2 = std::move(polyline1); polyline1.points.clear(); merged_with[polyline_idx1] = merged_with[polyline_idx2]; } else { polyline2.points.clear(); merged_with[polyline_idx2] = merged_with[polyline_idx1]; } } else { // Move along the perimeter, but don't take the whole arc. take_limited(polyline1, contour, contour_params, cp1, cp2, false, anchor_length, line_half_width); take_limited(polyline2, contour, contour_params, cp2, cp1, true, anchor_length, line_half_width); } } } // Connect the remaining open infill lines to the perimeter lines if possible. for (ContourIntersectionPoint &contour_point : map_infill_end_point_to_boundary) if (! contour_point.consumed && contour_point.contour_idx != boundary_idx_unconnected) { const Points &contour = boundary[contour_point.contour_idx]; const std::vector &contour_params = boundary_params[contour_point.contour_idx]; const size_t contour_pt_idx = contour_point.point_idx; float lprev = contour_point.could_connect_prev() ? path_length_along_contour_ccw(contour_point.prev_on_contour, &contour_point, contour_params.back()) : std::numeric_limits::max(); float lnext = contour_point.could_connect_next() ? path_length_along_contour_ccw(&contour_point, contour_point.next_on_contour, contour_params.back()) : std::numeric_limits::max(); size_t polyline_idx = get_and_update_merged_with(((&contour_point - map_infill_end_point_to_boundary.data()) / 2)); Polyline &polyline = infill_ordered[polyline_idx]; assert(! polyline.empty()); assert(contour[contour_point.point_idx] == polyline.points.front() || contour[contour_point.point_idx] == polyline.points.back()); bool connected = false; for (float l : { std::min(lprev, lnext), std::max(lprev, lnext) }) { if (l == std::numeric_limits::max() || l > anchor_length * 2.5) break; // Take the complete contour. bool reversed = l == lprev; ContourIntersectionPoint *cp2 = reversed ? contour_point.prev_on_contour : contour_point.next_on_contour; // Identify which end of the polyline touches the boundary. size_t polyline_idx2 = get_and_update_merged_with(((cp2 - map_infill_end_point_to_boundary.data()) / 2)); if (polyline_idx == polyline_idx2) // Try the other side. continue; // Not closing a loop. if (contour[contour_point.point_idx] == polyline.points.front()) polyline.reverse(); Polyline &polyline2 = infill_ordered[polyline_idx2]; assert(! polyline.empty()); assert(contour[cp2->point_idx] == polyline2.points.front() || contour[cp2->point_idx] == polyline2.points.back()); if (contour[cp2->point_idx] == polyline2.points.back()) polyline2.reverse(); take(polyline, polyline2, contour, &contour_point, cp2, reversed); if (polyline_idx < polyline_idx2) { // Mark the second polyline as merged with the first one. merged_with[polyline_idx2] = polyline_idx; polyline2.points.clear(); } else { // Mark the first polyline as merged with the second one. merged_with[polyline_idx] = polyline_idx2; polyline2 = std::move(polyline); polyline.points.clear(); } connected = true; break; } if (! connected) { // Which to take? One could optimize for: // 1) Shortest path // 2) Hook length // ... // Let's take the longer now, as this improves the chance of another hook to be placed on the other side of this contour point. float l = std::max(contour_point.contour_not_taken_length_prev, contour_point.contour_not_taken_length_next); if (l > SCALED_EPSILON) { if (contour_point.contour_not_taken_length_prev > contour_point.contour_not_taken_length_next) take_limited(polyline, contour, contour_params, &contour_point, contour_point.prev_on_contour, true, anchor_length, line_half_width); else take_limited(polyline, contour, contour_params, &contour_point, contour_point.next_on_contour, false, anchor_length, line_half_width); } } } polylines_out.reserve(polylines_out.size() + std::count_if(infill_ordered.begin(), infill_ordered.end(), [](const Polyline &pl) { return ! pl.empty(); })); for (Polyline &pl : infill_ordered) if (! pl.empty()) polylines_out.emplace_back(std::move(pl)); } } // namespace Slic3r