#include "libslic3r/libslic3r.h" #include "GLModel.hpp" #include "3DScene.hpp" #include "GUI_App.hpp" #include "GLShader.hpp" #include "libslic3r/TriangleMesh.hpp" #include "libslic3r/Model.hpp" #include "libslic3r/Polygon.hpp" #include "libslic3r/BuildVolume.hpp" #include "libslic3r/Geometry/ConvexHull.hpp" #include #include #if ENABLE_SMOOTH_NORMALS #include #include #include #endif // ENABLE_SMOOTH_NORMALS #include namespace Slic3r { namespace GUI { #if ENABLE_SMOOTH_NORMALS static void smooth_normals_corner(const TriangleMesh& mesh, std::vector& normals) { using MapMatrixXfUnaligned = Eigen::Map>; using MapMatrixXiUnaligned = Eigen::Map>; std::vector face_normals = its_face_normals(mesh.its); Eigen::MatrixXd vertices = MapMatrixXfUnaligned(mesh.its.vertices.front().data(), Eigen::Index(mesh.its.vertices.size()), 3).cast(); Eigen::MatrixXi indices = MapMatrixXiUnaligned(mesh.its.indices.front().data(), Eigen::Index(mesh.its.indices.size()), 3); Eigen::MatrixXd in_normals = MapMatrixXfUnaligned(face_normals.front().data(), Eigen::Index(face_normals.size()), 3).cast(); Eigen::MatrixXd out_normals; igl::per_corner_normals(vertices, indices, in_normals, 1.0, out_normals); normals = std::vector(mesh.its.vertices.size()); for (size_t i = 0; i < mesh.its.indices.size(); ++i) { for (size_t j = 0; j < 3; ++j) { normals[mesh.its.indices[i][j]] = out_normals.row(i * 3 + j).cast(); } } } #endif // ENABLE_SMOOTH_NORMALS void GLModel::Geometry::add_vertex(const Vec2f& position) { assert(format.vertex_layout == EVertexLayout::P2); vertices.emplace_back(position.x()); vertices.emplace_back(position.y()); } void GLModel::Geometry::add_vertex(const Vec2f& position, const Vec2f& tex_coord) { assert(format.vertex_layout == EVertexLayout::P2T2); vertices.emplace_back(position.x()); vertices.emplace_back(position.y()); vertices.emplace_back(tex_coord.x()); vertices.emplace_back(tex_coord.y()); } void GLModel::Geometry::add_vertex(const Vec3f& position) { assert(format.vertex_layout == EVertexLayout::P3); vertices.emplace_back(position.x()); vertices.emplace_back(position.y()); vertices.emplace_back(position.z()); } void GLModel::Geometry::add_vertex(const Vec3f& position, const Vec2f& tex_coord) { assert(format.vertex_layout == EVertexLayout::P3T2); vertices.emplace_back(position.x()); vertices.emplace_back(position.y()); vertices.emplace_back(position.z()); vertices.emplace_back(tex_coord.x()); vertices.emplace_back(tex_coord.y()); } void GLModel::Geometry::add_vertex(const Vec3f& position, const Vec3f& normal) { assert(format.vertex_layout == EVertexLayout::P3N3); vertices.emplace_back(position.x()); vertices.emplace_back(position.y()); vertices.emplace_back(position.z()); vertices.emplace_back(normal.x()); vertices.emplace_back(normal.y()); vertices.emplace_back(normal.z()); } void GLModel::Geometry::add_vertex(const Vec3f& position, const Vec3f& normal, const Vec2f& tex_coord) { assert(format.vertex_layout == EVertexLayout::P3N3T2); vertices.emplace_back(position.x()); vertices.emplace_back(position.y()); vertices.emplace_back(position.z()); vertices.emplace_back(normal.x()); vertices.emplace_back(normal.y()); vertices.emplace_back(normal.z()); vertices.emplace_back(tex_coord.x()); vertices.emplace_back(tex_coord.y()); } void GLModel::Geometry::add_vertex(const Vec4f& position) { assert(format.vertex_layout == EVertexLayout::P4); vertices.emplace_back(position.x()); vertices.emplace_back(position.y()); vertices.emplace_back(position.z()); vertices.emplace_back(position.w()); } void GLModel::Geometry::add_index(unsigned int id) { indices.emplace_back(id); } void GLModel::Geometry::add_line(unsigned int id1, unsigned int id2) { indices.emplace_back(id1); indices.emplace_back(id2); } void GLModel::Geometry::add_triangle(unsigned int id1, unsigned int id2, unsigned int id3) { indices.emplace_back(id1); indices.emplace_back(id2); indices.emplace_back(id3); } Vec2f GLModel::Geometry::extract_position_2(size_t id) const { const size_t p_stride = position_stride_floats(format); if (p_stride != 2) { assert(false); return { FLT_MAX, FLT_MAX }; } if (vertices_count() <= id) { assert(false); return { FLT_MAX, FLT_MAX }; } const float* start = &vertices[id * vertex_stride_floats(format) + position_offset_floats(format)]; return { *(start + 0), *(start + 1) }; } Vec3f GLModel::Geometry::extract_position_3(size_t id) const { const size_t p_stride = position_stride_floats(format); if (p_stride != 3) { assert(false); return { FLT_MAX, FLT_MAX, FLT_MAX }; } if (vertices_count() <= id) { assert(false); return { FLT_MAX, FLT_MAX, FLT_MAX }; } const float* start = &vertices[id * vertex_stride_floats(format) + position_offset_floats(format)]; return { *(start + 0), *(start + 1), *(start + 2) }; } Vec3f GLModel::Geometry::extract_normal_3(size_t id) const { const size_t n_stride = normal_stride_floats(format); if (n_stride != 3) { assert(false); return { FLT_MAX, FLT_MAX, FLT_MAX }; } if (vertices_count() <= id) { assert(false); return { FLT_MAX, FLT_MAX, FLT_MAX }; } const float* start = &vertices[id * vertex_stride_floats(format) + normal_offset_floats(format)]; return { *(start + 0), *(start + 1), *(start + 2) }; } Vec2f GLModel::Geometry::extract_tex_coord_2(size_t id) const { const size_t t_stride = tex_coord_stride_floats(format); if (t_stride != 2) { assert(false); return { FLT_MAX, FLT_MAX }; } if (vertices_count() <= id) { assert(false); return { FLT_MAX, FLT_MAX }; } const float* start = &vertices[id * vertex_stride_floats(format) + tex_coord_offset_floats(format)]; return { *(start + 0), *(start + 1) }; } void GLModel::Geometry::set_vertex(size_t id, const Vec3f& position, const Vec3f& normal) { assert(format.vertex_layout == EVertexLayout::P3N3); assert(id < vertices_count()); if (id < vertices_count()) { float* start = &vertices[id * vertex_stride_floats(format)]; *(start + 0) = position.x(); *(start + 1) = position.y(); *(start + 2) = position.z(); *(start + 3) = normal.x(); *(start + 4) = normal.y(); *(start + 5) = normal.z(); } } void GLModel::Geometry::set_index(size_t id, unsigned int index) { assert(id < indices_count()); if (id < indices_count()) indices[id] = index; } unsigned int GLModel::Geometry::extract_index(size_t id) const { if (indices_count() <= id) { assert(false); return -1; } return indices[id]; } void GLModel::Geometry::remove_vertex(size_t id) { assert(id < vertices_count()); if (id < vertices_count()) { const size_t stride = vertex_stride_floats(format); std::vector::const_iterator it = vertices.begin() + id * stride; vertices.erase(it, it + stride); } } indexed_triangle_set GLModel::Geometry::get_as_indexed_triangle_set() const { indexed_triangle_set its; its.vertices.reserve(vertices_count()); for (size_t i = 0; i < vertices_count(); ++i) { its.vertices.emplace_back(extract_position_3(i)); } its.indices.reserve(indices_count() / 3); for (size_t i = 0; i < indices_count() / 3; ++i) { const size_t tri_id = i * 3; its.indices.emplace_back(extract_index(tri_id), extract_index(tri_id + 1), extract_index(tri_id + 2)); } return its; } size_t GLModel::Geometry::vertex_stride_floats(const Format& format) { switch (format.vertex_layout) { case EVertexLayout::P2: { return 2; } case EVertexLayout::P2T2: { return 4; } case EVertexLayout::P3: { return 3; } case EVertexLayout::P3T2: { return 5; } case EVertexLayout::P3N3: { return 6; } case EVertexLayout::P3N3T2: { return 8; } case EVertexLayout::P4: { return 4; } default: { assert(false); return 0; } }; } size_t GLModel::Geometry::position_stride_floats(const Format& format) { switch (format.vertex_layout) { case EVertexLayout::P2: case EVertexLayout::P2T2: { return 2; } case EVertexLayout::P3: case EVertexLayout::P3T2: case EVertexLayout::P3N3: case EVertexLayout::P3N3T2: { return 3; } case EVertexLayout::P4: { return 4; } default: { assert(false); return 0; } }; } size_t GLModel::Geometry::position_offset_floats(const Format& format) { switch (format.vertex_layout) { case EVertexLayout::P2: case EVertexLayout::P2T2: case EVertexLayout::P3: case EVertexLayout::P3T2: case EVertexLayout::P3N3: case EVertexLayout::P3N3T2: case EVertexLayout::P4: { return 0; } default: { assert(false); return 0; } }; } size_t GLModel::Geometry::normal_stride_floats(const Format& format) { switch (format.vertex_layout) { case EVertexLayout::P3N3: case EVertexLayout::P3N3T2: { return 3; } default: { assert(false); return 0; } }; } size_t GLModel::Geometry::normal_offset_floats(const Format& format) { switch (format.vertex_layout) { case EVertexLayout::P3N3: case EVertexLayout::P3N3T2: { return 3; } default: { assert(false); return 0; } }; } size_t GLModel::Geometry::tex_coord_stride_floats(const Format& format) { switch (format.vertex_layout) { case EVertexLayout::P2T2: case EVertexLayout::P3T2: case EVertexLayout::P3N3T2: { return 2; } default: { assert(false); return 0; } }; } size_t GLModel::Geometry::tex_coord_offset_floats(const Format& format) { switch (format.vertex_layout) { case EVertexLayout::P2T2: { return 2; } case EVertexLayout::P3T2: { return 3; } case EVertexLayout::P3N3T2: { return 6; } default: { assert(false); return 0; } }; } size_t GLModel::Geometry::index_stride_bytes(const Geometry& data) { switch (data.index_type) { case EIndexType::UINT: { return sizeof(unsigned int); } case EIndexType::USHORT: { return sizeof(unsigned short); } case EIndexType::UBYTE: { return sizeof(unsigned char); } default: { assert(false); return 0; } }; } bool GLModel::Geometry::has_position(const Format& format) { switch (format.vertex_layout) { case EVertexLayout::P2: case EVertexLayout::P2T2: case EVertexLayout::P3: case EVertexLayout::P3T2: case EVertexLayout::P3N3: case EVertexLayout::P3N3T2: case EVertexLayout::P4: { return true; } default: { assert(false); return false; } }; } bool GLModel::Geometry::has_normal(const Format& format) { switch (format.vertex_layout) { case EVertexLayout::P2: case EVertexLayout::P2T2: case EVertexLayout::P3: case EVertexLayout::P3T2: case EVertexLayout::P4: { return false; } case EVertexLayout::P3N3: case EVertexLayout::P3N3T2: { return true; } default: { assert(false); return false; } }; } bool GLModel::Geometry::has_tex_coord(const Format& format) { switch (format.vertex_layout) { case EVertexLayout::P2T2: case EVertexLayout::P3T2: case EVertexLayout::P3N3T2: { return true; } case EVertexLayout::P2: case EVertexLayout::P3: case EVertexLayout::P3N3: case EVertexLayout::P4: { return false; } default: { assert(false); return false; } }; } void GLModel::init_from(Geometry&& data) { if (is_initialized()) { // call reset() if you want to reuse this model assert(false); return; } if (data.vertices.empty() || data.indices.empty()) { assert(false); return; } m_render_data.geometry = std::move(data); // update bounding box for (size_t i = 0; i < vertices_count(); ++i) { const size_t position_stride = Geometry::position_stride_floats(data.format); if (position_stride == 3) m_bounding_box.merge(m_render_data.geometry.extract_position_3(i).cast()); else if (position_stride == 2) { const Vec2f position = m_render_data.geometry.extract_position_2(i); m_bounding_box.merge(Vec3f(position.x(), position.y(), 0.0f).cast()); } } } void GLModel::init_from(const TriangleMesh& mesh) { init_from(mesh.its); } void GLModel::init_from(const indexed_triangle_set& its) { if (is_initialized()) { // call reset() if you want to reuse this model assert(false); return; } if (its.vertices.empty() || its.indices.empty()){ assert(false); return; } Geometry& data = m_render_data.geometry; data.format = { Geometry::EPrimitiveType::Triangles, Geometry::EVertexLayout::P3N3 }; data.reserve_vertices(3 * its.indices.size()); data.reserve_indices(3 * its.indices.size()); // vertices + indices unsigned int vertices_counter = 0; for (uint32_t i = 0; i < its.indices.size(); ++i) { const stl_triangle_vertex_indices face = its.indices[i]; const stl_vertex vertex[3] = { its.vertices[face[0]], its.vertices[face[1]], its.vertices[face[2]] }; const stl_vertex n = face_normal_normalized(vertex); for (size_t j = 0; j < 3; ++j) { data.add_vertex(vertex[j], n); } vertices_counter += 3; data.add_triangle(vertices_counter - 3, vertices_counter - 2, vertices_counter - 1); } // update bounding box for (size_t i = 0; i < vertices_count(); ++i) { m_bounding_box.merge(data.extract_position_3(i).cast()); } } void GLModel::init_from(const Polygons& polygons, float z) { if (is_initialized()) { // call reset() if you want to reuse this model assert(false); return; } if (polygons.empty()) { assert(false); return; } Geometry& data = m_render_data.geometry; data.format = { Geometry::EPrimitiveType::Lines, Geometry::EVertexLayout::P3 }; size_t segments_count = 0; for (const Polygon& polygon : polygons) { segments_count += polygon.points.size(); } data.reserve_vertices(2 * segments_count); data.reserve_indices(2 * segments_count); // vertices + indices unsigned int vertices_counter = 0; for (const Polygon& poly : polygons) { for (size_t i = 0; i < poly.points.size(); ++i) { const Point& p0 = poly.points[i]; const Point& p1 = (i == poly.points.size() - 1) ? poly.points.front() : poly.points[i + 1]; data.add_vertex(Vec3f(unscale(p0.x()), unscale(p0.y()), z)); data.add_vertex(Vec3f(unscale(p1.x()), unscale(p1.y()), z)); vertices_counter += 2; data.add_line(vertices_counter - 2, vertices_counter - 1); } } // update bounding box for (size_t i = 0; i < vertices_count(); ++i) { m_bounding_box.merge(data.extract_position_3(i).cast()); } } bool GLModel::init_from_file(const std::string& filename) { if (!boost::filesystem::exists(filename)) return false; if (!boost::algorithm::iends_with(filename, ".stl")) return false; Model model; try { model = Model::read_from_file(filename); } catch (std::exception&) { return false; } init_from(model.mesh()); m_filename = filename; return true; } void GLModel::reset() { // release gpu memory if (m_render_data.ibo_id > 0) { glsafe(::glDeleteBuffers(1, &m_render_data.ibo_id)); m_render_data.ibo_id = 0; } if (m_render_data.vbo_id > 0) { glsafe(::glDeleteBuffers(1, &m_render_data.vbo_id)); m_render_data.vbo_id = 0; } m_render_data.vertices_count = 0; m_render_data.indices_count = 0; m_render_data.geometry.vertices = std::vector(); m_render_data.geometry.indices = std::vector(); m_bounding_box = BoundingBoxf3(); m_filename = std::string(); } static GLenum get_primitive_mode(const GLModel::Geometry::Format& format) { switch (format.type) { case GLModel::Geometry::EPrimitiveType::Points: { return GL_POINTS; } default: case GLModel::Geometry::EPrimitiveType::Triangles: { return GL_TRIANGLES; } case GLModel::Geometry::EPrimitiveType::TriangleStrip: { return GL_TRIANGLE_STRIP; } case GLModel::Geometry::EPrimitiveType::TriangleFan: { return GL_TRIANGLE_FAN; } case GLModel::Geometry::EPrimitiveType::Lines: { return GL_LINES; } case GLModel::Geometry::EPrimitiveType::LineStrip: { return GL_LINE_STRIP; } case GLModel::Geometry::EPrimitiveType::LineLoop: { return GL_LINE_LOOP; } } } static GLenum get_index_type(const GLModel::Geometry& data) { switch (data.index_type) { default: case GLModel::Geometry::EIndexType::UINT: { return GL_UNSIGNED_INT; } case GLModel::Geometry::EIndexType::USHORT: { return GL_UNSIGNED_SHORT; } case GLModel::Geometry::EIndexType::UBYTE: { return GL_UNSIGNED_BYTE; } } } void GLModel::render() { render(std::make_pair(0, indices_count())); } void GLModel::render(const std::pair& range) { if (m_render_disabled) return; if (range.second == range.first) return; GLShaderProgram* shader = wxGetApp().get_current_shader(); if (shader == nullptr) return; // sends data to gpu if not done yet if (m_render_data.vbo_id == 0 || m_render_data.ibo_id == 0) { if (m_render_data.geometry.vertices_count() > 0 && m_render_data.geometry.indices_count() > 0 && !send_to_gpu()) return; } const Geometry& data = m_render_data.geometry; const GLenum mode = get_primitive_mode(data.format); const GLenum index_type = get_index_type(data); const size_t vertex_stride_bytes = Geometry::vertex_stride_bytes(data.format); const bool position = Geometry::has_position(data.format); const bool normal = Geometry::has_normal(data.format); const bool tex_coord = Geometry::has_tex_coord(data.format); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, m_render_data.vbo_id)); int position_id = -1; int normal_id = -1; int tex_coord_id = -1; if (position) { position_id = shader->get_attrib_location("v_position"); if (position_id != -1) { glsafe(::glVertexAttribPointer(position_id, Geometry::position_stride_floats(data.format), GL_FLOAT, GL_FALSE, vertex_stride_bytes, (const void*)Geometry::position_offset_bytes(data.format))); glsafe(::glEnableVertexAttribArray(position_id)); } } if (normal) { normal_id = shader->get_attrib_location("v_normal"); if (normal_id != -1) { glsafe(::glVertexAttribPointer(normal_id, Geometry::normal_stride_floats(data.format), GL_FLOAT, GL_FALSE, vertex_stride_bytes, (const void*)Geometry::normal_offset_bytes(data.format))); glsafe(::glEnableVertexAttribArray(normal_id)); } } if (tex_coord) { tex_coord_id = shader->get_attrib_location("v_tex_coord"); if (tex_coord_id != -1) { glsafe(::glVertexAttribPointer(tex_coord_id, Geometry::tex_coord_stride_floats(data.format), GL_FLOAT, GL_FALSE, vertex_stride_bytes, (const void*)Geometry::tex_coord_offset_bytes(data.format))); glsafe(::glEnableVertexAttribArray(tex_coord_id)); } } shader->set_uniform("uniform_color", data.color); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_render_data.ibo_id)); glsafe(::glDrawElements(mode, range.second - range.first, index_type, (const void*)(range.first * Geometry::index_stride_bytes(data)))); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)); if (tex_coord_id != -1) glsafe(::glDisableVertexAttribArray(tex_coord_id)); if (normal_id != -1) glsafe(::glDisableVertexAttribArray(normal_id)); if (position_id != -1) glsafe(::glDisableVertexAttribArray(position_id)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0)); } void GLModel::render_instanced(unsigned int instances_vbo, unsigned int instances_count) { if (instances_vbo == 0 || instances_count == 0) return; GLShaderProgram* shader = wxGetApp().get_current_shader(); if (shader == nullptr || !boost::algorithm::iends_with(shader->get_name(), "_instanced")) return; // vertex attributes const GLint position_id = shader->get_attrib_location("v_position"); const GLint normal_id = shader->get_attrib_location("v_normal"); if (position_id == -1 || normal_id == -1) return; // instance attributes const GLint offset_id = shader->get_attrib_location("i_offset"); const GLint scales_id = shader->get_attrib_location("i_scales"); if (offset_id == -1 || scales_id == -1) return; if (m_render_data.vbo_id == 0 || m_render_data.ibo_id == 0) { if (!send_to_gpu()) return; } glsafe(::glBindBuffer(GL_ARRAY_BUFFER, instances_vbo)); const size_t instance_stride = 5 * sizeof(float); glsafe(::glVertexAttribPointer(offset_id, 3, GL_FLOAT, GL_FALSE, instance_stride, (const void*)0)); glsafe(::glEnableVertexAttribArray(offset_id)); glsafe(::glVertexAttribDivisor(offset_id, 1)); glsafe(::glVertexAttribPointer(scales_id, 2, GL_FLOAT, GL_FALSE, instance_stride, (const void*)(3 * sizeof(float)))); glsafe(::glEnableVertexAttribArray(scales_id)); glsafe(::glVertexAttribDivisor(scales_id, 1)); const Geometry& data = m_render_data.geometry; const GLenum mode = get_primitive_mode(data.format); const GLenum index_type = get_index_type(data); const size_t vertex_stride_bytes = Geometry::vertex_stride_bytes(data.format); const bool position = Geometry::has_position(data.format); const bool normal = Geometry::has_normal(data.format); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, m_render_data.vbo_id)); if (position) { glsafe(::glVertexAttribPointer(position_id, Geometry::position_stride_floats(data.format), GL_FLOAT, GL_FALSE, vertex_stride_bytes, (const void*)Geometry::position_offset_bytes(data.format))); glsafe(::glEnableVertexAttribArray(position_id)); } if (normal) { glsafe(::glVertexAttribPointer(normal_id, Geometry::normal_stride_floats(data.format), GL_FLOAT, GL_FALSE, vertex_stride_bytes, (const void*)Geometry::normal_offset_bytes(data.format))); glsafe(::glEnableVertexAttribArray(normal_id)); } shader->set_uniform("uniform_color", data.color); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_render_data.ibo_id)); glsafe(::glDrawElementsInstanced(mode, indices_count(), index_type, (const void*)0, instances_count)); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)); if (normal) glsafe(::glDisableVertexAttribArray(normal_id)); if (position) glsafe(::glDisableVertexAttribArray(position_id)); glsafe(::glDisableVertexAttribArray(scales_id)); glsafe(::glDisableVertexAttribArray(offset_id)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0)); } bool GLModel::send_to_gpu() { if (m_render_data.vbo_id > 0 || m_render_data.ibo_id > 0) { assert(false); return false; } Geometry& data = m_render_data.geometry; if (data.vertices.empty() || data.indices.empty()) { assert(false); return false; } // vertices glsafe(::glGenBuffers(1, &m_render_data.vbo_id)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, m_render_data.vbo_id)); glsafe(::glBufferData(GL_ARRAY_BUFFER, data.vertices_size_bytes(), data.vertices.data(), GL_STATIC_DRAW)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0)); m_render_data.vertices_count = vertices_count(); data.vertices = std::vector(); // indices glsafe(::glGenBuffers(1, &m_render_data.ibo_id)); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_render_data.ibo_id)); const size_t indices_count = data.indices.size(); if (m_render_data.vertices_count <= 256) { // convert indices to unsigned char to save gpu memory std::vector reduced_indices(indices_count); for (size_t i = 0; i < indices_count; ++i) { reduced_indices[i] = (unsigned char)data.indices[i]; } data.index_type = Geometry::EIndexType::UBYTE; glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices_count * sizeof(unsigned char), reduced_indices.data(), GL_STATIC_DRAW)); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)); } else if (m_render_data.vertices_count <= 65536) { // convert indices to unsigned short to save gpu memory std::vector reduced_indices(indices_count); for (size_t i = 0; i < data.indices.size(); ++i) { reduced_indices[i] = (unsigned short)data.indices[i]; } data.index_type = Geometry::EIndexType::USHORT; glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices_count * sizeof(unsigned short), reduced_indices.data(), GL_STATIC_DRAW)); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)); } else { data.index_type = Geometry::EIndexType::UINT; glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, data.indices_size_bytes(), data.indices.data(), GL_STATIC_DRAW)); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)); } m_render_data.indices_count = indices_count; data.indices = std::vector(); return true; } template inline bool all_vertices_inside(const GLModel::Geometry& geometry, Fn fn) { const size_t position_stride_floats = geometry.position_stride_floats(geometry.format); const size_t position_offset_floats = geometry.position_offset_floats(geometry.format); assert(position_stride_floats == 3); if (geometry.vertices.empty() || position_stride_floats != 3) return false; for (auto it = geometry.vertices.begin(); it != geometry.vertices.end(); ) { it += position_offset_floats; if (!fn({ *it, *(it + 1), *(it + 2) })) return false; it += (geometry.vertex_stride_floats(geometry.format) - position_offset_floats - position_stride_floats); } return true; } bool contains(const BuildVolume& volume, const GLModel& model, bool ignore_bottom) { static constexpr const double epsilon = BuildVolume::BedEpsilon; switch (volume.type()) { case BuildVolume_Type::Rectangle: { BoundingBox3Base build_volume = volume.bounding_volume().inflated(epsilon); if (volume.printable_height() == 0.0) build_volume.max.z() = std::numeric_limits::max(); if (ignore_bottom) build_volume.min.z() = -std::numeric_limits::max(); const BoundingBoxf3& model_box = model.get_bounding_box(); return build_volume.contains(model_box.min) && build_volume.contains(model_box.max); } case BuildVolume_Type::Circle: { const Geometry::Circled& circle = volume.circle(); const Vec2f c = unscaled(circle.center); const float r = unscaled(circle.radius) + float(epsilon); const float r2 = sqr(r); return volume.printable_height() == 0.0 ? all_vertices_inside(model.get_geometry(), [c, r2](const Vec3f& p) { return (to_2d(p) - c).squaredNorm() <= r2; }) : all_vertices_inside(model.get_geometry(), [c, r2, z = volume.printable_height() + epsilon](const Vec3f& p) { return (to_2d(p) - c).squaredNorm() <= r2 && p.z() <= z; }); } case BuildVolume_Type::Convex: //FIXME doing test on convex hull until we learn to do test on non-convex polygons efficiently. case BuildVolume_Type::Custom: return volume.printable_height() == 0.0 ? all_vertices_inside(model.get_geometry(), [&volume](const Vec3f& p) { return Geometry::inside_convex_polygon(volume.top_bottom_convex_hull_decomposition_bed(), to_2d(p).cast()); }) : all_vertices_inside(model.get_geometry(), [&volume, z = volume.printable_height() + epsilon](const Vec3f& p) { return Geometry::inside_convex_polygon(volume.top_bottom_convex_hull_decomposition_bed(), to_2d(p).cast()) && p.z() <= z; }); default: return true; } } GLModel::Geometry stilized_arrow(unsigned int resolution, float tip_radius, float tip_height, float stem_radius, float stem_height) { resolution = std::max(4, resolution); GLModel::Geometry data; data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3 }; data.reserve_vertices(6 * resolution + 2); data.reserve_indices(6 * resolution * 3); const float angle_step = 2.0f * float(PI) / float(resolution); std::vector cosines(resolution); std::vector sines(resolution); for (unsigned int i = 0; i < resolution; ++i) { const float angle = angle_step * float(i); cosines[i] = ::cos(angle); sines[i] = -::sin(angle); } const float total_height = tip_height + stem_height; // tip vertices/normals data.add_vertex(Vec3f(0.0f, 0.0f, total_height), (Vec3f)Vec3f::UnitZ()); for (unsigned int i = 0; i < resolution; ++i) { data.add_vertex(Vec3f(tip_radius * sines[i], tip_radius * cosines[i], stem_height), Vec3f(sines[i], cosines[i], 0.0f)); } // tip triangles for (unsigned int i = 0; i < resolution; ++i) { const unsigned int v3 = (i < resolution - 1) ? i + 2 : 1; data.add_triangle(0, i + 1, v3); } // tip cap outer perimeter vertices for (unsigned int i = 0; i < resolution; ++i) { data.add_vertex(Vec3f(tip_radius * sines[i], tip_radius * cosines[i], stem_height), (Vec3f)(-Vec3f::UnitZ())); } // tip cap inner perimeter vertices for (unsigned int i = 0; i < resolution; ++i) { data.add_vertex(Vec3f(stem_radius * sines[i], stem_radius * cosines[i], stem_height), (Vec3f)(-Vec3f::UnitZ())); } // tip cap triangles for (unsigned int i = 0; i < resolution; ++i) { const unsigned int v2 = (i < resolution - 1) ? i + resolution + 2 : resolution + 1; const unsigned int v3 = (i < resolution - 1) ? i + 2 * resolution + 2 : 2 * resolution + 1; data.add_triangle(i + resolution + 1, v3, v2); data.add_triangle(i + resolution + 1, i + 2 * resolution + 1, v3); } // stem bottom vertices for (unsigned int i = 0; i < resolution; ++i) { data.add_vertex(Vec3f(stem_radius * sines[i], stem_radius * cosines[i], stem_height), Vec3f(sines[i], cosines[i], 0.0f)); } // stem top vertices for (unsigned int i = 0; i < resolution; ++i) { data.add_vertex(Vec3f(stem_radius * sines[i], stem_radius * cosines[i], 0.0f), Vec3f(sines[i], cosines[i], 0.0f)); } // stem triangles for (unsigned int i = 0; i < resolution; ++i) { const unsigned int v2 = (i < resolution - 1) ? i + 3 * resolution + 2 : 3 * resolution + 1; const unsigned int v3 = (i < resolution - 1) ? i + 4 * resolution + 2 : 4 * resolution + 1; data.add_triangle(i + 3 * resolution + 1, v3, v2); data.add_triangle(i + 3 * resolution + 1, i + 4 * resolution + 1, v3); } // stem cap vertices data.add_vertex((Vec3f)Vec3f::Zero(), (Vec3f)(-Vec3f::UnitZ())); for (unsigned int i = 0; i < resolution; ++i) { data.add_vertex(Vec3f(stem_radius * sines[i], stem_radius * cosines[i], 0.0f), (Vec3f)(-Vec3f::UnitZ())); } // stem cap triangles for (unsigned int i = 0; i < resolution; ++i) { const unsigned int v3 = (i < resolution - 1) ? i + 5 * resolution + 3 : 5 * resolution + 2; data.add_triangle(5 * resolution + 1, v3, i + 5 * resolution + 2); } return data; } GLModel::Geometry circular_arrow(unsigned int resolution, float radius, float tip_height, float tip_width, float stem_width, float thickness) { resolution = std::max(2, resolution); GLModel::Geometry data; data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3 }; data.reserve_vertices(8 * (resolution + 1) + 30); data.reserve_indices((8 * resolution + 16) * 3); const float half_thickness = 0.5f * thickness; const float half_stem_width = 0.5f * stem_width; const float half_tip_width = 0.5f * tip_width; const float outer_radius = radius + half_stem_width; const float inner_radius = radius - half_stem_width; const float step_angle = 0.5f * float(PI) / float(resolution); // tip // top face vertices data.add_vertex(Vec3f(0.0f, outer_radius, half_thickness), (Vec3f)Vec3f::UnitZ()); data.add_vertex(Vec3f(0.0f, radius + half_tip_width, half_thickness), (Vec3f)Vec3f::UnitZ()); data.add_vertex(Vec3f(-tip_height, radius, half_thickness), (Vec3f)Vec3f::UnitZ()); data.add_vertex(Vec3f(0.0f, radius - half_tip_width, half_thickness), (Vec3f)Vec3f::UnitZ()); data.add_vertex(Vec3f(0.0f, inner_radius, half_thickness), (Vec3f)Vec3f::UnitZ()); // top face triangles data.add_triangle(0, 1, 2); data.add_triangle(0, 2, 4); data.add_triangle(4, 2, 3); // bottom face vertices data.add_vertex(Vec3f(0.0f, outer_radius, -half_thickness), (Vec3f)(-Vec3f::UnitZ())); data.add_vertex(Vec3f(0.0f, radius + half_tip_width, -half_thickness), (Vec3f)(-Vec3f::UnitZ())); data.add_vertex(Vec3f(-tip_height, radius, -half_thickness), (Vec3f)(-Vec3f::UnitZ())); data.add_vertex(Vec3f(0.0f, radius - half_tip_width, -half_thickness), (Vec3f)(-Vec3f::UnitZ())); data.add_vertex(Vec3f(0.0f, inner_radius, -half_thickness), (Vec3f)(-Vec3f::UnitZ())); // bottom face triangles data.add_triangle(5, 7, 6); data.add_triangle(5, 9, 7); data.add_triangle(9, 8, 7); // side faces vertices data.add_vertex(Vec3f(0.0f, outer_radius, -half_thickness), (Vec3f)Vec3f::UnitX()); data.add_vertex(Vec3f(0.0f, radius + half_tip_width, -half_thickness), (Vec3f)Vec3f::UnitX()); data.add_vertex(Vec3f(0.0f, outer_radius, half_thickness), (Vec3f)Vec3f::UnitX()); data.add_vertex(Vec3f(0.0f, radius + half_tip_width, half_thickness), (Vec3f)Vec3f::UnitX()); Vec3f normal(-half_tip_width, tip_height, 0.0f); normal.normalize(); data.add_vertex(Vec3f(0.0f, radius + half_tip_width, -half_thickness), normal); data.add_vertex(Vec3f(-tip_height, radius, -half_thickness), normal); data.add_vertex(Vec3f(0.0f, radius + half_tip_width, half_thickness), normal); data.add_vertex(Vec3f(-tip_height, radius, half_thickness), normal); normal = { -half_tip_width, -tip_height, 0.0f }; normal.normalize(); data.add_vertex(Vec3f(-tip_height, radius, -half_thickness), normal); data.add_vertex(Vec3f(0.0f, radius - half_tip_width, -half_thickness), normal); data.add_vertex(Vec3f(-tip_height, radius, half_thickness), normal); data.add_vertex(Vec3f(0.0f, radius - half_tip_width, half_thickness), normal); data.add_vertex(Vec3f(0.0f, radius - half_tip_width, -half_thickness), (Vec3f)Vec3f::UnitX()); data.add_vertex(Vec3f(0.0f, inner_radius, -half_thickness), (Vec3f)Vec3f::UnitX()); data.add_vertex(Vec3f(0.0f, radius - half_tip_width, half_thickness), (Vec3f)Vec3f::UnitX()); data.add_vertex(Vec3f(0.0f, inner_radius, half_thickness), (Vec3f)Vec3f::UnitX()); // side face triangles for (unsigned int i = 0; i < 4; ++i) { const unsigned int ii = i * 4; data.add_triangle(10 + ii, 11 + ii, 13 + ii); data.add_triangle(10 + ii, 13 + ii, 12 + ii); } // stem // top face vertices for (unsigned int i = 0; i <= resolution; ++i) { const float angle = float(i) * step_angle; data.add_vertex(Vec3f(inner_radius * ::sin(angle), inner_radius * ::cos(angle), half_thickness), (Vec3f)Vec3f::UnitZ()); } for (unsigned int i = 0; i <= resolution; ++i) { const float angle = float(i) * step_angle; data.add_vertex(Vec3f(outer_radius * ::sin(angle), outer_radius * ::cos(angle), half_thickness), (Vec3f)Vec3f::UnitZ()); } // top face triangles for (unsigned int i = 0; i < resolution; ++i) { data.add_triangle(26 + i, 27 + i, 27 + resolution + i); data.add_triangle(27 + i, 28 + resolution + i, 27 + resolution + i); } // bottom face vertices for (unsigned int i = 0; i <= resolution; ++i) { const float angle = float(i) * step_angle; data.add_vertex(Vec3f(inner_radius * ::sin(angle), inner_radius * ::cos(angle), -half_thickness), (Vec3f)(-Vec3f::UnitZ())); } for (unsigned int i = 0; i <= resolution; ++i) { const float angle = float(i) * step_angle; data.add_vertex(Vec3f(outer_radius * ::sin(angle), outer_radius * ::cos(angle), -half_thickness), (Vec3f)(-Vec3f::UnitZ())); } // bottom face triangles for (unsigned int i = 0; i < resolution; ++i) { data.add_triangle(28 + 2 * resolution + i, 29 + 3 * resolution + i, 29 + 2 * resolution + i); data.add_triangle(29 + 2 * resolution + i, 29 + 3 * resolution + i, 30 + 3 * resolution + i); } // side faces vertices and triangles for (unsigned int i = 0; i <= resolution; ++i) { const float angle = float(i) * step_angle; const float c = ::cos(angle); const float s = ::sin(angle); data.add_vertex(Vec3f(inner_radius * s, inner_radius * c, -half_thickness), Vec3f(-s, -c, 0.0f)); } for (unsigned int i = 0; i <= resolution; ++i) { const float angle = float(i) * step_angle; const float c = ::cos(angle); const float s = ::sin(angle); data.add_vertex(Vec3f(inner_radius * s, inner_radius * c, half_thickness), Vec3f(-s, -c, 0.0f)); } unsigned int first_id = 26 + 4 * (resolution + 1); for (unsigned int i = 0; i < resolution; ++i) { const unsigned int ii = first_id + i; data.add_triangle(ii, ii + 1, ii + resolution + 2); data.add_triangle(ii, ii + resolution + 2, ii + resolution + 1); } data.add_vertex(Vec3f(inner_radius, 0.0f, -half_thickness), (Vec3f)(-Vec3f::UnitY())); data.add_vertex(Vec3f(outer_radius, 0.0f, -half_thickness), (Vec3f)(-Vec3f::UnitY())); data.add_vertex(Vec3f(inner_radius, 0.0f, half_thickness), (Vec3f)(-Vec3f::UnitY())); data.add_vertex(Vec3f(outer_radius, 0.0f, half_thickness), (Vec3f)(-Vec3f::UnitY())); first_id = 26 + 6 * (resolution + 1); data.add_triangle(first_id, first_id + 1, first_id + 3); data.add_triangle(first_id, first_id + 3, first_id + 2); for (int i = resolution; i >= 0; --i) { const float angle = float(i) * step_angle; const float c = ::cos(angle); const float s = ::sin(angle); data.add_vertex(Vec3f(outer_radius * s, outer_radius * c, -half_thickness), Vec3f(s, c, 0.0f)); } for (int i = resolution; i >= 0; --i) { const float angle = float(i) * step_angle; const float c = ::cos(angle); const float s = ::sin(angle); data.add_vertex(Vec3f(outer_radius * s, outer_radius * c, +half_thickness), Vec3f(s, c, 0.0f)); } first_id = 30 + 6 * (resolution + 1); for (unsigned int i = 0; i < resolution; ++i) { const unsigned int ii = first_id + i; data.add_triangle(ii, ii + 1, ii + resolution + 2); data.add_triangle(ii, ii + resolution + 2, ii + resolution + 1); } return data; } GLModel::Geometry straight_arrow(float tip_width, float tip_height, float stem_width, float stem_height, float thickness) { GLModel::Geometry data; data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3 }; data.reserve_vertices(42); data.reserve_indices(72); const float half_thickness = 0.5f * thickness; const float half_stem_width = 0.5f * stem_width; const float half_tip_width = 0.5f * tip_width; const float total_height = tip_height + stem_height; // top face vertices data.add_vertex(Vec3f(half_stem_width, 0.0f, half_thickness), (Vec3f)Vec3f::UnitZ()); data.add_vertex(Vec3f(half_stem_width, stem_height, half_thickness), (Vec3f)Vec3f::UnitZ()); data.add_vertex(Vec3f(half_tip_width, stem_height, half_thickness), (Vec3f)Vec3f::UnitZ()); data.add_vertex(Vec3f(0.0f, total_height, half_thickness), (Vec3f)Vec3f::UnitZ()); data.add_vertex(Vec3f(-half_tip_width, stem_height, half_thickness), (Vec3f)Vec3f::UnitZ()); data.add_vertex(Vec3f(-half_stem_width, stem_height, half_thickness), (Vec3f)Vec3f::UnitZ()); data.add_vertex(Vec3f(-half_stem_width, 0.0f, half_thickness), (Vec3f)Vec3f::UnitZ()); // top face triangles data.add_triangle(0, 1, 6); data.add_triangle(6, 1, 5); data.add_triangle(4, 5, 3); data.add_triangle(5, 1, 3); data.add_triangle(1, 2, 3); // bottom face vertices data.add_vertex(Vec3f(half_stem_width, 0.0f, -half_thickness), (Vec3f)(-Vec3f::UnitZ())); data.add_vertex(Vec3f(half_stem_width, stem_height, -half_thickness), (Vec3f)(-Vec3f::UnitZ())); data.add_vertex(Vec3f(half_tip_width, stem_height, -half_thickness), (Vec3f)(-Vec3f::UnitZ())); data.add_vertex(Vec3f(0.0f, total_height, -half_thickness), (Vec3f)(-Vec3f::UnitZ())); data.add_vertex(Vec3f(-half_tip_width, stem_height, -half_thickness), (Vec3f)(-Vec3f::UnitZ())); data.add_vertex(Vec3f(-half_stem_width, stem_height, -half_thickness), (Vec3f)(-Vec3f::UnitZ())); data.add_vertex(Vec3f(-half_stem_width, 0.0f, -half_thickness), (Vec3f)(-Vec3f::UnitZ())); // bottom face triangles data.add_triangle(7, 13, 8); data.add_triangle(13, 12, 8); data.add_triangle(12, 11, 10); data.add_triangle(8, 12, 10); data.add_triangle(9, 8, 10); // side faces vertices data.add_vertex(Vec3f(half_stem_width, 0.0f, -half_thickness), (Vec3f)Vec3f::UnitX()); data.add_vertex(Vec3f(half_stem_width, stem_height, -half_thickness), (Vec3f)Vec3f::UnitX()); data.add_vertex(Vec3f(half_stem_width, 0.0f, half_thickness), (Vec3f)Vec3f::UnitX()); data.add_vertex(Vec3f(half_stem_width, stem_height, half_thickness), (Vec3f)Vec3f::UnitX()); data.add_vertex(Vec3f(half_stem_width, stem_height, -half_thickness), (Vec3f)(-Vec3f::UnitY())); data.add_vertex(Vec3f(half_tip_width, stem_height, -half_thickness), (Vec3f)(-Vec3f::UnitY())); data.add_vertex(Vec3f(half_stem_width, stem_height, half_thickness), (Vec3f)(-Vec3f::UnitY())); data.add_vertex(Vec3f(half_tip_width, stem_height, half_thickness), (Vec3f)(-Vec3f::UnitY())); Vec3f normal(tip_height, half_tip_width, 0.0f); normal.normalize(); data.add_vertex(Vec3f(half_tip_width, stem_height, -half_thickness), normal); data.add_vertex(Vec3f(0.0f, total_height, -half_thickness), normal); data.add_vertex(Vec3f(half_tip_width, stem_height, half_thickness), normal); data.add_vertex(Vec3f(0.0f, total_height, half_thickness), normal); normal = { -tip_height, half_tip_width, 0.0f }; normal.normalize(); data.add_vertex(Vec3f(0.0f, total_height, -half_thickness), normal); data.add_vertex(Vec3f(-half_tip_width, stem_height, -half_thickness), normal); data.add_vertex(Vec3f(0.0f, total_height, half_thickness), normal); data.add_vertex(Vec3f(-half_tip_width, stem_height, half_thickness), normal); data.add_vertex(Vec3f(-half_tip_width, stem_height, -half_thickness), (Vec3f)(-Vec3f::UnitY())); data.add_vertex(Vec3f(-half_stem_width, stem_height, -half_thickness), (Vec3f)(-Vec3f::UnitY())); data.add_vertex(Vec3f(-half_tip_width, stem_height, half_thickness), (Vec3f)(-Vec3f::UnitY())); data.add_vertex(Vec3f(-half_stem_width, stem_height, half_thickness), (Vec3f)(-Vec3f::UnitY())); data.add_vertex(Vec3f(-half_stem_width, stem_height, -half_thickness), (Vec3f)(-Vec3f::UnitX())); data.add_vertex(Vec3f(-half_stem_width, 0.0f, -half_thickness), (Vec3f)(-Vec3f::UnitX())); data.add_vertex(Vec3f(-half_stem_width, stem_height, half_thickness), (Vec3f)(-Vec3f::UnitX())); data.add_vertex(Vec3f(-half_stem_width, 0.0f, half_thickness), (Vec3f)(-Vec3f::UnitX())); data.add_vertex(Vec3f(-half_stem_width, 0.0f, -half_thickness), (Vec3f)(-Vec3f::UnitY())); data.add_vertex(Vec3f(half_stem_width, 0.0f, -half_thickness), (Vec3f)(-Vec3f::UnitY())); data.add_vertex(Vec3f(-half_stem_width, 0.0f, half_thickness), (Vec3f)(-Vec3f::UnitY())); data.add_vertex(Vec3f(half_stem_width, 0.0f, half_thickness), (Vec3f)(-Vec3f::UnitY())); // side face triangles for (unsigned int i = 0; i < 7; ++i) { const unsigned int ii = i * 4; data.add_triangle(14 + ii, 15 + ii, 17 + ii); data.add_triangle(14 + ii, 17 + ii, 16 + ii); } return data; } GLModel::Geometry diamond(unsigned int resolution) { resolution = std::max(4, resolution); GLModel::Geometry data; data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3 }; data.reserve_vertices(resolution + 2); data.reserve_indices((2 * (resolution + 1)) * 3); const float step = 2.0f * float(PI) / float(resolution); // vertices for (unsigned int i = 0; i < resolution; ++i) { const float ii = float(i) * step; const Vec3f p = { 0.5f * ::cos(ii), 0.5f * ::sin(ii), 0.0f }; data.add_vertex(p, (Vec3f)p.normalized()); } Vec3f p = { 0.0f, 0.0f, 0.5f }; data.add_vertex(p, (Vec3f)p.normalized()); p = { 0.0f, 0.0f, -0.5f }; data.add_vertex(p, (Vec3f)p.normalized()); // triangles // top for (unsigned int i = 0; i < resolution; ++i) { data.add_triangle(i + 0, i + 1, resolution); } data.add_triangle(resolution - 1, 0, resolution); // bottom for (unsigned int i = 0; i < resolution; ++i) { data.add_triangle(i + 0, resolution + 1, i + 1); } data.add_triangle(resolution - 1, resolution + 1, 0); return data; } GLModel::Geometry smooth_sphere(unsigned int resolution, float radius) { resolution = std::max(4, resolution); const unsigned int sectorCount = resolution; const unsigned int stackCount = resolution; const float sectorStep = float(2.0 * M_PI / sectorCount); const float stackStep = float(M_PI / stackCount); GLModel::Geometry data; data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3 }; data.reserve_vertices((stackCount - 1) * sectorCount + 2); data.reserve_indices((2 * (stackCount - 1) * sectorCount) * 3); // vertices for (unsigned int i = 0; i <= stackCount; ++i) { // from pi/2 to -pi/2 const double stackAngle = 0.5 * M_PI - stackStep * i; const double xy = double(radius) * ::cos(stackAngle); const double z = double(radius) * ::sin(stackAngle); if (i == 0 || i == stackCount) { const Vec3f v(float(xy), 0.0f, float(z)); data.add_vertex(v, (Vec3f)v.normalized()); } else { for (unsigned int j = 0; j < sectorCount; ++j) { // from 0 to 2pi const double sectorAngle = sectorStep * j; const Vec3f v(float(xy * std::cos(sectorAngle)), float(xy * std::sin(sectorAngle)), float(z)); data.add_vertex(v, (Vec3f)v.normalized()); } } } // triangles for (unsigned int i = 0; i < stackCount; ++i) { // Beginning of current stack. unsigned int k1 = (i == 0) ? 0 : (1 + (i - 1) * sectorCount); const unsigned int k1_first = k1; // Beginning of next stack. unsigned int k2 = (i == 0) ? 1 : (k1 + sectorCount); const unsigned int k2_first = k2; for (unsigned int j = 0; j < sectorCount; ++j) { // 2 triangles per sector excluding first and last stacks unsigned int k1_next = k1; unsigned int k2_next = k2; if (i != 0) { k1_next = (j + 1 == sectorCount) ? k1_first : (k1 + 1); data.add_triangle(k1, k2, k1_next); } if (i + 1 != stackCount) { k2_next = (j + 1 == sectorCount) ? k2_first : (k2 + 1); data.add_triangle(k1_next, k2, k2_next); } k1 = k1_next; k2 = k2_next; } } return data; } GLModel::Geometry smooth_cylinder(unsigned int resolution, float radius, float height) { resolution = std::max(4, resolution); const unsigned int sectorCount = resolution; const float sectorStep = 2.0f * float(M_PI) / float(sectorCount); GLModel::Geometry data; data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3 }; data.reserve_vertices(sectorCount * 4 + 2); data.reserve_indices(sectorCount * 4 * 3); auto generate_vertices_on_circle = [sectorCount, sectorStep](float radius) { std::vector ret; ret.reserve(sectorCount); for (unsigned int i = 0; i < sectorCount; ++i) { // from 0 to 2pi const float sectorAngle = sectorStep * i; ret.emplace_back(radius * std::cos(sectorAngle), radius * std::sin(sectorAngle), 0.0f); } return ret; }; const std::vector base_vertices = generate_vertices_on_circle(radius); const Vec3f h = height * Vec3f::UnitZ(); // stem vertices for (unsigned int i = 0; i < sectorCount; ++i) { const Vec3f& v = base_vertices[i]; const Vec3f n = v.normalized(); data.add_vertex(v, n); data.add_vertex(v + h, n); } // stem triangles for (unsigned int i = 0; i < sectorCount; ++i) { unsigned int v1 = i * 2; unsigned int v2 = (i < sectorCount - 1) ? v1 + 2 : 0; unsigned int v3 = v2 + 1; unsigned int v4 = v1 + 1; data.add_triangle(v1, v2, v3); data.add_triangle(v1, v3, v4); } // bottom cap vertices Vec3f cap_center = Vec3f::Zero(); unsigned int cap_center_id = data.vertices_count(); Vec3f normal = -Vec3f::UnitZ(); data.add_vertex(cap_center, normal); for (unsigned int i = 0; i < sectorCount; ++i) { data.add_vertex(base_vertices[i], normal); } // bottom cap triangles for (unsigned int i = 0; i < sectorCount; ++i) { data.add_triangle(cap_center_id, (i < sectorCount - 1) ? cap_center_id + i + 2 : cap_center_id + 1, cap_center_id + i + 1); } // top cap vertices cap_center += h; cap_center_id = data.vertices_count(); normal = -normal; data.add_vertex(cap_center, normal); for (unsigned int i = 0; i < sectorCount; ++i) { data.add_vertex(base_vertices[i] + h, normal); } // top cap triangles for (unsigned int i = 0; i < sectorCount; ++i) { data.add_triangle(cap_center_id, cap_center_id + i + 1, (i < sectorCount - 1) ? cap_center_id + i + 2 : cap_center_id + 1); } return data; } GLModel::Geometry smooth_torus(unsigned int primary_resolution, unsigned int secondary_resolution, float radius, float thickness) { const unsigned int torus_sector_count = std::max(4, primary_resolution); const float torus_sector_step = 2.0f * float(M_PI) / float(torus_sector_count); const unsigned int section_sector_count = std::max(4, secondary_resolution); const float section_sector_step = 2.0f * float(M_PI) / float(section_sector_count); GLModel::Geometry data; data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3 }; data.reserve_vertices(torus_sector_count * section_sector_count); data.reserve_indices(torus_sector_count * section_sector_count * 2 * 3); // vertices for (unsigned int i = 0; i < torus_sector_count; ++i) { const float section_angle = torus_sector_step * i; const float csa = std::cos(section_angle); const float ssa = std::sin(section_angle); const Vec3f section_center(radius * csa, radius * ssa, 0.0f); for (unsigned int j = 0; j < section_sector_count; ++j) { const float circle_angle = section_sector_step * j; const float thickness_xy = thickness * std::cos(circle_angle); const float thickness_z = thickness * std::sin(circle_angle); const Vec3f v(thickness_xy * csa, thickness_xy * ssa, thickness_z); data.add_vertex(section_center + v, (Vec3f)v.normalized()); } } // triangles for (unsigned int i = 0; i < torus_sector_count; ++i) { const unsigned int ii = i * section_sector_count; const unsigned int ii_next = ((i + 1) % torus_sector_count) * section_sector_count; for (unsigned int j = 0; j < section_sector_count; ++j) { const unsigned int j_next = (j + 1) % section_sector_count; const unsigned int i0 = ii + j; const unsigned int i1 = ii_next + j; const unsigned int i2 = ii_next + j_next; const unsigned int i3 = ii + j_next; data.add_triangle(i0, i1, i2); data.add_triangle(i0, i2, i3); } } return data; } GLModel::Geometry init_plane_data(const indexed_triangle_set& its, const std::vector& triangle_indices, float normal_offset) { GLModel::Geometry init_data; init_data.format = { GUI::GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3 }; init_data.reserve_indices(3 * triangle_indices.size()); init_data.reserve_vertices(3 * triangle_indices.size()); unsigned int i = 0; for (int idx : triangle_indices) { Vec3f v0 = its.vertices[its.indices[idx][0]]; Vec3f v1 = its.vertices[its.indices[idx][1]]; Vec3f v2 = its.vertices[its.indices[idx][2]]; const Vec3f n = (v1 - v0).cross(v2 - v0).normalized(); if (std::abs(normal_offset) > 0.0) { v0 = v0 + n * normal_offset; v1 = v1 + n * normal_offset; v2 = v2 + n * normal_offset; } init_data.add_vertex(v0, n); init_data.add_vertex(v1, n); init_data.add_vertex(v2, n); init_data.add_triangle(i, i + 1, i + 2); i += 3; } return init_data; } GLModel::Geometry init_torus_data(unsigned int primary_resolution, unsigned int secondary_resolution, const Vec3f & center, float radius, float thickness, const Vec3f & model_axis, const Transform3f &world_trafo) { const unsigned int torus_sector_count = std::max(4, primary_resolution); const unsigned int section_sector_count = std::max(4, secondary_resolution); const float torus_sector_step = 2.0f * float(M_PI) / float(torus_sector_count); const float section_sector_step = 2.0f * float(M_PI) / float(section_sector_count); GLModel::Geometry data; data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3 }; data.reserve_vertices(torus_sector_count * section_sector_count); data.reserve_indices(torus_sector_count * section_sector_count * 2 * 3); // vertices const Transform3f local_to_world_matrix = world_trafo * Geometry::translation_transform(center.cast()).cast() * Eigen::Quaternion::FromTwoVectors(Vec3f::UnitZ(), model_axis); for (unsigned int i = 0; i < torus_sector_count; ++i) { const float section_angle = torus_sector_step * i; const Vec3f radius_dir(std::cos(section_angle), std::sin(section_angle), 0.0f); const Vec3f local_section_center = radius * radius_dir; const Vec3f world_section_center = local_to_world_matrix * local_section_center; const Vec3f local_section_normal = local_section_center.normalized().cross(Vec3f::UnitZ()).normalized(); const Vec3f world_section_normal = (Vec3f) (local_to_world_matrix.matrix().block(0, 0, 3, 3) * local_section_normal).normalized(); const Vec3f base_v = thickness * radius_dir; for (unsigned int j = 0; j < section_sector_count; ++j) { const Vec3f v = Eigen::AngleAxisf(section_sector_step * j, world_section_normal) * base_v; data.add_vertex(world_section_center + v, (Vec3f) v.normalized()); } } // triangles for (unsigned int i = 0; i < torus_sector_count; ++i) { const unsigned int ii = i * section_sector_count; const unsigned int ii_next = ((i + 1) % torus_sector_count) * section_sector_count; for (unsigned int j = 0; j < section_sector_count; ++j) { const unsigned int j_next = (j + 1) % section_sector_count; const unsigned int i0 = ii + j; const unsigned int i1 = ii_next + j; const unsigned int i2 = ii_next + j_next; const unsigned int i3 = ii + j_next; data.add_triangle(i0, i1, i2); data.add_triangle(i0, i2, i3); } } return data; } } // namespace GUI } // namespace Slic3r