Fixed conflicts after merging with master

This commit is contained in:
Enrico Turri 2018-08-27 14:00:53 +02:00
commit fef5a5252e
38 changed files with 835 additions and 126 deletions

View file

@ -4,10 +4,12 @@
#include "../../slic3r/GUI/GLCanvas3D.hpp"
#include <Eigen/Dense>
#include "../../libslic3r/Geometry.hpp"
#include <GL/glew.h>
#include <iostream>
#include <numeric>
static const float DEFAULT_BASE_COLOR[3] = { 0.625f, 0.625f, 0.625f };
static const float DEFAULT_DRAG_COLOR[3] = { 1.0f, 1.0f, 1.0f };
@ -163,7 +165,6 @@ GLGizmoBase::GLGizmoBase(GLCanvas3D& parent)
, m_group_id(-1)
, m_state(Off)
, m_hover_id(-1)
, m_is_container(false)
{
::memcpy((void*)m_base_color, (const void*)DEFAULT_BASE_COLOR, 3 * sizeof(float));
::memcpy((void*)m_drag_color, (const void*)DEFAULT_DRAG_COLOR, 3 * sizeof(float));
@ -172,7 +173,7 @@ GLGizmoBase::GLGizmoBase(GLCanvas3D& parent)
void GLGizmoBase::set_hover_id(int id)
{
if (m_is_container || (id < (int)m_grabbers.size()))
if (m_grabbers.empty() || (id < (int)m_grabbers.size()))
{
m_hover_id = id;
on_set_hover_id();
@ -602,8 +603,6 @@ GLGizmoRotate3D::GLGizmoRotate3D(GLCanvas3D& parent)
, m_y(parent, GLGizmoRotate::Y)
, m_z(parent, GLGizmoRotate::Z)
{
m_is_container = true;
m_x.set_group_id(0);
m_y.set_group_id(1);
m_z.set_group_id(2);
@ -1165,5 +1164,323 @@ double GLGizmoScale3D::calc_ratio(unsigned int preferred_plane_id, const Linef3&
return ratio;
}
GLGizmoFlatten::GLGizmoFlatten(GLCanvas3D& parent)
: GLGizmoBase(parent)
, m_normal(0.0, 0.0, 0.0)
{
}
bool GLGizmoFlatten::on_init()
{
std::string path = resources_dir() + "/icons/overlay/";
std::string filename = path + "layflat_off.png";
if (!m_textures[Off].load_from_file(filename, false))
return false;
filename = path + "layflat_hover.png";
if (!m_textures[Hover].load_from_file(filename, false))
return false;
filename = path + "layflat_on.png";
if (!m_textures[On].load_from_file(filename, false))
return false;
return true;
}
void GLGizmoFlatten::on_start_dragging()
{
if (m_hover_id != -1)
m_normal = m_planes[m_hover_id].normal;
}
void GLGizmoFlatten::on_render(const BoundingBoxf3& box) const
{
// the dragged_offset is a vector measuring where was the object moved
// with the gizmo being on. This is reset in set_flattening_data and
// does not work correctly when there are multiple copies.
if (!m_center) // this is the first bounding box that we see
m_center.reset(new Vec3d(box.center()));
Vec3d dragged_offset = box.center() - *m_center;
bool blending_was_enabled = ::glIsEnabled(GL_BLEND);
bool depth_test_was_enabled = ::glIsEnabled(GL_DEPTH_TEST);
::glEnable(GL_BLEND);
::glEnable(GL_DEPTH_TEST);
for (int i=0; i<(int)m_planes.size(); ++i) {
if (i == m_hover_id)
::glColor4f(0.9f, 0.9f, 0.9f, 0.75f);
else
::glColor4f(0.9f, 0.9f, 0.9f, 0.5f);
for (Vec2d offset : m_instances_positions) {
offset += to_2d(dragged_offset);
::glBegin(GL_POLYGON);
for (const Vec3d& vertex : m_planes[i].vertices)
::glVertex3f((GLfloat)(vertex(0) + offset(0)), (GLfloat)(vertex(1) + offset(1)), (GLfloat)vertex(2));
::glEnd();
}
}
if (!blending_was_enabled)
::glDisable(GL_BLEND);
if (!depth_test_was_enabled)
::glDisable(GL_DEPTH_TEST);
}
void GLGizmoFlatten::on_render_for_picking(const BoundingBoxf3& box) const
{
static const GLfloat INV_255 = 1.0f / 255.0f;
::glDisable(GL_DEPTH_TEST);
for (unsigned int i = 0; i < m_planes.size(); ++i)
{
::glColor3f(1.0f, 1.0f, (254.0f - (float)i) * INV_255);
for (const Vec2d& offset : m_instances_positions) {
::glBegin(GL_POLYGON);
for (const Vec3d& vertex : m_planes[i].vertices)
::glVertex3f((GLfloat)(vertex(0) + offset(0)), (GLfloat)vertex(1) + offset(1), (GLfloat)vertex(2));
::glEnd();
}
}
}
// TODO - remove and use Eigen instead
static Vec3d super_rotation(Vec3d axis, float angle, const Vec3d& point)
{
axis.normalize();
float x = (float)axis(0);
float y = (float)axis(1);
float z = (float)axis(2);
float s = sin(angle);
float c = cos(angle);
float D = 1 - c;
float matrix[3][3] = { { c + x*x*D, x*y*D - z*s, x*z*D + y*s },
{ y*x*D + z*s, c + y*y*D, y*z*D - x*s },
{ z*x*D - y*s, z*y*D + x*s, c + z*z*D } };
float in[3] = { (float)point(0), (float)point(1), (float)point(2) };
float out[3] = { 0, 0, 0 };
for (unsigned char i = 0; i<3; ++i)
for (unsigned char j = 0; j<3; ++j)
out[i] += matrix[i][j] * in[j];
return Vec3d((double)out[0], (double)out[1], (double)out[2]);
}
void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object)
{
m_center.release(); // object is not being dragged (this would not be called otherwise) - we must forget about the bounding box position...
m_model_object = model_object;
// ...and save the updated positions of the object instances:
if (m_model_object && !m_model_object->instances.empty()) {
m_instances_positions.clear();
for (const auto* instance : m_model_object->instances)
m_instances_positions.emplace_back(instance->offset);
}
if (is_plane_update_necessary())
update_planes();
}
void GLGizmoFlatten::update_planes()
{
TriangleMesh ch;
for (const ModelVolume* vol : m_model_object->volumes)
ch.merge(vol->get_convex_hull());
ch = ch.convex_hull_3d();
ch.scale(m_model_object->instances.front()->scaling_factor);
ch.rotate_z(m_model_object->instances.front()->rotation);
m_planes.clear();
// Now we'll go through all the facets and append Points of facets sharing the same normal:
const int num_of_facets = ch.stl.stats.number_of_facets;
std::vector<int> facet_queue(num_of_facets, 0);
std::vector<bool> facet_visited(num_of_facets, false);
int facet_queue_cnt = 0;
const stl_normal* normal_ptr = nullptr;
while (1) {
// Find next unvisited triangle:
int facet_idx = 0;
for (; facet_idx < num_of_facets; ++ facet_idx)
if (!facet_visited[facet_idx]) {
facet_queue[facet_queue_cnt ++] = facet_idx;
facet_visited[facet_idx] = true;
normal_ptr = &ch.stl.facet_start[facet_idx].normal;
m_planes.emplace_back();
break;
}
if (facet_idx == num_of_facets)
break; // Everything was visited already
while (facet_queue_cnt > 0) {
int facet_idx = facet_queue[-- facet_queue_cnt];
const stl_normal& this_normal = ch.stl.facet_start[facet_idx].normal;
if (std::abs(this_normal(0) - (*normal_ptr)(0)) < 0.001 && std::abs(this_normal(1) - (*normal_ptr)(1)) < 0.001 && std::abs(this_normal(2) - (*normal_ptr)(2)) < 0.001) {
stl_vertex* first_vertex = ch.stl.facet_start[facet_idx].vertex;
for (int j=0; j<3; ++j)
m_planes.back().vertices.emplace_back(first_vertex[j](0), first_vertex[j](1), first_vertex[j](2));
facet_visited[facet_idx] = true;
for (int j = 0; j < 3; ++ j) {
int neighbor_idx = ch.stl.neighbors_start[facet_idx].neighbor[j];
if (! facet_visited[neighbor_idx])
facet_queue[facet_queue_cnt ++] = neighbor_idx;
}
}
}
m_planes.back().normal = Vec3d((double)(*normal_ptr)(0), (double)(*normal_ptr)(1), (double)(*normal_ptr)(2));
// if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected anyway):
if (m_planes.back().vertices.size() == 3 &&
(m_planes.back().vertices[0] - m_planes.back().vertices[1]).norm() < 1.f
|| (m_planes.back().vertices[0] - m_planes.back().vertices[2]).norm() < 1.f)
m_planes.pop_back();
}
// Now we'll go through all the polygons, transform the points into xy plane to process them:
for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) {
Pointf3s& polygon = m_planes[polygon_id].vertices;
const Vec3d& normal = m_planes[polygon_id].normal;
// We are going to rotate about z and y to flatten the plane
float angle_z = 0.f;
float angle_y = 0.f;
if (std::abs(normal(1)) > 0.001)
angle_z = -atan2(normal(1), normal(0)); // angle to rotate so that normal ends up in xz-plane
if (std::abs(normal(0)*cos(angle_z) - normal(1)*sin(angle_z)) > 0.001)
angle_y = -atan2(normal(0)*cos(angle_z) - normal(1)*sin(angle_z), normal(2)); // angle to rotate to make normal point upwards
else {
// In case it already was in z-direction, we must ensure it is not the wrong way:
angle_y = normal(2) > 0.f ? 0 : -PI;
}
// Rotate all points to the xy plane:
for (auto& vertex : polygon) {
vertex = super_rotation(Vec3d::UnitZ(), angle_z, vertex);
vertex = super_rotation(Vec3d::UnitY(), angle_y, vertex);
}
polygon = Slic3r::Geometry::convex_hull(polygon); // To remove the inner points
// We will calculate area of the polygon and discard ones that are too small
// The limit is more forgiving in case the normal is in the direction of the coordinate axes
const float minimal_area = (std::abs(normal(0)) > 0.999f || std::abs(normal(1)) > 0.999f || std::abs(normal(2)) > 0.999f) ? 1.f : 20.f;
float& area = m_planes[polygon_id].area;
area = 0.f;
for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula
area += polygon[i](0)*polygon[i + 1 < polygon.size() ? i + 1 : 0](1) - polygon[i + 1 < polygon.size() ? i + 1 : 0](0)*polygon[i](1);
area = std::abs(area / 2.f);
if (area < minimal_area) {
m_planes.erase(m_planes.begin()+(polygon_id--));
continue;
}
// We will shrink the polygon a little bit so it does not touch the object edges:
Vec3d centroid = std::accumulate(polygon.begin(), polygon.end(), Vec3d(0.0, 0.0, 0.0));
centroid /= (double)polygon.size();
for (auto& vertex : polygon)
vertex = 0.9f*vertex + 0.1f*centroid;
// Polygon is now simple and convex, we'll round the corners to make them look nicer.
// The algorithm takes a vertex, calculates middles of respective sides and moves the vertex
// towards their average (controlled by 'aggressivity'). This is repeated k times.
// In next iterations, the neighbours are not always taken at the middle (to increase the
// rounding effect at the corners, where we need it most).
const unsigned int k = 10; // number of iterations
const float aggressivity = 0.2f; // agressivity
const unsigned int N = polygon.size();
std::vector<std::pair<unsigned int, unsigned int>> neighbours;
if (k != 0) {
Pointf3s points_out(2*k*N); // vector long enough to store the future vertices
for (unsigned int j=0; j<N; ++j) {
points_out[j*2*k] = polygon[j];
neighbours.push_back(std::make_pair((int)(j*2*k-k) < 0 ? (N-1)*2*k+k : j*2*k-k, j*2*k+k));
}
for (unsigned int i=0; i<k; ++i) {
// Calculate middle of each edge so that neighbours points to something useful:
for (unsigned int j=0; j<N; ++j)
if (i==0)
points_out[j*2*k+k] = 0.5f * (points_out[j*2*k] + points_out[j==N-1 ? 0 : (j+1)*2*k]);
else {
float r = 0.2+0.3/(k-1)*i; // the neighbours are not always taken in the middle
points_out[neighbours[j].first] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].first-1];
points_out[neighbours[j].second] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].second+1];
}
// Now we have a triangle and valid neighbours, we can do an iteration:
for (unsigned int j=0; j<N; ++j)
points_out[2*k*j] = (1-aggressivity) * points_out[2*k*j] +
aggressivity*0.5f*(points_out[neighbours[j].first] + points_out[neighbours[j].second]);
for (auto& n : neighbours) {
++n.first;
--n.second;
}
}
polygon = points_out; // replace the coarse polygon with the smooth one that we just created
}
// Transform back to 3D;
for (auto& b : polygon) {
b(0) += 0.1f; // raise a bit above the object surface to avoid flickering
b = super_rotation(Vec3d::UnitY(), -angle_y, b);
b = super_rotation(Vec3d::UnitZ(), -angle_z, b);
}
}
// We'll sort the planes by area and only keep the 255 largest ones (because of the picking pass limitations):
std::sort(m_planes.rbegin(), m_planes.rend(), [](const PlaneData& a, const PlaneData& b) { return a.area < b.area; });
m_planes.resize(std::min((int)m_planes.size(), 255));
// Planes are finished - let's save what we calculated it from:
m_source_data.bounding_boxes.clear();
for (const auto& vol : m_model_object->volumes)
m_source_data.bounding_boxes.push_back(vol->get_convex_hull().bounding_box());
m_source_data.scaling_factor = m_model_object->instances.front()->scaling_factor;
m_source_data.rotation = m_model_object->instances.front()->rotation;
const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex();
m_source_data.mesh_first_point = Vec3d((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]);
}
// Check if the bounding boxes of each volume's convex hull is the same as before
// and that scaling and rotation has not changed. In that case we don't have to recalculate it.
bool GLGizmoFlatten::is_plane_update_necessary() const
{
if (m_state != On || !m_model_object || m_model_object->instances.empty())
return false;
if (m_model_object->volumes.size() != m_source_data.bounding_boxes.size()
|| m_model_object->instances.front()->scaling_factor != m_source_data.scaling_factor
|| m_model_object->instances.front()->rotation != m_source_data.rotation)
return true;
// now compare the bounding boxes:
for (unsigned int i=0; i<m_model_object->volumes.size(); ++i)
if (m_model_object->volumes[i]->get_convex_hull().bounding_box() != m_source_data.bounding_boxes[i])
return true;
const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex();
Vec3d first_point((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]);
if (first_point != m_source_data.mesh_first_point)
return true;
return false;
}
Vec3d GLGizmoFlatten::get_flattening_normal() const {
Transform3d m = Transform3d::Identity();
m.rotate(Eigen::AngleAxisd(-m_model_object->instances.front()->rotation, Vec3d::UnitZ()));
Vec3d normal = m * m_normal;
m_normal = Vec3d::Zero();
return normal;
}
} // namespace GUI
} // namespace Slic3r