mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-18 22:31:13 -06:00
Measure: Initial porting of Measure Gizmo
This commit is contained in:
parent
1561d65712
commit
f72d42f920
31 changed files with 5276 additions and 146 deletions
|
@ -208,6 +208,9 @@ set(lisbslic3r_sources
|
|||
ModelArrange.cpp
|
||||
MultiMaterialSegmentation.cpp
|
||||
MultiMaterialSegmentation.hpp
|
||||
Measure.hpp
|
||||
Measure.cpp
|
||||
MeasureUtils.hpp
|
||||
CustomGCode.cpp
|
||||
CustomGCode.hpp
|
||||
Arrange.hpp
|
||||
|
@ -307,6 +310,7 @@ set(lisbslic3r_sources
|
|||
Surface.hpp
|
||||
SurfaceCollection.cpp
|
||||
SurfaceCollection.hpp
|
||||
SurfaceMesh.hpp
|
||||
SVG.cpp
|
||||
SVG.hpp
|
||||
Technologies.hpp
|
||||
|
|
|
@ -1,3 +1,18 @@
|
|||
///|/ Copyright (c) Prusa Research 2016 - 2023 Vojtěch Bubník @bubnikv, Enrico Turri @enricoturri1966, Tomáš Mészáros @tamasmeszaros, Lukáš Matěna @lukasmatena, Filip Sykala @Jony01, Lukáš Hejl @hejllukas
|
||||
///|/ Copyright (c) 2017 Eyal Soha @eyal0
|
||||
///|/ Copyright (c) Slic3r 2013 - 2016 Alessandro Ranellucci @alranel
|
||||
///|/
|
||||
///|/ ported from lib/Slic3r/Geometry.pm:
|
||||
///|/ Copyright (c) Prusa Research 2017 - 2022 Vojtěch Bubník @bubnikv
|
||||
///|/ Copyright (c) Slic3r 2011 - 2015 Alessandro Ranellucci @alranel
|
||||
///|/ Copyright (c) 2013 Jose Luis Perez Diez
|
||||
///|/ Copyright (c) 2013 Anders Sundman
|
||||
///|/ Copyright (c) 2013 Jesse Vincent
|
||||
///|/ Copyright (c) 2012 Mike Sheldrake @mesheldrake
|
||||
///|/ Copyright (c) 2012 Mark Hindess
|
||||
///|/
|
||||
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
|
||||
///|/
|
||||
#ifndef slic3r_Geometry_hpp_
|
||||
#define slic3r_Geometry_hpp_
|
||||
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
///|/ Copyright (c) Prusa Research 2021 - 2022 Lukáš Matěna @lukasmatena, Filip Sykala @Jony01, Vojtěch Bubník @bubnikv
|
||||
///|/
|
||||
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
|
||||
///|/
|
||||
#include "Circle.hpp"
|
||||
|
||||
#include "../Polygon.hpp"
|
||||
|
@ -108,7 +112,7 @@ Circled circle_taubin_newton(const Vec2ds& input, size_t cycles)
|
|||
return out;
|
||||
}
|
||||
|
||||
Circled circle_ransac(const Vec2ds& input, size_t iterations)
|
||||
Circled circle_ransac(const Vec2ds& input, size_t iterations, double* min_error)
|
||||
{
|
||||
if (input.size() < 3)
|
||||
return Circled::make_invalid();
|
||||
|
@ -132,6 +136,8 @@ Circled circle_ransac(const Vec2ds& input, size_t iterations)
|
|||
circle_best = c;
|
||||
}
|
||||
}
|
||||
if (min_error)
|
||||
*min_error = err_min;
|
||||
return circle_best;
|
||||
}
|
||||
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
///|/ Copyright (c) Prusa Research 2021 - 2022 Lukáš Matěna @lukasmatena, Filip Sykala @Jony01, Vojtěch Bubník @bubnikv, Enrico Turri @enricoturri1966
|
||||
///|/
|
||||
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
|
||||
///|/
|
||||
#ifndef slic3r_Geometry_Circle_hpp_
|
||||
#define slic3r_Geometry_Circle_hpp_
|
||||
|
||||
|
@ -102,7 +106,7 @@ inline Vec2d circle_center_taubin_newton(const Vec2ds& input, size_t cycles = 20
|
|||
Circled circle_taubin_newton(const Vec2ds& input, size_t cycles = 20);
|
||||
|
||||
// Find circle using RANSAC randomized algorithm.
|
||||
Circled circle_ransac(const Vec2ds& input, size_t iterations = 20);
|
||||
Circled circle_ransac(const Vec2ds& input, size_t iterations = 20, double* min_error = nullptr);
|
||||
|
||||
// Randomized algorithm by Emo Welzl, working with squared radii for efficiency. The returned circle radius is inflated by epsilon.
|
||||
template<typename Vector, typename Points>
|
||||
|
|
1255
src/libslic3r/Measure.cpp
Normal file
1255
src/libslic3r/Measure.cpp
Normal file
File diff suppressed because it is too large
Load diff
200
src/libslic3r/Measure.hpp
Normal file
200
src/libslic3r/Measure.hpp
Normal file
|
@ -0,0 +1,200 @@
|
|||
///|/ Copyright (c) Prusa Research 2022 - 2023 Lukáš Matěna @lukasmatena, Enrico Turri @enricoturri1966, Vojtěch Bubník @bubnikv
|
||||
///|/
|
||||
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
|
||||
///|/
|
||||
#ifndef Slic3r_Measure_hpp_
|
||||
#define Slic3r_Measure_hpp_
|
||||
|
||||
#include <optional>
|
||||
#include <memory>
|
||||
|
||||
#include "Point.hpp"
|
||||
|
||||
|
||||
struct indexed_triangle_set;
|
||||
|
||||
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class TriangleMesh;
|
||||
|
||||
namespace Measure {
|
||||
|
||||
|
||||
enum class SurfaceFeatureType : int {
|
||||
Undef = 0,
|
||||
Point = 1 << 0,
|
||||
Edge = 1 << 1,
|
||||
Circle = 1 << 2,
|
||||
Plane = 1 << 3
|
||||
};
|
||||
|
||||
class SurfaceFeature {
|
||||
public:
|
||||
SurfaceFeature(SurfaceFeatureType type, const Vec3d& pt1, const Vec3d& pt2, std::optional<Vec3d> pt3 = std::nullopt, double value = 0.0)
|
||||
: m_type(type), m_pt1(pt1), m_pt2(pt2), m_pt3(pt3), m_value(value) {}
|
||||
|
||||
explicit SurfaceFeature(const Vec3d& pt)
|
||||
: m_type{SurfaceFeatureType::Point}, m_pt1{pt} {}
|
||||
|
||||
// Get type of this feature.
|
||||
SurfaceFeatureType get_type() const { return m_type; }
|
||||
|
||||
// For points, return the point.
|
||||
Vec3d get_point() const { assert(m_type == SurfaceFeatureType::Point); return m_pt1; }
|
||||
|
||||
// For edges, return start and end.
|
||||
std::pair<Vec3d, Vec3d> get_edge() const { assert(m_type == SurfaceFeatureType::Edge); return std::make_pair(m_pt1, m_pt2); }
|
||||
|
||||
// For circles, return center, radius and normal.
|
||||
std::tuple<Vec3d, double, Vec3d> get_circle() const { assert(m_type == SurfaceFeatureType::Circle); return std::make_tuple(m_pt1, m_value, m_pt2); }
|
||||
|
||||
// For planes, return index into vector provided by Measuring::get_plane_triangle_indices, normal and point.
|
||||
std::tuple<int, Vec3d, Vec3d> get_plane() const { assert(m_type == SurfaceFeatureType::Plane); return std::make_tuple(int(m_value), m_pt1, m_pt2); }
|
||||
|
||||
// For anything, return an extra point that should also be considered a part of this.
|
||||
std::optional<Vec3d> get_extra_point() const { assert(m_type != SurfaceFeatureType::Undef); return m_pt3; }
|
||||
|
||||
bool operator == (const SurfaceFeature& other) const {
|
||||
if (this->m_type != other.m_type) return false;
|
||||
switch (this->m_type)
|
||||
{
|
||||
case SurfaceFeatureType::Undef: { break; }
|
||||
case SurfaceFeatureType::Point: { return (this->m_pt1.isApprox(other.m_pt1)); }
|
||||
case SurfaceFeatureType::Edge: {
|
||||
return (this->m_pt1.isApprox(other.m_pt1) && this->m_pt2.isApprox(other.m_pt2)) ||
|
||||
(this->m_pt1.isApprox(other.m_pt2) && this->m_pt2.isApprox(other.m_pt1));
|
||||
}
|
||||
case SurfaceFeatureType::Plane:
|
||||
case SurfaceFeatureType::Circle: {
|
||||
return (this->m_pt1.isApprox(other.m_pt1) && this->m_pt2.isApprox(other.m_pt2) && std::abs(this->m_value - other.m_value) < EPSILON);
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool operator != (const SurfaceFeature& other) const {
|
||||
return !operator == (other);
|
||||
}
|
||||
|
||||
private:
|
||||
SurfaceFeatureType m_type{ SurfaceFeatureType::Undef };
|
||||
Vec3d m_pt1{ Vec3d::Zero() };
|
||||
Vec3d m_pt2{ Vec3d::Zero() };
|
||||
std::optional<Vec3d> m_pt3;
|
||||
double m_value{ 0.0 };
|
||||
};
|
||||
|
||||
|
||||
|
||||
class MeasuringImpl;
|
||||
|
||||
|
||||
class Measuring {
|
||||
public:
|
||||
// Construct the measurement object on a given its.
|
||||
explicit Measuring(const indexed_triangle_set& its);
|
||||
~Measuring();
|
||||
|
||||
|
||||
// Given a face_idx where the mouse cursor points, return a feature that
|
||||
// should be highlighted (if any).
|
||||
std::optional<SurfaceFeature> get_feature(size_t face_idx, const Vec3d& point) const;
|
||||
|
||||
// Return total number of planes.
|
||||
int get_num_of_planes() const;
|
||||
|
||||
// Returns a list of triangle indices for given plane.
|
||||
const std::vector<int>& get_plane_triangle_indices(int idx) const;
|
||||
|
||||
// Returns the surface features of the plane with the given index
|
||||
const std::vector<SurfaceFeature>& get_plane_features(unsigned int plane_id) const;
|
||||
|
||||
// Returns the mesh used for measuring
|
||||
const indexed_triangle_set& get_its() const;
|
||||
|
||||
private:
|
||||
std::unique_ptr<MeasuringImpl> priv;
|
||||
};
|
||||
|
||||
|
||||
struct DistAndPoints {
|
||||
DistAndPoints(double dist_, Vec3d from_, Vec3d to_) : dist(dist_), from(from_), to(to_) {}
|
||||
double dist;
|
||||
Vec3d from;
|
||||
Vec3d to;
|
||||
};
|
||||
|
||||
struct AngleAndEdges {
|
||||
AngleAndEdges(double angle_, const Vec3d& center_, const std::pair<Vec3d, Vec3d>& e1_, const std::pair<Vec3d, Vec3d>& e2_, double radius_, bool coplanar_)
|
||||
: angle(angle_), center(center_), e1(e1_), e2(e2_), radius(radius_), coplanar(coplanar_) {}
|
||||
double angle;
|
||||
Vec3d center;
|
||||
std::pair<Vec3d, Vec3d> e1;
|
||||
std::pair<Vec3d, Vec3d> e2;
|
||||
double radius;
|
||||
bool coplanar;
|
||||
|
||||
static const AngleAndEdges Dummy;
|
||||
};
|
||||
|
||||
struct MeasurementResult {
|
||||
std::optional<AngleAndEdges> angle;
|
||||
std::optional<DistAndPoints> distance_infinite;
|
||||
std::optional<DistAndPoints> distance_strict;
|
||||
std::optional<Vec3d> distance_xyz;
|
||||
|
||||
bool has_distance_data() const {
|
||||
return distance_infinite.has_value() || distance_strict.has_value();
|
||||
}
|
||||
|
||||
bool has_any_data() const {
|
||||
return angle.has_value() || distance_infinite.has_value() || distance_strict.has_value() || distance_xyz.has_value();
|
||||
}
|
||||
};
|
||||
|
||||
// Returns distance/angle between two SurfaceFeatures.
|
||||
MeasurementResult get_measurement(const SurfaceFeature& a, const SurfaceFeature& b, const Measuring* measuring = nullptr);
|
||||
|
||||
inline Vec3d edge_direction(const Vec3d& from, const Vec3d& to) { return (to - from).normalized(); }
|
||||
inline Vec3d edge_direction(const std::pair<Vec3d, Vec3d>& e) { return edge_direction(e.first, e.second); }
|
||||
inline Vec3d edge_direction(const SurfaceFeature& edge) {
|
||||
assert(edge.get_type() == SurfaceFeatureType::Edge);
|
||||
return edge_direction(edge.get_edge());
|
||||
}
|
||||
|
||||
inline Vec3d plane_normal(const SurfaceFeature& plane) {
|
||||
assert(plane.get_type() == SurfaceFeatureType::Plane);
|
||||
return std::get<1>(plane.get_plane());
|
||||
}
|
||||
|
||||
inline bool are_parallel(const Vec3d& v1, const Vec3d& v2) { return std::abs(std::abs(v1.dot(v2)) - 1.0) < EPSILON; }
|
||||
inline bool are_perpendicular(const Vec3d& v1, const Vec3d& v2) { return std::abs(v1.dot(v2)) < EPSILON; }
|
||||
|
||||
inline bool are_parallel(const std::pair<Vec3d, Vec3d>& e1, const std::pair<Vec3d, Vec3d>& e2) {
|
||||
return are_parallel(e1.second - e1.first, e2.second - e2.first);
|
||||
}
|
||||
inline bool are_parallel(const SurfaceFeature& f1, const SurfaceFeature& f2) {
|
||||
if (f1.get_type() == SurfaceFeatureType::Edge && f2.get_type() == SurfaceFeatureType::Edge)
|
||||
return are_parallel(edge_direction(f1), edge_direction(f2));
|
||||
else if (f1.get_type() == SurfaceFeatureType::Edge && f2.get_type() == SurfaceFeatureType::Plane)
|
||||
return are_perpendicular(edge_direction(f1), plane_normal(f2));
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
inline bool are_perpendicular(const SurfaceFeature& f1, const SurfaceFeature& f2) {
|
||||
if (f1.get_type() == SurfaceFeatureType::Edge && f2.get_type() == SurfaceFeatureType::Edge)
|
||||
return are_perpendicular(edge_direction(f1), edge_direction(f2));
|
||||
else if (f1.get_type() == SurfaceFeatureType::Edge && f2.get_type() == SurfaceFeatureType::Plane)
|
||||
return are_parallel(edge_direction(f1), plane_normal(f2));
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace Measure
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // Slic3r_Measure_hpp_
|
390
src/libslic3r/MeasureUtils.hpp
Normal file
390
src/libslic3r/MeasureUtils.hpp
Normal file
|
@ -0,0 +1,390 @@
|
|||
///|/ Copyright (c) Prusa Research 2022 Enrico Turri @enricoturri1966
|
||||
///|/
|
||||
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
|
||||
///|/
|
||||
#ifndef Slic3r_MeasureUtils_hpp_
|
||||
#define Slic3r_MeasureUtils_hpp_
|
||||
|
||||
#include <initializer_list>
|
||||
|
||||
namespace Slic3r {
|
||||
namespace Measure {
|
||||
|
||||
// Utility class used to calculate distance circle-circle
|
||||
// Adaptation of code found in:
|
||||
// https://github.com/davideberly/GeometricTools/blob/master/GTE/Mathematics/Polynomial1.h
|
||||
|
||||
class Polynomial1
|
||||
{
|
||||
public:
|
||||
Polynomial1(std::initializer_list<double> values)
|
||||
{
|
||||
// C++ 11 will call the default constructor for
|
||||
// Polynomial1<Real> p{}, so it is guaranteed that
|
||||
// values.size() > 0.
|
||||
m_coefficient.resize(values.size());
|
||||
std::copy(values.begin(), values.end(), m_coefficient.begin());
|
||||
EliminateLeadingZeros();
|
||||
}
|
||||
|
||||
// Construction and destruction. The first constructor creates a
|
||||
// polynomial of the specified degree but sets all coefficients to
|
||||
// zero (to ensure initialization). You are responsible for setting
|
||||
// the coefficients, presumably with the degree-term set to a nonzero
|
||||
// number. In the second constructor, the degree is the number of
|
||||
// initializers plus 1, but then adjusted so that coefficient[degree]
|
||||
// is not zero (unless all initializer values are zero).
|
||||
explicit Polynomial1(uint32_t degree)
|
||||
: m_coefficient(static_cast<size_t>(degree) + 1, 0.0)
|
||||
{}
|
||||
|
||||
// Eliminate any leading zeros in the polynomial, except in the case
|
||||
// the degree is 0 and the coefficient is 0. The elimination is
|
||||
// necessary when arithmetic operations cause a decrease in the degree
|
||||
// of the result. For example, (1 + x + x^2) + (1 + 2*x - x^2) =
|
||||
// (2 + 3*x). The inputs both have degree 2, so the result is created
|
||||
// with degree 2. After the addition we find that the degree is in
|
||||
// fact 1 and resize the array of coefficients. This function is
|
||||
// called internally by the arithmetic operators, but it is exposed in
|
||||
// the public interface in case you need it for your own purposes.
|
||||
void EliminateLeadingZeros()
|
||||
{
|
||||
const size_t size = m_coefficient.size();
|
||||
if (size > 1) {
|
||||
const double zero = 0.0;
|
||||
int32_t leading;
|
||||
for (leading = static_cast<int32_t>(size) - 1; leading > 0; --leading) {
|
||||
if (m_coefficient[leading] != zero)
|
||||
break;
|
||||
}
|
||||
|
||||
m_coefficient.resize(++leading);
|
||||
}
|
||||
}
|
||||
|
||||
// Set all coefficients to the specified value.
|
||||
void SetCoefficients(double value)
|
||||
{
|
||||
std::fill(m_coefficient.begin(), m_coefficient.end(), value);
|
||||
}
|
||||
|
||||
inline uint32_t GetDegree() const
|
||||
{
|
||||
// By design, m_coefficient.size() > 0.
|
||||
return static_cast<uint32_t>(m_coefficient.size() - 1);
|
||||
}
|
||||
|
||||
inline const double& operator[](uint32_t i) const { return m_coefficient[i]; }
|
||||
inline double& operator[](uint32_t i) { return m_coefficient[i]; }
|
||||
|
||||
// Evaluate the polynomial. If the polynomial is invalid, the
|
||||
// function returns zero.
|
||||
double operator()(double t) const
|
||||
{
|
||||
int32_t i = static_cast<int32_t>(m_coefficient.size());
|
||||
double result = m_coefficient[--i];
|
||||
for (--i; i >= 0; --i) {
|
||||
result *= t;
|
||||
result += m_coefficient[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
protected:
|
||||
// The class is designed so that m_coefficient.size() >= 1.
|
||||
std::vector<double> m_coefficient;
|
||||
};
|
||||
|
||||
inline Polynomial1 operator * (const Polynomial1& p0, const Polynomial1& p1)
|
||||
{
|
||||
const uint32_t p0Degree = p0.GetDegree();
|
||||
const uint32_t p1Degree = p1.GetDegree();
|
||||
Polynomial1 result(p0Degree + p1Degree);
|
||||
result.SetCoefficients(0.0);
|
||||
for (uint32_t i0 = 0; i0 <= p0Degree; ++i0) {
|
||||
for (uint32_t i1 = 0; i1 <= p1Degree; ++i1) {
|
||||
result[i0 + i1] += p0[i0] * p1[i1];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
inline Polynomial1 operator + (const Polynomial1& p0, const Polynomial1& p1)
|
||||
{
|
||||
const uint32_t p0Degree = p0.GetDegree();
|
||||
const uint32_t p1Degree = p1.GetDegree();
|
||||
uint32_t i;
|
||||
if (p0Degree >= p1Degree) {
|
||||
Polynomial1 result(p0Degree);
|
||||
for (i = 0; i <= p1Degree; ++i) {
|
||||
result[i] = p0[i] + p1[i];
|
||||
}
|
||||
for (/**/; i <= p0Degree; ++i) {
|
||||
result[i] = p0[i];
|
||||
}
|
||||
result.EliminateLeadingZeros();
|
||||
return result;
|
||||
}
|
||||
else {
|
||||
Polynomial1 result(p1Degree);
|
||||
for (i = 0; i <= p0Degree; ++i) {
|
||||
result[i] = p0[i] + p1[i];
|
||||
}
|
||||
for (/**/; i <= p1Degree; ++i) {
|
||||
result[i] = p1[i];
|
||||
}
|
||||
result.EliminateLeadingZeros();
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
inline Polynomial1 operator - (const Polynomial1& p0, const Polynomial1& p1)
|
||||
{
|
||||
const uint32_t p0Degree = p0.GetDegree();
|
||||
const uint32_t p1Degree = p1.GetDegree();
|
||||
uint32_t i;
|
||||
if (p0Degree >= p1Degree) {
|
||||
Polynomial1 result(p0Degree);
|
||||
for (i = 0; i <= p1Degree; ++i) {
|
||||
result[i] = p0[i] - p1[i];
|
||||
}
|
||||
for (/**/; i <= p0Degree; ++i) {
|
||||
result[i] = p0[i];
|
||||
}
|
||||
result.EliminateLeadingZeros();
|
||||
return result;
|
||||
}
|
||||
else {
|
||||
Polynomial1 result(p1Degree);
|
||||
for (i = 0; i <= p0Degree; ++i) {
|
||||
result[i] = p0[i] - p1[i];
|
||||
}
|
||||
for (/**/; i <= p1Degree; ++i) {
|
||||
result[i] = -p1[i];
|
||||
}
|
||||
result.EliminateLeadingZeros();
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
inline Polynomial1 operator * (double scalar, const Polynomial1& p)
|
||||
{
|
||||
const uint32_t degree = p.GetDegree();
|
||||
Polynomial1 result(degree);
|
||||
for (uint32_t i = 0; i <= degree; ++i) {
|
||||
result[i] = scalar * p[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// Utility class used to calculate distance circle-circle
|
||||
// Adaptation of code found in:
|
||||
// https://github.com/davideberly/GeometricTools/blob/master/GTE/Mathematics/RootsPolynomial.h
|
||||
|
||||
class RootsPolynomial
|
||||
{
|
||||
public:
|
||||
// General equations: sum_{i=0}^{d} c(i)*t^i = 0. The input array 'c'
|
||||
// must have at least d+1 elements and the output array 'root' must
|
||||
// have at least d elements.
|
||||
|
||||
// Find the roots on (-infinity,+infinity).
|
||||
static int32_t Find(int32_t degree, const double* c, uint32_t maxIterations, double* roots)
|
||||
{
|
||||
if (degree >= 0 && c != nullptr) {
|
||||
const double zero = 0.0;
|
||||
while (degree >= 0 && c[degree] == zero) {
|
||||
--degree;
|
||||
}
|
||||
|
||||
if (degree > 0) {
|
||||
// Compute the Cauchy bound.
|
||||
const double one = 1.0;
|
||||
const double invLeading = one / c[degree];
|
||||
double maxValue = zero;
|
||||
for (int32_t i = 0; i < degree; ++i) {
|
||||
const double value = std::fabs(c[i] * invLeading);
|
||||
if (value > maxValue)
|
||||
maxValue = value;
|
||||
}
|
||||
const double bound = one + maxValue;
|
||||
|
||||
return FindRecursive(degree, c, -bound, bound, maxIterations, roots);
|
||||
}
|
||||
else if (degree == 0)
|
||||
// The polynomial is a nonzero constant.
|
||||
return 0;
|
||||
else {
|
||||
// The polynomial is identically zero.
|
||||
roots[0] = zero;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
else
|
||||
// Invalid degree or c.
|
||||
return 0;
|
||||
}
|
||||
|
||||
// If you know that p(tmin) * p(tmax) <= 0, then there must be at
|
||||
// least one root in [tmin, tmax]. Compute it using bisection.
|
||||
static bool Find(int32_t degree, const double* c, double tmin, double tmax, uint32_t maxIterations, double& root)
|
||||
{
|
||||
const double zero = 0.0;
|
||||
double pmin = Evaluate(degree, c, tmin);
|
||||
if (pmin == zero) {
|
||||
root = tmin;
|
||||
return true;
|
||||
}
|
||||
double pmax = Evaluate(degree, c, tmax);
|
||||
if (pmax == zero) {
|
||||
root = tmax;
|
||||
return true;
|
||||
}
|
||||
|
||||
if (pmin * pmax > zero)
|
||||
// It is not known whether the interval bounds a root.
|
||||
return false;
|
||||
|
||||
if (tmin >= tmax)
|
||||
// Invalid ordering of interval endpoitns.
|
||||
return false;
|
||||
|
||||
for (uint32_t i = 1; i <= maxIterations; ++i) {
|
||||
root = 0.5 * (tmin + tmax);
|
||||
|
||||
// This test is designed for 'float' or 'double' when tmin
|
||||
// and tmax are consecutive floating-point numbers.
|
||||
if (root == tmin || root == tmax)
|
||||
break;
|
||||
|
||||
const double p = Evaluate(degree, c, root);
|
||||
const double product = p * pmin;
|
||||
if (product < zero) {
|
||||
tmax = root;
|
||||
pmax = p;
|
||||
}
|
||||
else if (product > zero) {
|
||||
tmin = root;
|
||||
pmin = p;
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Support for the Find functions.
|
||||
static int32_t FindRecursive(int32_t degree, double const* c, double tmin, double tmax, uint32_t maxIterations, double* roots)
|
||||
{
|
||||
// The base of the recursion.
|
||||
const double zero = 0.0;
|
||||
double root = zero;
|
||||
if (degree == 1) {
|
||||
int32_t numRoots;
|
||||
if (c[1] != zero) {
|
||||
root = -c[0] / c[1];
|
||||
numRoots = 1;
|
||||
}
|
||||
else if (c[0] == zero) {
|
||||
root = zero;
|
||||
numRoots = 1;
|
||||
}
|
||||
else
|
||||
numRoots = 0;
|
||||
|
||||
if (numRoots > 0 && tmin <= root && root <= tmax) {
|
||||
roots[0] = root;
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Find the roots of the derivative polynomial scaled by 1/degree.
|
||||
// The scaling avoids the factorial growth in the coefficients;
|
||||
// for example, without the scaling, the high-order term x^d
|
||||
// becomes (d!)*x through multiple differentiations. With the
|
||||
// scaling we instead get x. This leads to better numerical
|
||||
// behavior of the root finder.
|
||||
const int32_t derivDegree = degree - 1;
|
||||
std::vector<double> derivCoeff(static_cast<size_t>(derivDegree) + 1);
|
||||
std::vector<double> derivRoots(derivDegree);
|
||||
for (int32_t i = 0, ip1 = 1; i <= derivDegree; ++i, ++ip1) {
|
||||
derivCoeff[i] = c[ip1] * (double)(ip1) / (double)degree;
|
||||
}
|
||||
const int32_t numDerivRoots = FindRecursive(degree - 1, &derivCoeff[0], tmin, tmax, maxIterations, &derivRoots[0]);
|
||||
|
||||
int32_t numRoots = 0;
|
||||
if (numDerivRoots > 0) {
|
||||
// Find root on [tmin,derivRoots[0]].
|
||||
if (Find(degree, c, tmin, derivRoots[0], maxIterations, root))
|
||||
roots[numRoots++] = root;
|
||||
|
||||
// Find root on [derivRoots[i],derivRoots[i+1]].
|
||||
for (int32_t i = 0, ip1 = 1; i <= numDerivRoots - 2; ++i, ++ip1) {
|
||||
if (Find(degree, c, derivRoots[i], derivRoots[ip1], maxIterations, root))
|
||||
roots[numRoots++] = root;
|
||||
}
|
||||
|
||||
// Find root on [derivRoots[numDerivRoots-1],tmax].
|
||||
if (Find(degree, c, derivRoots[static_cast<size_t>(numDerivRoots) - 1], tmax, maxIterations, root))
|
||||
roots[numRoots++] = root;
|
||||
}
|
||||
else {
|
||||
// The polynomial is monotone on [tmin,tmax], so has at most one root.
|
||||
if (Find(degree, c, tmin, tmax, maxIterations, root))
|
||||
roots[numRoots++] = root;
|
||||
}
|
||||
return numRoots;
|
||||
}
|
||||
|
||||
static double Evaluate(int32_t degree, const double* c, double t)
|
||||
{
|
||||
int32_t i = degree;
|
||||
double result = c[i];
|
||||
while (--i >= 0) {
|
||||
result = t * result + c[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
// Adaptation of code found in:
|
||||
// https://github.com/davideberly/GeometricTools/blob/master/GTE/Mathematics/Vector.h
|
||||
|
||||
// Construct a single vector orthogonal to the nonzero input vector. If
|
||||
// the maximum absolute component occurs at index i, then the orthogonal
|
||||
// vector U has u[i] = v[i+1], u[i+1] = -v[i], and all other components
|
||||
// zero. The index addition i+1 is computed modulo N.
|
||||
inline Vec3d get_orthogonal(const Vec3d& v, bool unitLength)
|
||||
{
|
||||
double cmax = std::fabs(v[0]);
|
||||
int32_t imax = 0;
|
||||
for (int32_t i = 1; i < 3; ++i) {
|
||||
double c = std::fabs(v[i]);
|
||||
if (c > cmax) {
|
||||
cmax = c;
|
||||
imax = i;
|
||||
}
|
||||
}
|
||||
|
||||
Vec3d result = Vec3d::Zero();
|
||||
int32_t inext = imax + 1;
|
||||
if (inext == 3)
|
||||
inext = 0;
|
||||
|
||||
result[imax] = v[inext];
|
||||
result[inext] = -v[imax];
|
||||
if (unitLength) {
|
||||
const double sqrDistance = result[imax] * result[imax] + result[inext] * result[inext];
|
||||
const double invLength = 1.0 / std::sqrt(sqrDistance);
|
||||
result[imax] *= invLength;
|
||||
result[inext] *= invLength;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
} // namespace Measure
|
||||
|
||||
#endif // Slic3r_MeasureUtils_hpp_
|
167
src/libslic3r/SurfaceMesh.hpp
Normal file
167
src/libslic3r/SurfaceMesh.hpp
Normal file
|
@ -0,0 +1,167 @@
|
|||
///|/ Copyright (c) Prusa Research 2022 Lukáš Matěna @lukasmatena
|
||||
///|/
|
||||
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
|
||||
///|/
|
||||
#ifndef slic3r_SurfaceMesh_hpp_
|
||||
#define slic3r_SurfaceMesh_hpp_
|
||||
|
||||
#include <admesh/stl.h>
|
||||
#include <libslic3r/TriangleMesh.hpp>
|
||||
|
||||
#include "boost/container/small_vector.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class TriangleMesh;
|
||||
|
||||
|
||||
|
||||
enum Face_index : int;
|
||||
|
||||
class Halfedge_index {
|
||||
friend class SurfaceMesh;
|
||||
|
||||
public:
|
||||
Halfedge_index() : m_face(Face_index(-1)), m_side(0) {}
|
||||
Face_index face() const { return m_face; }
|
||||
unsigned char side() const { return m_side; }
|
||||
bool is_invalid() const { return int(m_face) < 0; }
|
||||
bool operator!=(const Halfedge_index& rhs) const { return ! ((*this) == rhs); }
|
||||
bool operator==(const Halfedge_index& rhs) const { return m_face == rhs.m_face && m_side == rhs.m_side; }
|
||||
|
||||
private:
|
||||
Halfedge_index(int face_idx, unsigned char side_idx) : m_face(Face_index(face_idx)), m_side(side_idx) {}
|
||||
|
||||
Face_index m_face;
|
||||
unsigned char m_side;
|
||||
};
|
||||
|
||||
|
||||
|
||||
class Vertex_index {
|
||||
friend class SurfaceMesh;
|
||||
|
||||
public:
|
||||
Vertex_index() : m_face(Face_index(-1)), m_vertex_idx(0) {}
|
||||
bool is_invalid() const { return int(m_face) < 0; }
|
||||
bool operator==(const Vertex_index& rhs) const = delete; // Use SurfaceMesh::is_same_vertex.
|
||||
|
||||
private:
|
||||
Vertex_index(int face_idx, unsigned char vertex_idx) : m_face(Face_index(face_idx)), m_vertex_idx(vertex_idx) {}
|
||||
|
||||
Face_index m_face;
|
||||
unsigned char m_vertex_idx;
|
||||
};
|
||||
|
||||
|
||||
|
||||
class SurfaceMesh {
|
||||
public:
|
||||
explicit SurfaceMesh(const indexed_triangle_set& its)
|
||||
: m_its(its),
|
||||
m_face_neighbors(its_face_neighbors_par(its))
|
||||
{}
|
||||
SurfaceMesh(const SurfaceMesh&) = delete;
|
||||
SurfaceMesh& operator=(const SurfaceMesh&) = delete;
|
||||
|
||||
Vertex_index source(Halfedge_index h) const { assert(! h.is_invalid()); return Vertex_index(h.m_face, h.m_side); }
|
||||
Vertex_index target(Halfedge_index h) const { assert(! h.is_invalid()); return Vertex_index(h.m_face, h.m_side == 2 ? 0 : h.m_side + 1); }
|
||||
Face_index face(Halfedge_index h) const { assert(! h.is_invalid()); return h.m_face; }
|
||||
|
||||
Halfedge_index next(Halfedge_index h) const { assert(! h.is_invalid()); h.m_side = (h.m_side + 1) % 3; return h; }
|
||||
Halfedge_index prev(Halfedge_index h) const { assert(! h.is_invalid()); h.m_side = (h.m_side == 0 ? 2 : h.m_side - 1); return h; }
|
||||
Halfedge_index halfedge(Vertex_index v) const { return Halfedge_index(v.m_face, (v.m_vertex_idx == 0 ? 2 : v.m_vertex_idx - 1)); }
|
||||
Halfedge_index halfedge(Face_index f) const { return Halfedge_index(f, 0); }
|
||||
Halfedge_index opposite(Halfedge_index h) const {
|
||||
if (h.is_invalid())
|
||||
return h;
|
||||
|
||||
int face_idx = m_face_neighbors[h.m_face][h.m_side];
|
||||
Halfedge_index h_candidate = halfedge(Face_index(face_idx));
|
||||
|
||||
if (h_candidate.is_invalid())
|
||||
return Halfedge_index(); // invalid
|
||||
|
||||
for (int i=0; i<3; ++i) {
|
||||
if (is_same_vertex(source(h_candidate), target(h))) {
|
||||
// Meshes in PrusaSlicer should be fixed enough for the following not to happen.
|
||||
assert(is_same_vertex(target(h_candidate), source(h)));
|
||||
return h_candidate;
|
||||
}
|
||||
h_candidate = next(h_candidate);
|
||||
}
|
||||
return Halfedge_index(); // invalid
|
||||
}
|
||||
|
||||
Halfedge_index next_around_target(Halfedge_index h) const { return opposite(next(h)); }
|
||||
Halfedge_index prev_around_target(Halfedge_index h) const { Halfedge_index op = opposite(h); return (op.is_invalid() ? Halfedge_index() : prev(op)); }
|
||||
Halfedge_index next_around_source(Halfedge_index h) const { Halfedge_index op = opposite(h); return (op.is_invalid() ? Halfedge_index() : next(op)); }
|
||||
Halfedge_index prev_around_source(Halfedge_index h) const { return opposite(prev(h)); }
|
||||
Halfedge_index halfedge(Vertex_index source, Vertex_index target) const
|
||||
{
|
||||
Halfedge_index hi(source.m_face, source.m_vertex_idx);
|
||||
assert(! hi.is_invalid());
|
||||
|
||||
const Vertex_index orig_target = this->target(hi);
|
||||
Vertex_index current_target = orig_target;
|
||||
|
||||
while (! is_same_vertex(current_target, target)) {
|
||||
hi = next_around_source(hi);
|
||||
if (hi.is_invalid())
|
||||
break;
|
||||
current_target = this->target(hi);
|
||||
if (is_same_vertex(current_target, orig_target))
|
||||
return Halfedge_index(); // invalid
|
||||
}
|
||||
|
||||
return hi;
|
||||
}
|
||||
|
||||
const stl_vertex& point(Vertex_index v) const { return m_its.vertices[m_its.indices[v.m_face][v.m_vertex_idx]]; }
|
||||
|
||||
size_t degree(Vertex_index v) const
|
||||
{
|
||||
// In case the mesh is broken badly, the loop might end up to be infinite,
|
||||
// never getting back to the first halfedge. Remember list of all half-edges
|
||||
// and trip if any is encountered for the second time.
|
||||
Halfedge_index h_first = halfedge(v);
|
||||
boost::container::small_vector<Halfedge_index, 10> he_visited;
|
||||
Halfedge_index h = next_around_target(h_first);
|
||||
size_t degree = 2;
|
||||
while (! h.is_invalid() && h != h_first) {
|
||||
he_visited.emplace_back(h);
|
||||
h = next_around_target(h);
|
||||
if (std::find(he_visited.begin(), he_visited.end(), h) == he_visited.end())
|
||||
return 0;
|
||||
++degree;
|
||||
}
|
||||
return h.is_invalid() ? 0 : degree - 1;
|
||||
}
|
||||
|
||||
size_t degree(Face_index f) const {
|
||||
size_t total = 0;
|
||||
for (unsigned char i=0; i<3; ++i) {
|
||||
size_t d = degree(Vertex_index(f, i));
|
||||
if (d == 0)
|
||||
return 0;
|
||||
total += d;
|
||||
}
|
||||
assert(total - 6 >= 0);
|
||||
return total - 6; // we counted 3 halfedges from f, and one more for each neighbor
|
||||
}
|
||||
|
||||
bool is_border(Halfedge_index h) const { return m_face_neighbors[h.m_face][h.m_side] == -1; }
|
||||
|
||||
bool is_same_vertex(const Vertex_index& a, const Vertex_index& b) const { return m_its.indices[a.m_face][a.m_vertex_idx] == m_its.indices[b.m_face][b.m_vertex_idx]; }
|
||||
Vec3i get_face_neighbors(Face_index face_id) const { assert(int(face_id) < int(m_face_neighbors.size())); return m_face_neighbors[face_id]; }
|
||||
|
||||
|
||||
|
||||
private:
|
||||
const std::vector<Vec3i> m_face_neighbors;
|
||||
const indexed_triangle_set& m_its;
|
||||
};
|
||||
|
||||
} //namespace Slic3r
|
||||
|
||||
#endif // slic3r_SurfaceMesh_hpp_
|
Loading…
Add table
Add a link
Reference in a new issue