mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-27 10:41:15 -06:00
Merge remote-tracking branch 'remotes/origin/dev_native'
This commit is contained in:
commit
f6831dfdea
3004 changed files with 302743 additions and 39789 deletions
283
src/libslic3r/BoundingBox.cpp
Normal file
283
src/libslic3r/BoundingBox.cpp
Normal file
|
|
@ -0,0 +1,283 @@
|
|||
#include "BoundingBox.hpp"
|
||||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
|
||||
#include <Eigen/Dense>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
template BoundingBoxBase<Point>::BoundingBoxBase(const std::vector<Point> &points);
|
||||
template BoundingBoxBase<Vec2d>::BoundingBoxBase(const std::vector<Vec2d> &points);
|
||||
|
||||
template BoundingBox3Base<Vec3d>::BoundingBox3Base(const std::vector<Vec3d> &points);
|
||||
|
||||
BoundingBox::BoundingBox(const Lines &lines)
|
||||
{
|
||||
Points points;
|
||||
points.reserve(lines.size());
|
||||
for (const Line &line : lines) {
|
||||
points.emplace_back(line.a);
|
||||
points.emplace_back(line.b);
|
||||
}
|
||||
*this = BoundingBox(points);
|
||||
}
|
||||
|
||||
void BoundingBox::polygon(Polygon* polygon) const
|
||||
{
|
||||
polygon->points.clear();
|
||||
polygon->points.resize(4);
|
||||
polygon->points[0](0) = this->min(0);
|
||||
polygon->points[0](1) = this->min(1);
|
||||
polygon->points[1](0) = this->max(0);
|
||||
polygon->points[1](1) = this->min(1);
|
||||
polygon->points[2](0) = this->max(0);
|
||||
polygon->points[2](1) = this->max(1);
|
||||
polygon->points[3](0) = this->min(0);
|
||||
polygon->points[3](1) = this->max(1);
|
||||
}
|
||||
|
||||
Polygon BoundingBox::polygon() const
|
||||
{
|
||||
Polygon p;
|
||||
this->polygon(&p);
|
||||
return p;
|
||||
}
|
||||
|
||||
BoundingBox BoundingBox::rotated(double angle) const
|
||||
{
|
||||
BoundingBox out;
|
||||
out.merge(this->min.rotated(angle));
|
||||
out.merge(this->max.rotated(angle));
|
||||
out.merge(Point(this->min(0), this->max(1)).rotated(angle));
|
||||
out.merge(Point(this->max(0), this->min(1)).rotated(angle));
|
||||
return out;
|
||||
}
|
||||
|
||||
BoundingBox BoundingBox::rotated(double angle, const Point ¢er) const
|
||||
{
|
||||
BoundingBox out;
|
||||
out.merge(this->min.rotated(angle, center));
|
||||
out.merge(this->max.rotated(angle, center));
|
||||
out.merge(Point(this->min(0), this->max(1)).rotated(angle, center));
|
||||
out.merge(Point(this->max(0), this->min(1)).rotated(angle, center));
|
||||
return out;
|
||||
}
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::scale(double factor)
|
||||
{
|
||||
this->min *= factor;
|
||||
this->max *= factor;
|
||||
}
|
||||
template void BoundingBoxBase<Point>::scale(double factor);
|
||||
template void BoundingBoxBase<Vec2d>::scale(double factor);
|
||||
template void BoundingBoxBase<Vec3d>::scale(double factor);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::merge(const PointClass &point)
|
||||
{
|
||||
if (this->defined) {
|
||||
this->min = this->min.cwiseMin(point);
|
||||
this->max = this->max.cwiseMax(point);
|
||||
} else {
|
||||
this->min = point;
|
||||
this->max = point;
|
||||
this->defined = true;
|
||||
}
|
||||
}
|
||||
template void BoundingBoxBase<Point>::merge(const Point &point);
|
||||
template void BoundingBoxBase<Vec2d>::merge(const Vec2d &point);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::merge(const std::vector<PointClass> &points)
|
||||
{
|
||||
this->merge(BoundingBoxBase(points));
|
||||
}
|
||||
template void BoundingBoxBase<Point>::merge(const Points &points);
|
||||
template void BoundingBoxBase<Vec2d>::merge(const Pointfs &points);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::merge(const BoundingBoxBase<PointClass> &bb)
|
||||
{
|
||||
assert(bb.defined || bb.min(0) >= bb.max(0) || bb.min(1) >= bb.max(1));
|
||||
if (bb.defined) {
|
||||
if (this->defined) {
|
||||
this->min = this->min.cwiseMin(bb.min);
|
||||
this->max = this->max.cwiseMax(bb.max);
|
||||
} else {
|
||||
this->min = bb.min;
|
||||
this->max = bb.max;
|
||||
this->defined = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
template void BoundingBoxBase<Point>::merge(const BoundingBoxBase<Point> &bb);
|
||||
template void BoundingBoxBase<Vec2d>::merge(const BoundingBoxBase<Vec2d> &bb);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBox3Base<PointClass>::merge(const PointClass &point)
|
||||
{
|
||||
if (this->defined) {
|
||||
this->min = this->min.cwiseMin(point);
|
||||
this->max = this->max.cwiseMax(point);
|
||||
} else {
|
||||
this->min = point;
|
||||
this->max = point;
|
||||
this->defined = true;
|
||||
}
|
||||
}
|
||||
template void BoundingBox3Base<Vec3d>::merge(const Vec3d &point);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBox3Base<PointClass>::merge(const std::vector<PointClass> &points)
|
||||
{
|
||||
this->merge(BoundingBox3Base(points));
|
||||
}
|
||||
template void BoundingBox3Base<Vec3d>::merge(const Pointf3s &points);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBox3Base<PointClass>::merge(const BoundingBox3Base<PointClass> &bb)
|
||||
{
|
||||
assert(bb.defined || bb.min(0) >= bb.max(0) || bb.min(1) >= bb.max(1) || bb.min(2) >= bb.max(2));
|
||||
if (bb.defined) {
|
||||
if (this->defined) {
|
||||
this->min = this->min.cwiseMin(bb.min);
|
||||
this->max = this->max.cwiseMax(bb.max);
|
||||
} else {
|
||||
this->min = bb.min;
|
||||
this->max = bb.max;
|
||||
this->defined = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
template void BoundingBox3Base<Vec3d>::merge(const BoundingBox3Base<Vec3d> &bb);
|
||||
|
||||
template <class PointClass> PointClass
|
||||
BoundingBoxBase<PointClass>::size() const
|
||||
{
|
||||
return PointClass(this->max(0) - this->min(0), this->max(1) - this->min(1));
|
||||
}
|
||||
template Point BoundingBoxBase<Point>::size() const;
|
||||
template Vec2d BoundingBoxBase<Vec2d>::size() const;
|
||||
|
||||
template <class PointClass> PointClass
|
||||
BoundingBox3Base<PointClass>::size() const
|
||||
{
|
||||
return PointClass(this->max(0) - this->min(0), this->max(1) - this->min(1), this->max(2) - this->min(2));
|
||||
}
|
||||
template Vec3d BoundingBox3Base<Vec3d>::size() const;
|
||||
|
||||
template <class PointClass> double BoundingBoxBase<PointClass>::radius() const
|
||||
{
|
||||
assert(this->defined);
|
||||
double x = this->max(0) - this->min(0);
|
||||
double y = this->max(1) - this->min(1);
|
||||
return 0.5 * sqrt(x*x+y*y);
|
||||
}
|
||||
template double BoundingBoxBase<Point>::radius() const;
|
||||
template double BoundingBoxBase<Vec2d>::radius() const;
|
||||
|
||||
template <class PointClass> double BoundingBox3Base<PointClass>::radius() const
|
||||
{
|
||||
double x = this->max(0) - this->min(0);
|
||||
double y = this->max(1) - this->min(1);
|
||||
double z = this->max(2) - this->min(2);
|
||||
return 0.5 * sqrt(x*x+y*y+z*z);
|
||||
}
|
||||
template double BoundingBox3Base<Vec3d>::radius() const;
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::offset(coordf_t delta)
|
||||
{
|
||||
PointClass v(delta, delta);
|
||||
this->min -= v;
|
||||
this->max += v;
|
||||
}
|
||||
template void BoundingBoxBase<Point>::offset(coordf_t delta);
|
||||
template void BoundingBoxBase<Vec2d>::offset(coordf_t delta);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBox3Base<PointClass>::offset(coordf_t delta)
|
||||
{
|
||||
PointClass v(delta, delta, delta);
|
||||
this->min -= v;
|
||||
this->max += v;
|
||||
}
|
||||
template void BoundingBox3Base<Vec3d>::offset(coordf_t delta);
|
||||
|
||||
template <class PointClass> PointClass
|
||||
BoundingBoxBase<PointClass>::center() const
|
||||
{
|
||||
return (this->min + this->max) / 2;
|
||||
}
|
||||
template Point BoundingBoxBase<Point>::center() const;
|
||||
template Vec2d BoundingBoxBase<Vec2d>::center() const;
|
||||
|
||||
template <class PointClass> PointClass
|
||||
BoundingBox3Base<PointClass>::center() const
|
||||
{
|
||||
return (this->min + this->max) / 2;
|
||||
}
|
||||
template Vec3d BoundingBox3Base<Vec3d>::center() const;
|
||||
|
||||
template <class PointClass> coordf_t
|
||||
BoundingBox3Base<PointClass>::max_size() const
|
||||
{
|
||||
PointClass s = size();
|
||||
return std::max(s(0), std::max(s(1), s(2)));
|
||||
}
|
||||
template coordf_t BoundingBox3Base<Vec3d>::max_size() const;
|
||||
|
||||
// Align a coordinate to a grid. The coordinate may be negative,
|
||||
// the aligned value will never be bigger than the original one.
|
||||
static inline coord_t _align_to_grid(const coord_t coord, const coord_t spacing) {
|
||||
// Current C++ standard defines the result of integer division to be rounded to zero,
|
||||
// for both positive and negative numbers. Here we want to round down for negative
|
||||
// numbers as well.
|
||||
coord_t aligned = (coord < 0) ?
|
||||
((coord - spacing + 1) / spacing) * spacing :
|
||||
(coord / spacing) * spacing;
|
||||
assert(aligned <= coord);
|
||||
return aligned;
|
||||
}
|
||||
|
||||
void BoundingBox::align_to_grid(const coord_t cell_size)
|
||||
{
|
||||
if (this->defined) {
|
||||
min(0) = _align_to_grid(min(0), cell_size);
|
||||
min(1) = _align_to_grid(min(1), cell_size);
|
||||
}
|
||||
}
|
||||
|
||||
BoundingBoxf3 BoundingBoxf3::transformed(const Transform3d& matrix) const
|
||||
{
|
||||
typedef Eigen::Matrix<double, 3, 8, Eigen::DontAlign> Vertices;
|
||||
|
||||
Vertices src_vertices;
|
||||
src_vertices(0, 0) = min(0); src_vertices(1, 0) = min(1); src_vertices(2, 0) = min(2);
|
||||
src_vertices(0, 1) = max(0); src_vertices(1, 1) = min(1); src_vertices(2, 1) = min(2);
|
||||
src_vertices(0, 2) = max(0); src_vertices(1, 2) = max(1); src_vertices(2, 2) = min(2);
|
||||
src_vertices(0, 3) = min(0); src_vertices(1, 3) = max(1); src_vertices(2, 3) = min(2);
|
||||
src_vertices(0, 4) = min(0); src_vertices(1, 4) = min(1); src_vertices(2, 4) = max(2);
|
||||
src_vertices(0, 5) = max(0); src_vertices(1, 5) = min(1); src_vertices(2, 5) = max(2);
|
||||
src_vertices(0, 6) = max(0); src_vertices(1, 6) = max(1); src_vertices(2, 6) = max(2);
|
||||
src_vertices(0, 7) = min(0); src_vertices(1, 7) = max(1); src_vertices(2, 7) = max(2);
|
||||
|
||||
Vertices dst_vertices = matrix * src_vertices.colwise().homogeneous();
|
||||
|
||||
Vec3d v_min(dst_vertices(0, 0), dst_vertices(1, 0), dst_vertices(2, 0));
|
||||
Vec3d v_max = v_min;
|
||||
|
||||
for (int i = 1; i < 8; ++i)
|
||||
{
|
||||
for (int j = 0; j < 3; ++j)
|
||||
{
|
||||
v_min(j) = std::min(v_min(j), dst_vertices(j, i));
|
||||
v_max(j) = std::max(v_max(j), dst_vertices(j, i));
|
||||
}
|
||||
}
|
||||
|
||||
return BoundingBoxf3(v_min, v_max);
|
||||
}
|
||||
|
||||
}
|
||||
163
src/libslic3r/BoundingBox.hpp
Normal file
163
src/libslic3r/BoundingBox.hpp
Normal file
|
|
@ -0,0 +1,163 @@
|
|||
#ifndef slic3r_BoundingBox_hpp_
|
||||
#define slic3r_BoundingBox_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "Point.hpp"
|
||||
#include "Polygon.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
template <class PointClass>
|
||||
class BoundingBoxBase
|
||||
{
|
||||
public:
|
||||
PointClass min;
|
||||
PointClass max;
|
||||
bool defined;
|
||||
|
||||
BoundingBoxBase() : defined(false), min(PointClass::Zero()), max(PointClass::Zero()) {}
|
||||
BoundingBoxBase(const PointClass &pmin, const PointClass &pmax) :
|
||||
min(pmin), max(pmax), defined(pmin(0) < pmax(0) && pmin(1) < pmax(1)) {}
|
||||
BoundingBoxBase(const std::vector<PointClass>& points) : min(PointClass::Zero()), max(PointClass::Zero())
|
||||
{
|
||||
if (points.empty())
|
||||
throw std::invalid_argument("Empty point set supplied to BoundingBoxBase constructor");
|
||||
|
||||
typename std::vector<PointClass>::const_iterator it = points.begin();
|
||||
this->min = *it;
|
||||
this->max = *it;
|
||||
for (++ it; it != points.end(); ++ it) {
|
||||
this->min = this->min.cwiseMin(*it);
|
||||
this->max = this->max.cwiseMax(*it);
|
||||
}
|
||||
this->defined = (this->min(0) < this->max(0)) && (this->min(1) < this->max(1));
|
||||
}
|
||||
void merge(const PointClass &point);
|
||||
void merge(const std::vector<PointClass> &points);
|
||||
void merge(const BoundingBoxBase<PointClass> &bb);
|
||||
void scale(double factor);
|
||||
PointClass size() const;
|
||||
double radius() const;
|
||||
void translate(coordf_t x, coordf_t y) { assert(this->defined); PointClass v(x, y); this->min += v; this->max += v; }
|
||||
void translate(const Vec2d &v) { this->min += v; this->max += v; }
|
||||
void offset(coordf_t delta);
|
||||
PointClass center() const;
|
||||
bool contains(const PointClass &point) const {
|
||||
return point(0) >= this->min(0) && point(0) <= this->max(0)
|
||||
&& point(1) >= this->min(1) && point(1) <= this->max(1);
|
||||
}
|
||||
bool overlap(const BoundingBoxBase<PointClass> &other) const {
|
||||
return ! (this->max(0) < other.min(0) || this->min(0) > other.max(0) ||
|
||||
this->max(1) < other.min(1) || this->min(1) > other.max(1));
|
||||
}
|
||||
bool operator==(const BoundingBoxBase<PointClass> &rhs) { return this->min == rhs.min && this->max == rhs.max; }
|
||||
bool operator!=(const BoundingBoxBase<PointClass> &rhs) { return ! (*this == rhs); }
|
||||
};
|
||||
|
||||
template <class PointClass>
|
||||
class BoundingBox3Base : public BoundingBoxBase<PointClass>
|
||||
{
|
||||
public:
|
||||
BoundingBox3Base() : BoundingBoxBase<PointClass>() {};
|
||||
BoundingBox3Base(const PointClass &pmin, const PointClass &pmax) :
|
||||
BoundingBoxBase<PointClass>(pmin, pmax)
|
||||
{ if (pmin(2) >= pmax(2)) BoundingBoxBase<PointClass>::defined = false; }
|
||||
BoundingBox3Base(const std::vector<PointClass>& points)
|
||||
{
|
||||
if (points.empty())
|
||||
throw std::invalid_argument("Empty point set supplied to BoundingBox3Base constructor");
|
||||
typename std::vector<PointClass>::const_iterator it = points.begin();
|
||||
this->min = *it;
|
||||
this->max = *it;
|
||||
for (++ it; it != points.end(); ++ it) {
|
||||
this->min = this->min.cwiseMin(*it);
|
||||
this->max = this->max.cwiseMax(*it);
|
||||
}
|
||||
this->defined = (this->min(0) < this->max(0)) && (this->min(1) < this->max(1)) && (this->min(2) < this->max(2));
|
||||
}
|
||||
void merge(const PointClass &point);
|
||||
void merge(const std::vector<PointClass> &points);
|
||||
void merge(const BoundingBox3Base<PointClass> &bb);
|
||||
PointClass size() const;
|
||||
double radius() const;
|
||||
void translate(coordf_t x, coordf_t y, coordf_t z) { assert(this->defined); PointClass v(x, y, z); this->min += v; this->max += v; }
|
||||
void translate(const Vec3d &v) { this->min += v; this->max += v; }
|
||||
void offset(coordf_t delta);
|
||||
PointClass center() const;
|
||||
coordf_t max_size() const;
|
||||
|
||||
bool contains(const PointClass &point) const {
|
||||
return BoundingBoxBase<PointClass>::contains(point) && point(2) >= this->min(2) && point(2) <= this->max(2);
|
||||
}
|
||||
|
||||
bool contains(const BoundingBox3Base<PointClass>& other) const {
|
||||
return contains(other.min) && contains(other.max);
|
||||
}
|
||||
|
||||
bool intersects(const BoundingBox3Base<PointClass>& other) const {
|
||||
return (this->min(0) < other.max(0)) && (this->max(0) > other.min(0)) && (this->min(1) < other.max(1)) && (this->max(1) > other.min(1)) && (this->min(2) < other.max(2)) && (this->max(2) > other.min(2));
|
||||
}
|
||||
};
|
||||
|
||||
class BoundingBox : public BoundingBoxBase<Point>
|
||||
{
|
||||
public:
|
||||
void polygon(Polygon* polygon) const;
|
||||
Polygon polygon() const;
|
||||
BoundingBox rotated(double angle) const;
|
||||
BoundingBox rotated(double angle, const Point ¢er) const;
|
||||
void rotate(double angle) { (*this) = this->rotated(angle); }
|
||||
void rotate(double angle, const Point ¢er) { (*this) = this->rotated(angle, center); }
|
||||
// Align the min corner to a grid of cell_size x cell_size cells,
|
||||
// to encompass the original bounding box.
|
||||
void align_to_grid(const coord_t cell_size);
|
||||
|
||||
BoundingBox() : BoundingBoxBase<Point>() {};
|
||||
BoundingBox(const Point &pmin, const Point &pmax) : BoundingBoxBase<Point>(pmin, pmax) {};
|
||||
BoundingBox(const Points &points) : BoundingBoxBase<Point>(points) {};
|
||||
BoundingBox(const Lines &lines);
|
||||
|
||||
friend BoundingBox get_extents_rotated(const Points &points, double angle);
|
||||
};
|
||||
|
||||
class BoundingBox3 : public BoundingBox3Base<Vec3crd>
|
||||
{
|
||||
public:
|
||||
BoundingBox3() : BoundingBox3Base<Vec3crd>() {};
|
||||
BoundingBox3(const Vec3crd &pmin, const Vec3crd &pmax) : BoundingBox3Base<Vec3crd>(pmin, pmax) {};
|
||||
BoundingBox3(const Points3& points) : BoundingBox3Base<Vec3crd>(points) {};
|
||||
};
|
||||
|
||||
class BoundingBoxf : public BoundingBoxBase<Vec2d>
|
||||
{
|
||||
public:
|
||||
BoundingBoxf() : BoundingBoxBase<Vec2d>() {};
|
||||
BoundingBoxf(const Vec2d &pmin, const Vec2d &pmax) : BoundingBoxBase<Vec2d>(pmin, pmax) {};
|
||||
BoundingBoxf(const std::vector<Vec2d> &points) : BoundingBoxBase<Vec2d>(points) {};
|
||||
};
|
||||
|
||||
class BoundingBoxf3 : public BoundingBox3Base<Vec3d>
|
||||
{
|
||||
public:
|
||||
BoundingBoxf3() : BoundingBox3Base<Vec3d>() {};
|
||||
BoundingBoxf3(const Vec3d &pmin, const Vec3d &pmax) : BoundingBox3Base<Vec3d>(pmin, pmax) {};
|
||||
BoundingBoxf3(const std::vector<Vec3d> &points) : BoundingBox3Base<Vec3d>(points) {};
|
||||
|
||||
BoundingBoxf3 transformed(const Transform3d& matrix) const;
|
||||
};
|
||||
|
||||
template<typename VT>
|
||||
inline bool empty(const BoundingBoxBase<VT> &bb)
|
||||
{
|
||||
return ! bb.defined || bb.min(0) >= bb.max(0) || bb.min(1) >= bb.max(1);
|
||||
}
|
||||
|
||||
template<typename VT>
|
||||
inline bool empty(const BoundingBox3Base<VT> &bb)
|
||||
{
|
||||
return ! bb.defined || bb.min(0) >= bb.max(0) || bb.min(1) >= bb.max(1) || bb.min(2) >= bb.max(2);
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif
|
||||
317
src/libslic3r/BridgeDetector.cpp
Normal file
317
src/libslic3r/BridgeDetector.cpp
Normal file
|
|
@ -0,0 +1,317 @@
|
|||
#include "BridgeDetector.hpp"
|
||||
#include "ClipperUtils.hpp"
|
||||
#include "Geometry.hpp"
|
||||
#include <algorithm>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
BridgeDetector::BridgeDetector(
|
||||
ExPolygon _expolygon,
|
||||
const ExPolygonCollection &_lower_slices,
|
||||
coord_t _spacing) :
|
||||
// The original infill polygon, not inflated.
|
||||
expolygons(expolygons_owned),
|
||||
// All surfaces of the object supporting this region.
|
||||
lower_slices(_lower_slices),
|
||||
spacing(_spacing)
|
||||
{
|
||||
this->expolygons_owned.push_back(std::move(_expolygon));
|
||||
initialize();
|
||||
}
|
||||
|
||||
BridgeDetector::BridgeDetector(
|
||||
const ExPolygons &_expolygons,
|
||||
const ExPolygonCollection &_lower_slices,
|
||||
coord_t _spacing) :
|
||||
// The original infill polygon, not inflated.
|
||||
expolygons(_expolygons),
|
||||
// All surfaces of the object supporting this region.
|
||||
lower_slices(_lower_slices),
|
||||
spacing(_spacing)
|
||||
{
|
||||
initialize();
|
||||
}
|
||||
|
||||
void BridgeDetector::initialize()
|
||||
{
|
||||
// 5 degrees stepping
|
||||
this->resolution = PI/36.0;
|
||||
// output angle not known
|
||||
this->angle = -1.;
|
||||
|
||||
// Outset our bridge by an arbitrary amout; we'll use this outer margin for detecting anchors.
|
||||
Polygons grown = offset(to_polygons(this->expolygons), float(this->spacing));
|
||||
|
||||
// Detect possible anchoring edges of this bridging region.
|
||||
// Detect what edges lie on lower slices by turning bridge contour and holes
|
||||
// into polylines and then clipping them with each lower slice's contour.
|
||||
// Currently _edges are only used to set a candidate direction of the bridge (see bridge_direction_candidates()).
|
||||
this->_edges = intersection_pl(to_polylines(grown), this->lower_slices.contours());
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf(" bridge has " PRINTF_ZU " support(s)\n", this->_edges.size());
|
||||
#endif
|
||||
|
||||
// detect anchors as intersection between our bridge expolygon and the lower slices
|
||||
// safety offset required to avoid Clipper from detecting empty intersection while Boost actually found some edges
|
||||
this->_anchor_regions = intersection_ex(grown, to_polygons(this->lower_slices.expolygons), true);
|
||||
|
||||
/*
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output("bridge.svg",
|
||||
expolygons => [ $self->expolygon ],
|
||||
red_expolygons => $self->lower_slices,
|
||||
polylines => $self->_edges,
|
||||
);
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
bool BridgeDetector::detect_angle(double bridge_direction_override)
|
||||
{
|
||||
if (this->_edges.empty() || this->_anchor_regions.empty())
|
||||
// The bridging region is completely in the air, there are no anchors available at the layer below.
|
||||
return false;
|
||||
|
||||
std::vector<BridgeDirection> candidates;
|
||||
if (bridge_direction_override == 0.) {
|
||||
std::vector<double> angles = bridge_direction_candidates();
|
||||
candidates.reserve(angles.size());
|
||||
for (size_t i = 0; i < angles.size(); ++ i)
|
||||
candidates.emplace_back(BridgeDirection(angles[i]));
|
||||
} else
|
||||
candidates.emplace_back(BridgeDirection(bridge_direction_override));
|
||||
|
||||
/* Outset the bridge expolygon by half the amount we used for detecting anchors;
|
||||
we'll use this one to clip our test lines and be sure that their endpoints
|
||||
are inside the anchors and not on their contours leading to false negatives. */
|
||||
Polygons clip_area = offset(this->expolygons, 0.5f * float(this->spacing));
|
||||
|
||||
/* we'll now try several directions using a rudimentary visibility check:
|
||||
bridge in several directions and then sum the length of lines having both
|
||||
endpoints within anchors */
|
||||
|
||||
bool have_coverage = false;
|
||||
for (size_t i_angle = 0; i_angle < candidates.size(); ++ i_angle)
|
||||
{
|
||||
const double angle = candidates[i_angle].angle;
|
||||
|
||||
Lines lines;
|
||||
{
|
||||
// Get an oriented bounding box around _anchor_regions.
|
||||
BoundingBox bbox = get_extents_rotated(this->_anchor_regions, - angle);
|
||||
// Cover the region with line segments.
|
||||
lines.reserve((bbox.max(1) - bbox.min(1) + this->spacing) / this->spacing);
|
||||
double s = sin(angle);
|
||||
double c = cos(angle);
|
||||
//FIXME Vojtech: The lines shall be spaced half the line width from the edge, but then
|
||||
// some of the test cases fail. Need to adjust the test cases then?
|
||||
// for (coord_t y = bbox.min(1) + this->spacing / 2; y <= bbox.max(1); y += this->spacing)
|
||||
for (coord_t y = bbox.min(1); y <= bbox.max(1); y += this->spacing)
|
||||
lines.push_back(Line(
|
||||
Point((coord_t)round(c * bbox.min(0) - s * y), (coord_t)round(c * y + s * bbox.min(0))),
|
||||
Point((coord_t)round(c * bbox.max(0) - s * y), (coord_t)round(c * y + s * bbox.max(0)))));
|
||||
}
|
||||
|
||||
double total_length = 0;
|
||||
double max_length = 0;
|
||||
{
|
||||
Lines clipped_lines = intersection_ln(lines, clip_area);
|
||||
for (size_t i = 0; i < clipped_lines.size(); ++i) {
|
||||
const Line &line = clipped_lines[i];
|
||||
if (expolygons_contain(this->_anchor_regions, line.a) && expolygons_contain(this->_anchor_regions, line.b)) {
|
||||
// This line could be anchored.
|
||||
double len = line.length();
|
||||
total_length += len;
|
||||
max_length = std::max(max_length, len);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (total_length == 0.)
|
||||
continue;
|
||||
|
||||
have_coverage = true;
|
||||
// Sum length of bridged lines.
|
||||
candidates[i_angle].coverage = total_length;
|
||||
/* The following produces more correct results in some cases and more broken in others.
|
||||
TODO: investigate, as it looks more reliable than line clipping. */
|
||||
// $directions_coverage{$angle} = sum(map $_->area, @{$self->coverage($angle)}) // 0;
|
||||
// max length of bridged lines
|
||||
candidates[i_angle].max_length = max_length;
|
||||
}
|
||||
|
||||
// if no direction produced coverage, then there's no bridge direction
|
||||
if (! have_coverage)
|
||||
return false;
|
||||
|
||||
// sort directions by coverage - most coverage first
|
||||
std::sort(candidates.begin(), candidates.end());
|
||||
|
||||
// if any other direction is within extrusion width of coverage, prefer it if shorter
|
||||
// TODO: There are two options here - within width of the angle with most coverage, or within width of the currently perferred?
|
||||
size_t i_best = 0;
|
||||
for (size_t i = 1; i < candidates.size() && candidates[i_best].coverage - candidates[i].coverage < this->spacing; ++ i)
|
||||
if (candidates[i].max_length < candidates[i_best].max_length)
|
||||
i_best = i;
|
||||
|
||||
this->angle = candidates[i_best].angle;
|
||||
if (this->angle >= PI)
|
||||
this->angle -= PI;
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf(" Optimal infill angle is %d degrees\n", (int)Slic3r::Geometry::rad2deg(this->angle));
|
||||
#endif
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::vector<double> BridgeDetector::bridge_direction_candidates() const
|
||||
{
|
||||
// we test angles according to configured resolution
|
||||
std::vector<double> angles;
|
||||
for (int i = 0; i <= PI/this->resolution; ++i)
|
||||
angles.push_back(i * this->resolution);
|
||||
|
||||
// we also test angles of each bridge contour
|
||||
{
|
||||
Lines lines = to_lines(this->expolygons);
|
||||
for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line)
|
||||
angles.push_back(line->direction());
|
||||
}
|
||||
|
||||
/* we also test angles of each open supporting edge
|
||||
(this finds the optimal angle for C-shaped supports) */
|
||||
for (const Polyline &edge : this->_edges)
|
||||
if (edge.first_point() != edge.last_point())
|
||||
angles.push_back(Line(edge.first_point(), edge.last_point()).direction());
|
||||
|
||||
// remove duplicates
|
||||
double min_resolution = PI/180.0; // 1 degree
|
||||
std::sort(angles.begin(), angles.end());
|
||||
for (size_t i = 1; i < angles.size(); ++i) {
|
||||
if (Slic3r::Geometry::directions_parallel(angles[i], angles[i-1], min_resolution)) {
|
||||
angles.erase(angles.begin() + i);
|
||||
--i;
|
||||
}
|
||||
}
|
||||
/* compare first value with last one and remove the greatest one (PI)
|
||||
in case they are parallel (PI, 0) */
|
||||
if (Slic3r::Geometry::directions_parallel(angles.front(), angles.back(), min_resolution))
|
||||
angles.pop_back();
|
||||
|
||||
return angles;
|
||||
}
|
||||
|
||||
Polygons BridgeDetector::coverage(double angle) const
|
||||
{
|
||||
if (angle == -1)
|
||||
angle = this->angle;
|
||||
|
||||
Polygons covered;
|
||||
|
||||
if (angle != -1) {
|
||||
// Get anchors, convert them to Polygons and rotate them.
|
||||
Polygons anchors = to_polygons(this->_anchor_regions);
|
||||
polygons_rotate(anchors, PI/2.0 - angle);
|
||||
|
||||
for (ExPolygon expolygon : this->expolygons) {
|
||||
// Clone our expolygon and rotate it so that we work with vertical lines.
|
||||
expolygon.rotate(PI/2.0 - angle);
|
||||
// Outset the bridge expolygon by half the amount we used for detecting anchors;
|
||||
// we'll use this one to generate our trapezoids and be sure that their vertices
|
||||
// are inside the anchors and not on their contours leading to false negatives.
|
||||
for (ExPolygon &expoly : offset_ex(expolygon, 0.5f * float(this->spacing))) {
|
||||
// Compute trapezoids according to a vertical orientation
|
||||
Polygons trapezoids;
|
||||
expoly.get_trapezoids2(&trapezoids, PI/2.0);
|
||||
for (const Polygon &trapezoid : trapezoids) {
|
||||
// not nice, we need a more robust non-numeric check
|
||||
size_t n_supported = 0;
|
||||
for (const Line &supported_line : intersection_ln(trapezoid.lines(), anchors))
|
||||
if (supported_line.length() >= this->spacing)
|
||||
++ n_supported;
|
||||
if (n_supported >= 2)
|
||||
covered.push_back(std::move(trapezoid));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Unite the trapezoids before rotation, as the rotation creates tiny gaps and intersections between the trapezoids
|
||||
// instead of exact overlaps.
|
||||
covered = union_(covered);
|
||||
// Intersect trapezoids with actual bridge area to remove extra margins and append it to result.
|
||||
polygons_rotate(covered, -(PI/2.0 - angle));
|
||||
covered = intersection(covered, to_polygons(this->expolygons));
|
||||
#if 0
|
||||
{
|
||||
my @lines = map @{$_->lines}, @$trapezoids;
|
||||
$_->rotate(-(PI/2 - $angle), [0,0]) for @lines;
|
||||
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output(
|
||||
"coverage_" . rad2deg($angle) . ".svg",
|
||||
expolygons => [$self->expolygon],
|
||||
green_expolygons => $self->_anchor_regions,
|
||||
red_expolygons => $coverage,
|
||||
lines => \@lines,
|
||||
);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
return covered;
|
||||
}
|
||||
|
||||
/* This method returns the bridge edges (as polylines) that are not supported
|
||||
but would allow the entire bridge area to be bridged with detected angle
|
||||
if supported too */
|
||||
void
|
||||
BridgeDetector::unsupported_edges(double angle, Polylines* unsupported) const
|
||||
{
|
||||
if (angle == -1) angle = this->angle;
|
||||
if (angle == -1) return;
|
||||
|
||||
Polygons grown_lower = offset(this->lower_slices.expolygons, float(this->spacing));
|
||||
|
||||
for (ExPolygons::const_iterator it_expoly = this->expolygons.begin(); it_expoly != this->expolygons.end(); ++ it_expoly) {
|
||||
// get unsupported bridge edges (both contour and holes)
|
||||
Lines unsupported_lines = to_lines(diff_pl(to_polylines(*it_expoly), grown_lower));
|
||||
/* Split into individual segments and filter out edges parallel to the bridging angle
|
||||
TODO: angle tolerance should probably be based on segment length and flow width,
|
||||
so that we build supports whenever there's a chance that at least one or two bridge
|
||||
extrusions would be anchored within such length (i.e. a slightly non-parallel bridging
|
||||
direction might still benefit from anchors if long enough)
|
||||
double angle_tolerance = PI / 180.0 * 5.0; */
|
||||
for (const Line &line : unsupported_lines)
|
||||
if (! Slic3r::Geometry::directions_parallel(line.direction(), angle)) {
|
||||
unsupported->emplace_back(Polyline());
|
||||
unsupported->back().points.emplace_back(line.a);
|
||||
unsupported->back().points.emplace_back(line.b);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output(
|
||||
"unsupported_" . rad2deg($angle) . ".svg",
|
||||
expolygons => [$self->expolygon],
|
||||
green_expolygons => $self->_anchor_regions,
|
||||
red_expolygons => union_ex($grown_lower),
|
||||
no_arrows => 1,
|
||||
polylines => \@bridge_edges,
|
||||
red_polylines => $unsupported,
|
||||
);
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
Polylines
|
||||
BridgeDetector::unsupported_edges(double angle) const
|
||||
{
|
||||
Polylines pp;
|
||||
this->unsupported_edges(angle, &pp);
|
||||
return pp;
|
||||
}
|
||||
|
||||
}
|
||||
69
src/libslic3r/BridgeDetector.hpp
Normal file
69
src/libslic3r/BridgeDetector.hpp
Normal file
|
|
@ -0,0 +1,69 @@
|
|||
#ifndef slic3r_BridgeDetector_hpp_
|
||||
#define slic3r_BridgeDetector_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "ExPolygon.hpp"
|
||||
#include "ExPolygonCollection.hpp"
|
||||
#include <string>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
// The bridge detector optimizes a direction of bridges over a region or a set of regions.
|
||||
// A bridge direction is considered optimal, if the length of the lines strang over the region is maximal.
|
||||
// This is optimal if the bridge is supported in a single direction only, but
|
||||
// it may not likely be optimal, if the bridge region is supported from all sides. Then an optimal
|
||||
// solution would find a direction with shortest bridges.
|
||||
// The bridge orientation is measured CCW from the X axis.
|
||||
class BridgeDetector {
|
||||
public:
|
||||
// The non-grown holes.
|
||||
const ExPolygons &expolygons;
|
||||
// In case the caller gaves us the input polygons by a value, make a copy.
|
||||
ExPolygons expolygons_owned;
|
||||
// Lower slices, all regions.
|
||||
const ExPolygonCollection &lower_slices;
|
||||
// Scaled extrusion width of the infill.
|
||||
coord_t spacing;
|
||||
// Angle resolution for the brute force search of the best bridging angle.
|
||||
double resolution;
|
||||
// The final optimal angle.
|
||||
double angle;
|
||||
|
||||
BridgeDetector(ExPolygon _expolygon, const ExPolygonCollection &_lower_slices, coord_t _extrusion_width);
|
||||
BridgeDetector(const ExPolygons &_expolygons, const ExPolygonCollection &_lower_slices, coord_t _extrusion_width);
|
||||
// If bridge_direction_override != 0, then the angle is used instead of auto-detect.
|
||||
bool detect_angle(double bridge_direction_override = 0.);
|
||||
Polygons coverage(double angle = -1) const;
|
||||
void unsupported_edges(double angle, Polylines* unsupported) const;
|
||||
Polylines unsupported_edges(double angle = -1) const;
|
||||
|
||||
private:
|
||||
// Suppress warning "assignment operator could not be generated"
|
||||
BridgeDetector& operator=(const BridgeDetector &);
|
||||
|
||||
void initialize();
|
||||
|
||||
struct BridgeDirection {
|
||||
BridgeDirection(double a = -1.) : angle(a), coverage(0.), max_length(0.) {}
|
||||
// the best direction is the one causing most lines to be bridged (thus most coverage)
|
||||
bool operator<(const BridgeDirection &other) const {
|
||||
// Initial sort by coverage only - comparator must obey strict weak ordering
|
||||
return this->coverage > other.coverage;
|
||||
};
|
||||
double angle;
|
||||
double coverage;
|
||||
double max_length;
|
||||
};
|
||||
|
||||
// Get possible briging direction candidates.
|
||||
std::vector<double> bridge_direction_candidates() const;
|
||||
|
||||
// Open lines representing the supporting edges.
|
||||
Polylines _edges;
|
||||
// Closed polygons representing the supporting areas.
|
||||
ExPolygons _anchor_regions;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
194
src/libslic3r/CMakeLists.txt
Normal file
194
src/libslic3r/CMakeLists.txt
Normal file
|
|
@ -0,0 +1,194 @@
|
|||
project(libslic3r)
|
||||
cmake_minimum_required(VERSION 2.6)
|
||||
|
||||
include(PrecompiledHeader)
|
||||
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/libslic3r_version.h.in ${CMAKE_CURRENT_BINARY_DIR}/libslic3r_version.h @ONLY)
|
||||
|
||||
add_library(libslic3r STATIC
|
||||
pchheader.cpp
|
||||
pchheader.hpp
|
||||
BoundingBox.cpp
|
||||
BoundingBox.hpp
|
||||
BridgeDetector.cpp
|
||||
BridgeDetector.hpp
|
||||
ClipperUtils.cpp
|
||||
ClipperUtils.hpp
|
||||
Config.cpp
|
||||
Config.hpp
|
||||
EdgeGrid.cpp
|
||||
EdgeGrid.hpp
|
||||
ExPolygon.cpp
|
||||
ExPolygon.hpp
|
||||
ExPolygonCollection.cpp
|
||||
ExPolygonCollection.hpp
|
||||
Extruder.cpp
|
||||
Extruder.hpp
|
||||
ExtrusionEntity.cpp
|
||||
ExtrusionEntity.hpp
|
||||
ExtrusionEntityCollection.cpp
|
||||
ExtrusionEntityCollection.hpp
|
||||
ExtrusionSimulator.cpp
|
||||
ExtrusionSimulator.hpp
|
||||
FileParserError.hpp
|
||||
Fill/Fill.cpp
|
||||
Fill/Fill.hpp
|
||||
Fill/Fill3DHoneycomb.cpp
|
||||
Fill/Fill3DHoneycomb.hpp
|
||||
Fill/FillBase.cpp
|
||||
Fill/FillBase.hpp
|
||||
Fill/FillConcentric.cpp
|
||||
Fill/FillConcentric.hpp
|
||||
Fill/FillHoneycomb.cpp
|
||||
Fill/FillHoneycomb.hpp
|
||||
Fill/FillGyroid.cpp
|
||||
Fill/FillGyroid.hpp
|
||||
Fill/FillPlanePath.cpp
|
||||
Fill/FillPlanePath.hpp
|
||||
Fill/FillRectilinear.cpp
|
||||
Fill/FillRectilinear.hpp
|
||||
Fill/FillRectilinear2.cpp
|
||||
Fill/FillRectilinear2.hpp
|
||||
Fill/FillRectilinear3.cpp
|
||||
Fill/FillRectilinear3.hpp
|
||||
Flow.cpp
|
||||
Flow.hpp
|
||||
Format/3mf.cpp
|
||||
Format/3mf.hpp
|
||||
Format/AMF.cpp
|
||||
Format/AMF.hpp
|
||||
Format/OBJ.cpp
|
||||
Format/OBJ.hpp
|
||||
Format/objparser.cpp
|
||||
Format/objparser.hpp
|
||||
Format/PRUS.cpp
|
||||
Format/PRUS.hpp
|
||||
Format/STL.cpp
|
||||
Format/STL.hpp
|
||||
GCode/Analyzer.cpp
|
||||
GCode/Analyzer.hpp
|
||||
GCode/CoolingBuffer.cpp
|
||||
GCode/CoolingBuffer.hpp
|
||||
GCode/PostProcessor.cpp
|
||||
GCode/PostProcessor.hpp
|
||||
GCode/PressureEqualizer.cpp
|
||||
GCode/PressureEqualizer.hpp
|
||||
GCode/PreviewData.cpp
|
||||
GCode/PreviewData.hpp
|
||||
GCode/PrintExtents.cpp
|
||||
GCode/PrintExtents.hpp
|
||||
GCode/SpiralVase.cpp
|
||||
GCode/SpiralVase.hpp
|
||||
GCode/ToolOrdering.cpp
|
||||
GCode/ToolOrdering.hpp
|
||||
GCode/WipeTower.hpp
|
||||
GCode/WipeTowerPrusaMM.cpp
|
||||
GCode/WipeTowerPrusaMM.hpp
|
||||
GCode.cpp
|
||||
GCode.hpp
|
||||
GCodeReader.cpp
|
||||
GCodeReader.hpp
|
||||
GCodeSender.cpp
|
||||
GCodeSender.hpp
|
||||
GCodeTimeEstimator.cpp
|
||||
GCodeTimeEstimator.hpp
|
||||
GCodeWriter.cpp
|
||||
GCodeWriter.hpp
|
||||
Geometry.cpp
|
||||
Geometry.hpp
|
||||
Int128.hpp
|
||||
# KdTree.hpp
|
||||
Layer.cpp
|
||||
Layer.hpp
|
||||
LayerRegion.cpp
|
||||
libslic3r.h
|
||||
"${CMAKE_CURRENT_BINARY_DIR}/libslic3r_version.h"
|
||||
Line.cpp
|
||||
Line.hpp
|
||||
Model.cpp
|
||||
Model.hpp
|
||||
ModelArrange.hpp
|
||||
ModelArrange.cpp
|
||||
MotionPlanner.cpp
|
||||
MotionPlanner.hpp
|
||||
MultiPoint.cpp
|
||||
MultiPoint.hpp
|
||||
MutablePriorityQueue.hpp
|
||||
PerimeterGenerator.cpp
|
||||
PerimeterGenerator.hpp
|
||||
PlaceholderParser.cpp
|
||||
PlaceholderParser.hpp
|
||||
Point.cpp
|
||||
Point.hpp
|
||||
Polygon.cpp
|
||||
Polygon.hpp
|
||||
Polyline.cpp
|
||||
Polyline.hpp
|
||||
PolylineCollection.cpp
|
||||
PolylineCollection.hpp
|
||||
Print.cpp
|
||||
Print.hpp
|
||||
PrintBase.cpp
|
||||
PrintBase.hpp
|
||||
PrintExport.hpp
|
||||
PrintConfig.cpp
|
||||
PrintConfig.hpp
|
||||
PrintObject.cpp
|
||||
PrintRegion.cpp
|
||||
Rasterizer/Rasterizer.hpp
|
||||
Rasterizer/Rasterizer.cpp
|
||||
SLAPrint.cpp
|
||||
SLAPrint.hpp
|
||||
Slicing.cpp
|
||||
Slicing.hpp
|
||||
SlicingAdaptive.cpp
|
||||
SlicingAdaptive.hpp
|
||||
SupportMaterial.cpp
|
||||
SupportMaterial.hpp
|
||||
Surface.cpp
|
||||
Surface.hpp
|
||||
SurfaceCollection.cpp
|
||||
SurfaceCollection.hpp
|
||||
SVG.cpp
|
||||
SVG.hpp
|
||||
Technologies.hpp
|
||||
TriangleMesh.cpp
|
||||
TriangleMesh.hpp
|
||||
utils.cpp
|
||||
Utils.hpp
|
||||
SLA/SLABoilerPlate.hpp
|
||||
SLA/SLABasePool.hpp
|
||||
SLA/SLABasePool.cpp
|
||||
SLA/SLASupportTree.hpp
|
||||
SLA/SLASupportTree.cpp
|
||||
SLA/SLASupportTreeIGL.cpp
|
||||
SLA/SLARotfinder.hpp
|
||||
SLA/SLARotfinder.cpp
|
||||
SLA/SLABoostAdapter.hpp
|
||||
SLA/SLASpatIndex.hpp
|
||||
)
|
||||
|
||||
add_precompiled_header(libslic3r pchheader.hpp FORCEINCLUDE)
|
||||
|
||||
target_compile_definitions(libslic3r PUBLIC -DUSE_TBB ${PNG_DEFINITIONS})
|
||||
target_include_directories(libslic3r PUBLIC ${CMAKE_CURRENT_BINARY_DIR} ${LIBNEST2D_INCLUDES} ${PNG_INCLUDE_DIRS})
|
||||
target_link_libraries(libslic3r
|
||||
libnest2d
|
||||
admesh
|
||||
miniz
|
||||
${Boost_LIBRARIES}
|
||||
clipper
|
||||
nowide
|
||||
${EXPAT_LIBRARIES}
|
||||
${GLEW_LIBRARIES}
|
||||
${PNG_LIBRARIES}
|
||||
polypartition
|
||||
poly2tri
|
||||
qhull
|
||||
semver
|
||||
tbb
|
||||
)
|
||||
|
||||
if(SLIC3R_PROFILE)
|
||||
target_link_libraries(slic3r Shiny)
|
||||
endif()
|
||||
798
src/libslic3r/ClipperUtils.cpp
Normal file
798
src/libslic3r/ClipperUtils.cpp
Normal file
|
|
@ -0,0 +1,798 @@
|
|||
#include "ClipperUtils.hpp"
|
||||
#include "Geometry.hpp"
|
||||
|
||||
// #define CLIPPER_UTILS_DEBUG
|
||||
|
||||
#ifdef CLIPPER_UTILS_DEBUG
|
||||
#include "SVG.hpp"
|
||||
#endif /* CLIPPER_UTILS_DEBUG */
|
||||
|
||||
#include <Shiny/Shiny.h>
|
||||
|
||||
#define CLIPPER_OFFSET_SHORTEST_EDGE_FACTOR (0.005f)
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
#ifdef CLIPPER_UTILS_DEBUG
|
||||
bool clipper_export_enabled = false;
|
||||
// For debugging the Clipper library, for providing bug reports to the Clipper author.
|
||||
bool export_clipper_input_polygons_bin(const char *path, const ClipperLib::Paths &input_subject, const ClipperLib::Paths &input_clip)
|
||||
{
|
||||
FILE *pfile = fopen(path, "wb");
|
||||
if (pfile == NULL)
|
||||
return false;
|
||||
|
||||
uint32_t sz = uint32_t(input_subject.size());
|
||||
fwrite(&sz, 1, sizeof(sz), pfile);
|
||||
for (size_t i = 0; i < input_subject.size(); ++i) {
|
||||
const ClipperLib::Path &path = input_subject[i];
|
||||
sz = uint32_t(path.size());
|
||||
::fwrite(&sz, 1, sizeof(sz), pfile);
|
||||
::fwrite(path.data(), sizeof(ClipperLib::IntPoint), sz, pfile);
|
||||
}
|
||||
sz = uint32_t(input_clip.size());
|
||||
::fwrite(&sz, 1, sizeof(sz), pfile);
|
||||
for (size_t i = 0; i < input_clip.size(); ++i) {
|
||||
const ClipperLib::Path &path = input_clip[i];
|
||||
sz = uint32_t(path.size());
|
||||
::fwrite(&sz, 1, sizeof(sz), pfile);
|
||||
::fwrite(path.data(), sizeof(ClipperLib::IntPoint), sz, pfile);
|
||||
}
|
||||
::fclose(pfile);
|
||||
return true;
|
||||
|
||||
err:
|
||||
::fclose(pfile);
|
||||
return false;
|
||||
}
|
||||
#endif /* CLIPPER_UTILS_DEBUG */
|
||||
|
||||
void scaleClipperPolygon(ClipperLib::Path &polygon)
|
||||
{
|
||||
PROFILE_FUNC();
|
||||
for (ClipperLib::Path::iterator pit = polygon.begin(); pit != polygon.end(); ++pit) {
|
||||
pit->X <<= CLIPPER_OFFSET_POWER_OF_2;
|
||||
pit->Y <<= CLIPPER_OFFSET_POWER_OF_2;
|
||||
}
|
||||
}
|
||||
|
||||
void scaleClipperPolygons(ClipperLib::Paths &polygons)
|
||||
{
|
||||
PROFILE_FUNC();
|
||||
for (ClipperLib::Paths::iterator it = polygons.begin(); it != polygons.end(); ++it)
|
||||
for (ClipperLib::Path::iterator pit = (*it).begin(); pit != (*it).end(); ++pit) {
|
||||
pit->X <<= CLIPPER_OFFSET_POWER_OF_2;
|
||||
pit->Y <<= CLIPPER_OFFSET_POWER_OF_2;
|
||||
}
|
||||
}
|
||||
|
||||
void unscaleClipperPolygon(ClipperLib::Path &polygon)
|
||||
{
|
||||
PROFILE_FUNC();
|
||||
for (ClipperLib::Path::iterator pit = polygon.begin(); pit != polygon.end(); ++pit) {
|
||||
pit->X += CLIPPER_OFFSET_SCALE_ROUNDING_DELTA;
|
||||
pit->Y += CLIPPER_OFFSET_SCALE_ROUNDING_DELTA;
|
||||
pit->X >>= CLIPPER_OFFSET_POWER_OF_2;
|
||||
pit->Y >>= CLIPPER_OFFSET_POWER_OF_2;
|
||||
}
|
||||
}
|
||||
|
||||
void unscaleClipperPolygons(ClipperLib::Paths &polygons)
|
||||
{
|
||||
PROFILE_FUNC();
|
||||
for (ClipperLib::Paths::iterator it = polygons.begin(); it != polygons.end(); ++it)
|
||||
for (ClipperLib::Path::iterator pit = (*it).begin(); pit != (*it).end(); ++pit) {
|
||||
pit->X += CLIPPER_OFFSET_SCALE_ROUNDING_DELTA;
|
||||
pit->Y += CLIPPER_OFFSET_SCALE_ROUNDING_DELTA;
|
||||
pit->X >>= CLIPPER_OFFSET_POWER_OF_2;
|
||||
pit->Y >>= CLIPPER_OFFSET_POWER_OF_2;
|
||||
}
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------
|
||||
// legacy code from Clipper documentation
|
||||
void AddOuterPolyNodeToExPolygons(ClipperLib::PolyNode& polynode, ExPolygons* expolygons)
|
||||
{
|
||||
size_t cnt = expolygons->size();
|
||||
expolygons->resize(cnt + 1);
|
||||
(*expolygons)[cnt].contour = ClipperPath_to_Slic3rPolygon(polynode.Contour);
|
||||
(*expolygons)[cnt].holes.resize(polynode.ChildCount());
|
||||
for (int i = 0; i < polynode.ChildCount(); ++i)
|
||||
{
|
||||
(*expolygons)[cnt].holes[i] = ClipperPath_to_Slic3rPolygon(polynode.Childs[i]->Contour);
|
||||
//Add outer polygons contained by (nested within) holes ...
|
||||
for (int j = 0; j < polynode.Childs[i]->ChildCount(); ++j)
|
||||
AddOuterPolyNodeToExPolygons(*polynode.Childs[i]->Childs[j], expolygons);
|
||||
}
|
||||
}
|
||||
|
||||
ExPolygons
|
||||
PolyTreeToExPolygons(ClipperLib::PolyTree& polytree)
|
||||
{
|
||||
ExPolygons retval;
|
||||
for (int i = 0; i < polytree.ChildCount(); ++i)
|
||||
AddOuterPolyNodeToExPolygons(*polytree.Childs[i], &retval);
|
||||
return retval;
|
||||
}
|
||||
//-----------------------------------------------------------
|
||||
|
||||
Slic3r::Polygon ClipperPath_to_Slic3rPolygon(const ClipperLib::Path &input)
|
||||
{
|
||||
Polygon retval;
|
||||
for (ClipperLib::Path::const_iterator pit = input.begin(); pit != input.end(); ++pit)
|
||||
retval.points.push_back(Point( (*pit).X, (*pit).Y ));
|
||||
return retval;
|
||||
}
|
||||
|
||||
Slic3r::Polyline ClipperPath_to_Slic3rPolyline(const ClipperLib::Path &input)
|
||||
{
|
||||
Polyline retval;
|
||||
for (ClipperLib::Path::const_iterator pit = input.begin(); pit != input.end(); ++pit)
|
||||
retval.points.push_back(Point( (*pit).X, (*pit).Y ));
|
||||
return retval;
|
||||
}
|
||||
|
||||
Slic3r::Polygons ClipperPaths_to_Slic3rPolygons(const ClipperLib::Paths &input)
|
||||
{
|
||||
Slic3r::Polygons retval;
|
||||
retval.reserve(input.size());
|
||||
for (ClipperLib::Paths::const_iterator it = input.begin(); it != input.end(); ++it)
|
||||
retval.push_back(ClipperPath_to_Slic3rPolygon(*it));
|
||||
return retval;
|
||||
}
|
||||
|
||||
Slic3r::Polylines ClipperPaths_to_Slic3rPolylines(const ClipperLib::Paths &input)
|
||||
{
|
||||
Slic3r::Polylines retval;
|
||||
retval.reserve(input.size());
|
||||
for (ClipperLib::Paths::const_iterator it = input.begin(); it != input.end(); ++it)
|
||||
retval.push_back(ClipperPath_to_Slic3rPolyline(*it));
|
||||
return retval;
|
||||
}
|
||||
|
||||
ExPolygons
|
||||
ClipperPaths_to_Slic3rExPolygons(const ClipperLib::Paths &input)
|
||||
{
|
||||
// init Clipper
|
||||
ClipperLib::Clipper clipper;
|
||||
clipper.Clear();
|
||||
|
||||
// perform union
|
||||
clipper.AddPaths(input, ClipperLib::ptSubject, true);
|
||||
ClipperLib::PolyTree polytree;
|
||||
clipper.Execute(ClipperLib::ctUnion, polytree, ClipperLib::pftEvenOdd, ClipperLib::pftEvenOdd); // offset results work with both EvenOdd and NonZero
|
||||
|
||||
// write to ExPolygons object
|
||||
return PolyTreeToExPolygons(polytree);
|
||||
}
|
||||
|
||||
ClipperLib::Path
|
||||
Slic3rMultiPoint_to_ClipperPath(const MultiPoint &input)
|
||||
{
|
||||
ClipperLib::Path retval;
|
||||
for (Points::const_iterator pit = input.points.begin(); pit != input.points.end(); ++pit)
|
||||
retval.push_back(ClipperLib::IntPoint( (*pit)(0), (*pit)(1) ));
|
||||
return retval;
|
||||
}
|
||||
|
||||
ClipperLib::Path
|
||||
Slic3rMultiPoint_to_ClipperPath_reversed(const Slic3r::MultiPoint &input)
|
||||
{
|
||||
ClipperLib::Path output;
|
||||
output.reserve(input.points.size());
|
||||
for (Slic3r::Points::const_reverse_iterator pit = input.points.rbegin(); pit != input.points.rend(); ++pit)
|
||||
output.push_back(ClipperLib::IntPoint( (*pit)(0), (*pit)(1) ));
|
||||
return output;
|
||||
}
|
||||
|
||||
ClipperLib::Paths Slic3rMultiPoints_to_ClipperPaths(const Polygons &input)
|
||||
{
|
||||
ClipperLib::Paths retval;
|
||||
for (Polygons::const_iterator it = input.begin(); it != input.end(); ++it)
|
||||
retval.push_back(Slic3rMultiPoint_to_ClipperPath(*it));
|
||||
return retval;
|
||||
}
|
||||
|
||||
ClipperLib::Paths Slic3rMultiPoints_to_ClipperPaths(const Polylines &input)
|
||||
{
|
||||
ClipperLib::Paths retval;
|
||||
for (Polylines::const_iterator it = input.begin(); it != input.end(); ++it)
|
||||
retval.push_back(Slic3rMultiPoint_to_ClipperPath(*it));
|
||||
return retval;
|
||||
}
|
||||
|
||||
ClipperLib::Paths _offset(ClipperLib::Paths &&input, ClipperLib::EndType endType, const float delta, ClipperLib::JoinType joinType, double miterLimit)
|
||||
{
|
||||
// scale input
|
||||
scaleClipperPolygons(input);
|
||||
|
||||
// perform offset
|
||||
ClipperLib::ClipperOffset co;
|
||||
if (joinType == jtRound)
|
||||
co.ArcTolerance = miterLimit;
|
||||
else
|
||||
co.MiterLimit = miterLimit;
|
||||
float delta_scaled = delta * float(CLIPPER_OFFSET_SCALE);
|
||||
co.ShortestEdgeLength = double(std::abs(delta_scaled * CLIPPER_OFFSET_SHORTEST_EDGE_FACTOR));
|
||||
co.AddPaths(input, joinType, endType);
|
||||
ClipperLib::Paths retval;
|
||||
co.Execute(retval, delta_scaled);
|
||||
|
||||
// unscale output
|
||||
unscaleClipperPolygons(retval);
|
||||
return retval;
|
||||
}
|
||||
|
||||
ClipperLib::Paths _offset(ClipperLib::Path &&input, ClipperLib::EndType endType, const float delta, ClipperLib::JoinType joinType, double miterLimit)
|
||||
{
|
||||
ClipperLib::Paths paths;
|
||||
paths.push_back(std::move(input));
|
||||
return _offset(std::move(paths), endType, delta, joinType, miterLimit);
|
||||
}
|
||||
|
||||
// This is a safe variant of the polygon offset, tailored for a single ExPolygon:
|
||||
// a single polygon with multiple non-overlapping holes.
|
||||
// Each contour and hole is offsetted separately, then the holes are subtracted from the outer contours.
|
||||
ClipperLib::Paths _offset(const Slic3r::ExPolygon &expolygon, const float delta,
|
||||
ClipperLib::JoinType joinType, double miterLimit)
|
||||
{
|
||||
// printf("new ExPolygon offset\n");
|
||||
// 1) Offset the outer contour.
|
||||
const float delta_scaled = delta * float(CLIPPER_OFFSET_SCALE);
|
||||
ClipperLib::Paths contours;
|
||||
{
|
||||
ClipperLib::Path input = Slic3rMultiPoint_to_ClipperPath(expolygon.contour);
|
||||
scaleClipperPolygon(input);
|
||||
ClipperLib::ClipperOffset co;
|
||||
if (joinType == jtRound)
|
||||
co.ArcTolerance = miterLimit * double(CLIPPER_OFFSET_SCALE);
|
||||
else
|
||||
co.MiterLimit = miterLimit;
|
||||
co.ShortestEdgeLength = double(std::abs(delta_scaled * CLIPPER_OFFSET_SHORTEST_EDGE_FACTOR));
|
||||
co.AddPath(input, joinType, ClipperLib::etClosedPolygon);
|
||||
co.Execute(contours, delta_scaled);
|
||||
}
|
||||
|
||||
// 2) Offset the holes one by one, collect the results.
|
||||
ClipperLib::Paths holes;
|
||||
{
|
||||
holes.reserve(expolygon.holes.size());
|
||||
for (Polygons::const_iterator it_hole = expolygon.holes.begin(); it_hole != expolygon.holes.end(); ++ it_hole) {
|
||||
ClipperLib::Path input = Slic3rMultiPoint_to_ClipperPath_reversed(*it_hole);
|
||||
scaleClipperPolygon(input);
|
||||
ClipperLib::ClipperOffset co;
|
||||
if (joinType == jtRound)
|
||||
co.ArcTolerance = miterLimit * double(CLIPPER_OFFSET_SCALE);
|
||||
else
|
||||
co.MiterLimit = miterLimit;
|
||||
co.ShortestEdgeLength = double(std::abs(delta_scaled * CLIPPER_OFFSET_SHORTEST_EDGE_FACTOR));
|
||||
co.AddPath(input, joinType, ClipperLib::etClosedPolygon);
|
||||
ClipperLib::Paths out;
|
||||
co.Execute(out, - delta_scaled);
|
||||
holes.insert(holes.end(), out.begin(), out.end());
|
||||
}
|
||||
}
|
||||
|
||||
// 3) Subtract holes from the contours.
|
||||
ClipperLib::Paths output;
|
||||
if (holes.empty()) {
|
||||
output = std::move(contours);
|
||||
} else {
|
||||
ClipperLib::Clipper clipper;
|
||||
clipper.Clear();
|
||||
clipper.AddPaths(contours, ClipperLib::ptSubject, true);
|
||||
clipper.AddPaths(holes, ClipperLib::ptClip, true);
|
||||
clipper.Execute(ClipperLib::ctDifference, output, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
|
||||
}
|
||||
|
||||
// 4) Unscale the output.
|
||||
unscaleClipperPolygons(output);
|
||||
return output;
|
||||
}
|
||||
|
||||
// This is a safe variant of the polygons offset, tailored for multiple ExPolygons.
|
||||
// It is required, that the input expolygons do not overlap and that the holes of each ExPolygon don't intersect with their respective outer contours.
|
||||
// Each ExPolygon is offsetted separately, then the offsetted ExPolygons are united.
|
||||
ClipperLib::Paths _offset(const Slic3r::ExPolygons &expolygons, const float delta,
|
||||
ClipperLib::JoinType joinType, double miterLimit)
|
||||
{
|
||||
const float delta_scaled = delta * float(CLIPPER_OFFSET_SCALE);
|
||||
// Offsetted ExPolygons before they are united.
|
||||
ClipperLib::Paths contours_cummulative;
|
||||
contours_cummulative.reserve(expolygons.size());
|
||||
// How many non-empty offsetted expolygons were actually collected into contours_cummulative?
|
||||
// If only one, then there is no need to do a final union.
|
||||
size_t expolygons_collected = 0;
|
||||
for (Slic3r::ExPolygons::const_iterator it_expoly = expolygons.begin(); it_expoly != expolygons.end(); ++ it_expoly) {
|
||||
// 1) Offset the outer contour.
|
||||
ClipperLib::Paths contours;
|
||||
{
|
||||
ClipperLib::Path input = Slic3rMultiPoint_to_ClipperPath(it_expoly->contour);
|
||||
scaleClipperPolygon(input);
|
||||
ClipperLib::ClipperOffset co;
|
||||
if (joinType == jtRound)
|
||||
co.ArcTolerance = miterLimit * double(CLIPPER_OFFSET_SCALE);
|
||||
else
|
||||
co.MiterLimit = miterLimit;
|
||||
co.ShortestEdgeLength = double(std::abs(delta_scaled * CLIPPER_OFFSET_SHORTEST_EDGE_FACTOR));
|
||||
co.AddPath(input, joinType, ClipperLib::etClosedPolygon);
|
||||
co.Execute(contours, delta_scaled);
|
||||
}
|
||||
if (contours.empty())
|
||||
// No need to try to offset the holes.
|
||||
continue;
|
||||
|
||||
if (it_expoly->holes.empty()) {
|
||||
// No need to subtract holes from the offsetted expolygon, we are done.
|
||||
contours_cummulative.insert(contours_cummulative.end(), contours.begin(), contours.end());
|
||||
++ expolygons_collected;
|
||||
} else {
|
||||
// 2) Offset the holes one by one, collect the offsetted holes.
|
||||
ClipperLib::Paths holes;
|
||||
{
|
||||
for (Polygons::const_iterator it_hole = it_expoly->holes.begin(); it_hole != it_expoly->holes.end(); ++ it_hole) {
|
||||
ClipperLib::Path input = Slic3rMultiPoint_to_ClipperPath_reversed(*it_hole);
|
||||
scaleClipperPolygon(input);
|
||||
ClipperLib::ClipperOffset co;
|
||||
if (joinType == jtRound)
|
||||
co.ArcTolerance = miterLimit * double(CLIPPER_OFFSET_SCALE);
|
||||
else
|
||||
co.MiterLimit = miterLimit;
|
||||
co.ShortestEdgeLength = double(std::abs(delta_scaled * CLIPPER_OFFSET_SHORTEST_EDGE_FACTOR));
|
||||
co.AddPath(input, joinType, ClipperLib::etClosedPolygon);
|
||||
ClipperLib::Paths out;
|
||||
co.Execute(out, - delta_scaled);
|
||||
holes.insert(holes.end(), out.begin(), out.end());
|
||||
}
|
||||
}
|
||||
|
||||
// 3) Subtract holes from the contours.
|
||||
if (holes.empty()) {
|
||||
// No hole remaining after an offset. Just copy the outer contour.
|
||||
contours_cummulative.insert(contours_cummulative.end(), contours.begin(), contours.end());
|
||||
++ expolygons_collected;
|
||||
} else if (delta < 0) {
|
||||
// Negative offset. There is a chance, that the offsetted hole intersects the outer contour.
|
||||
// Subtract the offsetted holes from the offsetted contours.
|
||||
ClipperLib::Clipper clipper;
|
||||
clipper.Clear();
|
||||
clipper.AddPaths(contours, ClipperLib::ptSubject, true);
|
||||
clipper.AddPaths(holes, ClipperLib::ptClip, true);
|
||||
ClipperLib::Paths output;
|
||||
clipper.Execute(ClipperLib::ctDifference, output, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
|
||||
if (! output.empty()) {
|
||||
contours_cummulative.insert(contours_cummulative.end(), output.begin(), output.end());
|
||||
++ expolygons_collected;
|
||||
} else {
|
||||
// The offsetted holes have eaten up the offsetted outer contour.
|
||||
}
|
||||
} else {
|
||||
// Positive offset. As long as the Clipper offset does what one expects it to do, the offsetted hole will have a smaller
|
||||
// area than the original hole or even disappear, therefore there will be no new intersections.
|
||||
// Just collect the reversed holes.
|
||||
contours_cummulative.reserve(contours.size() + holes.size());
|
||||
contours_cummulative.insert(contours_cummulative.end(), contours.begin(), contours.end());
|
||||
// Reverse the holes in place.
|
||||
for (size_t i = 0; i < holes.size(); ++ i)
|
||||
std::reverse(holes[i].begin(), holes[i].end());
|
||||
contours_cummulative.insert(contours_cummulative.end(), holes.begin(), holes.end());
|
||||
++ expolygons_collected;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 4) Unite the offsetted expolygons.
|
||||
ClipperLib::Paths output;
|
||||
if (expolygons_collected > 1 && delta > 0) {
|
||||
// There is a chance that the outwards offsetted expolygons may intersect. Perform a union.
|
||||
ClipperLib::Clipper clipper;
|
||||
clipper.Clear();
|
||||
clipper.AddPaths(contours_cummulative, ClipperLib::ptSubject, true);
|
||||
clipper.Execute(ClipperLib::ctUnion, output, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
|
||||
} else {
|
||||
// Negative offset. The shrunk expolygons shall not mutually intersect. Just copy the output.
|
||||
output = std::move(contours_cummulative);
|
||||
}
|
||||
|
||||
// 4) Unscale the output.
|
||||
unscaleClipperPolygons(output);
|
||||
return output;
|
||||
}
|
||||
|
||||
ClipperLib::Paths
|
||||
_offset2(const Polygons &polygons, const float delta1, const float delta2,
|
||||
const ClipperLib::JoinType joinType, const double miterLimit)
|
||||
{
|
||||
// read input
|
||||
ClipperLib::Paths input = Slic3rMultiPoints_to_ClipperPaths(polygons);
|
||||
|
||||
// scale input
|
||||
scaleClipperPolygons(input);
|
||||
|
||||
// prepare ClipperOffset object
|
||||
ClipperLib::ClipperOffset co;
|
||||
if (joinType == jtRound) {
|
||||
co.ArcTolerance = miterLimit;
|
||||
} else {
|
||||
co.MiterLimit = miterLimit;
|
||||
}
|
||||
float delta_scaled1 = delta1 * float(CLIPPER_OFFSET_SCALE);
|
||||
float delta_scaled2 = delta2 * float(CLIPPER_OFFSET_SCALE);
|
||||
co.ShortestEdgeLength = double(std::max(std::abs(delta_scaled1), std::abs(delta_scaled2)) * CLIPPER_OFFSET_SHORTEST_EDGE_FACTOR);
|
||||
|
||||
// perform first offset
|
||||
ClipperLib::Paths output1;
|
||||
co.AddPaths(input, joinType, ClipperLib::etClosedPolygon);
|
||||
co.Execute(output1, delta_scaled1);
|
||||
|
||||
// perform second offset
|
||||
co.Clear();
|
||||
co.AddPaths(output1, joinType, ClipperLib::etClosedPolygon);
|
||||
ClipperLib::Paths retval;
|
||||
co.Execute(retval, delta_scaled2);
|
||||
|
||||
// unscale output
|
||||
unscaleClipperPolygons(retval);
|
||||
return retval;
|
||||
}
|
||||
|
||||
Polygons
|
||||
offset2(const Polygons &polygons, const float delta1, const float delta2,
|
||||
const ClipperLib::JoinType joinType, const double miterLimit)
|
||||
{
|
||||
// perform offset
|
||||
ClipperLib::Paths output = _offset2(polygons, delta1, delta2, joinType, miterLimit);
|
||||
|
||||
// convert into ExPolygons
|
||||
return ClipperPaths_to_Slic3rPolygons(output);
|
||||
}
|
||||
|
||||
ExPolygons
|
||||
offset2_ex(const Polygons &polygons, const float delta1, const float delta2,
|
||||
const ClipperLib::JoinType joinType, const double miterLimit)
|
||||
{
|
||||
// perform offset
|
||||
ClipperLib::Paths output = _offset2(polygons, delta1, delta2, joinType, miterLimit);
|
||||
|
||||
// convert into ExPolygons
|
||||
return ClipperPaths_to_Slic3rExPolygons(output);
|
||||
}
|
||||
|
||||
//FIXME Vojtech: This functon may likely be optimized to avoid some of the Slic3r to Clipper
|
||||
// conversions and unnecessary Clipper calls.
|
||||
ExPolygons offset2_ex(const ExPolygons &expolygons, const float delta1,
|
||||
const float delta2, ClipperLib::JoinType joinType, double miterLimit)
|
||||
{
|
||||
Polygons polys;
|
||||
for (const ExPolygon &expoly : expolygons)
|
||||
append(polys,
|
||||
offset(offset_ex(expoly, delta1, joinType, miterLimit),
|
||||
delta2, joinType, miterLimit));
|
||||
return union_ex(polys);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
T
|
||||
_clipper_do(const ClipperLib::ClipType clipType, const Polygons &subject,
|
||||
const Polygons &clip, const ClipperLib::PolyFillType fillType, const bool safety_offset_)
|
||||
{
|
||||
// read input
|
||||
ClipperLib::Paths input_subject = Slic3rMultiPoints_to_ClipperPaths(subject);
|
||||
ClipperLib::Paths input_clip = Slic3rMultiPoints_to_ClipperPaths(clip);
|
||||
|
||||
// perform safety offset
|
||||
if (safety_offset_) {
|
||||
if (clipType == ClipperLib::ctUnion) {
|
||||
safety_offset(&input_subject);
|
||||
} else {
|
||||
safety_offset(&input_clip);
|
||||
}
|
||||
}
|
||||
|
||||
// init Clipper
|
||||
ClipperLib::Clipper clipper;
|
||||
clipper.Clear();
|
||||
|
||||
// add polygons
|
||||
clipper.AddPaths(input_subject, ClipperLib::ptSubject, true);
|
||||
clipper.AddPaths(input_clip, ClipperLib::ptClip, true);
|
||||
|
||||
// perform operation
|
||||
T retval;
|
||||
clipper.Execute(clipType, retval, fillType, fillType);
|
||||
return retval;
|
||||
}
|
||||
|
||||
// Fix of #117: A large fractal pyramid takes ages to slice
|
||||
// The Clipper library has difficulties processing overlapping polygons.
|
||||
// Namely, the function Clipper::JoinCommonEdges() has potentially a terrible time complexity if the output
|
||||
// of the operation is of the PolyTree type.
|
||||
// This function implmenets a following workaround:
|
||||
// 1) Peform the Clipper operation with the output to Paths. This method handles overlaps in a reasonable time.
|
||||
// 2) Run Clipper Union once again to extract the PolyTree from the result of 1).
|
||||
inline ClipperLib::PolyTree _clipper_do_polytree2(const ClipperLib::ClipType clipType, const Polygons &subject,
|
||||
const Polygons &clip, const ClipperLib::PolyFillType fillType, const bool safety_offset_)
|
||||
{
|
||||
// read input
|
||||
ClipperLib::Paths input_subject = Slic3rMultiPoints_to_ClipperPaths(subject);
|
||||
ClipperLib::Paths input_clip = Slic3rMultiPoints_to_ClipperPaths(clip);
|
||||
|
||||
// perform safety offset
|
||||
if (safety_offset_)
|
||||
safety_offset((clipType == ClipperLib::ctUnion) ? &input_subject : &input_clip);
|
||||
|
||||
ClipperLib::Clipper clipper;
|
||||
clipper.AddPaths(input_subject, ClipperLib::ptSubject, true);
|
||||
clipper.AddPaths(input_clip, ClipperLib::ptClip, true);
|
||||
// Perform the operation with the output to input_subject.
|
||||
// This pass does not generate a PolyTree, which is a very expensive operation with the current Clipper library
|
||||
// if there are overapping edges.
|
||||
clipper.Execute(clipType, input_subject, fillType, fillType);
|
||||
// Perform an additional Union operation to generate the PolyTree ordering.
|
||||
clipper.Clear();
|
||||
clipper.AddPaths(input_subject, ClipperLib::ptSubject, true);
|
||||
ClipperLib::PolyTree retval;
|
||||
clipper.Execute(ClipperLib::ctUnion, retval, fillType, fillType);
|
||||
return retval;
|
||||
}
|
||||
|
||||
ClipperLib::PolyTree _clipper_do_pl(const ClipperLib::ClipType clipType, const Polylines &subject,
|
||||
const Polygons &clip, const ClipperLib::PolyFillType fillType,
|
||||
const bool safety_offset_)
|
||||
{
|
||||
// read input
|
||||
ClipperLib::Paths input_subject = Slic3rMultiPoints_to_ClipperPaths(subject);
|
||||
ClipperLib::Paths input_clip = Slic3rMultiPoints_to_ClipperPaths(clip);
|
||||
|
||||
// perform safety offset
|
||||
if (safety_offset_) safety_offset(&input_clip);
|
||||
|
||||
// init Clipper
|
||||
ClipperLib::Clipper clipper;
|
||||
clipper.Clear();
|
||||
|
||||
// add polygons
|
||||
clipper.AddPaths(input_subject, ClipperLib::ptSubject, false);
|
||||
clipper.AddPaths(input_clip, ClipperLib::ptClip, true);
|
||||
|
||||
// perform operation
|
||||
ClipperLib::PolyTree retval;
|
||||
clipper.Execute(clipType, retval, fillType, fillType);
|
||||
return retval;
|
||||
}
|
||||
|
||||
Polygons _clipper(ClipperLib::ClipType clipType, const Polygons &subject, const Polygons &clip, bool safety_offset_)
|
||||
{
|
||||
return ClipperPaths_to_Slic3rPolygons(_clipper_do<ClipperLib::Paths>(clipType, subject, clip, ClipperLib::pftNonZero, safety_offset_));
|
||||
}
|
||||
|
||||
ExPolygons _clipper_ex(ClipperLib::ClipType clipType, const Polygons &subject, const Polygons &clip, bool safety_offset_)
|
||||
{
|
||||
ClipperLib::PolyTree polytree = _clipper_do_polytree2(clipType, subject, clip, ClipperLib::pftNonZero, safety_offset_);
|
||||
return PolyTreeToExPolygons(polytree);
|
||||
}
|
||||
|
||||
Polylines _clipper_pl(ClipperLib::ClipType clipType, const Polylines &subject, const Polygons &clip, bool safety_offset_)
|
||||
{
|
||||
ClipperLib::Paths output;
|
||||
ClipperLib::PolyTreeToPaths(_clipper_do_pl(clipType, subject, clip, ClipperLib::pftNonZero, safety_offset_), output);
|
||||
return ClipperPaths_to_Slic3rPolylines(output);
|
||||
}
|
||||
|
||||
Polylines _clipper_pl(ClipperLib::ClipType clipType, const Polygons &subject, const Polygons &clip, bool safety_offset_)
|
||||
{
|
||||
// transform input polygons into polylines
|
||||
Polylines polylines;
|
||||
polylines.reserve(subject.size());
|
||||
for (Polygons::const_iterator polygon = subject.begin(); polygon != subject.end(); ++polygon)
|
||||
polylines.push_back(*polygon); // implicit call to split_at_first_point()
|
||||
|
||||
// perform clipping
|
||||
Polylines retval = _clipper_pl(clipType, polylines, clip, safety_offset_);
|
||||
|
||||
/* If the split_at_first_point() call above happens to split the polygon inside the clipping area
|
||||
we would get two consecutive polylines instead of a single one, so we go through them in order
|
||||
to recombine continuous polylines. */
|
||||
for (size_t i = 0; i < retval.size(); ++i) {
|
||||
for (size_t j = i+1; j < retval.size(); ++j) {
|
||||
if (retval[i].points.back() == retval[j].points.front()) {
|
||||
/* If last point of i coincides with first point of j,
|
||||
append points of j to i and delete j */
|
||||
retval[i].points.insert(retval[i].points.end(), retval[j].points.begin()+1, retval[j].points.end());
|
||||
retval.erase(retval.begin() + j);
|
||||
--j;
|
||||
} else if (retval[i].points.front() == retval[j].points.back()) {
|
||||
/* If first point of i coincides with last point of j,
|
||||
prepend points of j to i and delete j */
|
||||
retval[i].points.insert(retval[i].points.begin(), retval[j].points.begin(), retval[j].points.end()-1);
|
||||
retval.erase(retval.begin() + j);
|
||||
--j;
|
||||
} else if (retval[i].points.front() == retval[j].points.front()) {
|
||||
/* Since Clipper does not preserve orientation of polylines,
|
||||
also check the case when first point of i coincides with first point of j. */
|
||||
retval[j].reverse();
|
||||
retval[i].points.insert(retval[i].points.begin(), retval[j].points.begin(), retval[j].points.end()-1);
|
||||
retval.erase(retval.begin() + j);
|
||||
--j;
|
||||
} else if (retval[i].points.back() == retval[j].points.back()) {
|
||||
/* Since Clipper does not preserve orientation of polylines,
|
||||
also check the case when last point of i coincides with last point of j. */
|
||||
retval[j].reverse();
|
||||
retval[i].points.insert(retval[i].points.end(), retval[j].points.begin()+1, retval[j].points.end());
|
||||
retval.erase(retval.begin() + j);
|
||||
--j;
|
||||
}
|
||||
}
|
||||
}
|
||||
return retval;
|
||||
}
|
||||
|
||||
Lines
|
||||
_clipper_ln(ClipperLib::ClipType clipType, const Lines &subject, const Polygons &clip,
|
||||
bool safety_offset_)
|
||||
{
|
||||
// convert Lines to Polylines
|
||||
Polylines polylines;
|
||||
polylines.reserve(subject.size());
|
||||
for (const Line &line : subject)
|
||||
polylines.emplace_back(Polyline(line.a, line.b));
|
||||
|
||||
// perform operation
|
||||
polylines = _clipper_pl(clipType, polylines, clip, safety_offset_);
|
||||
|
||||
// convert Polylines to Lines
|
||||
Lines retval;
|
||||
for (Polylines::const_iterator polyline = polylines.begin(); polyline != polylines.end(); ++polyline)
|
||||
retval.push_back(*polyline);
|
||||
return retval;
|
||||
}
|
||||
|
||||
ClipperLib::PolyTree
|
||||
union_pt(const Polygons &subject, bool safety_offset_)
|
||||
{
|
||||
return _clipper_do<ClipperLib::PolyTree>(ClipperLib::ctUnion, subject, Polygons(), ClipperLib::pftEvenOdd, safety_offset_);
|
||||
}
|
||||
|
||||
Polygons
|
||||
union_pt_chained(const Polygons &subject, bool safety_offset_)
|
||||
{
|
||||
ClipperLib::PolyTree polytree = union_pt(subject, safety_offset_);
|
||||
|
||||
Polygons retval;
|
||||
traverse_pt(polytree.Childs, &retval);
|
||||
return retval;
|
||||
}
|
||||
|
||||
void traverse_pt(ClipperLib::PolyNodes &nodes, Polygons* retval)
|
||||
{
|
||||
/* use a nearest neighbor search to order these children
|
||||
TODO: supply start_near to chained_path() too? */
|
||||
|
||||
// collect ordering points
|
||||
Points ordering_points;
|
||||
ordering_points.reserve(nodes.size());
|
||||
for (ClipperLib::PolyNodes::const_iterator it = nodes.begin(); it != nodes.end(); ++it) {
|
||||
Point p((*it)->Contour.front().X, (*it)->Contour.front().Y);
|
||||
ordering_points.push_back(p);
|
||||
}
|
||||
|
||||
// perform the ordering
|
||||
ClipperLib::PolyNodes ordered_nodes;
|
||||
Slic3r::Geometry::chained_path_items(ordering_points, nodes, ordered_nodes);
|
||||
|
||||
// push results recursively
|
||||
for (ClipperLib::PolyNodes::iterator it = ordered_nodes.begin(); it != ordered_nodes.end(); ++it) {
|
||||
// traverse the next depth
|
||||
traverse_pt((*it)->Childs, retval);
|
||||
retval->push_back(ClipperPath_to_Slic3rPolygon((*it)->Contour));
|
||||
if ((*it)->IsHole()) retval->back().reverse(); // ccw
|
||||
}
|
||||
}
|
||||
|
||||
Polygons simplify_polygons(const Polygons &subject, bool preserve_collinear)
|
||||
{
|
||||
// convert into Clipper polygons
|
||||
ClipperLib::Paths input_subject = Slic3rMultiPoints_to_ClipperPaths(subject);
|
||||
|
||||
ClipperLib::Paths output;
|
||||
if (preserve_collinear) {
|
||||
ClipperLib::Clipper c;
|
||||
c.PreserveCollinear(true);
|
||||
c.StrictlySimple(true);
|
||||
c.AddPaths(input_subject, ClipperLib::ptSubject, true);
|
||||
c.Execute(ClipperLib::ctUnion, output, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
|
||||
} else {
|
||||
ClipperLib::SimplifyPolygons(input_subject, output, ClipperLib::pftNonZero);
|
||||
}
|
||||
|
||||
// convert into Slic3r polygons
|
||||
return ClipperPaths_to_Slic3rPolygons(output);
|
||||
}
|
||||
|
||||
ExPolygons simplify_polygons_ex(const Polygons &subject, bool preserve_collinear)
|
||||
{
|
||||
if (! preserve_collinear)
|
||||
return union_ex(simplify_polygons(subject, false));
|
||||
|
||||
// convert into Clipper polygons
|
||||
ClipperLib::Paths input_subject = Slic3rMultiPoints_to_ClipperPaths(subject);
|
||||
|
||||
ClipperLib::PolyTree polytree;
|
||||
|
||||
ClipperLib::Clipper c;
|
||||
c.PreserveCollinear(true);
|
||||
c.StrictlySimple(true);
|
||||
c.AddPaths(input_subject, ClipperLib::ptSubject, true);
|
||||
c.Execute(ClipperLib::ctUnion, polytree, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
|
||||
|
||||
// convert into ExPolygons
|
||||
return PolyTreeToExPolygons(polytree);
|
||||
}
|
||||
|
||||
void safety_offset(ClipperLib::Paths* paths)
|
||||
{
|
||||
PROFILE_FUNC();
|
||||
|
||||
// scale input
|
||||
scaleClipperPolygons(*paths);
|
||||
|
||||
// perform offset (delta = scale 1e-05)
|
||||
ClipperLib::ClipperOffset co;
|
||||
#ifdef CLIPPER_UTILS_DEBUG
|
||||
if (clipper_export_enabled) {
|
||||
static int iRun = 0;
|
||||
export_clipper_input_polygons_bin(debug_out_path("safety_offset-polygons-%d", ++iRun).c_str(), *paths, ClipperLib::Paths());
|
||||
}
|
||||
#endif /* CLIPPER_UTILS_DEBUG */
|
||||
ClipperLib::Paths out;
|
||||
for (size_t i = 0; i < paths->size(); ++ i) {
|
||||
ClipperLib::Path &path = (*paths)[i];
|
||||
co.Clear();
|
||||
co.MiterLimit = 2;
|
||||
bool ccw = ClipperLib::Orientation(path);
|
||||
if (! ccw)
|
||||
std::reverse(path.begin(), path.end());
|
||||
{
|
||||
PROFILE_BLOCK(safety_offset_AddPaths);
|
||||
co.AddPath((*paths)[i], ClipperLib::jtMiter, ClipperLib::etClosedPolygon);
|
||||
}
|
||||
{
|
||||
PROFILE_BLOCK(safety_offset_Execute);
|
||||
// offset outside by 10um
|
||||
ClipperLib::Paths out_this;
|
||||
co.Execute(out_this, ccw ? 10.f * float(CLIPPER_OFFSET_SCALE) : -10.f * float(CLIPPER_OFFSET_SCALE));
|
||||
if (! ccw) {
|
||||
// Reverse the resulting contours once again.
|
||||
for (ClipperLib::Paths::iterator it = out_this.begin(); it != out_this.end(); ++ it)
|
||||
std::reverse(it->begin(), it->end());
|
||||
}
|
||||
if (out.empty())
|
||||
out = std::move(out_this);
|
||||
else
|
||||
std::move(std::begin(out_this), std::end(out_this), std::back_inserter(out));
|
||||
}
|
||||
}
|
||||
*paths = std::move(out);
|
||||
|
||||
// unscale output
|
||||
unscaleClipperPolygons(*paths);
|
||||
}
|
||||
|
||||
Polygons top_level_islands(const Slic3r::Polygons &polygons)
|
||||
{
|
||||
// init Clipper
|
||||
ClipperLib::Clipper clipper;
|
||||
clipper.Clear();
|
||||
// perform union
|
||||
clipper.AddPaths(Slic3rMultiPoints_to_ClipperPaths(polygons), ClipperLib::ptSubject, true);
|
||||
ClipperLib::PolyTree polytree;
|
||||
clipper.Execute(ClipperLib::ctUnion, polytree, ClipperLib::pftEvenOdd, ClipperLib::pftEvenOdd);
|
||||
// Convert only the top level islands to the output.
|
||||
Polygons out;
|
||||
out.reserve(polytree.ChildCount());
|
||||
for (int i = 0; i < polytree.ChildCount(); ++i)
|
||||
out.push_back(ClipperPath_to_Slic3rPolygon(polytree.Childs[i]->Contour));
|
||||
return out;
|
||||
}
|
||||
|
||||
}
|
||||
231
src/libslic3r/ClipperUtils.hpp
Normal file
231
src/libslic3r/ClipperUtils.hpp
Normal file
|
|
@ -0,0 +1,231 @@
|
|||
#ifndef slic3r_ClipperUtils_hpp_
|
||||
#define slic3r_ClipperUtils_hpp_
|
||||
|
||||
#include <libslic3r.h>
|
||||
#include "clipper.hpp"
|
||||
#include "ExPolygon.hpp"
|
||||
#include "Polygon.hpp"
|
||||
#include "Surface.hpp"
|
||||
|
||||
// import these wherever we're included
|
||||
using ClipperLib::jtMiter;
|
||||
using ClipperLib::jtRound;
|
||||
using ClipperLib::jtSquare;
|
||||
|
||||
// Factor to convert from coord_t (which is int32) to an int64 type used by the Clipper library
|
||||
// for general offsetting (the offset(), offset2(), offset_ex() functions) and for the safety offset,
|
||||
// which is optionally executed by other functions (union, intersection, diff).
|
||||
// This scaling (cca 130t) is applied over the usual SCALING_FACTOR.
|
||||
// By the way, is the scalling for offset needed at all?
|
||||
// The reason to apply this scaling may be to match the resolution of the double mantissa.
|
||||
#define CLIPPER_OFFSET_POWER_OF_2 17
|
||||
// 2^17=131072
|
||||
#define CLIPPER_OFFSET_SCALE (1 << CLIPPER_OFFSET_POWER_OF_2)
|
||||
#define CLIPPER_OFFSET_SCALE_ROUNDING_DELTA ((1 << (CLIPPER_OFFSET_POWER_OF_2 - 1)) - 1)
|
||||
#define CLIPPER_MAX_COORD_UNSCALED (ClipperLib::hiRange / CLIPPER_OFFSET_SCALE)
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
//-----------------------------------------------------------
|
||||
// legacy code from Clipper documentation
|
||||
void AddOuterPolyNodeToExPolygons(ClipperLib::PolyNode& polynode, Slic3r::ExPolygons& expolygons);
|
||||
void PolyTreeToExPolygons(ClipperLib::PolyTree& polytree, Slic3r::ExPolygons& expolygons);
|
||||
//-----------------------------------------------------------
|
||||
|
||||
ClipperLib::Path Slic3rMultiPoint_to_ClipperPath(const Slic3r::MultiPoint &input);
|
||||
ClipperLib::Paths Slic3rMultiPoints_to_ClipperPaths(const Polygons &input);
|
||||
ClipperLib::Paths Slic3rMultiPoints_to_ClipperPaths(const Polylines &input);
|
||||
Slic3r::Polygon ClipperPath_to_Slic3rPolygon(const ClipperLib::Path &input);
|
||||
Slic3r::Polyline ClipperPath_to_Slic3rPolyline(const ClipperLib::Path &input);
|
||||
Slic3r::Polygons ClipperPaths_to_Slic3rPolygons(const ClipperLib::Paths &input);
|
||||
Slic3r::Polylines ClipperPaths_to_Slic3rPolylines(const ClipperLib::Paths &input);
|
||||
Slic3r::ExPolygons ClipperPaths_to_Slic3rExPolygons(const ClipperLib::Paths &input);
|
||||
|
||||
// offset Polygons
|
||||
ClipperLib::Paths _offset(ClipperLib::Path &&input, ClipperLib::EndType endType, const float delta, ClipperLib::JoinType joinType, double miterLimit);
|
||||
ClipperLib::Paths _offset(ClipperLib::Paths &&input, ClipperLib::EndType endType, const float delta, ClipperLib::JoinType joinType, double miterLimit);
|
||||
inline Slic3r::Polygons offset(const Slic3r::Polygon &polygon, const float delta, ClipperLib::JoinType joinType = ClipperLib::jtMiter, double miterLimit = 3)
|
||||
{ return ClipperPaths_to_Slic3rPolygons(_offset(Slic3rMultiPoint_to_ClipperPath(polygon), ClipperLib::etClosedPolygon, delta, joinType, miterLimit)); }
|
||||
inline Slic3r::Polygons offset(const Slic3r::Polygons &polygons, const float delta, ClipperLib::JoinType joinType = ClipperLib::jtMiter, double miterLimit = 3)
|
||||
{ return ClipperPaths_to_Slic3rPolygons(_offset(Slic3rMultiPoints_to_ClipperPaths(polygons), ClipperLib::etClosedPolygon, delta, joinType, miterLimit)); }
|
||||
|
||||
// offset Polylines
|
||||
inline Slic3r::Polygons offset(const Slic3r::Polyline &polyline, const float delta, ClipperLib::JoinType joinType = ClipperLib::jtSquare, double miterLimit = 3)
|
||||
{ return ClipperPaths_to_Slic3rPolygons(_offset(Slic3rMultiPoint_to_ClipperPath(polyline), ClipperLib::etOpenButt, delta, joinType, miterLimit)); }
|
||||
inline Slic3r::Polygons offset(const Slic3r::Polylines &polylines, const float delta, ClipperLib::JoinType joinType = ClipperLib::jtSquare, double miterLimit = 3)
|
||||
{ return ClipperPaths_to_Slic3rPolygons(_offset(Slic3rMultiPoints_to_ClipperPaths(polylines), ClipperLib::etOpenButt, delta, joinType, miterLimit)); }
|
||||
|
||||
// offset expolygons and surfaces
|
||||
ClipperLib::Paths _offset(const Slic3r::ExPolygon &expolygon, const float delta, ClipperLib::JoinType joinType, double miterLimit);
|
||||
ClipperLib::Paths _offset(const Slic3r::ExPolygons &expolygons, const float delta, ClipperLib::JoinType joinType, double miterLimit);
|
||||
inline Slic3r::Polygons offset(const Slic3r::ExPolygon &expolygon, const float delta, ClipperLib::JoinType joinType = ClipperLib::jtMiter, double miterLimit = 3)
|
||||
{ return ClipperPaths_to_Slic3rPolygons(_offset(expolygon, delta, joinType, miterLimit)); }
|
||||
inline Slic3r::Polygons offset(const Slic3r::ExPolygons &expolygons, const float delta, ClipperLib::JoinType joinType = ClipperLib::jtMiter, double miterLimit = 3)
|
||||
{ return ClipperPaths_to_Slic3rPolygons(_offset(expolygons, delta, joinType, miterLimit)); }
|
||||
inline Slic3r::ExPolygons offset_ex(const Slic3r::Polygon &polygon, const float delta, ClipperLib::JoinType joinType = ClipperLib::jtMiter, double miterLimit = 3)
|
||||
{ return ClipperPaths_to_Slic3rExPolygons(_offset(Slic3rMultiPoint_to_ClipperPath(polygon), ClipperLib::etClosedPolygon, delta, joinType, miterLimit)); }
|
||||
inline Slic3r::ExPolygons offset_ex(const Slic3r::Polygons &polygons, const float delta, ClipperLib::JoinType joinType = ClipperLib::jtMiter, double miterLimit = 3)
|
||||
{ return ClipperPaths_to_Slic3rExPolygons(_offset(Slic3rMultiPoints_to_ClipperPaths(polygons), ClipperLib::etClosedPolygon, delta, joinType, miterLimit)); }
|
||||
inline Slic3r::ExPolygons offset_ex(const Slic3r::ExPolygon &expolygon, const float delta, ClipperLib::JoinType joinType = ClipperLib::jtMiter, double miterLimit = 3)
|
||||
{ return ClipperPaths_to_Slic3rExPolygons(_offset(expolygon, delta, joinType, miterLimit)); }
|
||||
inline Slic3r::ExPolygons offset_ex(const Slic3r::ExPolygons &expolygons, const float delta, ClipperLib::JoinType joinType = ClipperLib::jtMiter, double miterLimit = 3)
|
||||
{ return ClipperPaths_to_Slic3rExPolygons(_offset(expolygons, delta, joinType, miterLimit)); }
|
||||
|
||||
ClipperLib::Paths _offset2(const Slic3r::Polygons &polygons, const float delta1,
|
||||
const float delta2, ClipperLib::JoinType joinType = ClipperLib::jtMiter,
|
||||
double miterLimit = 3);
|
||||
Slic3r::Polygons offset2(const Slic3r::Polygons &polygons, const float delta1,
|
||||
const float delta2, ClipperLib::JoinType joinType = ClipperLib::jtMiter,
|
||||
double miterLimit = 3);
|
||||
Slic3r::ExPolygons offset2_ex(const Slic3r::Polygons &polygons, const float delta1,
|
||||
const float delta2, ClipperLib::JoinType joinType = ClipperLib::jtMiter,
|
||||
double miterLimit = 3);
|
||||
Slic3r::ExPolygons offset2_ex(const Slic3r::ExPolygons &expolygons, const float delta1,
|
||||
const float delta2, ClipperLib::JoinType joinType = ClipperLib::jtMiter,
|
||||
double miterLimit = 3);
|
||||
|
||||
Slic3r::Polygons _clipper(ClipperLib::ClipType clipType,
|
||||
const Slic3r::Polygons &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false);
|
||||
Slic3r::ExPolygons _clipper_ex(ClipperLib::ClipType clipType,
|
||||
const Slic3r::Polygons &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false);
|
||||
Slic3r::Polylines _clipper_pl(ClipperLib::ClipType clipType,
|
||||
const Slic3r::Polylines &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false);
|
||||
Slic3r::Polylines _clipper_pl(ClipperLib::ClipType clipType,
|
||||
const Slic3r::Polygons &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false);
|
||||
Slic3r::Lines _clipper_ln(ClipperLib::ClipType clipType,
|
||||
const Slic3r::Lines &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false);
|
||||
|
||||
// diff
|
||||
inline Slic3r::Polygons
|
||||
diff(const Slic3r::Polygons &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper(ClipperLib::ctDifference, subject, clip, safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::ExPolygons
|
||||
diff_ex(const Slic3r::Polygons &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper_ex(ClipperLib::ctDifference, subject, clip, safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::ExPolygons
|
||||
diff_ex(const Slic3r::ExPolygons &subject, const Slic3r::ExPolygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper_ex(ClipperLib::ctDifference, to_polygons(subject), to_polygons(clip), safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::Polygons
|
||||
diff(const Slic3r::ExPolygons &subject, const Slic3r::ExPolygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper(ClipperLib::ctDifference, to_polygons(subject), to_polygons(clip), safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::Polylines
|
||||
diff_pl(const Slic3r::Polygons &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper_pl(ClipperLib::ctDifference, subject, clip, safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::Polylines
|
||||
diff_pl(const Slic3r::Polylines &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper_pl(ClipperLib::ctDifference, subject, clip, safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::Lines
|
||||
diff_ln(const Slic3r::Lines &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper_ln(ClipperLib::ctDifference, subject, clip, safety_offset_);
|
||||
}
|
||||
|
||||
// intersection
|
||||
inline Slic3r::Polygons
|
||||
intersection(const Slic3r::Polygons &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper(ClipperLib::ctIntersection, subject, clip, safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::ExPolygons
|
||||
intersection_ex(const Slic3r::Polygons &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper_ex(ClipperLib::ctIntersection, subject, clip, safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::ExPolygons
|
||||
intersection_ex(const Slic3r::ExPolygons &subject, const Slic3r::ExPolygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper_ex(ClipperLib::ctIntersection, to_polygons(subject), to_polygons(clip), safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::Polygons
|
||||
intersection(const Slic3r::ExPolygons &subject, const Slic3r::ExPolygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper(ClipperLib::ctIntersection, to_polygons(subject), to_polygons(clip), safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::Polylines
|
||||
intersection_pl(const Slic3r::Polygons &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper_pl(ClipperLib::ctIntersection, subject, clip, safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::Polylines
|
||||
intersection_pl(const Slic3r::Polylines &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper_pl(ClipperLib::ctIntersection, subject, clip, safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::Lines intersection_ln(const Slic3r::Lines &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper_ln(ClipperLib::ctIntersection, subject, clip, safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::Lines intersection_ln(const Slic3r::Line &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false)
|
||||
{
|
||||
Slic3r::Lines lines;
|
||||
lines.emplace_back(subject);
|
||||
return _clipper_ln(ClipperLib::ctIntersection, lines, clip, safety_offset_);
|
||||
}
|
||||
|
||||
// union
|
||||
inline Slic3r::Polygons union_(const Slic3r::Polygons &subject, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper(ClipperLib::ctUnion, subject, Slic3r::Polygons(), safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::Polygons union_(const Slic3r::Polygons &subject, const Slic3r::Polygons &subject2, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper(ClipperLib::ctUnion, subject, subject2, safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::ExPolygons union_ex(const Slic3r::Polygons &subject, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper_ex(ClipperLib::ctUnion, subject, Slic3r::Polygons(), safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::ExPolygons union_ex(const Slic3r::ExPolygons &subject, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper_ex(ClipperLib::ctUnion, to_polygons(subject), Slic3r::Polygons(), safety_offset_);
|
||||
}
|
||||
|
||||
inline Slic3r::ExPolygons union_ex(const Slic3r::Surfaces &subject, bool safety_offset_ = false)
|
||||
{
|
||||
return _clipper_ex(ClipperLib::ctUnion, to_polygons(subject), Slic3r::Polygons(), safety_offset_);
|
||||
}
|
||||
|
||||
|
||||
ClipperLib::PolyTree union_pt(const Slic3r::Polygons &subject, bool safety_offset_ = false);
|
||||
Slic3r::Polygons union_pt_chained(const Slic3r::Polygons &subject, bool safety_offset_ = false);
|
||||
void traverse_pt(ClipperLib::PolyNodes &nodes, Slic3r::Polygons* retval);
|
||||
|
||||
/* OTHER */
|
||||
Slic3r::Polygons simplify_polygons(const Slic3r::Polygons &subject, bool preserve_collinear = false);
|
||||
Slic3r::ExPolygons simplify_polygons_ex(const Slic3r::Polygons &subject, bool preserve_collinear = false);
|
||||
|
||||
void safety_offset(ClipperLib::Paths* paths);
|
||||
|
||||
Polygons top_level_islands(const Slic3r::Polygons &polygons);
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
699
src/libslic3r/Config.cpp
Normal file
699
src/libslic3r/Config.cpp
Normal file
|
|
@ -0,0 +1,699 @@
|
|||
#include "Config.hpp"
|
||||
#include "Utils.hpp"
|
||||
#include <assert.h>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <exception> // std::runtime_error
|
||||
#include <boost/algorithm/string.hpp>
|
||||
#include <boost/algorithm/string/classification.hpp>
|
||||
#include <boost/algorithm/string/erase.hpp>
|
||||
#include <boost/algorithm/string/predicate.hpp>
|
||||
#include <boost/algorithm/string/replace.hpp>
|
||||
#include <boost/algorithm/string/split.hpp>
|
||||
#include <boost/config.hpp>
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
#include <boost/nowide/cenv.hpp>
|
||||
#include <boost/nowide/fstream.hpp>
|
||||
#include <boost/property_tree/ini_parser.hpp>
|
||||
#include <boost/format.hpp>
|
||||
#include <string.h>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
// Escape \n, \r and backslash
|
||||
std::string escape_string_cstyle(const std::string &str)
|
||||
{
|
||||
// Allocate a buffer twice the input string length,
|
||||
// so the output will fit even if all input characters get escaped.
|
||||
std::vector<char> out(str.size() * 2, 0);
|
||||
char *outptr = out.data();
|
||||
for (size_t i = 0; i < str.size(); ++ i) {
|
||||
char c = str[i];
|
||||
if (c == '\r') {
|
||||
(*outptr ++) = '\\';
|
||||
(*outptr ++) = 'r';
|
||||
} else if (c == '\n') {
|
||||
(*outptr ++) = '\\';
|
||||
(*outptr ++) = 'n';
|
||||
} else if (c == '\\') {
|
||||
(*outptr ++) = '\\';
|
||||
(*outptr ++) = '\\';
|
||||
} else
|
||||
(*outptr ++) = c;
|
||||
}
|
||||
return std::string(out.data(), outptr - out.data());
|
||||
}
|
||||
|
||||
std::string escape_strings_cstyle(const std::vector<std::string> &strs)
|
||||
{
|
||||
// 1) Estimate the output buffer size to avoid buffer reallocation.
|
||||
size_t outbuflen = 0;
|
||||
for (size_t i = 0; i < strs.size(); ++ i)
|
||||
// Reserve space for every character escaped + quotes + semicolon.
|
||||
outbuflen += strs[i].size() * 2 + 3;
|
||||
// 2) Fill in the buffer.
|
||||
std::vector<char> out(outbuflen, 0);
|
||||
char *outptr = out.data();
|
||||
for (size_t j = 0; j < strs.size(); ++ j) {
|
||||
if (j > 0)
|
||||
// Separate the strings.
|
||||
(*outptr ++) = ';';
|
||||
const std::string &str = strs[j];
|
||||
// Is the string simple or complex? Complex string contains spaces, tabs, new lines and other
|
||||
// escapable characters. Empty string shall be quoted as well, if it is the only string in strs.
|
||||
bool should_quote = strs.size() == 1 && str.empty();
|
||||
for (size_t i = 0; i < str.size(); ++ i) {
|
||||
char c = str[i];
|
||||
if (c == ' ' || c == '\t' || c == '\\' || c == '"' || c == '\r' || c == '\n') {
|
||||
should_quote = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (should_quote) {
|
||||
(*outptr ++) = '"';
|
||||
for (size_t i = 0; i < str.size(); ++ i) {
|
||||
char c = str[i];
|
||||
if (c == '\\' || c == '"') {
|
||||
(*outptr ++) = '\\';
|
||||
(*outptr ++) = c;
|
||||
} else if (c == '\r') {
|
||||
(*outptr ++) = '\\';
|
||||
(*outptr ++) = 'r';
|
||||
} else if (c == '\n') {
|
||||
(*outptr ++) = '\\';
|
||||
(*outptr ++) = 'n';
|
||||
} else
|
||||
(*outptr ++) = c;
|
||||
}
|
||||
(*outptr ++) = '"';
|
||||
} else {
|
||||
memcpy(outptr, str.data(), str.size());
|
||||
outptr += str.size();
|
||||
}
|
||||
}
|
||||
return std::string(out.data(), outptr - out.data());
|
||||
}
|
||||
|
||||
// Unescape \n, \r and backslash
|
||||
bool unescape_string_cstyle(const std::string &str, std::string &str_out)
|
||||
{
|
||||
std::vector<char> out(str.size(), 0);
|
||||
char *outptr = out.data();
|
||||
for (size_t i = 0; i < str.size(); ++ i) {
|
||||
char c = str[i];
|
||||
if (c == '\\') {
|
||||
if (++ i == str.size())
|
||||
return false;
|
||||
c = str[i];
|
||||
if (c == 'r')
|
||||
(*outptr ++) = '\r';
|
||||
else if (c == 'n')
|
||||
(*outptr ++) = '\n';
|
||||
else
|
||||
(*outptr ++) = c;
|
||||
} else
|
||||
(*outptr ++) = c;
|
||||
}
|
||||
str_out.assign(out.data(), outptr - out.data());
|
||||
return true;
|
||||
}
|
||||
|
||||
bool unescape_strings_cstyle(const std::string &str, std::vector<std::string> &out)
|
||||
{
|
||||
if (str.empty())
|
||||
return true;
|
||||
|
||||
size_t i = 0;
|
||||
for (;;) {
|
||||
// Skip white spaces.
|
||||
char c = str[i];
|
||||
while (c == ' ' || c == '\t') {
|
||||
if (++ i == str.size())
|
||||
return true;
|
||||
c = str[i];
|
||||
}
|
||||
// Start of a word.
|
||||
std::vector<char> buf;
|
||||
buf.reserve(16);
|
||||
// Is it enclosed in quotes?
|
||||
c = str[i];
|
||||
if (c == '"') {
|
||||
// Complex case, string is enclosed in quotes.
|
||||
for (++ i; i < str.size(); ++ i) {
|
||||
c = str[i];
|
||||
if (c == '"') {
|
||||
// End of string.
|
||||
break;
|
||||
}
|
||||
if (c == '\\') {
|
||||
if (++ i == str.size())
|
||||
return false;
|
||||
c = str[i];
|
||||
if (c == 'r')
|
||||
c = '\r';
|
||||
else if (c == 'n')
|
||||
c = '\n';
|
||||
}
|
||||
buf.push_back(c);
|
||||
}
|
||||
if (i == str.size())
|
||||
return false;
|
||||
++ i;
|
||||
} else {
|
||||
for (; i < str.size(); ++ i) {
|
||||
c = str[i];
|
||||
if (c == ';')
|
||||
break;
|
||||
buf.push_back(c);
|
||||
}
|
||||
}
|
||||
// Store the string into the output vector.
|
||||
out.push_back(std::string(buf.data(), buf.size()));
|
||||
if (i == str.size())
|
||||
return true;
|
||||
// Skip white spaces.
|
||||
c = str[i];
|
||||
while (c == ' ' || c == '\t') {
|
||||
if (++ i == str.size())
|
||||
// End of string. This is correct.
|
||||
return true;
|
||||
c = str[i];
|
||||
}
|
||||
if (c != ';')
|
||||
return false;
|
||||
if (++ i == str.size()) {
|
||||
// Emit one additional empty string.
|
||||
out.push_back(std::string());
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ConfigBase::apply_only(const ConfigBase &other, const t_config_option_keys &keys, bool ignore_nonexistent)
|
||||
{
|
||||
// loop through options and apply them
|
||||
for (const t_config_option_key &opt_key : keys) {
|
||||
// Create a new option with default value for the key.
|
||||
// If the key is not in the parameter definition, or this ConfigBase is a static type and it does not support the parameter,
|
||||
// an exception is thrown if not ignore_nonexistent.
|
||||
ConfigOption *my_opt = this->option(opt_key, true);
|
||||
if (my_opt == nullptr) {
|
||||
// opt_key does not exist in this ConfigBase and it cannot be created, because it is not defined by this->def().
|
||||
// This is only possible if other is of DynamicConfig type.
|
||||
if (ignore_nonexistent)
|
||||
continue;
|
||||
throw UnknownOptionException(opt_key);
|
||||
}
|
||||
const ConfigOption *other_opt = other.option(opt_key);
|
||||
if (other_opt == nullptr) {
|
||||
// The key was not found in the source config, therefore it will not be initialized!
|
||||
// printf("Not found, therefore not initialized: %s\n", opt_key.c_str());
|
||||
} else
|
||||
my_opt->set(other_opt);
|
||||
}
|
||||
}
|
||||
|
||||
// this will *ignore* options not present in both configs
|
||||
t_config_option_keys ConfigBase::diff(const ConfigBase &other) const
|
||||
{
|
||||
t_config_option_keys diff;
|
||||
for (const t_config_option_key &opt_key : this->keys()) {
|
||||
const ConfigOption *this_opt = this->option(opt_key);
|
||||
const ConfigOption *other_opt = other.option(opt_key);
|
||||
if (this_opt != nullptr && other_opt != nullptr && *this_opt != *other_opt)
|
||||
diff.emplace_back(opt_key);
|
||||
}
|
||||
return diff;
|
||||
}
|
||||
|
||||
template<class T>
|
||||
void add_correct_opts_to_diff(const std::string &opt_key, t_config_option_keys& vec, const ConfigBase &other, const ConfigBase *this_c)
|
||||
{
|
||||
const T* opt_init = static_cast<const T*>(other.option(opt_key));
|
||||
const T* opt_cur = static_cast<const T*>(this_c->option(opt_key));
|
||||
int opt_init_max_id = opt_init->values.size() - 1;
|
||||
for (int i = 0; i < opt_cur->values.size(); i++)
|
||||
{
|
||||
int init_id = i <= opt_init_max_id ? i : 0;
|
||||
if (opt_cur->values[i] != opt_init->values[init_id])
|
||||
vec.emplace_back(opt_key + "#" + std::to_string(i));
|
||||
}
|
||||
}
|
||||
|
||||
t_config_option_keys ConfigBase::deep_diff(const ConfigBase &other) const
|
||||
{
|
||||
t_config_option_keys diff;
|
||||
for (const t_config_option_key &opt_key : this->keys()) {
|
||||
const ConfigOption *this_opt = this->option(opt_key);
|
||||
const ConfigOption *other_opt = other.option(opt_key);
|
||||
if (this_opt != nullptr && other_opt != nullptr && *this_opt != *other_opt)
|
||||
{
|
||||
if (opt_key == "bed_shape"){ diff.emplace_back(opt_key); continue; }
|
||||
switch (other_opt->type())
|
||||
{
|
||||
case coInts: add_correct_opts_to_diff<ConfigOptionInts >(opt_key, diff, other, this); break;
|
||||
case coBools: add_correct_opts_to_diff<ConfigOptionBools >(opt_key, diff, other, this); break;
|
||||
case coFloats: add_correct_opts_to_diff<ConfigOptionFloats >(opt_key, diff, other, this); break;
|
||||
case coStrings: add_correct_opts_to_diff<ConfigOptionStrings >(opt_key, diff, other, this); break;
|
||||
case coPercents:add_correct_opts_to_diff<ConfigOptionPercents >(opt_key, diff, other, this); break;
|
||||
case coPoints: add_correct_opts_to_diff<ConfigOptionPoints >(opt_key, diff, other, this); break;
|
||||
default: diff.emplace_back(opt_key); break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return diff;
|
||||
}
|
||||
|
||||
t_config_option_keys ConfigBase::equal(const ConfigBase &other) const
|
||||
{
|
||||
t_config_option_keys equal;
|
||||
for (const t_config_option_key &opt_key : this->keys()) {
|
||||
const ConfigOption *this_opt = this->option(opt_key);
|
||||
const ConfigOption *other_opt = other.option(opt_key);
|
||||
if (this_opt != nullptr && other_opt != nullptr && *this_opt == *other_opt)
|
||||
equal.emplace_back(opt_key);
|
||||
}
|
||||
return equal;
|
||||
}
|
||||
|
||||
std::string ConfigBase::serialize(const t_config_option_key &opt_key) const
|
||||
{
|
||||
const ConfigOption* opt = this->option(opt_key);
|
||||
assert(opt != nullptr);
|
||||
return opt->serialize();
|
||||
}
|
||||
|
||||
bool ConfigBase::set_deserialize(const t_config_option_key &opt_key_src, const std::string &value_src, bool append)
|
||||
{
|
||||
t_config_option_key opt_key = opt_key_src;
|
||||
std::string value = value_src;
|
||||
// Both opt_key and value may be modified by _handle_legacy().
|
||||
// If the opt_key is no more valid in this version of Slic3r, opt_key is cleared by _handle_legacy().
|
||||
this->handle_legacy(opt_key, value);
|
||||
if (opt_key.empty())
|
||||
// Ignore the option.
|
||||
return true;
|
||||
return this->set_deserialize_raw(opt_key, value, append);
|
||||
}
|
||||
|
||||
bool ConfigBase::set_deserialize_raw(const t_config_option_key &opt_key_src, const std::string &value, bool append)
|
||||
{
|
||||
t_config_option_key opt_key = opt_key_src;
|
||||
// Try to deserialize the option by its name.
|
||||
const ConfigDef *def = this->def();
|
||||
if (def == nullptr)
|
||||
throw NoDefinitionException(opt_key);
|
||||
const ConfigOptionDef *optdef = def->get(opt_key);
|
||||
if (optdef == nullptr) {
|
||||
// If we didn't find an option, look for any other option having this as an alias.
|
||||
for (const auto &opt : def->options) {
|
||||
for (const t_config_option_key &opt_key2 : opt.second.aliases) {
|
||||
if (opt_key2 == opt_key) {
|
||||
opt_key = opt.first;
|
||||
optdef = &opt.second;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (optdef != nullptr)
|
||||
break;
|
||||
}
|
||||
if (optdef == nullptr)
|
||||
throw UnknownOptionException(opt_key);
|
||||
}
|
||||
|
||||
if (! optdef->shortcut.empty()) {
|
||||
// Aliasing for example "solid_layers" to "top_solid_layers" and "bottom_solid_layers".
|
||||
for (const t_config_option_key &shortcut : optdef->shortcut)
|
||||
// Recursive call.
|
||||
if (! this->set_deserialize_raw(shortcut, value, append))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
ConfigOption *opt = this->option(opt_key, true);
|
||||
assert(opt != nullptr);
|
||||
return opt->deserialize(value, append);
|
||||
}
|
||||
|
||||
// Return an absolute value of a possibly relative config variable.
|
||||
// For example, return absolute infill extrusion width, either from an absolute value, or relative to the layer height.
|
||||
double ConfigBase::get_abs_value(const t_config_option_key &opt_key) const
|
||||
{
|
||||
// Get stored option value.
|
||||
const ConfigOption *raw_opt = this->option(opt_key);
|
||||
assert(raw_opt != nullptr);
|
||||
if (raw_opt->type() == coFloat)
|
||||
return static_cast<const ConfigOptionFloat*>(raw_opt)->value;
|
||||
if (raw_opt->type() == coFloatOrPercent) {
|
||||
// Get option definition.
|
||||
const ConfigDef *def = this->def();
|
||||
if (def == nullptr)
|
||||
throw NoDefinitionException(opt_key);
|
||||
const ConfigOptionDef *opt_def = def->get(opt_key);
|
||||
assert(opt_def != nullptr);
|
||||
// Compute absolute value over the absolute value of the base option.
|
||||
//FIXME there are some ratio_over chains, which end with empty ratio_with.
|
||||
// For example, XXX_extrusion_width parameters are not handled by get_abs_value correctly.
|
||||
return opt_def->ratio_over.empty() ? 0. :
|
||||
static_cast<const ConfigOptionFloatOrPercent*>(raw_opt)->get_abs_value(this->get_abs_value(opt_def->ratio_over));
|
||||
}
|
||||
throw std::runtime_error("ConfigBase::get_abs_value(): Not a valid option type for get_abs_value()");
|
||||
}
|
||||
|
||||
// Return an absolute value of a possibly relative config variable.
|
||||
// For example, return absolute infill extrusion width, either from an absolute value, or relative to a provided value.
|
||||
double ConfigBase::get_abs_value(const t_config_option_key &opt_key, double ratio_over) const
|
||||
{
|
||||
// Get stored option value.
|
||||
const ConfigOption *raw_opt = this->option(opt_key);
|
||||
assert(raw_opt != nullptr);
|
||||
if (raw_opt->type() != coFloatOrPercent)
|
||||
throw std::runtime_error("ConfigBase::get_abs_value(): opt_key is not of coFloatOrPercent");
|
||||
// Compute absolute value.
|
||||
return static_cast<const ConfigOptionFloatOrPercent*>(raw_opt)->get_abs_value(ratio_over);
|
||||
}
|
||||
|
||||
void ConfigBase::setenv_()
|
||||
{
|
||||
t_config_option_keys opt_keys = this->keys();
|
||||
for (t_config_option_keys::const_iterator it = opt_keys.begin(); it != opt_keys.end(); ++it) {
|
||||
// prepend the SLIC3R_ prefix
|
||||
std::ostringstream ss;
|
||||
ss << "SLIC3R_";
|
||||
ss << *it;
|
||||
std::string envname = ss.str();
|
||||
|
||||
// capitalize environment variable name
|
||||
for (size_t i = 0; i < envname.size(); ++i)
|
||||
envname[i] = (envname[i] <= 'z' && envname[i] >= 'a') ? envname[i]-('a'-'A') : envname[i];
|
||||
|
||||
boost::nowide::setenv(envname.c_str(), this->serialize(*it).c_str(), 1);
|
||||
}
|
||||
}
|
||||
|
||||
void ConfigBase::load(const std::string &file)
|
||||
{
|
||||
if (boost::iends_with(file, ".gcode") || boost::iends_with(file, ".g"))
|
||||
this->load_from_gcode_file(file);
|
||||
else
|
||||
this->load_from_ini(file);
|
||||
}
|
||||
|
||||
void ConfigBase::load_from_ini(const std::string &file)
|
||||
{
|
||||
boost::property_tree::ptree tree;
|
||||
boost::nowide::ifstream ifs(file);
|
||||
boost::property_tree::read_ini(ifs, tree);
|
||||
this->load(tree);
|
||||
}
|
||||
|
||||
void ConfigBase::load(const boost::property_tree::ptree &tree)
|
||||
{
|
||||
for (const boost::property_tree::ptree::value_type &v : tree) {
|
||||
try {
|
||||
t_config_option_key opt_key = v.first;
|
||||
this->set_deserialize(opt_key, v.second.get_value<std::string>());
|
||||
} catch (UnknownOptionException & /* e */) {
|
||||
// ignore
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Load the config keys from the tail of a G-code file.
|
||||
void ConfigBase::load_from_gcode_file(const std::string &file)
|
||||
{
|
||||
// Read a 64k block from the end of the G-code.
|
||||
boost::nowide::ifstream ifs(file);
|
||||
{
|
||||
const char slic3r_gcode_header[] = "; generated by Slic3r ";
|
||||
std::string firstline;
|
||||
std::getline(ifs, firstline);
|
||||
if (strncmp(slic3r_gcode_header, firstline.c_str(), strlen(slic3r_gcode_header)) != 0)
|
||||
throw std::runtime_error("Not a Slic3r generated g-code.");
|
||||
}
|
||||
ifs.seekg(0, ifs.end);
|
||||
auto file_length = ifs.tellg();
|
||||
auto data_length = std::min<std::fstream::streampos>(65535, file_length);
|
||||
ifs.seekg(file_length - data_length, ifs.beg);
|
||||
std::vector<char> data(size_t(data_length) + 1, 0);
|
||||
ifs.read(data.data(), data_length);
|
||||
ifs.close();
|
||||
|
||||
size_t key_value_pairs = load_from_gcode_string(data.data());
|
||||
if (key_value_pairs < 80)
|
||||
throw std::runtime_error((boost::format("Suspiciously low number of configuration values extracted from %1: %2") % file % key_value_pairs).str());
|
||||
}
|
||||
|
||||
// Load the config keys from the given string.
|
||||
size_t ConfigBase::load_from_gcode_string(const char* str)
|
||||
{
|
||||
if (str == nullptr)
|
||||
return 0;
|
||||
|
||||
// Walk line by line in reverse until a non-configuration key appears.
|
||||
char *data_start = const_cast<char*>(str);
|
||||
// boost::nowide::ifstream seems to cook the text data somehow, so less then the 64k of characters may be retrieved.
|
||||
char *end = data_start + strlen(str);
|
||||
size_t num_key_value_pairs = 0;
|
||||
for (;;) {
|
||||
// Extract next line.
|
||||
for (--end; end > data_start && (*end == '\r' || *end == '\n'); --end);
|
||||
if (end == data_start)
|
||||
break;
|
||||
char *start = end;
|
||||
*(++end) = 0;
|
||||
for (; start > data_start && *start != '\r' && *start != '\n'; --start);
|
||||
if (start == data_start)
|
||||
break;
|
||||
// Extracted a line from start to end. Extract the key = value pair.
|
||||
if (end - (++start) < 10 || start[0] != ';' || start[1] != ' ')
|
||||
break;
|
||||
char *key = start + 2;
|
||||
if (!(*key >= 'a' && *key <= 'z') || (*key >= 'A' && *key <= 'Z'))
|
||||
// A key must start with a letter.
|
||||
break;
|
||||
char *sep = strchr(key, '=');
|
||||
if (sep == nullptr || sep[-1] != ' ' || sep[1] != ' ')
|
||||
break;
|
||||
char *value = sep + 2;
|
||||
if (value > end)
|
||||
break;
|
||||
char *key_end = sep - 1;
|
||||
if (key_end - key < 3)
|
||||
break;
|
||||
*key_end = 0;
|
||||
// The key may contain letters, digits and underscores.
|
||||
for (char *c = key; c != key_end; ++c)
|
||||
if (!((*c >= 'a' && *c <= 'z') || (*c >= 'A' && *c <= 'Z') || (*c >= '0' && *c <= '9') || *c == '_')) {
|
||||
key = nullptr;
|
||||
break;
|
||||
}
|
||||
if (key == nullptr)
|
||||
break;
|
||||
try {
|
||||
this->set_deserialize(key, value);
|
||||
++num_key_value_pairs;
|
||||
}
|
||||
catch (UnknownOptionException & /* e */) {
|
||||
// ignore
|
||||
}
|
||||
end = start;
|
||||
}
|
||||
|
||||
return num_key_value_pairs;
|
||||
}
|
||||
|
||||
void ConfigBase::save(const std::string &file) const
|
||||
{
|
||||
boost::nowide::ofstream c;
|
||||
c.open(file, std::ios::out | std::ios::trunc);
|
||||
c << "# " << Slic3r::header_slic3r_generated() << std::endl;
|
||||
for (const std::string &opt_key : this->keys())
|
||||
c << opt_key << " = " << this->serialize(opt_key) << std::endl;
|
||||
c.close();
|
||||
}
|
||||
|
||||
bool DynamicConfig::operator==(const DynamicConfig &rhs) const
|
||||
{
|
||||
t_options_map::const_iterator it1 = this->options.begin();
|
||||
t_options_map::const_iterator it1_end = this->options.end();
|
||||
t_options_map::const_iterator it2 = rhs.options.begin();
|
||||
t_options_map::const_iterator it2_end = rhs.options.end();
|
||||
for (; it1 != it1_end && it2 != it2_end; ++ it1, ++ it2)
|
||||
if (*it1->second != *it2->second)
|
||||
return false;
|
||||
return it1 == it1_end && it2 == it2_end;
|
||||
}
|
||||
|
||||
ConfigOption* DynamicConfig::optptr(const t_config_option_key &opt_key, bool create)
|
||||
{
|
||||
t_options_map::iterator it = options.find(opt_key);
|
||||
if (it != options.end())
|
||||
// Option was found.
|
||||
return it->second;
|
||||
if (! create)
|
||||
// Option was not found and a new option shall not be created.
|
||||
return nullptr;
|
||||
// Try to create a new ConfigOption.
|
||||
const ConfigDef *def = this->def();
|
||||
if (def == nullptr)
|
||||
throw NoDefinitionException(opt_key);
|
||||
const ConfigOptionDef *optdef = def->get(opt_key);
|
||||
if (optdef == nullptr)
|
||||
// throw std::runtime_error(std::string("Invalid option name: ") + opt_key);
|
||||
// Let the parent decide what to do if the opt_key is not defined by this->def().
|
||||
return nullptr;
|
||||
ConfigOption *opt = nullptr;
|
||||
switch (optdef->type) {
|
||||
case coFloat: opt = new ConfigOptionFloat(); break;
|
||||
case coFloats: opt = new ConfigOptionFloats(); break;
|
||||
case coInt: opt = new ConfigOptionInt(); break;
|
||||
case coInts: opt = new ConfigOptionInts(); break;
|
||||
case coString: opt = new ConfigOptionString(); break;
|
||||
case coStrings: opt = new ConfigOptionStrings(); break;
|
||||
case coPercent: opt = new ConfigOptionPercent(); break;
|
||||
case coPercents: opt = new ConfigOptionPercents(); break;
|
||||
case coFloatOrPercent: opt = new ConfigOptionFloatOrPercent(); break;
|
||||
case coPoint: opt = new ConfigOptionPoint(); break;
|
||||
case coPoints: opt = new ConfigOptionPoints(); break;
|
||||
case coBool: opt = new ConfigOptionBool(); break;
|
||||
case coBools: opt = new ConfigOptionBools(); break;
|
||||
case coEnum: opt = new ConfigOptionEnumGeneric(optdef->enum_keys_map); break;
|
||||
default: throw std::runtime_error(std::string("Unknown option type for option ") + opt_key);
|
||||
}
|
||||
this->options[opt_key] = opt;
|
||||
return opt;
|
||||
}
|
||||
|
||||
void DynamicConfig::read_cli(const std::vector<std::string> &tokens, t_config_option_keys* extra)
|
||||
{
|
||||
std::vector<char*> args;
|
||||
// push a bogus executable name (argv[0])
|
||||
args.emplace_back(const_cast<char*>(""));
|
||||
for (size_t i = 0; i < tokens.size(); ++ i)
|
||||
args.emplace_back(const_cast<char *>(tokens[i].c_str()));
|
||||
this->read_cli(args.size(), &args[0], extra);
|
||||
}
|
||||
|
||||
bool DynamicConfig::read_cli(int argc, char** argv, t_config_option_keys* extra)
|
||||
{
|
||||
// cache the CLI option => opt_key mapping
|
||||
std::map<std::string,std::string> opts;
|
||||
for (const auto &oit : this->def()->options) {
|
||||
std::string cli = oit.second.cli;
|
||||
cli = cli.substr(0, cli.find("="));
|
||||
boost::trim_right_if(cli, boost::is_any_of("!"));
|
||||
std::vector<std::string> tokens;
|
||||
boost::split(tokens, cli, boost::is_any_of("|"));
|
||||
for (const std::string &t : tokens)
|
||||
opts[t] = oit.first;
|
||||
}
|
||||
|
||||
bool parse_options = true;
|
||||
for (int i = 1; i < argc; ++ i) {
|
||||
std::string token = argv[i];
|
||||
// Store non-option arguments in the provided vector.
|
||||
if (! parse_options || ! boost::starts_with(token, "-")) {
|
||||
extra->push_back(token);
|
||||
continue;
|
||||
}
|
||||
// Stop parsing tokens as options when -- is supplied.
|
||||
if (token == "--") {
|
||||
parse_options = false;
|
||||
continue;
|
||||
}
|
||||
// Remove leading dashes
|
||||
boost::trim_left_if(token, boost::is_any_of("-"));
|
||||
// Remove the "no-" prefix used to negate boolean options.
|
||||
bool no = false;
|
||||
if (boost::starts_with(token, "no-")) {
|
||||
no = true;
|
||||
boost::replace_first(token, "no-", "");
|
||||
}
|
||||
// Read value when supplied in the --key=value form.
|
||||
std::string value;
|
||||
{
|
||||
size_t equals_pos = token.find("=");
|
||||
if (equals_pos != std::string::npos) {
|
||||
value = token.substr(equals_pos+1);
|
||||
token.erase(equals_pos);
|
||||
}
|
||||
}
|
||||
// Look for the cli -> option mapping.
|
||||
const auto it = opts.find(token);
|
||||
if (it == opts.end()) {
|
||||
printf("Warning: unknown option --%s\n", token.c_str());
|
||||
// instead of continuing, return false to caller
|
||||
// to stop execution and print usage
|
||||
return false;
|
||||
//continue;
|
||||
}
|
||||
const t_config_option_key opt_key = it->second;
|
||||
const ConfigOptionDef &optdef = this->def()->options.at(opt_key);
|
||||
// If the option type expects a value and it was not already provided,
|
||||
// look for it in the next token.
|
||||
if (optdef.type != coBool && optdef.type != coBools && value.empty()) {
|
||||
if (i == (argc-1)) {
|
||||
printf("No value supplied for --%s\n", token.c_str());
|
||||
continue;
|
||||
}
|
||||
value = argv[++ i];
|
||||
}
|
||||
// Store the option value.
|
||||
const bool existing = this->has(opt_key);
|
||||
if (ConfigOptionBool* opt = this->opt<ConfigOptionBool>(opt_key, true)) {
|
||||
opt->value = !no;
|
||||
} else if (ConfigOptionBools* opt = this->opt<ConfigOptionBools>(opt_key, true)) {
|
||||
if (!existing) opt->values.clear(); // remove the default values
|
||||
opt->values.push_back(!no);
|
||||
} else if (ConfigOptionStrings* opt = this->opt<ConfigOptionStrings>(opt_key, true)) {
|
||||
if (!existing) opt->values.clear(); // remove the default values
|
||||
opt->deserialize(value, true);
|
||||
} else if (ConfigOptionFloats* opt = this->opt<ConfigOptionFloats>(opt_key, true)) {
|
||||
if (!existing) opt->values.clear(); // remove the default values
|
||||
opt->deserialize(value, true);
|
||||
} else if (ConfigOptionPoints* opt = this->opt<ConfigOptionPoints>(opt_key, true)) {
|
||||
if (!existing) opt->values.clear(); // remove the default values
|
||||
opt->deserialize(value, true);
|
||||
} else {
|
||||
this->set_deserialize(opt_key, value, true);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
t_config_option_keys DynamicConfig::keys() const
|
||||
{
|
||||
t_config_option_keys keys;
|
||||
keys.reserve(this->options.size());
|
||||
for (const auto &opt : this->options)
|
||||
keys.emplace_back(opt.first);
|
||||
return keys;
|
||||
}
|
||||
|
||||
void StaticConfig::set_defaults()
|
||||
{
|
||||
// use defaults from definition
|
||||
auto *defs = this->def();
|
||||
if (defs != nullptr) {
|
||||
for (const std::string &key : this->keys()) {
|
||||
const ConfigOptionDef *def = defs->get(key);
|
||||
ConfigOption *opt = this->option(key);
|
||||
if (def != nullptr && opt != nullptr && def->default_value != nullptr)
|
||||
opt->set(def->default_value);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
t_config_option_keys StaticConfig::keys() const
|
||||
{
|
||||
t_config_option_keys keys;
|
||||
assert(this->def() != nullptr);
|
||||
for (const auto &opt_def : this->def()->options)
|
||||
if (this->option(opt_def.first) != nullptr)
|
||||
keys.push_back(opt_def.first);
|
||||
return keys;
|
||||
}
|
||||
|
||||
}
|
||||
1330
src/libslic3r/Config.hpp
Normal file
1330
src/libslic3r/Config.hpp
Normal file
File diff suppressed because it is too large
Load diff
1453
src/libslic3r/EdgeGrid.cpp
Normal file
1453
src/libslic3r/EdgeGrid.cpp
Normal file
File diff suppressed because it is too large
Load diff
130
src/libslic3r/EdgeGrid.hpp
Normal file
130
src/libslic3r/EdgeGrid.hpp
Normal file
|
|
@ -0,0 +1,130 @@
|
|||
#ifndef slic3r_EdgeGrid_hpp_
|
||||
#define slic3r_EdgeGrid_hpp_
|
||||
|
||||
#include <stdint.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "Point.hpp"
|
||||
#include "BoundingBox.hpp"
|
||||
#include "ExPolygon.hpp"
|
||||
#include "ExPolygonCollection.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
namespace EdgeGrid {
|
||||
|
||||
class Grid
|
||||
{
|
||||
public:
|
||||
Grid();
|
||||
~Grid();
|
||||
|
||||
void set_bbox(const BoundingBox &bbox) { m_bbox = bbox; }
|
||||
|
||||
void create(const Polygons &polygons, coord_t resolution);
|
||||
void create(const ExPolygon &expoly, coord_t resolution);
|
||||
void create(const ExPolygons &expolygons, coord_t resolution);
|
||||
void create(const ExPolygonCollection &expolygons, coord_t resolution);
|
||||
|
||||
#if 0
|
||||
// Test, whether the edges inside the grid intersect with the polygons provided.
|
||||
bool intersect(const MultiPoint &polyline, bool closed);
|
||||
bool intersect(const Polygon &polygon) { return intersect(static_cast<const MultiPoint&>(polygon), true); }
|
||||
bool intersect(const Polygons &polygons) { for (size_t i = 0; i < polygons.size(); ++ i) if (intersect(polygons[i])) return true; return false; }
|
||||
bool intersect(const ExPolygon &expoly) { if (intersect(expoly.contour)) return true; for (size_t i = 0; i < expoly.holes.size(); ++ i) if (intersect(expoly.holes[i])) return true; return false; }
|
||||
bool intersect(const ExPolygons &expolygons) { for (size_t i = 0; i < expolygons.size(); ++ i) if (intersect(expolygons[i])) return true; return false; }
|
||||
bool intersect(const ExPolygonCollection &expolygons) { return intersect(expolygons.expolygons); }
|
||||
|
||||
// Test, whether a point is inside a contour.
|
||||
bool inside(const Point &pt);
|
||||
#endif
|
||||
|
||||
// Fill in a rough m_signed_distance_field from the edge grid.
|
||||
// The rough SDF is used by signed_distance() for distances outside of the search_radius.
|
||||
void calculate_sdf();
|
||||
|
||||
// Return an estimate of the signed distance based on m_signed_distance_field grid.
|
||||
float signed_distance_bilinear(const Point &pt) const;
|
||||
|
||||
// Calculate a signed distance to the contours in search_radius from the point.
|
||||
bool signed_distance_edges(const Point &pt, coord_t search_radius, coordf_t &result_min_dist, bool *pon_segment = NULL) const;
|
||||
|
||||
// Calculate a signed distance to the contours in search_radius from the point. If no edge is found in search_radius,
|
||||
// return an interpolated value from m_signed_distance_field, if it exists.
|
||||
bool signed_distance(const Point &pt, coord_t search_radius, coordf_t &result_min_dist) const;
|
||||
|
||||
const BoundingBox& bbox() const { return m_bbox; }
|
||||
const coord_t resolution() const { return m_resolution; }
|
||||
const size_t rows() const { return m_rows; }
|
||||
const size_t cols() const { return m_cols; }
|
||||
|
||||
// For supports: Contours enclosing the rasterized edges.
|
||||
Polygons contours_simplified(coord_t offset, bool fill_holes) const;
|
||||
|
||||
typedef std::pair<const Slic3r::Points*, size_t> ContourPoint;
|
||||
typedef std::pair<const Slic3r::Points*, size_t> ContourEdge;
|
||||
std::vector<std::pair<ContourEdge, ContourEdge>> intersecting_edges() const;
|
||||
bool has_intersecting_edges() const;
|
||||
|
||||
protected:
|
||||
struct Cell {
|
||||
Cell() : begin(0), end(0) {}
|
||||
size_t begin;
|
||||
size_t end;
|
||||
};
|
||||
|
||||
void create_from_m_contours(coord_t resolution);
|
||||
#if 0
|
||||
bool line_cell_intersect(const Point &p1, const Point &p2, const Cell &cell);
|
||||
#endif
|
||||
bool cell_inside_or_crossing(int r, int c) const
|
||||
{
|
||||
if (r < 0 || r >= m_rows ||
|
||||
c < 0 || c >= m_cols)
|
||||
// The cell is outside the domain. Hoping that the contours were correctly oriented, so
|
||||
// there is a CCW outmost contour so the out of domain cells are outside.
|
||||
return false;
|
||||
const Cell &cell = m_cells[r * m_cols + c];
|
||||
return
|
||||
(cell.begin < cell.end) ||
|
||||
(! m_signed_distance_field.empty() && m_signed_distance_field[r * (m_cols + 1) + c] <= 0.f);
|
||||
}
|
||||
|
||||
// Bounding box around the contours.
|
||||
BoundingBox m_bbox;
|
||||
// Grid dimensions.
|
||||
coord_t m_resolution;
|
||||
size_t m_rows;
|
||||
size_t m_cols;
|
||||
|
||||
// Referencing the source contours.
|
||||
// This format allows one to work with any Slic3r fixed point contour format
|
||||
// (Polygon, ExPolygon, ExPolygonCollection etc).
|
||||
std::vector<const Slic3r::Points*> m_contours;
|
||||
|
||||
// Referencing a contour and a line segment of m_contours.
|
||||
std::vector<std::pair<size_t, size_t> > m_cell_data;
|
||||
|
||||
// Full grid of cells.
|
||||
std::vector<Cell> m_cells;
|
||||
|
||||
// Distance field derived from the edge grid, seed filled by the Danielsson chamfer metric.
|
||||
// May be empty.
|
||||
std::vector<float> m_signed_distance_field;
|
||||
};
|
||||
|
||||
#if 0
|
||||
// Debugging utility. Save the signed distance field.
|
||||
extern void save_png(const Grid &grid, const BoundingBox &bbox, coord_t resolution, const char *path);
|
||||
#endif /* SLIC3R_GUI */
|
||||
|
||||
} // namespace EdgeGrid
|
||||
|
||||
// Find all pairs of intersectiong edges from the set of polygons.
|
||||
extern std::vector<std::pair<EdgeGrid::Grid::ContourEdge, EdgeGrid::Grid::ContourEdge>> intersecting_edges(const Polygons &polygons);
|
||||
|
||||
// Find all pairs of intersectiong edges from the set of polygons, highlight them in an SVG.
|
||||
extern void export_intersections_to_svg(const std::string &filename, const Polygons &polygons);
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif /* slic3r_EdgeGrid_hpp_ */
|
||||
555
src/libslic3r/ExPolygon.cpp
Normal file
555
src/libslic3r/ExPolygon.cpp
Normal file
|
|
@ -0,0 +1,555 @@
|
|||
#include "BoundingBox.hpp"
|
||||
#include "ExPolygon.hpp"
|
||||
#include "Geometry.hpp"
|
||||
#include "Polygon.hpp"
|
||||
#include "Line.hpp"
|
||||
#include "ClipperUtils.hpp"
|
||||
#include "SVG.hpp"
|
||||
#include "polypartition.h"
|
||||
#include "poly2tri/poly2tri.h"
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <list>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
ExPolygon::operator Points() const
|
||||
{
|
||||
Points points;
|
||||
Polygons pp = *this;
|
||||
for (Polygons::const_iterator poly = pp.begin(); poly != pp.end(); ++poly) {
|
||||
for (Points::const_iterator point = poly->points.begin(); point != poly->points.end(); ++point)
|
||||
points.push_back(*point);
|
||||
}
|
||||
return points;
|
||||
}
|
||||
|
||||
ExPolygon::operator Polygons() const
|
||||
{
|
||||
return to_polygons(*this);
|
||||
}
|
||||
|
||||
ExPolygon::operator Polylines() const
|
||||
{
|
||||
return to_polylines(*this);
|
||||
}
|
||||
|
||||
void ExPolygon::scale(double factor)
|
||||
{
|
||||
contour.scale(factor);
|
||||
for (Polygon &hole : holes)
|
||||
hole.scale(factor);
|
||||
}
|
||||
|
||||
void ExPolygon::translate(double x, double y)
|
||||
{
|
||||
contour.translate(x, y);
|
||||
for (Polygon &hole : holes)
|
||||
hole.translate(x, y);
|
||||
}
|
||||
|
||||
void ExPolygon::rotate(double angle)
|
||||
{
|
||||
contour.rotate(angle);
|
||||
for (Polygon &hole : holes)
|
||||
hole.rotate(angle);
|
||||
}
|
||||
|
||||
void ExPolygon::rotate(double angle, const Point ¢er)
|
||||
{
|
||||
contour.rotate(angle, center);
|
||||
for (Polygon &hole : holes)
|
||||
hole.rotate(angle, center);
|
||||
}
|
||||
|
||||
double ExPolygon::area() const
|
||||
{
|
||||
double a = this->contour.area();
|
||||
for (const Polygon &hole : holes)
|
||||
a -= - hole.area(); // holes have negative area
|
||||
return a;
|
||||
}
|
||||
|
||||
bool ExPolygon::is_valid() const
|
||||
{
|
||||
if (!this->contour.is_valid() || !this->contour.is_counter_clockwise()) return false;
|
||||
for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) {
|
||||
if (!(*it).is_valid() || (*it).is_counter_clockwise()) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ExPolygon::contains(const Line &line) const
|
||||
{
|
||||
return this->contains(Polyline(line.a, line.b));
|
||||
}
|
||||
|
||||
bool ExPolygon::contains(const Polyline &polyline) const
|
||||
{
|
||||
return diff_pl((Polylines)polyline, *this).empty();
|
||||
}
|
||||
|
||||
bool ExPolygon::contains(const Polylines &polylines) const
|
||||
{
|
||||
#if 0
|
||||
BoundingBox bbox = get_extents(polylines);
|
||||
bbox.merge(get_extents(*this));
|
||||
SVG svg(debug_out_path("ExPolygon_contains.svg"), bbox);
|
||||
svg.draw(*this);
|
||||
svg.draw_outline(*this);
|
||||
svg.draw(polylines, "blue");
|
||||
#endif
|
||||
Polylines pl_out = diff_pl(polylines, *this);
|
||||
#if 0
|
||||
svg.draw(pl_out, "red");
|
||||
#endif
|
||||
return pl_out.empty();
|
||||
}
|
||||
|
||||
bool ExPolygon::contains(const Point &point) const
|
||||
{
|
||||
if (!this->contour.contains(point)) return false;
|
||||
for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) {
|
||||
if (it->contains(point)) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// inclusive version of contains() that also checks whether point is on boundaries
|
||||
bool ExPolygon::contains_b(const Point &point) const
|
||||
{
|
||||
return this->contains(point) || this->has_boundary_point(point);
|
||||
}
|
||||
|
||||
bool
|
||||
ExPolygon::has_boundary_point(const Point &point) const
|
||||
{
|
||||
if (this->contour.has_boundary_point(point)) return true;
|
||||
for (Polygons::const_iterator h = this->holes.begin(); h != this->holes.end(); ++h) {
|
||||
if (h->has_boundary_point(point)) return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool
|
||||
ExPolygon::overlaps(const ExPolygon &other) const
|
||||
{
|
||||
#if 0
|
||||
BoundingBox bbox = get_extents(other);
|
||||
bbox.merge(get_extents(*this));
|
||||
static int iRun = 0;
|
||||
SVG svg(debug_out_path("ExPolygon_overlaps-%d.svg", iRun ++), bbox);
|
||||
svg.draw(*this);
|
||||
svg.draw_outline(*this);
|
||||
svg.draw_outline(other, "blue");
|
||||
#endif
|
||||
Polylines pl_out = intersection_pl((Polylines)other, *this);
|
||||
#if 0
|
||||
svg.draw(pl_out, "red");
|
||||
#endif
|
||||
if (! pl_out.empty())
|
||||
return true;
|
||||
return ! other.contour.points.empty() && this->contains_b(other.contour.points.front());
|
||||
}
|
||||
|
||||
void ExPolygon::simplify_p(double tolerance, Polygons* polygons) const
|
||||
{
|
||||
Polygons pp = this->simplify_p(tolerance);
|
||||
polygons->insert(polygons->end(), pp.begin(), pp.end());
|
||||
}
|
||||
|
||||
Polygons ExPolygon::simplify_p(double tolerance) const
|
||||
{
|
||||
Polygons pp;
|
||||
pp.reserve(this->holes.size() + 1);
|
||||
// contour
|
||||
{
|
||||
Polygon p = this->contour;
|
||||
p.points.push_back(p.points.front());
|
||||
p.points = MultiPoint::_douglas_peucker(p.points, tolerance);
|
||||
p.points.pop_back();
|
||||
pp.emplace_back(std::move(p));
|
||||
}
|
||||
// holes
|
||||
for (Polygon p : this->holes) {
|
||||
p.points.push_back(p.points.front());
|
||||
p.points = MultiPoint::_douglas_peucker(p.points, tolerance);
|
||||
p.points.pop_back();
|
||||
pp.emplace_back(std::move(p));
|
||||
}
|
||||
return simplify_polygons(pp);
|
||||
}
|
||||
|
||||
ExPolygons ExPolygon::simplify(double tolerance) const
|
||||
{
|
||||
return union_ex(this->simplify_p(tolerance));
|
||||
}
|
||||
|
||||
void ExPolygon::simplify(double tolerance, ExPolygons* expolygons) const
|
||||
{
|
||||
append(*expolygons, this->simplify(tolerance));
|
||||
}
|
||||
|
||||
void
|
||||
ExPolygon::medial_axis(double max_width, double min_width, ThickPolylines* polylines) const
|
||||
{
|
||||
// init helper object
|
||||
Slic3r::Geometry::MedialAxis ma(max_width, min_width, this);
|
||||
ma.lines = this->lines();
|
||||
|
||||
// compute the Voronoi diagram and extract medial axis polylines
|
||||
ThickPolylines pp;
|
||||
ma.build(&pp);
|
||||
|
||||
/*
|
||||
SVG svg("medial_axis.svg");
|
||||
svg.draw(*this);
|
||||
svg.draw(pp);
|
||||
svg.Close();
|
||||
*/
|
||||
|
||||
/* Find the maximum width returned; we're going to use this for validating and
|
||||
filtering the output segments. */
|
||||
double max_w = 0;
|
||||
for (ThickPolylines::const_iterator it = pp.begin(); it != pp.end(); ++it)
|
||||
max_w = fmaxf(max_w, *std::max_element(it->width.begin(), it->width.end()));
|
||||
|
||||
/* Loop through all returned polylines in order to extend their endpoints to the
|
||||
expolygon boundaries */
|
||||
bool removed = false;
|
||||
for (size_t i = 0; i < pp.size(); ++i) {
|
||||
ThickPolyline& polyline = pp[i];
|
||||
|
||||
// extend initial and final segments of each polyline if they're actual endpoints
|
||||
/* We assign new endpoints to temporary variables because in case of a single-line
|
||||
polyline, after we extend the start point it will be caught by the intersection()
|
||||
call, so we keep the inner point until we perform the second intersection() as well */
|
||||
Point new_front = polyline.points.front();
|
||||
Point new_back = polyline.points.back();
|
||||
if (polyline.endpoints.first && !this->has_boundary_point(new_front)) {
|
||||
Vec2d p1 = polyline.points.front().cast<double>();
|
||||
Vec2d p2 = polyline.points[1].cast<double>();
|
||||
// prevent the line from touching on the other side, otherwise intersection() might return that solution
|
||||
if (polyline.points.size() == 2)
|
||||
p2 = (p1 + p2) * 0.5;
|
||||
// Extend the start of the segment.
|
||||
p1 -= (p2 - p1).normalized() * max_width;
|
||||
this->contour.intersection(Line(p1.cast<coord_t>(), p2.cast<coord_t>()), &new_front);
|
||||
}
|
||||
if (polyline.endpoints.second && !this->has_boundary_point(new_back)) {
|
||||
Vec2d p1 = (polyline.points.end() - 2)->cast<double>();
|
||||
Vec2d p2 = polyline.points.back().cast<double>();
|
||||
// prevent the line from touching on the other side, otherwise intersection() might return that solution
|
||||
if (polyline.points.size() == 2)
|
||||
p1 = (p1 + p2) * 0.5;
|
||||
// Extend the start of the segment.
|
||||
p2 += (p2 - p1).normalized() * max_width;
|
||||
this->contour.intersection(Line(p1.cast<coord_t>(), p2.cast<coord_t>()), &new_back);
|
||||
}
|
||||
polyline.points.front() = new_front;
|
||||
polyline.points.back() = new_back;
|
||||
|
||||
/* remove too short polylines
|
||||
(we can't do this check before endpoints extension and clipping because we don't
|
||||
know how long will the endpoints be extended since it depends on polygon thickness
|
||||
which is variable - extension will be <= max_width/2 on each side) */
|
||||
if ((polyline.endpoints.first || polyline.endpoints.second)
|
||||
&& polyline.length() < max_w*2) {
|
||||
pp.erase(pp.begin() + i);
|
||||
--i;
|
||||
removed = true;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
/* If we removed any short polylines we now try to connect consecutive polylines
|
||||
in order to allow loop detection. Note that this algorithm is greedier than
|
||||
MedialAxis::process_edge_neighbors() as it will connect random pairs of
|
||||
polylines even when more than two start from the same point. This has no
|
||||
drawbacks since we optimize later using nearest-neighbor which would do the
|
||||
same, but should we use a more sophisticated optimization algorithm we should
|
||||
not connect polylines when more than two meet. */
|
||||
if (removed) {
|
||||
for (size_t i = 0; i < pp.size(); ++i) {
|
||||
ThickPolyline& polyline = pp[i];
|
||||
if (polyline.endpoints.first && polyline.endpoints.second) continue; // optimization
|
||||
|
||||
// find another polyline starting here
|
||||
for (size_t j = i+1; j < pp.size(); ++j) {
|
||||
ThickPolyline& other = pp[j];
|
||||
if (polyline.last_point() == other.last_point()) {
|
||||
other.reverse();
|
||||
} else if (polyline.first_point() == other.last_point()) {
|
||||
polyline.reverse();
|
||||
other.reverse();
|
||||
} else if (polyline.first_point() == other.first_point()) {
|
||||
polyline.reverse();
|
||||
} else if (polyline.last_point() != other.first_point()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
polyline.points.insert(polyline.points.end(), other.points.begin() + 1, other.points.end());
|
||||
polyline.width.insert(polyline.width.end(), other.width.begin(), other.width.end());
|
||||
polyline.endpoints.second = other.endpoints.second;
|
||||
assert(polyline.width.size() == polyline.points.size()*2 - 2);
|
||||
|
||||
pp.erase(pp.begin() + j);
|
||||
j = i; // restart search from i+1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
polylines->insert(polylines->end(), pp.begin(), pp.end());
|
||||
}
|
||||
|
||||
void
|
||||
ExPolygon::medial_axis(double max_width, double min_width, Polylines* polylines) const
|
||||
{
|
||||
ThickPolylines tp;
|
||||
this->medial_axis(max_width, min_width, &tp);
|
||||
polylines->insert(polylines->end(), tp.begin(), tp.end());
|
||||
}
|
||||
|
||||
void
|
||||
ExPolygon::get_trapezoids(Polygons* polygons) const
|
||||
{
|
||||
ExPolygons expp;
|
||||
expp.push_back(*this);
|
||||
boost::polygon::get_trapezoids(*polygons, expp);
|
||||
}
|
||||
|
||||
void
|
||||
ExPolygon::get_trapezoids(Polygons* polygons, double angle) const
|
||||
{
|
||||
ExPolygon clone = *this;
|
||||
clone.rotate(PI/2 - angle, Point(0,0));
|
||||
clone.get_trapezoids(polygons);
|
||||
for (Polygons::iterator polygon = polygons->begin(); polygon != polygons->end(); ++polygon)
|
||||
polygon->rotate(-(PI/2 - angle), Point(0,0));
|
||||
}
|
||||
|
||||
// This algorithm may return more trapezoids than necessary
|
||||
// (i.e. it may break a single trapezoid in several because
|
||||
// other parts of the object have x coordinates in the middle)
|
||||
void
|
||||
ExPolygon::get_trapezoids2(Polygons* polygons) const
|
||||
{
|
||||
// get all points of this ExPolygon
|
||||
Points pp = *this;
|
||||
|
||||
// build our bounding box
|
||||
BoundingBox bb(pp);
|
||||
|
||||
// get all x coordinates
|
||||
std::vector<coord_t> xx;
|
||||
xx.reserve(pp.size());
|
||||
for (Points::const_iterator p = pp.begin(); p != pp.end(); ++p)
|
||||
xx.push_back(p->x());
|
||||
std::sort(xx.begin(), xx.end());
|
||||
|
||||
// find trapezoids by looping from first to next-to-last coordinate
|
||||
for (std::vector<coord_t>::const_iterator x = xx.begin(); x != xx.end()-1; ++x) {
|
||||
coord_t next_x = *(x + 1);
|
||||
if (*x == next_x) continue;
|
||||
|
||||
// build rectangle
|
||||
Polygon poly;
|
||||
poly.points.resize(4);
|
||||
poly[0](0) = *x;
|
||||
poly[0](1) = bb.min(1);
|
||||
poly[1](0) = next_x;
|
||||
poly[1](1) = bb.min(1);
|
||||
poly[2](0) = next_x;
|
||||
poly[2](1) = bb.max(1);
|
||||
poly[3](0) = *x;
|
||||
poly[3](1) = bb.max(1);
|
||||
|
||||
// intersect with this expolygon
|
||||
// append results to return value
|
||||
polygons_append(*polygons, intersection(poly, to_polygons(*this)));
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
ExPolygon::get_trapezoids2(Polygons* polygons, double angle) const
|
||||
{
|
||||
ExPolygon clone = *this;
|
||||
clone.rotate(PI/2 - angle, Point(0,0));
|
||||
clone.get_trapezoids2(polygons);
|
||||
for (Polygons::iterator polygon = polygons->begin(); polygon != polygons->end(); ++polygon)
|
||||
polygon->rotate(-(PI/2 - angle), Point(0,0));
|
||||
}
|
||||
|
||||
// While this triangulates successfully, it's NOT a constrained triangulation
|
||||
// as it will create more vertices on the boundaries than the ones supplied.
|
||||
void
|
||||
ExPolygon::triangulate(Polygons* polygons) const
|
||||
{
|
||||
// first make trapezoids
|
||||
Polygons trapezoids;
|
||||
this->get_trapezoids2(&trapezoids);
|
||||
|
||||
// then triangulate each trapezoid
|
||||
for (Polygons::iterator polygon = trapezoids.begin(); polygon != trapezoids.end(); ++polygon)
|
||||
polygon->triangulate_convex(polygons);
|
||||
}
|
||||
|
||||
void
|
||||
ExPolygon::triangulate_pp(Polygons* polygons) const
|
||||
{
|
||||
// convert polygons
|
||||
std::list<TPPLPoly> input;
|
||||
|
||||
ExPolygons expp = union_ex(simplify_polygons(to_polygons(*this), true));
|
||||
|
||||
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) {
|
||||
// contour
|
||||
{
|
||||
TPPLPoly p;
|
||||
p.Init(int(ex->contour.points.size()));
|
||||
//printf(PRINTF_ZU "\n0\n", ex->contour.points.size());
|
||||
for (const Point &point : ex->contour.points) {
|
||||
size_t i = &point - &ex->contour.points.front();
|
||||
p[i].x = point(0);
|
||||
p[i].y = point(1);
|
||||
//printf("%ld %ld\n", point->x(), point->y());
|
||||
}
|
||||
p.SetHole(false);
|
||||
input.push_back(p);
|
||||
}
|
||||
|
||||
// holes
|
||||
for (Polygons::const_iterator hole = ex->holes.begin(); hole != ex->holes.end(); ++hole) {
|
||||
TPPLPoly p;
|
||||
p.Init(hole->points.size());
|
||||
//printf(PRINTF_ZU "\n1\n", hole->points.size());
|
||||
for (const Point &point : hole->points) {
|
||||
size_t i = &point - &hole->points.front();
|
||||
p[i].x = point(0);
|
||||
p[i].y = point(1);
|
||||
//printf("%ld %ld\n", point->x(), point->y());
|
||||
}
|
||||
p.SetHole(true);
|
||||
input.push_back(p);
|
||||
}
|
||||
}
|
||||
|
||||
// perform triangulation
|
||||
std::list<TPPLPoly> output;
|
||||
int res = TPPLPartition().Triangulate_MONO(&input, &output);
|
||||
if (res != 1)
|
||||
throw std::runtime_error("Triangulation failed");
|
||||
|
||||
// convert output polygons
|
||||
for (std::list<TPPLPoly>::iterator poly = output.begin(); poly != output.end(); ++poly) {
|
||||
long num_points = poly->GetNumPoints();
|
||||
Polygon p;
|
||||
p.points.resize(num_points);
|
||||
for (long i = 0; i < num_points; ++i) {
|
||||
p.points[i](0) = coord_t((*poly)[i].x);
|
||||
p.points[i](1) = coord_t((*poly)[i].y);
|
||||
}
|
||||
polygons->push_back(p);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
ExPolygon::triangulate_p2t(Polygons* polygons) const
|
||||
{
|
||||
ExPolygons expp = simplify_polygons_ex(*this, true);
|
||||
|
||||
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) {
|
||||
// TODO: prevent duplicate points
|
||||
|
||||
// contour
|
||||
std::vector<p2t::Point*> ContourPoints;
|
||||
for (const Point &pt : ex->contour.points)
|
||||
// We should delete each p2t::Point object
|
||||
ContourPoints.push_back(new p2t::Point(pt(0), pt(1)));
|
||||
p2t::CDT cdt(ContourPoints);
|
||||
|
||||
// holes
|
||||
for (Polygons::const_iterator hole = ex->holes.begin(); hole != ex->holes.end(); ++hole) {
|
||||
std::vector<p2t::Point*> points;
|
||||
for (const Point &pt : hole->points)
|
||||
// will be destructed in SweepContext::~SweepContext
|
||||
points.push_back(new p2t::Point(pt(0), pt(1)));
|
||||
cdt.AddHole(points);
|
||||
}
|
||||
|
||||
// perform triangulation
|
||||
cdt.Triangulate();
|
||||
std::vector<p2t::Triangle*> triangles = cdt.GetTriangles();
|
||||
|
||||
for (std::vector<p2t::Triangle*>::const_iterator triangle = triangles.begin(); triangle != triangles.end(); ++triangle) {
|
||||
Polygon p;
|
||||
for (int i = 0; i <= 2; ++i) {
|
||||
p2t::Point* point = (*triangle)->GetPoint(i);
|
||||
p.points.push_back(Point(point->x, point->y));
|
||||
}
|
||||
polygons->push_back(p);
|
||||
}
|
||||
|
||||
for (p2t::Point *ptr : ContourPoints)
|
||||
delete ptr;
|
||||
}
|
||||
}
|
||||
|
||||
Lines
|
||||
ExPolygon::lines() const
|
||||
{
|
||||
Lines lines = this->contour.lines();
|
||||
for (Polygons::const_iterator h = this->holes.begin(); h != this->holes.end(); ++h) {
|
||||
Lines hole_lines = h->lines();
|
||||
lines.insert(lines.end(), hole_lines.begin(), hole_lines.end());
|
||||
}
|
||||
return lines;
|
||||
}
|
||||
|
||||
BoundingBox get_extents(const ExPolygon &expolygon)
|
||||
{
|
||||
return get_extents(expolygon.contour);
|
||||
}
|
||||
|
||||
BoundingBox get_extents(const ExPolygons &expolygons)
|
||||
{
|
||||
BoundingBox bbox;
|
||||
if (! expolygons.empty()) {
|
||||
for (size_t i = 0; i < expolygons.size(); ++ i)
|
||||
if (! expolygons[i].contour.points.empty())
|
||||
bbox.merge(get_extents(expolygons[i]));
|
||||
}
|
||||
return bbox;
|
||||
}
|
||||
|
||||
BoundingBox get_extents_rotated(const ExPolygon &expolygon, double angle)
|
||||
{
|
||||
return get_extents_rotated(expolygon.contour, angle);
|
||||
}
|
||||
|
||||
BoundingBox get_extents_rotated(const ExPolygons &expolygons, double angle)
|
||||
{
|
||||
BoundingBox bbox;
|
||||
if (! expolygons.empty()) {
|
||||
bbox = get_extents_rotated(expolygons.front().contour, angle);
|
||||
for (size_t i = 1; i < expolygons.size(); ++ i)
|
||||
bbox.merge(get_extents_rotated(expolygons[i].contour, angle));
|
||||
}
|
||||
return bbox;
|
||||
}
|
||||
|
||||
extern std::vector<BoundingBox> get_extents_vector(const ExPolygons &polygons)
|
||||
{
|
||||
std::vector<BoundingBox> out;
|
||||
out.reserve(polygons.size());
|
||||
for (ExPolygons::const_iterator it = polygons.begin(); it != polygons.end(); ++ it)
|
||||
out.push_back(get_extents(*it));
|
||||
return out;
|
||||
}
|
||||
|
||||
bool remove_sticks(ExPolygon &poly)
|
||||
{
|
||||
return remove_sticks(poly.contour) || remove_sticks(poly.holes);
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
406
src/libslic3r/ExPolygon.hpp
Normal file
406
src/libslic3r/ExPolygon.hpp
Normal file
|
|
@ -0,0 +1,406 @@
|
|||
#ifndef slic3r_ExPolygon_hpp_
|
||||
#define slic3r_ExPolygon_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "Polygon.hpp"
|
||||
#include "Polyline.hpp"
|
||||
#include <vector>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class ExPolygon;
|
||||
typedef std::vector<ExPolygon> ExPolygons;
|
||||
|
||||
class ExPolygon
|
||||
{
|
||||
public:
|
||||
ExPolygon() {}
|
||||
ExPolygon(const ExPolygon &other) : contour(other.contour), holes(other.holes) {}
|
||||
ExPolygon(ExPolygon &&other) : contour(std::move(other.contour)), holes(std::move(other.holes)) {}
|
||||
|
||||
ExPolygon& operator=(const ExPolygon &other) { contour = other.contour; holes = other.holes; return *this; }
|
||||
ExPolygon& operator=(ExPolygon &&other) { contour = std::move(other.contour); holes = std::move(other.holes); return *this; }
|
||||
|
||||
Polygon contour;
|
||||
Polygons holes;
|
||||
|
||||
operator Points() const;
|
||||
operator Polygons() const;
|
||||
operator Polylines() const;
|
||||
void clear() { contour.points.clear(); holes.clear(); }
|
||||
void scale(double factor);
|
||||
void translate(double x, double y);
|
||||
void rotate(double angle);
|
||||
void rotate(double angle, const Point ¢er);
|
||||
double area() const;
|
||||
bool empty() const { return contour.points.empty(); }
|
||||
bool is_valid() const;
|
||||
|
||||
// Contains the line / polyline / polylines etc COMPLETELY.
|
||||
bool contains(const Line &line) const;
|
||||
bool contains(const Polyline &polyline) const;
|
||||
bool contains(const Polylines &polylines) const;
|
||||
bool contains(const Point &point) const;
|
||||
bool contains_b(const Point &point) const;
|
||||
bool has_boundary_point(const Point &point) const;
|
||||
|
||||
// Does this expolygon overlap another expolygon?
|
||||
// Either the ExPolygons intersect, or one is fully inside the other,
|
||||
// and it is not inside a hole of the other expolygon.
|
||||
bool overlaps(const ExPolygon &other) const;
|
||||
|
||||
void simplify_p(double tolerance, Polygons* polygons) const;
|
||||
Polygons simplify_p(double tolerance) const;
|
||||
ExPolygons simplify(double tolerance) const;
|
||||
void simplify(double tolerance, ExPolygons* expolygons) const;
|
||||
void medial_axis(double max_width, double min_width, ThickPolylines* polylines) const;
|
||||
void medial_axis(double max_width, double min_width, Polylines* polylines) const;
|
||||
void get_trapezoids(Polygons* polygons) const;
|
||||
void get_trapezoids(Polygons* polygons, double angle) const;
|
||||
void get_trapezoids2(Polygons* polygons) const;
|
||||
void get_trapezoids2(Polygons* polygons, double angle) const;
|
||||
void triangulate(Polygons* polygons) const;
|
||||
void triangulate_pp(Polygons* polygons) const;
|
||||
void triangulate_p2t(Polygons* polygons) const;
|
||||
Lines lines() const;
|
||||
};
|
||||
|
||||
// Count a nuber of polygons stored inside the vector of expolygons.
|
||||
// Useful for allocating space for polygons when converting expolygons to polygons.
|
||||
inline size_t number_polygons(const ExPolygons &expolys)
|
||||
{
|
||||
size_t n_polygons = 0;
|
||||
for (ExPolygons::const_iterator it = expolys.begin(); it != expolys.end(); ++ it)
|
||||
n_polygons += it->holes.size() + 1;
|
||||
return n_polygons;
|
||||
}
|
||||
|
||||
inline Lines to_lines(const ExPolygon &src)
|
||||
{
|
||||
size_t n_lines = src.contour.points.size();
|
||||
for (size_t i = 0; i < src.holes.size(); ++ i)
|
||||
n_lines += src.holes[i].points.size();
|
||||
Lines lines;
|
||||
lines.reserve(n_lines);
|
||||
for (size_t i = 0; i <= src.holes.size(); ++ i) {
|
||||
const Polygon &poly = (i == 0) ? src.contour : src.holes[i - 1];
|
||||
for (Points::const_iterator it = poly.points.begin(); it != poly.points.end()-1; ++it)
|
||||
lines.push_back(Line(*it, *(it + 1)));
|
||||
lines.push_back(Line(poly.points.back(), poly.points.front()));
|
||||
}
|
||||
return lines;
|
||||
}
|
||||
|
||||
inline Lines to_lines(const ExPolygons &src)
|
||||
{
|
||||
size_t n_lines = 0;
|
||||
for (ExPolygons::const_iterator it_expoly = src.begin(); it_expoly != src.end(); ++ it_expoly) {
|
||||
n_lines += it_expoly->contour.points.size();
|
||||
for (size_t i = 0; i < it_expoly->holes.size(); ++ i)
|
||||
n_lines += it_expoly->holes[i].points.size();
|
||||
}
|
||||
Lines lines;
|
||||
lines.reserve(n_lines);
|
||||
for (ExPolygons::const_iterator it_expoly = src.begin(); it_expoly != src.end(); ++ it_expoly) {
|
||||
for (size_t i = 0; i <= it_expoly->holes.size(); ++ i) {
|
||||
const Points &points = ((i == 0) ? it_expoly->contour : it_expoly->holes[i - 1]).points;
|
||||
for (Points::const_iterator it = points.begin(); it != points.end()-1; ++it)
|
||||
lines.push_back(Line(*it, *(it + 1)));
|
||||
lines.push_back(Line(points.back(), points.front()));
|
||||
}
|
||||
}
|
||||
return lines;
|
||||
}
|
||||
|
||||
inline Polylines to_polylines(const ExPolygon &src)
|
||||
{
|
||||
Polylines polylines;
|
||||
polylines.assign(src.holes.size() + 1, Polyline());
|
||||
size_t idx = 0;
|
||||
Polyline &pl = polylines[idx ++];
|
||||
pl.points = src.contour.points;
|
||||
pl.points.push_back(pl.points.front());
|
||||
for (Polygons::const_iterator ith = src.holes.begin(); ith != src.holes.end(); ++ith) {
|
||||
Polyline &pl = polylines[idx ++];
|
||||
pl.points = ith->points;
|
||||
pl.points.push_back(ith->points.front());
|
||||
}
|
||||
assert(idx == polylines.size());
|
||||
return polylines;
|
||||
}
|
||||
|
||||
inline Polylines to_polylines(const ExPolygons &src)
|
||||
{
|
||||
Polylines polylines;
|
||||
polylines.assign(number_polygons(src), Polyline());
|
||||
size_t idx = 0;
|
||||
for (ExPolygons::const_iterator it = src.begin(); it != src.end(); ++it) {
|
||||
Polyline &pl = polylines[idx ++];
|
||||
pl.points = it->contour.points;
|
||||
pl.points.push_back(pl.points.front());
|
||||
for (Polygons::const_iterator ith = it->holes.begin(); ith != it->holes.end(); ++ith) {
|
||||
Polyline &pl = polylines[idx ++];
|
||||
pl.points = ith->points;
|
||||
pl.points.push_back(ith->points.front());
|
||||
}
|
||||
}
|
||||
assert(idx == polylines.size());
|
||||
return polylines;
|
||||
}
|
||||
|
||||
inline Polylines to_polylines(ExPolygon &&src)
|
||||
{
|
||||
Polylines polylines;
|
||||
polylines.assign(src.holes.size() + 1, Polyline());
|
||||
size_t idx = 0;
|
||||
Polyline &pl = polylines[idx ++];
|
||||
pl.points = std::move(src.contour.points);
|
||||
pl.points.push_back(pl.points.front());
|
||||
for (Polygons::const_iterator ith = src.holes.begin(); ith != src.holes.end(); ++ith) {
|
||||
Polyline &pl = polylines[idx ++];
|
||||
pl.points = std::move(ith->points);
|
||||
pl.points.push_back(ith->points.front());
|
||||
}
|
||||
assert(idx == polylines.size());
|
||||
return polylines;
|
||||
}
|
||||
|
||||
inline Polylines to_polylines(ExPolygons &&src)
|
||||
{
|
||||
Polylines polylines;
|
||||
polylines.assign(number_polygons(src), Polyline());
|
||||
size_t idx = 0;
|
||||
for (ExPolygons::const_iterator it = src.begin(); it != src.end(); ++it) {
|
||||
Polyline &pl = polylines[idx ++];
|
||||
pl.points = std::move(it->contour.points);
|
||||
pl.points.push_back(pl.points.front());
|
||||
for (Polygons::const_iterator ith = it->holes.begin(); ith != it->holes.end(); ++ith) {
|
||||
Polyline &pl = polylines[idx ++];
|
||||
pl.points = std::move(ith->points);
|
||||
pl.points.push_back(ith->points.front());
|
||||
}
|
||||
}
|
||||
assert(idx == polylines.size());
|
||||
return polylines;
|
||||
}
|
||||
|
||||
inline Polygons to_polygons(const ExPolygon &src)
|
||||
{
|
||||
Polygons polygons;
|
||||
polygons.reserve(src.holes.size() + 1);
|
||||
polygons.push_back(src.contour);
|
||||
polygons.insert(polygons.end(), src.holes.begin(), src.holes.end());
|
||||
return polygons;
|
||||
}
|
||||
|
||||
inline Polygons to_polygons(const ExPolygons &src)
|
||||
{
|
||||
Polygons polygons;
|
||||
polygons.reserve(number_polygons(src));
|
||||
for (ExPolygons::const_iterator it = src.begin(); it != src.end(); ++it) {
|
||||
polygons.push_back(it->contour);
|
||||
polygons.insert(polygons.end(), it->holes.begin(), it->holes.end());
|
||||
}
|
||||
return polygons;
|
||||
}
|
||||
|
||||
inline Polygons to_polygons(ExPolygon &&src)
|
||||
{
|
||||
Polygons polygons;
|
||||
polygons.reserve(src.holes.size() + 1);
|
||||
polygons.push_back(std::move(src.contour));
|
||||
std::move(std::begin(src.holes), std::end(src.holes), std::back_inserter(polygons));
|
||||
src.holes.clear();
|
||||
return polygons;
|
||||
}
|
||||
|
||||
inline Polygons to_polygons(ExPolygons &&src)
|
||||
{
|
||||
Polygons polygons;
|
||||
polygons.reserve(number_polygons(src));
|
||||
for (ExPolygons::iterator it = src.begin(); it != src.end(); ++it) {
|
||||
polygons.push_back(std::move(it->contour));
|
||||
std::move(std::begin(it->holes), std::end(it->holes), std::back_inserter(polygons));
|
||||
it->holes.clear();
|
||||
}
|
||||
return polygons;
|
||||
}
|
||||
|
||||
inline void polygons_append(Polygons &dst, const ExPolygon &src)
|
||||
{
|
||||
dst.reserve(dst.size() + src.holes.size() + 1);
|
||||
dst.push_back(src.contour);
|
||||
dst.insert(dst.end(), src.holes.begin(), src.holes.end());
|
||||
}
|
||||
|
||||
inline void polygons_append(Polygons &dst, const ExPolygons &src)
|
||||
{
|
||||
dst.reserve(dst.size() + number_polygons(src));
|
||||
for (ExPolygons::const_iterator it = src.begin(); it != src.end(); ++ it) {
|
||||
dst.push_back(it->contour);
|
||||
dst.insert(dst.end(), it->holes.begin(), it->holes.end());
|
||||
}
|
||||
}
|
||||
|
||||
inline void polygons_append(Polygons &dst, ExPolygon &&src)
|
||||
{
|
||||
dst.reserve(dst.size() + src.holes.size() + 1);
|
||||
dst.push_back(std::move(src.contour));
|
||||
std::move(std::begin(src.holes), std::end(src.holes), std::back_inserter(dst));
|
||||
src.holes.clear();
|
||||
}
|
||||
|
||||
inline void polygons_append(Polygons &dst, ExPolygons &&src)
|
||||
{
|
||||
dst.reserve(dst.size() + number_polygons(src));
|
||||
for (ExPolygons::iterator it = src.begin(); it != src.end(); ++ it) {
|
||||
dst.push_back(std::move(it->contour));
|
||||
std::move(std::begin(it->holes), std::end(it->holes), std::back_inserter(dst));
|
||||
it->holes.clear();
|
||||
}
|
||||
}
|
||||
|
||||
inline void expolygons_append(ExPolygons &dst, const ExPolygons &src)
|
||||
{
|
||||
dst.insert(dst.end(), src.begin(), src.end());
|
||||
}
|
||||
|
||||
inline void expolygons_append(ExPolygons &dst, ExPolygons &&src)
|
||||
{
|
||||
if (dst.empty()) {
|
||||
dst = std::move(src);
|
||||
} else {
|
||||
std::move(std::begin(src), std::end(src), std::back_inserter(dst));
|
||||
src.clear();
|
||||
}
|
||||
}
|
||||
|
||||
inline void expolygons_rotate(ExPolygons &expolys, double angle)
|
||||
{
|
||||
for (ExPolygons::iterator p = expolys.begin(); p != expolys.end(); ++p)
|
||||
p->rotate(angle);
|
||||
}
|
||||
|
||||
inline bool expolygons_contain(ExPolygons &expolys, const Point &pt)
|
||||
{
|
||||
for (ExPolygons::iterator p = expolys.begin(); p != expolys.end(); ++p)
|
||||
if (p->contains(pt))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
extern BoundingBox get_extents(const ExPolygon &expolygon);
|
||||
extern BoundingBox get_extents(const ExPolygons &expolygons);
|
||||
extern BoundingBox get_extents_rotated(const ExPolygon &poly, double angle);
|
||||
extern BoundingBox get_extents_rotated(const ExPolygons &polygons, double angle);
|
||||
extern std::vector<BoundingBox> get_extents_vector(const ExPolygons &polygons);
|
||||
|
||||
extern bool remove_sticks(ExPolygon &poly);
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
// start Boost
|
||||
#include <boost/polygon/polygon.hpp>
|
||||
namespace boost { namespace polygon {
|
||||
template <>
|
||||
struct polygon_traits<Slic3r::ExPolygon> {
|
||||
typedef coord_t coordinate_type;
|
||||
typedef Slic3r::Points::const_iterator iterator_type;
|
||||
typedef Slic3r::Point point_type;
|
||||
|
||||
// Get the begin iterator
|
||||
static inline iterator_type begin_points(const Slic3r::ExPolygon& t) {
|
||||
return t.contour.points.begin();
|
||||
}
|
||||
|
||||
// Get the end iterator
|
||||
static inline iterator_type end_points(const Slic3r::ExPolygon& t) {
|
||||
return t.contour.points.end();
|
||||
}
|
||||
|
||||
// Get the number of sides of the polygon
|
||||
static inline std::size_t size(const Slic3r::ExPolygon& t) {
|
||||
return t.contour.points.size();
|
||||
}
|
||||
|
||||
// Get the winding direction of the polygon
|
||||
static inline winding_direction winding(const Slic3r::ExPolygon& /* t */) {
|
||||
return unknown_winding;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct polygon_mutable_traits<Slic3r::ExPolygon> {
|
||||
//expects stl style iterators
|
||||
template <typename iT>
|
||||
static inline Slic3r::ExPolygon& set_points(Slic3r::ExPolygon& expolygon, iT input_begin, iT input_end) {
|
||||
expolygon.contour.points.assign(input_begin, input_end);
|
||||
// skip last point since Boost will set last point = first point
|
||||
expolygon.contour.points.pop_back();
|
||||
return expolygon;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <>
|
||||
struct geometry_concept<Slic3r::ExPolygon> { typedef polygon_with_holes_concept type; };
|
||||
|
||||
template <>
|
||||
struct polygon_with_holes_traits<Slic3r::ExPolygon> {
|
||||
typedef Slic3r::Polygons::const_iterator iterator_holes_type;
|
||||
typedef Slic3r::Polygon hole_type;
|
||||
static inline iterator_holes_type begin_holes(const Slic3r::ExPolygon& t) {
|
||||
return t.holes.begin();
|
||||
}
|
||||
static inline iterator_holes_type end_holes(const Slic3r::ExPolygon& t) {
|
||||
return t.holes.end();
|
||||
}
|
||||
static inline unsigned int size_holes(const Slic3r::ExPolygon& t) {
|
||||
return (int)t.holes.size();
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct polygon_with_holes_mutable_traits<Slic3r::ExPolygon> {
|
||||
template <typename iT>
|
||||
static inline Slic3r::ExPolygon& set_holes(Slic3r::ExPolygon& t, iT inputBegin, iT inputEnd) {
|
||||
t.holes.assign(inputBegin, inputEnd);
|
||||
return t;
|
||||
}
|
||||
};
|
||||
|
||||
//first we register CPolygonSet as a polygon set
|
||||
template <>
|
||||
struct geometry_concept<Slic3r::ExPolygons> { typedef polygon_set_concept type; };
|
||||
|
||||
//next we map to the concept through traits
|
||||
template <>
|
||||
struct polygon_set_traits<Slic3r::ExPolygons> {
|
||||
typedef coord_t coordinate_type;
|
||||
typedef Slic3r::ExPolygons::const_iterator iterator_type;
|
||||
typedef Slic3r::ExPolygons operator_arg_type;
|
||||
|
||||
static inline iterator_type begin(const Slic3r::ExPolygons& polygon_set) {
|
||||
return polygon_set.begin();
|
||||
}
|
||||
|
||||
static inline iterator_type end(const Slic3r::ExPolygons& polygon_set) {
|
||||
return polygon_set.end();
|
||||
}
|
||||
|
||||
//don't worry about these, just return false from them
|
||||
static inline bool clean(const Slic3r::ExPolygons& /* polygon_set */) { return false; }
|
||||
static inline bool sorted(const Slic3r::ExPolygons& /* polygon_set */) { return false; }
|
||||
};
|
||||
|
||||
template <>
|
||||
struct polygon_set_mutable_traits<Slic3r::ExPolygons> {
|
||||
template <typename input_iterator_type>
|
||||
static inline void set(Slic3r::ExPolygons& expolygons, input_iterator_type input_begin, input_iterator_type input_end) {
|
||||
expolygons.assign(input_begin, input_end);
|
||||
}
|
||||
};
|
||||
} }
|
||||
// end Boost
|
||||
|
||||
#endif
|
||||
135
src/libslic3r/ExPolygonCollection.cpp
Normal file
135
src/libslic3r/ExPolygonCollection.cpp
Normal file
|
|
@ -0,0 +1,135 @@
|
|||
#include "ExPolygonCollection.hpp"
|
||||
#include "Geometry.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
ExPolygonCollection::ExPolygonCollection(const ExPolygon &expolygon)
|
||||
{
|
||||
this->expolygons.push_back(expolygon);
|
||||
}
|
||||
|
||||
ExPolygonCollection::operator Points() const
|
||||
{
|
||||
Points points;
|
||||
Polygons pp = *this;
|
||||
for (Polygons::const_iterator poly = pp.begin(); poly != pp.end(); ++poly) {
|
||||
for (Points::const_iterator point = poly->points.begin(); point != poly->points.end(); ++point)
|
||||
points.push_back(*point);
|
||||
}
|
||||
return points;
|
||||
}
|
||||
|
||||
ExPolygonCollection::operator Polygons() const
|
||||
{
|
||||
Polygons polygons;
|
||||
for (ExPolygons::const_iterator it = this->expolygons.begin(); it != this->expolygons.end(); ++it) {
|
||||
polygons.push_back(it->contour);
|
||||
for (Polygons::const_iterator ith = it->holes.begin(); ith != it->holes.end(); ++ith) {
|
||||
polygons.push_back(*ith);
|
||||
}
|
||||
}
|
||||
return polygons;
|
||||
}
|
||||
|
||||
ExPolygonCollection::operator ExPolygons&()
|
||||
{
|
||||
return this->expolygons;
|
||||
}
|
||||
|
||||
void
|
||||
ExPolygonCollection::scale(double factor)
|
||||
{
|
||||
for (ExPolygons::iterator it = expolygons.begin(); it != expolygons.end(); ++it) {
|
||||
(*it).scale(factor);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
ExPolygonCollection::translate(double x, double y)
|
||||
{
|
||||
for (ExPolygons::iterator it = expolygons.begin(); it != expolygons.end(); ++it) {
|
||||
(*it).translate(x, y);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
ExPolygonCollection::rotate(double angle, const Point ¢er)
|
||||
{
|
||||
for (ExPolygons::iterator it = expolygons.begin(); it != expolygons.end(); ++it) {
|
||||
(*it).rotate(angle, center);
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
bool ExPolygonCollection::contains(const T &item) const
|
||||
{
|
||||
for (const ExPolygon &poly : this->expolygons)
|
||||
if (poly.contains(item))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
template bool ExPolygonCollection::contains<Point>(const Point &item) const;
|
||||
template bool ExPolygonCollection::contains<Line>(const Line &item) const;
|
||||
template bool ExPolygonCollection::contains<Polyline>(const Polyline &item) const;
|
||||
|
||||
bool
|
||||
ExPolygonCollection::contains_b(const Point &point) const
|
||||
{
|
||||
for (ExPolygons::const_iterator it = this->expolygons.begin(); it != this->expolygons.end(); ++it) {
|
||||
if (it->contains_b(point)) return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void
|
||||
ExPolygonCollection::simplify(double tolerance)
|
||||
{
|
||||
ExPolygons expp;
|
||||
for (ExPolygons::const_iterator it = this->expolygons.begin(); it != this->expolygons.end(); ++it) {
|
||||
it->simplify(tolerance, &expp);
|
||||
}
|
||||
this->expolygons = expp;
|
||||
}
|
||||
|
||||
Polygon
|
||||
ExPolygonCollection::convex_hull() const
|
||||
{
|
||||
Points pp;
|
||||
for (ExPolygons::const_iterator it = this->expolygons.begin(); it != this->expolygons.end(); ++it)
|
||||
pp.insert(pp.end(), it->contour.points.begin(), it->contour.points.end());
|
||||
return Slic3r::Geometry::convex_hull(pp);
|
||||
}
|
||||
|
||||
Lines
|
||||
ExPolygonCollection::lines() const
|
||||
{
|
||||
Lines lines;
|
||||
for (ExPolygons::const_iterator it = this->expolygons.begin(); it != this->expolygons.end(); ++it) {
|
||||
Lines ex_lines = it->lines();
|
||||
lines.insert(lines.end(), ex_lines.begin(), ex_lines.end());
|
||||
}
|
||||
return lines;
|
||||
}
|
||||
|
||||
Polygons
|
||||
ExPolygonCollection::contours() const
|
||||
{
|
||||
Polygons contours;
|
||||
contours.reserve(this->expolygons.size());
|
||||
for (ExPolygons::const_iterator it = this->expolygons.begin(); it != this->expolygons.end(); ++it)
|
||||
contours.push_back(it->contour);
|
||||
return contours;
|
||||
}
|
||||
|
||||
void
|
||||
ExPolygonCollection::append(const ExPolygons &expp)
|
||||
{
|
||||
this->expolygons.insert(this->expolygons.end(), expp.begin(), expp.end());
|
||||
}
|
||||
|
||||
BoundingBox get_extents(const ExPolygonCollection &expolygon)
|
||||
{
|
||||
return get_extents(expolygon.expolygons);
|
||||
}
|
||||
|
||||
}
|
||||
41
src/libslic3r/ExPolygonCollection.hpp
Normal file
41
src/libslic3r/ExPolygonCollection.hpp
Normal file
|
|
@ -0,0 +1,41 @@
|
|||
#ifndef slic3r_ExPolygonCollection_hpp_
|
||||
#define slic3r_ExPolygonCollection_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "ExPolygon.hpp"
|
||||
#include "Line.hpp"
|
||||
#include "Polyline.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class ExPolygonCollection;
|
||||
typedef std::vector<ExPolygonCollection> ExPolygonCollections;
|
||||
|
||||
class ExPolygonCollection
|
||||
{
|
||||
public:
|
||||
ExPolygons expolygons;
|
||||
|
||||
ExPolygonCollection() {};
|
||||
ExPolygonCollection(const ExPolygon &expolygon);
|
||||
ExPolygonCollection(const ExPolygons &expolygons) : expolygons(expolygons) {};
|
||||
operator Points() const;
|
||||
operator Polygons() const;
|
||||
operator ExPolygons&();
|
||||
void scale(double factor);
|
||||
void translate(double x, double y);
|
||||
void rotate(double angle, const Point ¢er);
|
||||
template <class T> bool contains(const T &item) const;
|
||||
bool contains_b(const Point &point) const;
|
||||
void simplify(double tolerance);
|
||||
Polygon convex_hull() const;
|
||||
Lines lines() const;
|
||||
Polygons contours() const;
|
||||
void append(const ExPolygons &expolygons);
|
||||
};
|
||||
|
||||
extern BoundingBox get_extents(const ExPolygonCollection &expolygon);
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
138
src/libslic3r/Extruder.cpp
Normal file
138
src/libslic3r/Extruder.cpp
Normal file
|
|
@ -0,0 +1,138 @@
|
|||
#include "Extruder.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
Extruder::Extruder(unsigned int id, GCodeConfig *config) :
|
||||
m_id(id),
|
||||
m_config(config)
|
||||
{
|
||||
reset();
|
||||
|
||||
// cache values that are going to be called often
|
||||
m_e_per_mm3 = this->extrusion_multiplier();
|
||||
if (! m_config->use_volumetric_e)
|
||||
m_e_per_mm3 /= this->filament_crossection();
|
||||
}
|
||||
|
||||
double Extruder::extrude(double dE)
|
||||
{
|
||||
// in case of relative E distances we always reset to 0 before any output
|
||||
if (m_config->use_relative_e_distances)
|
||||
m_E = 0.;
|
||||
m_E += dE;
|
||||
m_absolute_E += dE;
|
||||
if (dE < 0.)
|
||||
m_retracted -= dE;
|
||||
return dE;
|
||||
}
|
||||
|
||||
/* This method makes sure the extruder is retracted by the specified amount
|
||||
of filament and returns the amount of filament retracted.
|
||||
If the extruder is already retracted by the same or a greater amount,
|
||||
this method is a no-op.
|
||||
The restart_extra argument sets the extra length to be used for
|
||||
unretraction. If we're actually performing a retraction, any restart_extra
|
||||
value supplied will overwrite the previous one if any. */
|
||||
double Extruder::retract(double length, double restart_extra)
|
||||
{
|
||||
// in case of relative E distances we always reset to 0 before any output
|
||||
if (m_config->use_relative_e_distances)
|
||||
m_E = 0.;
|
||||
double to_retract = std::max(0., length - m_retracted);
|
||||
if (to_retract > 0.) {
|
||||
m_E -= to_retract;
|
||||
m_absolute_E -= to_retract;
|
||||
m_retracted += to_retract;
|
||||
m_restart_extra = restart_extra;
|
||||
}
|
||||
return to_retract;
|
||||
}
|
||||
|
||||
double Extruder::unretract()
|
||||
{
|
||||
double dE = m_retracted + m_restart_extra;
|
||||
this->extrude(dE);
|
||||
m_retracted = 0.;
|
||||
m_restart_extra = 0.;
|
||||
return dE;
|
||||
}
|
||||
|
||||
// Used filament volume in mm^3.
|
||||
double Extruder::extruded_volume() const
|
||||
{
|
||||
return m_config->use_volumetric_e ?
|
||||
m_absolute_E + m_retracted :
|
||||
this->used_filament() * this->filament_crossection();
|
||||
}
|
||||
|
||||
// Used filament length in mm.
|
||||
double Extruder::used_filament() const
|
||||
{
|
||||
return m_config->use_volumetric_e ?
|
||||
this->extruded_volume() / this->filament_crossection() :
|
||||
m_absolute_E + m_retracted;
|
||||
}
|
||||
|
||||
double Extruder::filament_diameter() const
|
||||
{
|
||||
return m_config->filament_diameter.get_at(m_id);
|
||||
}
|
||||
|
||||
double Extruder::filament_density() const
|
||||
{
|
||||
return m_config->filament_density.get_at(m_id);
|
||||
}
|
||||
|
||||
double Extruder::filament_cost() const
|
||||
{
|
||||
return m_config->filament_cost.get_at(m_id);
|
||||
}
|
||||
|
||||
double Extruder::extrusion_multiplier() const
|
||||
{
|
||||
return m_config->extrusion_multiplier.get_at(m_id);
|
||||
}
|
||||
|
||||
// Return a "retract_before_wipe" percentage as a factor clamped to <0, 1>
|
||||
double Extruder::retract_before_wipe() const
|
||||
{
|
||||
return std::min(1., std::max(0., m_config->retract_before_wipe.get_at(m_id) * 0.01));
|
||||
}
|
||||
|
||||
double Extruder::retract_length() const
|
||||
{
|
||||
return m_config->retract_length.get_at(m_id);
|
||||
}
|
||||
|
||||
double Extruder::retract_lift() const
|
||||
{
|
||||
return m_config->retract_lift.get_at(m_id);
|
||||
}
|
||||
|
||||
int Extruder::retract_speed() const
|
||||
{
|
||||
return int(floor(m_config->retract_speed.get_at(m_id)+0.5));
|
||||
}
|
||||
|
||||
int Extruder::deretract_speed() const
|
||||
{
|
||||
int speed = int(floor(m_config->deretract_speed.get_at(m_id)+0.5));
|
||||
return (speed > 0) ? speed : this->retract_speed();
|
||||
}
|
||||
|
||||
double Extruder::retract_restart_extra() const
|
||||
{
|
||||
return m_config->retract_restart_extra.get_at(m_id);
|
||||
}
|
||||
|
||||
double Extruder::retract_length_toolchange() const
|
||||
{
|
||||
return m_config->retract_length_toolchange.get_at(m_id);
|
||||
}
|
||||
|
||||
double Extruder::retract_restart_extra_toolchange() const
|
||||
{
|
||||
return m_config->retract_restart_extra_toolchange.get_at(m_id);
|
||||
}
|
||||
|
||||
}
|
||||
81
src/libslic3r/Extruder.hpp
Normal file
81
src/libslic3r/Extruder.hpp
Normal file
|
|
@ -0,0 +1,81 @@
|
|||
#ifndef slic3r_Extruder_hpp_
|
||||
#define slic3r_Extruder_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "Point.hpp"
|
||||
#include "PrintConfig.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Extruder
|
||||
{
|
||||
public:
|
||||
Extruder(unsigned int id, GCodeConfig *config);
|
||||
virtual ~Extruder() {}
|
||||
|
||||
void reset() {
|
||||
m_E = 0;
|
||||
m_absolute_E = 0;
|
||||
m_retracted = 0;
|
||||
m_restart_extra = 0;
|
||||
}
|
||||
|
||||
unsigned int id() const { return m_id; }
|
||||
|
||||
double extrude(double dE);
|
||||
double retract(double length, double restart_extra);
|
||||
double unretract();
|
||||
double E() const { return m_E; }
|
||||
void reset_E() { m_E = 0.; }
|
||||
double e_per_mm(double mm3_per_mm) const { return mm3_per_mm * m_e_per_mm3; }
|
||||
double e_per_mm3() const { return m_e_per_mm3; }
|
||||
// Used filament volume in mm^3.
|
||||
double extruded_volume() const;
|
||||
// Used filament length in mm.
|
||||
double used_filament() const;
|
||||
|
||||
double filament_diameter() const;
|
||||
double filament_crossection() const { return this->filament_diameter() * this->filament_diameter() * 0.25 * PI; }
|
||||
double filament_density() const;
|
||||
double filament_cost() const;
|
||||
double extrusion_multiplier() const;
|
||||
double retract_before_wipe() const;
|
||||
double retract_length() const;
|
||||
double retract_lift() const;
|
||||
int retract_speed() const;
|
||||
int deretract_speed() const;
|
||||
double retract_restart_extra() const;
|
||||
double retract_length_toolchange() const;
|
||||
double retract_restart_extra_toolchange() const;
|
||||
|
||||
// Constructor for a key object, to be used by the stdlib search functions.
|
||||
static Extruder key(unsigned int id) { return Extruder(id); }
|
||||
|
||||
private:
|
||||
// Private constructor to create a key for a search in std::set.
|
||||
Extruder(unsigned int id) : m_id(id) {}
|
||||
|
||||
// Reference to GCodeWriter instance owned by GCodeWriter.
|
||||
GCodeConfig *m_config;
|
||||
// Print-wide global ID of this extruder.
|
||||
unsigned int m_id;
|
||||
// Current state of the extruder axis, may be resetted if use_relative_e_distances.
|
||||
double m_E;
|
||||
// Current state of the extruder tachometer, used to output the extruded_volume() and used_filament() statistics.
|
||||
double m_absolute_E;
|
||||
// Current positive amount of retraction.
|
||||
double m_retracted;
|
||||
// When retracted, this value stores the extra amount of priming on deretraction.
|
||||
double m_restart_extra;
|
||||
double m_e_per_mm3;
|
||||
};
|
||||
|
||||
// Sort Extruder objects by the extruder id by default.
|
||||
inline bool operator==(const Extruder &e1, const Extruder &e2) { return e1.id() == e2.id(); }
|
||||
inline bool operator!=(const Extruder &e1, const Extruder &e2) { return e1.id() != e2.id(); }
|
||||
inline bool operator< (const Extruder &e1, const Extruder &e2) { return e1.id() < e2.id(); }
|
||||
inline bool operator> (const Extruder &e1, const Extruder &e2) { return e1.id() > e2.id(); }
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
321
src/libslic3r/ExtrusionEntity.cpp
Normal file
321
src/libslic3r/ExtrusionEntity.cpp
Normal file
|
|
@ -0,0 +1,321 @@
|
|||
#include "ExtrusionEntity.hpp"
|
||||
#include "ExtrusionEntityCollection.hpp"
|
||||
#include "ExPolygonCollection.hpp"
|
||||
#include "ClipperUtils.hpp"
|
||||
#include "Extruder.hpp"
|
||||
#include "Flow.hpp"
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <sstream>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
void
|
||||
ExtrusionPath::intersect_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const
|
||||
{
|
||||
this->_inflate_collection(intersection_pl(this->polyline, collection), retval);
|
||||
}
|
||||
|
||||
void
|
||||
ExtrusionPath::subtract_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const
|
||||
{
|
||||
this->_inflate_collection(diff_pl(this->polyline, collection), retval);
|
||||
}
|
||||
|
||||
void
|
||||
ExtrusionPath::clip_end(double distance)
|
||||
{
|
||||
this->polyline.clip_end(distance);
|
||||
}
|
||||
|
||||
void
|
||||
ExtrusionPath::simplify(double tolerance)
|
||||
{
|
||||
this->polyline.simplify(tolerance);
|
||||
}
|
||||
|
||||
double
|
||||
ExtrusionPath::length() const
|
||||
{
|
||||
return this->polyline.length();
|
||||
}
|
||||
|
||||
void
|
||||
ExtrusionPath::_inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const
|
||||
{
|
||||
for (Polylines::const_iterator it = polylines.begin(); it != polylines.end(); ++it) {
|
||||
ExtrusionPath* path = this->clone();
|
||||
path->polyline = *it;
|
||||
collection->entities.push_back(path);
|
||||
}
|
||||
}
|
||||
|
||||
void ExtrusionPath::polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const
|
||||
{
|
||||
polygons_append(out, offset(this->polyline, float(scale_(this->width/2)) + scaled_epsilon));
|
||||
}
|
||||
|
||||
void ExtrusionPath::polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const
|
||||
{
|
||||
// Instantiating the Flow class to get the line spacing.
|
||||
// Don't know the nozzle diameter, setting to zero. It shall not matter it shall be optimized out by the compiler.
|
||||
Flow flow(this->width, this->height, 0.f, is_bridge(this->role()));
|
||||
polygons_append(out, offset(this->polyline, 0.5f * float(flow.scaled_spacing()) + scaled_epsilon));
|
||||
}
|
||||
|
||||
void ExtrusionMultiPath::reverse()
|
||||
{
|
||||
for (ExtrusionPaths::iterator path = this->paths.begin(); path != this->paths.end(); ++path)
|
||||
path->reverse();
|
||||
std::reverse(this->paths.begin(), this->paths.end());
|
||||
}
|
||||
|
||||
double ExtrusionMultiPath::length() const
|
||||
{
|
||||
double len = 0;
|
||||
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path)
|
||||
len += path->polyline.length();
|
||||
return len;
|
||||
}
|
||||
|
||||
void ExtrusionMultiPath::polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const
|
||||
{
|
||||
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path)
|
||||
path->polygons_covered_by_width(out, scaled_epsilon);
|
||||
}
|
||||
|
||||
void ExtrusionMultiPath::polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const
|
||||
{
|
||||
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path)
|
||||
path->polygons_covered_by_spacing(out, scaled_epsilon);
|
||||
}
|
||||
|
||||
double ExtrusionMultiPath::min_mm3_per_mm() const
|
||||
{
|
||||
double min_mm3_per_mm = std::numeric_limits<double>::max();
|
||||
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path)
|
||||
min_mm3_per_mm = std::min(min_mm3_per_mm, path->mm3_per_mm);
|
||||
return min_mm3_per_mm;
|
||||
}
|
||||
|
||||
Polyline ExtrusionMultiPath::as_polyline() const
|
||||
{
|
||||
Polyline out;
|
||||
if (! paths.empty()) {
|
||||
size_t len = 0;
|
||||
for (size_t i_path = 0; i_path < paths.size(); ++ i_path) {
|
||||
assert(! paths[i_path].polyline.points.empty());
|
||||
assert(i_path == 0 || paths[i_path - 1].polyline.points.back() == paths[i_path].polyline.points.front());
|
||||
len += paths[i_path].polyline.points.size();
|
||||
}
|
||||
// The connecting points between the segments are equal.
|
||||
len -= paths.size() - 1;
|
||||
assert(len > 0);
|
||||
out.points.reserve(len);
|
||||
out.points.push_back(paths.front().polyline.points.front());
|
||||
for (size_t i_path = 0; i_path < paths.size(); ++ i_path)
|
||||
out.points.insert(out.points.end(), paths[i_path].polyline.points.begin() + 1, paths[i_path].polyline.points.end());
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
bool
|
||||
ExtrusionLoop::make_clockwise()
|
||||
{
|
||||
bool was_ccw = this->polygon().is_counter_clockwise();
|
||||
if (was_ccw) this->reverse();
|
||||
return was_ccw;
|
||||
}
|
||||
|
||||
bool
|
||||
ExtrusionLoop::make_counter_clockwise()
|
||||
{
|
||||
bool was_cw = this->polygon().is_clockwise();
|
||||
if (was_cw) this->reverse();
|
||||
return was_cw;
|
||||
}
|
||||
|
||||
void
|
||||
ExtrusionLoop::reverse()
|
||||
{
|
||||
for (ExtrusionPaths::iterator path = this->paths.begin(); path != this->paths.end(); ++path)
|
||||
path->reverse();
|
||||
std::reverse(this->paths.begin(), this->paths.end());
|
||||
}
|
||||
|
||||
Polygon
|
||||
ExtrusionLoop::polygon() const
|
||||
{
|
||||
Polygon polygon;
|
||||
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path) {
|
||||
// for each polyline, append all points except the last one (because it coincides with the first one of the next polyline)
|
||||
polygon.points.insert(polygon.points.end(), path->polyline.points.begin(), path->polyline.points.end()-1);
|
||||
}
|
||||
return polygon;
|
||||
}
|
||||
|
||||
double
|
||||
ExtrusionLoop::length() const
|
||||
{
|
||||
double len = 0;
|
||||
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path)
|
||||
len += path->polyline.length();
|
||||
return len;
|
||||
}
|
||||
|
||||
bool
|
||||
ExtrusionLoop::split_at_vertex(const Point &point)
|
||||
{
|
||||
for (ExtrusionPaths::iterator path = this->paths.begin(); path != this->paths.end(); ++path) {
|
||||
int idx = path->polyline.find_point(point);
|
||||
if (idx != -1) {
|
||||
if (this->paths.size() == 1) {
|
||||
// just change the order of points
|
||||
path->polyline.points.insert(path->polyline.points.end(), path->polyline.points.begin() + 1, path->polyline.points.begin() + idx + 1);
|
||||
path->polyline.points.erase(path->polyline.points.begin(), path->polyline.points.begin() + idx);
|
||||
} else {
|
||||
// new paths list starts with the second half of current path
|
||||
ExtrusionPaths new_paths;
|
||||
new_paths.reserve(this->paths.size() + 1);
|
||||
{
|
||||
ExtrusionPath p = *path;
|
||||
p.polyline.points.erase(p.polyline.points.begin(), p.polyline.points.begin() + idx);
|
||||
if (p.polyline.is_valid()) new_paths.push_back(p);
|
||||
}
|
||||
|
||||
// then we add all paths until the end of current path list
|
||||
new_paths.insert(new_paths.end(), path+1, this->paths.end()); // not including this path
|
||||
|
||||
// then we add all paths since the beginning of current list up to the previous one
|
||||
new_paths.insert(new_paths.end(), this->paths.begin(), path); // not including this path
|
||||
|
||||
// finally we add the first half of current path
|
||||
{
|
||||
ExtrusionPath p = *path;
|
||||
p.polyline.points.erase(p.polyline.points.begin() + idx + 1, p.polyline.points.end());
|
||||
if (p.polyline.is_valid()) new_paths.push_back(p);
|
||||
}
|
||||
// we can now override the old path list with the new one and stop looping
|
||||
std::swap(this->paths, new_paths);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Splitting an extrusion loop, possibly made of multiple segments, some of the segments may be bridging.
|
||||
void ExtrusionLoop::split_at(const Point &point, bool prefer_non_overhang)
|
||||
{
|
||||
if (this->paths.empty())
|
||||
return;
|
||||
|
||||
// Find the closest path and closest point belonging to that path. Avoid overhangs, if asked for.
|
||||
size_t path_idx = 0;
|
||||
Point p;
|
||||
{
|
||||
double min = std::numeric_limits<double>::max();
|
||||
Point p_non_overhang;
|
||||
size_t path_idx_non_overhang = 0;
|
||||
double min_non_overhang = std::numeric_limits<double>::max();
|
||||
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path) {
|
||||
Point p_tmp = point.projection_onto(path->polyline);
|
||||
double dist = (p_tmp - point).cast<double>().norm();
|
||||
if (dist < min) {
|
||||
p = p_tmp;
|
||||
min = dist;
|
||||
path_idx = path - this->paths.begin();
|
||||
}
|
||||
if (prefer_non_overhang && ! is_bridge(path->role()) && dist < min_non_overhang) {
|
||||
p_non_overhang = p_tmp;
|
||||
min_non_overhang = dist;
|
||||
path_idx_non_overhang = path - this->paths.begin();
|
||||
}
|
||||
}
|
||||
if (prefer_non_overhang && min_non_overhang != std::numeric_limits<double>::max()) {
|
||||
// Only apply the non-overhang point if there is one.
|
||||
path_idx = path_idx_non_overhang;
|
||||
p = p_non_overhang;
|
||||
}
|
||||
}
|
||||
|
||||
// now split path_idx in two parts
|
||||
const ExtrusionPath &path = this->paths[path_idx];
|
||||
ExtrusionPath p1(path.role(), path.mm3_per_mm, path.width, path.height);
|
||||
ExtrusionPath p2(path.role(), path.mm3_per_mm, path.width, path.height);
|
||||
path.polyline.split_at(p, &p1.polyline, &p2.polyline);
|
||||
|
||||
if (this->paths.size() == 1) {
|
||||
if (! p1.polyline.is_valid())
|
||||
std::swap(this->paths.front().polyline.points, p2.polyline.points);
|
||||
else if (! p2.polyline.is_valid())
|
||||
std::swap(this->paths.front().polyline.points, p1.polyline.points);
|
||||
else {
|
||||
p2.polyline.points.insert(p2.polyline.points.end(), p1.polyline.points.begin() + 1, p1.polyline.points.end());
|
||||
std::swap(this->paths.front().polyline.points, p2.polyline.points);
|
||||
}
|
||||
} else {
|
||||
// install the two paths
|
||||
this->paths.erase(this->paths.begin() + path_idx);
|
||||
if (p2.polyline.is_valid()) this->paths.insert(this->paths.begin() + path_idx, p2);
|
||||
if (p1.polyline.is_valid()) this->paths.insert(this->paths.begin() + path_idx, p1);
|
||||
}
|
||||
|
||||
// split at the new vertex
|
||||
this->split_at_vertex(p);
|
||||
}
|
||||
|
||||
void
|
||||
ExtrusionLoop::clip_end(double distance, ExtrusionPaths* paths) const
|
||||
{
|
||||
*paths = this->paths;
|
||||
|
||||
while (distance > 0 && !paths->empty()) {
|
||||
ExtrusionPath &last = paths->back();
|
||||
double len = last.length();
|
||||
if (len <= distance) {
|
||||
paths->pop_back();
|
||||
distance -= len;
|
||||
} else {
|
||||
last.polyline.clip_end(distance);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool
|
||||
ExtrusionLoop::has_overhang_point(const Point &point) const
|
||||
{
|
||||
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path) {
|
||||
int pos = path->polyline.find_point(point);
|
||||
if (pos != -1) {
|
||||
// point belongs to this path
|
||||
// we consider it overhang only if it's not an endpoint
|
||||
return (is_bridge(path->role()) && pos > 0 && pos != (int)(path->polyline.points.size())-1);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void ExtrusionLoop::polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const
|
||||
{
|
||||
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path)
|
||||
path->polygons_covered_by_width(out, scaled_epsilon);
|
||||
}
|
||||
|
||||
void ExtrusionLoop::polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const
|
||||
{
|
||||
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path)
|
||||
path->polygons_covered_by_spacing(out, scaled_epsilon);
|
||||
}
|
||||
|
||||
double
|
||||
ExtrusionLoop::min_mm3_per_mm() const
|
||||
{
|
||||
double min_mm3_per_mm = std::numeric_limits<double>::max();
|
||||
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path)
|
||||
min_mm3_per_mm = std::min(min_mm3_per_mm, path->mm3_per_mm);
|
||||
return min_mm3_per_mm;
|
||||
}
|
||||
|
||||
}
|
||||
321
src/libslic3r/ExtrusionEntity.hpp
Normal file
321
src/libslic3r/ExtrusionEntity.hpp
Normal file
|
|
@ -0,0 +1,321 @@
|
|||
#ifndef slic3r_ExtrusionEntity_hpp_
|
||||
#define slic3r_ExtrusionEntity_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "Polygon.hpp"
|
||||
#include "Polyline.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class ExPolygonCollection;
|
||||
class ExtrusionEntityCollection;
|
||||
class Extruder;
|
||||
|
||||
/* Each ExtrusionRole value identifies a distinct set of { extruder, speed } */
|
||||
enum ExtrusionRole {
|
||||
erNone,
|
||||
erPerimeter,
|
||||
erExternalPerimeter,
|
||||
erOverhangPerimeter,
|
||||
erInternalInfill,
|
||||
erSolidInfill,
|
||||
erTopSolidInfill,
|
||||
erBridgeInfill,
|
||||
erGapFill,
|
||||
erSkirt,
|
||||
erSupportMaterial,
|
||||
erSupportMaterialInterface,
|
||||
erWipeTower,
|
||||
erCustom,
|
||||
// Extrusion role for a collection with multiple extrusion roles.
|
||||
erMixed,
|
||||
};
|
||||
|
||||
inline bool is_perimeter(ExtrusionRole role)
|
||||
{
|
||||
return role == erPerimeter
|
||||
|| role == erExternalPerimeter
|
||||
|| role == erOverhangPerimeter;
|
||||
}
|
||||
|
||||
inline bool is_infill(ExtrusionRole role)
|
||||
{
|
||||
return role == erBridgeInfill
|
||||
|| role == erInternalInfill
|
||||
|| role == erSolidInfill
|
||||
|| role == erTopSolidInfill;
|
||||
}
|
||||
|
||||
inline bool is_solid_infill(ExtrusionRole role)
|
||||
{
|
||||
return role == erBridgeInfill
|
||||
|| role == erSolidInfill
|
||||
|| role == erTopSolidInfill;
|
||||
}
|
||||
|
||||
inline bool is_bridge(ExtrusionRole role) {
|
||||
return role == erBridgeInfill
|
||||
|| role == erOverhangPerimeter;
|
||||
}
|
||||
|
||||
/* Special flags describing loop */
|
||||
enum ExtrusionLoopRole {
|
||||
elrDefault,
|
||||
elrContourInternalPerimeter,
|
||||
elrSkirt,
|
||||
};
|
||||
|
||||
class ExtrusionEntity
|
||||
{
|
||||
public:
|
||||
virtual ExtrusionRole role() const = 0;
|
||||
virtual bool is_collection() const { return false; }
|
||||
virtual bool is_loop() const { return false; }
|
||||
virtual bool can_reverse() const { return true; }
|
||||
virtual ExtrusionEntity* clone() const = 0;
|
||||
virtual ~ExtrusionEntity() {};
|
||||
virtual void reverse() = 0;
|
||||
virtual Point first_point() const = 0;
|
||||
virtual Point last_point() const = 0;
|
||||
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
|
||||
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||||
virtual void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const = 0;
|
||||
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
|
||||
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||||
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
|
||||
virtual void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const = 0;
|
||||
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
|
||||
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
|
||||
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
|
||||
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
|
||||
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
|
||||
virtual double min_mm3_per_mm() const = 0;
|
||||
virtual Polyline as_polyline() const = 0;
|
||||
virtual void collect_polylines(Polylines &dst) const = 0;
|
||||
virtual Polylines as_polylines() const { Polylines dst; this->collect_polylines(dst); return dst; }
|
||||
virtual double length() const = 0;
|
||||
virtual double total_volume() const = 0;
|
||||
};
|
||||
|
||||
typedef std::vector<ExtrusionEntity*> ExtrusionEntitiesPtr;
|
||||
|
||||
class ExtrusionPath : public ExtrusionEntity
|
||||
{
|
||||
public:
|
||||
Polyline polyline;
|
||||
// Volumetric velocity. mm^3 of plastic per mm of linear head motion. Used by the G-code generator.
|
||||
double mm3_per_mm;
|
||||
// Width of the extrusion, used for visualization purposes.
|
||||
float width;
|
||||
// Height of the extrusion, used for visualization purposed.
|
||||
float height;
|
||||
// Feedrate of the extrusion, used for visualization purposed.
|
||||
float feedrate;
|
||||
// Id of the extruder, used for visualization purposed.
|
||||
unsigned int extruder_id;
|
||||
|
||||
ExtrusionPath(ExtrusionRole role) : mm3_per_mm(-1), width(-1), height(-1), feedrate(0.0f), extruder_id(0), m_role(role) {};
|
||||
ExtrusionPath(ExtrusionRole role, double mm3_per_mm, float width, float height) : mm3_per_mm(mm3_per_mm), width(width), height(height), feedrate(0.0f), extruder_id(0), m_role(role) {};
|
||||
ExtrusionPath(const ExtrusionPath &rhs) : polyline(rhs.polyline), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), feedrate(rhs.feedrate), extruder_id(rhs.extruder_id), m_role(rhs.m_role) {}
|
||||
ExtrusionPath(ExtrusionPath &&rhs) : polyline(std::move(rhs.polyline)), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), feedrate(rhs.feedrate), extruder_id(rhs.extruder_id), m_role(rhs.m_role) {}
|
||||
// ExtrusionPath(ExtrusionRole role, const Flow &flow) : m_role(role), mm3_per_mm(flow.mm3_per_mm()), width(flow.width), height(flow.height), feedrate(0.0f), extruder_id(0) {};
|
||||
|
||||
ExtrusionPath& operator=(const ExtrusionPath &rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height; this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->polyline = rhs.polyline; return *this; }
|
||||
ExtrusionPath& operator=(ExtrusionPath &&rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height; this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->polyline = std::move(rhs.polyline); return *this; }
|
||||
|
||||
ExtrusionPath* clone() const { return new ExtrusionPath (*this); }
|
||||
void reverse() { this->polyline.reverse(); }
|
||||
Point first_point() const override { return this->polyline.points.front(); }
|
||||
Point last_point() const override { return this->polyline.points.back(); }
|
||||
size_t size() const { return this->polyline.size(); }
|
||||
bool empty() const { return this->polyline.empty(); }
|
||||
bool is_closed() const { return ! this->empty() && this->polyline.points.front() == this->polyline.points.back(); }
|
||||
// Produce a list of extrusion paths into retval by clipping this path by ExPolygonCollection.
|
||||
// Currently not used.
|
||||
void intersect_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const;
|
||||
// Produce a list of extrusion paths into retval by removing parts of this path by ExPolygonCollection.
|
||||
// Currently not used.
|
||||
void subtract_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const;
|
||||
void clip_end(double distance);
|
||||
void simplify(double tolerance);
|
||||
double length() const override;
|
||||
ExtrusionRole role() const override { return m_role; }
|
||||
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
|
||||
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||||
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const;
|
||||
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
|
||||
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||||
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
|
||||
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const;
|
||||
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
|
||||
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
|
||||
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
|
||||
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
|
||||
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
|
||||
double min_mm3_per_mm() const { return this->mm3_per_mm; }
|
||||
Polyline as_polyline() const { return this->polyline; }
|
||||
void collect_polylines(Polylines &dst) const override { if (! this->polyline.empty()) dst.emplace_back(this->polyline); }
|
||||
double total_volume() const override { return mm3_per_mm * unscale<double>(length()); }
|
||||
|
||||
private:
|
||||
void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const;
|
||||
|
||||
ExtrusionRole m_role;
|
||||
};
|
||||
|
||||
typedef std::vector<ExtrusionPath> ExtrusionPaths;
|
||||
|
||||
// Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
|
||||
class ExtrusionMultiPath : public ExtrusionEntity
|
||||
{
|
||||
public:
|
||||
ExtrusionPaths paths;
|
||||
|
||||
ExtrusionMultiPath() {};
|
||||
ExtrusionMultiPath(const ExtrusionMultiPath &rhs) : paths(rhs.paths) {}
|
||||
ExtrusionMultiPath(ExtrusionMultiPath &&rhs) : paths(std::move(rhs.paths)) {}
|
||||
ExtrusionMultiPath(const ExtrusionPaths &paths) : paths(paths) {};
|
||||
ExtrusionMultiPath(const ExtrusionPath &path) { this->paths.push_back(path); }
|
||||
|
||||
ExtrusionMultiPath& operator=(const ExtrusionMultiPath &rhs) { this->paths = rhs.paths; return *this; }
|
||||
ExtrusionMultiPath& operator=(ExtrusionMultiPath &&rhs) { this->paths = std::move(rhs.paths); return *this; }
|
||||
|
||||
bool is_loop() const { return false; }
|
||||
bool can_reverse() const { return true; }
|
||||
ExtrusionMultiPath* clone() const { return new ExtrusionMultiPath(*this); }
|
||||
void reverse();
|
||||
Point first_point() const override { return this->paths.front().polyline.points.front(); }
|
||||
Point last_point() const override { return this->paths.back().polyline.points.back(); }
|
||||
double length() const override;
|
||||
ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); }
|
||||
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
|
||||
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||||
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const;
|
||||
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
|
||||
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||||
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
|
||||
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const;
|
||||
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
|
||||
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
|
||||
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
|
||||
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
|
||||
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
|
||||
double min_mm3_per_mm() const;
|
||||
Polyline as_polyline() const;
|
||||
void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); }
|
||||
double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
|
||||
};
|
||||
|
||||
// Single continuous extrusion loop, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
|
||||
class ExtrusionLoop : public ExtrusionEntity
|
||||
{
|
||||
public:
|
||||
ExtrusionPaths paths;
|
||||
|
||||
ExtrusionLoop(ExtrusionLoopRole role = elrDefault) : m_loop_role(role) {};
|
||||
ExtrusionLoop(const ExtrusionPaths &paths, ExtrusionLoopRole role = elrDefault) : paths(paths), m_loop_role(role) {};
|
||||
ExtrusionLoop(ExtrusionPaths &&paths, ExtrusionLoopRole role = elrDefault) : paths(std::move(paths)), m_loop_role(role) {};
|
||||
ExtrusionLoop(const ExtrusionPath &path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role)
|
||||
{ this->paths.push_back(path); };
|
||||
ExtrusionLoop(const ExtrusionPath &&path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role)
|
||||
{ this->paths.emplace_back(std::move(path)); };
|
||||
bool is_loop() const { return true; }
|
||||
bool can_reverse() const { return false; }
|
||||
ExtrusionLoop* clone() const { return new ExtrusionLoop (*this); }
|
||||
bool make_clockwise();
|
||||
bool make_counter_clockwise();
|
||||
void reverse();
|
||||
Point first_point() const override { return this->paths.front().polyline.points.front(); }
|
||||
Point last_point() const override { assert(first_point() == this->paths.back().polyline.points.back()); return first_point(); }
|
||||
Polygon polygon() const;
|
||||
double length() const override;
|
||||
bool split_at_vertex(const Point &point);
|
||||
void split_at(const Point &point, bool prefer_non_overhang);
|
||||
void clip_end(double distance, ExtrusionPaths* paths) const;
|
||||
// Test, whether the point is extruded by a bridging flow.
|
||||
// This used to be used to avoid placing seams on overhangs, but now the EdgeGrid is used instead.
|
||||
bool has_overhang_point(const Point &point) const;
|
||||
ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); }
|
||||
ExtrusionLoopRole loop_role() const { return m_loop_role; }
|
||||
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
|
||||
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||||
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const;
|
||||
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
|
||||
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||||
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
|
||||
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const;
|
||||
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
|
||||
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
|
||||
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
|
||||
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
|
||||
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
|
||||
double min_mm3_per_mm() const;
|
||||
Polyline as_polyline() const { return this->polygon().split_at_first_point(); }
|
||||
void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); }
|
||||
double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
|
||||
|
||||
private:
|
||||
ExtrusionLoopRole m_loop_role;
|
||||
};
|
||||
|
||||
inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
||||
{
|
||||
dst.reserve(dst.size() + polylines.size());
|
||||
for (Polyline &polyline : polylines)
|
||||
if (polyline.is_valid()) {
|
||||
dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
|
||||
dst.back().polyline = polyline;
|
||||
}
|
||||
}
|
||||
|
||||
inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
||||
{
|
||||
dst.reserve(dst.size() + polylines.size());
|
||||
for (Polyline &polyline : polylines)
|
||||
if (polyline.is_valid()) {
|
||||
dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
|
||||
dst.back().polyline = std::move(polyline);
|
||||
}
|
||||
polylines.clear();
|
||||
}
|
||||
|
||||
inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
||||
{
|
||||
dst.reserve(dst.size() + polylines.size());
|
||||
for (Polyline &polyline : polylines)
|
||||
if (polyline.is_valid()) {
|
||||
ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
|
||||
dst.push_back(extrusion_path);
|
||||
extrusion_path->polyline = polyline;
|
||||
}
|
||||
}
|
||||
|
||||
inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
||||
{
|
||||
dst.reserve(dst.size() + polylines.size());
|
||||
for (Polyline &polyline : polylines)
|
||||
if (polyline.is_valid()) {
|
||||
ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
|
||||
dst.push_back(extrusion_path);
|
||||
extrusion_path->polyline = std::move(polyline);
|
||||
}
|
||||
polylines.clear();
|
||||
}
|
||||
|
||||
inline void extrusion_entities_append_loops(ExtrusionEntitiesPtr &dst, Polygons &&loops, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
||||
{
|
||||
dst.reserve(dst.size() + loops.size());
|
||||
for (Polygon &poly : loops) {
|
||||
if (poly.is_valid()) {
|
||||
ExtrusionPath path(role, mm3_per_mm, width, height);
|
||||
path.polyline.points = std::move(poly.points);
|
||||
path.polyline.points.push_back(path.polyline.points.front());
|
||||
dst.emplace_back(new ExtrusionLoop(std::move(path)));
|
||||
}
|
||||
}
|
||||
loops.clear();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
220
src/libslic3r/ExtrusionEntityCollection.cpp
Normal file
220
src/libslic3r/ExtrusionEntityCollection.cpp
Normal file
|
|
@ -0,0 +1,220 @@
|
|||
#include "ExtrusionEntityCollection.hpp"
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <map>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
ExtrusionEntityCollection::ExtrusionEntityCollection(const ExtrusionPaths &paths)
|
||||
: no_sort(false)
|
||||
{
|
||||
this->append(paths);
|
||||
}
|
||||
|
||||
ExtrusionEntityCollection& ExtrusionEntityCollection::operator= (const ExtrusionEntityCollection &other)
|
||||
{
|
||||
this->entities = other.entities;
|
||||
for (size_t i = 0; i < this->entities.size(); ++i)
|
||||
this->entities[i] = this->entities[i]->clone();
|
||||
this->orig_indices = other.orig_indices;
|
||||
this->no_sort = other.no_sort;
|
||||
return *this;
|
||||
}
|
||||
|
||||
void
|
||||
ExtrusionEntityCollection::swap(ExtrusionEntityCollection &c)
|
||||
{
|
||||
std::swap(this->entities, c.entities);
|
||||
std::swap(this->orig_indices, c.orig_indices);
|
||||
std::swap(this->no_sort, c.no_sort);
|
||||
}
|
||||
|
||||
void ExtrusionEntityCollection::clear()
|
||||
{
|
||||
for (size_t i = 0; i < this->entities.size(); ++i)
|
||||
delete this->entities[i];
|
||||
this->entities.clear();
|
||||
}
|
||||
|
||||
ExtrusionEntityCollection::operator ExtrusionPaths() const
|
||||
{
|
||||
ExtrusionPaths paths;
|
||||
for (ExtrusionEntitiesPtr::const_iterator it = this->entities.begin(); it != this->entities.end(); ++it) {
|
||||
if (const ExtrusionPath* path = dynamic_cast<const ExtrusionPath*>(*it))
|
||||
paths.push_back(*path);
|
||||
}
|
||||
return paths;
|
||||
}
|
||||
|
||||
ExtrusionEntityCollection*
|
||||
ExtrusionEntityCollection::clone() const
|
||||
{
|
||||
ExtrusionEntityCollection* coll = new ExtrusionEntityCollection(*this);
|
||||
for (size_t i = 0; i < coll->entities.size(); ++i)
|
||||
coll->entities[i] = this->entities[i]->clone();
|
||||
return coll;
|
||||
}
|
||||
|
||||
void
|
||||
ExtrusionEntityCollection::reverse()
|
||||
{
|
||||
for (ExtrusionEntitiesPtr::iterator it = this->entities.begin(); it != this->entities.end(); ++it) {
|
||||
// Don't reverse it if it's a loop, as it doesn't change anything in terms of elements ordering
|
||||
// and caller might rely on winding order
|
||||
if (!(*it)->is_loop()) (*it)->reverse();
|
||||
}
|
||||
std::reverse(this->entities.begin(), this->entities.end());
|
||||
}
|
||||
|
||||
void
|
||||
ExtrusionEntityCollection::replace(size_t i, const ExtrusionEntity &entity)
|
||||
{
|
||||
delete this->entities[i];
|
||||
this->entities[i] = entity.clone();
|
||||
}
|
||||
|
||||
void
|
||||
ExtrusionEntityCollection::remove(size_t i)
|
||||
{
|
||||
delete this->entities[i];
|
||||
this->entities.erase(this->entities.begin() + i);
|
||||
}
|
||||
|
||||
ExtrusionEntityCollection
|
||||
ExtrusionEntityCollection::chained_path(bool no_reverse, ExtrusionRole role) const
|
||||
{
|
||||
ExtrusionEntityCollection coll;
|
||||
this->chained_path(&coll, no_reverse, role);
|
||||
return coll;
|
||||
}
|
||||
|
||||
void
|
||||
ExtrusionEntityCollection::chained_path(ExtrusionEntityCollection* retval, bool no_reverse, ExtrusionRole role, std::vector<size_t>* orig_indices) const
|
||||
{
|
||||
if (this->entities.empty()) return;
|
||||
this->chained_path_from(this->entities.front()->first_point(), retval, no_reverse, role, orig_indices);
|
||||
}
|
||||
|
||||
ExtrusionEntityCollection ExtrusionEntityCollection::chained_path_from(Point start_near, bool no_reverse, ExtrusionRole role) const
|
||||
{
|
||||
ExtrusionEntityCollection coll;
|
||||
this->chained_path_from(start_near, &coll, no_reverse, role);
|
||||
return coll;
|
||||
}
|
||||
|
||||
void ExtrusionEntityCollection::chained_path_from(Point start_near, ExtrusionEntityCollection* retval, bool no_reverse, ExtrusionRole role, std::vector<size_t>* orig_indices) const
|
||||
{
|
||||
if (this->no_sort) {
|
||||
*retval = *this;
|
||||
return;
|
||||
}
|
||||
retval->entities.reserve(this->entities.size());
|
||||
retval->orig_indices.reserve(this->entities.size());
|
||||
|
||||
// if we're asked to return the original indices, build a map
|
||||
std::map<ExtrusionEntity*,size_t> indices_map;
|
||||
|
||||
ExtrusionEntitiesPtr my_paths;
|
||||
for (ExtrusionEntitiesPtr::const_iterator it = this->entities.begin(); it != this->entities.end(); ++it) {
|
||||
if (role != erMixed) {
|
||||
// The caller wants only paths with a specific extrusion role.
|
||||
auto role2 = (*it)->role();
|
||||
if (role != role2) {
|
||||
// This extrusion entity does not match the role asked.
|
||||
assert(role2 != erMixed);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
ExtrusionEntity* entity = (*it)->clone();
|
||||
my_paths.push_back(entity);
|
||||
if (orig_indices != NULL) indices_map[entity] = it - this->entities.begin();
|
||||
}
|
||||
|
||||
Points endpoints;
|
||||
for (ExtrusionEntitiesPtr::iterator it = my_paths.begin(); it != my_paths.end(); ++it) {
|
||||
endpoints.push_back((*it)->first_point());
|
||||
if (no_reverse || !(*it)->can_reverse()) {
|
||||
endpoints.push_back((*it)->first_point());
|
||||
} else {
|
||||
endpoints.push_back((*it)->last_point());
|
||||
}
|
||||
}
|
||||
|
||||
while (!my_paths.empty()) {
|
||||
// find nearest point
|
||||
int start_index = start_near.nearest_point_index(endpoints);
|
||||
int path_index = start_index/2;
|
||||
ExtrusionEntity* entity = my_paths.at(path_index);
|
||||
// never reverse loops, since it's pointless for chained path and callers might depend on orientation
|
||||
if (start_index % 2 && !no_reverse && entity->can_reverse()) {
|
||||
entity->reverse();
|
||||
}
|
||||
retval->entities.push_back(my_paths.at(path_index));
|
||||
if (orig_indices != NULL) orig_indices->push_back(indices_map[entity]);
|
||||
my_paths.erase(my_paths.begin() + path_index);
|
||||
endpoints.erase(endpoints.begin() + 2*path_index, endpoints.begin() + 2*path_index + 2);
|
||||
start_near = retval->entities.back()->last_point();
|
||||
}
|
||||
}
|
||||
|
||||
void ExtrusionEntityCollection::polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const
|
||||
{
|
||||
for (ExtrusionEntitiesPtr::const_iterator it = this->entities.begin(); it != this->entities.end(); ++it)
|
||||
(*it)->polygons_covered_by_width(out, scaled_epsilon);
|
||||
}
|
||||
|
||||
void ExtrusionEntityCollection::polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const
|
||||
{
|
||||
for (ExtrusionEntitiesPtr::const_iterator it = this->entities.begin(); it != this->entities.end(); ++it)
|
||||
(*it)->polygons_covered_by_spacing(out, scaled_epsilon);
|
||||
}
|
||||
|
||||
/* Recursively count paths and loops contained in this collection */
|
||||
size_t
|
||||
ExtrusionEntityCollection::items_count() const
|
||||
{
|
||||
size_t count = 0;
|
||||
for (ExtrusionEntitiesPtr::const_iterator it = this->entities.begin(); it != this->entities.end(); ++it) {
|
||||
if ((*it)->is_collection()) {
|
||||
ExtrusionEntityCollection* collection = dynamic_cast<ExtrusionEntityCollection*>(*it);
|
||||
count += collection->items_count();
|
||||
} else {
|
||||
++count;
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
/* Returns a single vector of pointers to all non-collection items contained in this one */
|
||||
void
|
||||
ExtrusionEntityCollection::flatten(ExtrusionEntityCollection* retval) const
|
||||
{
|
||||
for (ExtrusionEntitiesPtr::const_iterator it = this->entities.begin(); it != this->entities.end(); ++it) {
|
||||
if ((*it)->is_collection()) {
|
||||
ExtrusionEntityCollection* collection = dynamic_cast<ExtrusionEntityCollection*>(*it);
|
||||
retval->append(collection->flatten().entities);
|
||||
} else {
|
||||
retval->append(**it);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ExtrusionEntityCollection
|
||||
ExtrusionEntityCollection::flatten() const
|
||||
{
|
||||
ExtrusionEntityCollection coll;
|
||||
this->flatten(&coll);
|
||||
return coll;
|
||||
}
|
||||
|
||||
double
|
||||
ExtrusionEntityCollection::min_mm3_per_mm() const
|
||||
{
|
||||
double min_mm3_per_mm = std::numeric_limits<double>::max();
|
||||
for (ExtrusionEntitiesPtr::const_iterator it = this->entities.begin(); it != this->entities.end(); ++it)
|
||||
min_mm3_per_mm = std::min(min_mm3_per_mm, (*it)->min_mm3_per_mm());
|
||||
return min_mm3_per_mm;
|
||||
}
|
||||
|
||||
}
|
||||
108
src/libslic3r/ExtrusionEntityCollection.hpp
Normal file
108
src/libslic3r/ExtrusionEntityCollection.hpp
Normal file
|
|
@ -0,0 +1,108 @@
|
|||
#ifndef slic3r_ExtrusionEntityCollection_hpp_
|
||||
#define slic3r_ExtrusionEntityCollection_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "ExtrusionEntity.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class ExtrusionEntityCollection : public ExtrusionEntity
|
||||
{
|
||||
public:
|
||||
ExtrusionEntityCollection* clone() const;
|
||||
ExtrusionEntitiesPtr entities; // we own these entities
|
||||
std::vector<size_t> orig_indices; // handy for XS
|
||||
bool no_sort;
|
||||
ExtrusionEntityCollection(): no_sort(false) {};
|
||||
ExtrusionEntityCollection(const ExtrusionEntityCollection &other) : orig_indices(other.orig_indices), no_sort(other.no_sort) { this->append(other.entities); }
|
||||
ExtrusionEntityCollection(ExtrusionEntityCollection &&other) : entities(std::move(other.entities)), orig_indices(std::move(other.orig_indices)), no_sort(other.no_sort) {}
|
||||
explicit ExtrusionEntityCollection(const ExtrusionPaths &paths);
|
||||
ExtrusionEntityCollection& operator=(const ExtrusionEntityCollection &other);
|
||||
ExtrusionEntityCollection& operator=(ExtrusionEntityCollection &&other)
|
||||
{ this->entities = std::move(other.entities); this->orig_indices = std::move(other.orig_indices); this->no_sort = other.no_sort; return *this; }
|
||||
~ExtrusionEntityCollection() { clear(); }
|
||||
explicit operator ExtrusionPaths() const;
|
||||
|
||||
bool is_collection() const { return true; };
|
||||
ExtrusionRole role() const override {
|
||||
ExtrusionRole out = erNone;
|
||||
for (const ExtrusionEntity *ee : entities) {
|
||||
ExtrusionRole er = ee->role();
|
||||
out = (out == erNone || out == er) ? er : erMixed;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
bool can_reverse() const { return !this->no_sort; };
|
||||
bool empty() const { return this->entities.empty(); };
|
||||
void clear();
|
||||
void swap (ExtrusionEntityCollection &c);
|
||||
void append(const ExtrusionEntity &entity) { this->entities.push_back(entity.clone()); }
|
||||
void append(const ExtrusionEntitiesPtr &entities) {
|
||||
this->entities.reserve(this->entities.size() + entities.size());
|
||||
for (ExtrusionEntitiesPtr::const_iterator ptr = entities.begin(); ptr != entities.end(); ++ptr)
|
||||
this->entities.push_back((*ptr)->clone());
|
||||
}
|
||||
void append(ExtrusionEntitiesPtr &&src) {
|
||||
if (entities.empty())
|
||||
entities = std::move(src);
|
||||
else {
|
||||
std::move(std::begin(src), std::end(src), std::back_inserter(entities));
|
||||
src.clear();
|
||||
}
|
||||
}
|
||||
void append(const ExtrusionPaths &paths) {
|
||||
this->entities.reserve(this->entities.size() + paths.size());
|
||||
for (const ExtrusionPath &path : paths)
|
||||
this->entities.emplace_back(path.clone());
|
||||
}
|
||||
void append(ExtrusionPaths &&paths) {
|
||||
this->entities.reserve(this->entities.size() + paths.size());
|
||||
for (ExtrusionPath &path : paths)
|
||||
this->entities.emplace_back(new ExtrusionPath(std::move(path)));
|
||||
}
|
||||
void replace(size_t i, const ExtrusionEntity &entity);
|
||||
void remove(size_t i);
|
||||
ExtrusionEntityCollection chained_path(bool no_reverse = false, ExtrusionRole role = erMixed) const;
|
||||
void chained_path(ExtrusionEntityCollection* retval, bool no_reverse = false, ExtrusionRole role = erMixed, std::vector<size_t>* orig_indices = nullptr) const;
|
||||
ExtrusionEntityCollection chained_path_from(Point start_near, bool no_reverse = false, ExtrusionRole role = erMixed) const;
|
||||
void chained_path_from(Point start_near, ExtrusionEntityCollection* retval, bool no_reverse = false, ExtrusionRole role = erMixed, std::vector<size_t>* orig_indices = nullptr) const;
|
||||
void reverse();
|
||||
Point first_point() const { return this->entities.front()->first_point(); }
|
||||
Point last_point() const { return this->entities.back()->last_point(); }
|
||||
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
|
||||
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||||
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override;
|
||||
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
|
||||
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||||
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
|
||||
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override;
|
||||
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
|
||||
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
|
||||
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
|
||||
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
|
||||
size_t items_count() const;
|
||||
void flatten(ExtrusionEntityCollection* retval) const;
|
||||
ExtrusionEntityCollection flatten() const;
|
||||
double min_mm3_per_mm() const;
|
||||
double total_volume() const override { double volume=0.; for (const auto& ent : entities) volume+=ent->total_volume(); return volume; }
|
||||
|
||||
// Following methods shall never be called on an ExtrusionEntityCollection.
|
||||
Polyline as_polyline() const {
|
||||
throw std::runtime_error("Calling as_polyline() on a ExtrusionEntityCollection");
|
||||
return Polyline();
|
||||
};
|
||||
|
||||
void collect_polylines(Polylines &dst) const override {
|
||||
for (ExtrusionEntity* extrusion_entity : this->entities)
|
||||
extrusion_entity->collect_polylines(dst);
|
||||
}
|
||||
|
||||
double length() const override {
|
||||
throw std::runtime_error("Calling length() on a ExtrusionEntityCollection");
|
||||
return 0.;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
1030
src/libslic3r/ExtrusionSimulator.cpp
Normal file
1030
src/libslic3r/ExtrusionSimulator.cpp
Normal file
File diff suppressed because it is too large
Load diff
59
src/libslic3r/ExtrusionSimulator.hpp
Normal file
59
src/libslic3r/ExtrusionSimulator.hpp
Normal file
|
|
@ -0,0 +1,59 @@
|
|||
#ifndef slic3r_ExtrusionSimulator_hpp_
|
||||
#define slic3r_ExtrusionSimulator_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "ExtrusionEntity.hpp"
|
||||
#include "BoundingBox.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
enum ExtrusionSimulationType
|
||||
{
|
||||
ExtrusionSimulationSimple,
|
||||
ExtrusionSimulationDontSpread,
|
||||
ExtrisopmSimulationSpreadNotOverfilled,
|
||||
ExtrusionSimulationSpreadFull,
|
||||
ExtrusionSimulationSpreadExcess
|
||||
};
|
||||
|
||||
// An opaque class, to keep the boost stuff away from the header.
|
||||
class ExtrusionSimulatorImpl;
|
||||
|
||||
class ExtrusionSimulator
|
||||
{
|
||||
public:
|
||||
ExtrusionSimulator();
|
||||
~ExtrusionSimulator();
|
||||
|
||||
// Size of the image, that will be returned by image_ptr().
|
||||
// The image may be bigger than the viewport as many graphics drivers
|
||||
// expect the size of a texture to be rounded to a power of two.
|
||||
void set_image_size(const Point &image_size);
|
||||
// Which part of the image shall be rendered to?
|
||||
void set_viewport(const BoundingBox &viewport);
|
||||
// Shift and scale of the rendered extrusion paths into the viewport.
|
||||
void set_bounding_box(const BoundingBox &bbox);
|
||||
|
||||
// Reset the extrusion accumulator to zero for all buckets.
|
||||
void reset_accumulator();
|
||||
// Paint a thick path into an extrusion buffer.
|
||||
// A simple implementation is provided now, splatting a rectangular extrusion for each linear segment.
|
||||
// In the future, spreading and suqashing of a material will be simulated.
|
||||
void extrude_to_accumulator(const ExtrusionPath &path, const Point &shift, ExtrusionSimulationType simulationType);
|
||||
// Evaluate the content of the accumulator and paint it into the viewport.
|
||||
// After this call the image_ptr() call will return a valid image.
|
||||
void evaluate_accumulator(ExtrusionSimulationType simulationType);
|
||||
// An RGBA image of image_size, to be loaded into a GPU texture.
|
||||
const void* image_ptr() const;
|
||||
|
||||
private:
|
||||
Point image_size;
|
||||
BoundingBox viewport;
|
||||
BoundingBox bbox;
|
||||
|
||||
ExtrusionSimulatorImpl *pimpl;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif /* slic3r_ExtrusionSimulator_hpp_ */
|
||||
52
src/libslic3r/FileParserError.hpp
Normal file
52
src/libslic3r/FileParserError.hpp
Normal file
|
|
@ -0,0 +1,52 @@
|
|||
#ifndef slic3r_FileParserError_hpp_
|
||||
#define slic3r_FileParserError_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
|
||||
#include <string>
|
||||
#include <boost/filesystem/path.hpp>
|
||||
#include <stdexcept>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
// Generic file parser error, mostly copied from boost::property_tree::file_parser_error
|
||||
class file_parser_error: public std::runtime_error
|
||||
{
|
||||
public:
|
||||
file_parser_error(const std::string &msg, const std::string &file, unsigned long line = 0) :
|
||||
std::runtime_error(format_what(msg, file, line)),
|
||||
m_message(msg), m_filename(file), m_line(line) {}
|
||||
file_parser_error(const std::string &msg, const boost::filesystem::path &file, unsigned long line = 0) :
|
||||
std::runtime_error(format_what(msg, file.string(), line)),
|
||||
m_message(msg), m_filename(file.string()), m_line(line) {}
|
||||
// gcc 3.4.2 complains about lack of throw specifier on compiler
|
||||
// generated dtor
|
||||
~file_parser_error() throw() {}
|
||||
|
||||
// Get error message (without line and file - use what() to get full message)
|
||||
std::string message() const { return m_message; }
|
||||
// Get error filename
|
||||
std::string filename() const { return m_filename; }
|
||||
// Get error line number
|
||||
unsigned long line() const { return m_line; }
|
||||
|
||||
private:
|
||||
std::string m_message;
|
||||
std::string m_filename;
|
||||
unsigned long m_line;
|
||||
|
||||
// Format error message to be returned by std::runtime_error::what()
|
||||
static std::string format_what(const std::string &msg, const std::string &file, unsigned long l)
|
||||
{
|
||||
std::stringstream stream;
|
||||
stream << (file.empty() ? "<unspecified file>" : file.c_str());
|
||||
if (l > 0)
|
||||
stream << '(' << l << ')';
|
||||
stream << ": " << msg;
|
||||
return stream.str();
|
||||
}
|
||||
};
|
||||
|
||||
}; // Slic3r
|
||||
|
||||
#endif // slic3r_FileParserError_hpp_
|
||||
271
src/libslic3r/Fill/Fill.cpp
Normal file
271
src/libslic3r/Fill/Fill.cpp
Normal file
|
|
@ -0,0 +1,271 @@
|
|||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
#include <memory>
|
||||
|
||||
#include "../ClipperUtils.hpp"
|
||||
#include "../Geometry.hpp"
|
||||
#include "../Layer.hpp"
|
||||
#include "../Print.hpp"
|
||||
#include "../PrintConfig.hpp"
|
||||
#include "../Surface.hpp"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
struct SurfaceGroupAttrib
|
||||
{
|
||||
SurfaceGroupAttrib() : is_solid(false), flow_width(0.f), pattern(-1) {}
|
||||
bool operator==(const SurfaceGroupAttrib &other) const
|
||||
{ return is_solid == other.is_solid && flow_width == other.flow_width && pattern == other.pattern; }
|
||||
bool is_solid;
|
||||
float flow_width;
|
||||
// pattern is of type InfillPattern, -1 for an unset pattern.
|
||||
int pattern;
|
||||
};
|
||||
|
||||
// Generate infills for Slic3r::Layer::Region.
|
||||
// The Slic3r::Layer::Region at this point of time may contain
|
||||
// surfaces of various types (internal/bridge/top/bottom/solid).
|
||||
// The infills are generated on the groups of surfaces with a compatible type.
|
||||
// Returns an array of Slic3r::ExtrusionPath::Collection objects containing the infills generaed now
|
||||
// and the thin fills generated by generate_perimeters().
|
||||
void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out)
|
||||
{
|
||||
// Slic3r::debugf "Filling layer %d:\n", $layerm->layer->id;
|
||||
|
||||
double fill_density = layerm.region()->config().fill_density;
|
||||
Flow infill_flow = layerm.flow(frInfill);
|
||||
Flow solid_infill_flow = layerm.flow(frSolidInfill);
|
||||
Flow top_solid_infill_flow = layerm.flow(frTopSolidInfill);
|
||||
|
||||
Surfaces surfaces;
|
||||
|
||||
// merge adjacent surfaces
|
||||
// in case of bridge surfaces, the ones with defined angle will be attached to the ones
|
||||
// without any angle (shouldn't this logic be moved to process_external_surfaces()?)
|
||||
{
|
||||
Polygons polygons_bridged;
|
||||
polygons_bridged.reserve(layerm.fill_surfaces.surfaces.size());
|
||||
for (Surfaces::iterator it = layerm.fill_surfaces.surfaces.begin(); it != layerm.fill_surfaces.surfaces.end(); ++ it)
|
||||
if (it->bridge_angle >= 0)
|
||||
polygons_append(polygons_bridged, *it);
|
||||
|
||||
// group surfaces by distinct properties (equal surface_type, thickness, thickness_layers, bridge_angle)
|
||||
// group is of type Slic3r::SurfaceCollection
|
||||
//FIXME: Use some smart heuristics to merge similar surfaces to eliminate tiny regions.
|
||||
std::vector<SurfacesPtr> groups;
|
||||
layerm.fill_surfaces.group(&groups);
|
||||
|
||||
// merge compatible groups (we can generate continuous infill for them)
|
||||
{
|
||||
// cache flow widths and patterns used for all solid groups
|
||||
// (we'll use them for comparing compatible groups)
|
||||
std::vector<SurfaceGroupAttrib> group_attrib(groups.size());
|
||||
for (size_t i = 0; i < groups.size(); ++ i) {
|
||||
// we can only merge solid non-bridge surfaces, so discard
|
||||
// non-solid surfaces
|
||||
const Surface &surface = *groups[i].front();
|
||||
if (surface.is_solid() && (!surface.is_bridge() || layerm.layer()->id() == 0)) {
|
||||
group_attrib[i].is_solid = true;
|
||||
group_attrib[i].flow_width = (surface.surface_type == stTop) ? top_solid_infill_flow.width : solid_infill_flow.width;
|
||||
group_attrib[i].pattern = surface.is_external() ? layerm.region()->config().external_fill_pattern.value : ipRectilinear;
|
||||
}
|
||||
}
|
||||
// Loop through solid groups, find compatible groups and append them to this one.
|
||||
for (size_t i = 0; i < groups.size(); ++ i) {
|
||||
if (! group_attrib[i].is_solid)
|
||||
continue;
|
||||
for (size_t j = i + 1; j < groups.size();) {
|
||||
if (group_attrib[i] == group_attrib[j]) {
|
||||
// groups are compatible, merge them
|
||||
groups[i].insert(groups[i].end(), groups[j].begin(), groups[j].end());
|
||||
groups.erase(groups.begin() + j);
|
||||
group_attrib.erase(group_attrib.begin() + j);
|
||||
} else
|
||||
++ j;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Give priority to bridges. Process the bridges in the first round, the rest of the surfaces in the 2nd round.
|
||||
for (size_t round = 0; round < 2; ++ round) {
|
||||
for (std::vector<SurfacesPtr>::iterator it_group = groups.begin(); it_group != groups.end(); ++ it_group) {
|
||||
const SurfacesPtr &group = *it_group;
|
||||
bool is_bridge = group.front()->bridge_angle >= 0;
|
||||
if (is_bridge != (round == 0))
|
||||
continue;
|
||||
// Make a union of polygons defining the infiill regions of a group, use a safety offset.
|
||||
Polygons union_p = union_(to_polygons(*it_group), true);
|
||||
// Subtract surfaces having a defined bridge_angle from any other, use a safety offset.
|
||||
if (! polygons_bridged.empty() && ! is_bridge)
|
||||
union_p = diff(union_p, polygons_bridged, true);
|
||||
// subtract any other surface already processed
|
||||
//FIXME Vojtech: Because the bridge surfaces came first, they are subtracted twice!
|
||||
// Using group.front() as a template.
|
||||
surfaces_append(surfaces, diff_ex(union_p, to_polygons(surfaces), true), *group.front());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we need to detect any narrow surfaces that might collapse
|
||||
// when adding spacing below
|
||||
// such narrow surfaces are often generated in sloping walls
|
||||
// by bridge_over_infill() and combine_infill() as a result of the
|
||||
// subtraction of the combinable area from the layer infill area,
|
||||
// which leaves small areas near the perimeters
|
||||
// we are going to grow such regions by overlapping them with the void (if any)
|
||||
// TODO: detect and investigate whether there could be narrow regions without
|
||||
// any void neighbors
|
||||
{
|
||||
coord_t distance_between_surfaces = std::max(
|
||||
std::max(infill_flow.scaled_spacing(), solid_infill_flow.scaled_spacing()),
|
||||
top_solid_infill_flow.scaled_spacing());
|
||||
Polygons surfaces_polygons = to_polygons(surfaces);
|
||||
Polygons collapsed = diff(
|
||||
surfaces_polygons,
|
||||
offset2(surfaces_polygons, -distance_between_surfaces/2, +distance_between_surfaces/2),
|
||||
true);
|
||||
Polygons to_subtract;
|
||||
to_subtract.reserve(collapsed.size() + number_polygons(surfaces));
|
||||
for (Surfaces::const_iterator it_surface = surfaces.begin(); it_surface != surfaces.end(); ++ it_surface)
|
||||
if (it_surface->surface_type == stInternalVoid)
|
||||
polygons_append(to_subtract, *it_surface);
|
||||
polygons_append(to_subtract, collapsed);
|
||||
surfaces_append(
|
||||
surfaces,
|
||||
intersection_ex(
|
||||
offset(collapsed, distance_between_surfaces),
|
||||
to_subtract,
|
||||
true),
|
||||
stInternalSolid);
|
||||
}
|
||||
|
||||
if (0) {
|
||||
// require "Slic3r/SVG.pm";
|
||||
// Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
|
||||
// expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
|
||||
// red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
|
||||
// );
|
||||
}
|
||||
|
||||
for (const Surface &surface : surfaces) {
|
||||
if (surface.surface_type == stInternalVoid)
|
||||
continue;
|
||||
InfillPattern fill_pattern = layerm.region()->config().fill_pattern.value;
|
||||
double density = fill_density;
|
||||
FlowRole role = (surface.surface_type == stTop) ? frTopSolidInfill :
|
||||
(surface.is_solid() ? frSolidInfill : frInfill);
|
||||
bool is_bridge = layerm.layer()->id() > 0 && surface.is_bridge();
|
||||
|
||||
if (surface.is_solid()) {
|
||||
density = 100.;
|
||||
fill_pattern = (surface.is_external() && ! is_bridge) ?
|
||||
layerm.region()->config().external_fill_pattern.value :
|
||||
ipRectilinear;
|
||||
} else if (density <= 0)
|
||||
continue;
|
||||
|
||||
// get filler object
|
||||
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(fill_pattern));
|
||||
f->set_bounding_box(layerm.layer()->object()->bounding_box());
|
||||
|
||||
// calculate the actual flow we'll be using for this infill
|
||||
coordf_t h = (surface.thickness == -1) ? layerm.layer()->height : surface.thickness;
|
||||
Flow flow = layerm.region()->flow(
|
||||
role,
|
||||
h,
|
||||
is_bridge || f->use_bridge_flow(), // bridge flow?
|
||||
layerm.layer()->id() == 0, // first layer?
|
||||
-1, // auto width
|
||||
*layerm.layer()->object()
|
||||
);
|
||||
|
||||
// calculate flow spacing for infill pattern generation
|
||||
bool using_internal_flow = false;
|
||||
if (! surface.is_solid() && ! is_bridge) {
|
||||
// it's internal infill, so we can calculate a generic flow spacing
|
||||
// for all layers, for avoiding the ugly effect of
|
||||
// misaligned infill on first layer because of different extrusion width and
|
||||
// layer height
|
||||
Flow internal_flow = layerm.region()->flow(
|
||||
frInfill,
|
||||
layerm.layer()->object()->config().layer_height.value, // TODO: handle infill_every_layers?
|
||||
false, // no bridge
|
||||
false, // no first layer
|
||||
-1, // auto width
|
||||
*layerm.layer()->object()
|
||||
);
|
||||
f->spacing = internal_flow.spacing();
|
||||
using_internal_flow = true;
|
||||
} else {
|
||||
f->spacing = flow.spacing();
|
||||
}
|
||||
|
||||
double link_max_length = 0.;
|
||||
if (! is_bridge) {
|
||||
#if 0
|
||||
link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
|
||||
// printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
|
||||
#else
|
||||
if (density > 80.) // 80%
|
||||
link_max_length = 3. * f->spacing;
|
||||
#endif
|
||||
}
|
||||
|
||||
f->layer_id = layerm.layer()->id();
|
||||
f->z = layerm.layer()->print_z;
|
||||
f->angle = float(Geometry::deg2rad(layerm.region()->config().fill_angle.value));
|
||||
// Maximum length of the perimeter segment linking two infill lines.
|
||||
f->link_max_length = scale_(link_max_length);
|
||||
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
|
||||
f->loop_clipping = scale_(flow.nozzle_diameter) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER;
|
||||
// f->layer_height = h;
|
||||
|
||||
// apply half spacing using this flow's own spacing and generate infill
|
||||
FillParams params;
|
||||
params.density = 0.01 * density;
|
||||
// params.dont_adjust = true;
|
||||
params.dont_adjust = false;
|
||||
Polylines polylines = f->fill_surface(&surface, params);
|
||||
if (polylines.empty())
|
||||
continue;
|
||||
|
||||
// calculate actual flow from spacing (which might have been adjusted by the infill
|
||||
// pattern generator)
|
||||
if (using_internal_flow) {
|
||||
// if we used the internal flow we're not doing a solid infill
|
||||
// so we can safely ignore the slight variation that might have
|
||||
// been applied to $f->flow_spacing
|
||||
} else {
|
||||
flow = Flow::new_from_spacing(f->spacing, flow.nozzle_diameter, h, is_bridge || f->use_bridge_flow());
|
||||
}
|
||||
|
||||
// Save into layer.
|
||||
auto *eec = new ExtrusionEntityCollection();
|
||||
out.entities.push_back(eec);
|
||||
// Only concentric fills are not sorted.
|
||||
eec->no_sort = f->no_sort();
|
||||
extrusion_entities_append_paths(
|
||||
eec->entities, std::move(polylines),
|
||||
is_bridge ?
|
||||
erBridgeInfill :
|
||||
(surface.is_solid() ?
|
||||
((surface.surface_type == stTop) ? erTopSolidInfill : erSolidInfill) :
|
||||
erInternalInfill),
|
||||
flow.mm3_per_mm(), flow.width, flow.height);
|
||||
}
|
||||
|
||||
// add thin fill regions
|
||||
// thin_fills are of C++ Slic3r::ExtrusionEntityCollection, perl type Slic3r::ExtrusionPath::Collection
|
||||
// Unpacks the collection, creates multiple collections per path.
|
||||
// The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
|
||||
// Why the paths are unpacked?
|
||||
for (const ExtrusionEntity *thin_fill : layerm.thin_fills.entities) {
|
||||
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
|
||||
out.entities.push_back(&collection);
|
||||
collection.entities.push_back(thin_fill->clone());
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
36
src/libslic3r/Fill/Fill.hpp
Normal file
36
src/libslic3r/Fill/Fill.hpp
Normal file
|
|
@ -0,0 +1,36 @@
|
|||
#ifndef slic3r_Fill_hpp_
|
||||
#define slic3r_Fill_hpp_
|
||||
|
||||
#include <memory.h>
|
||||
#include <float.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "../libslic3r.h"
|
||||
#include "../BoundingBox.hpp"
|
||||
#include "../PrintConfig.hpp"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class ExtrusionEntityCollection;
|
||||
class LayerRegion;
|
||||
|
||||
// An interface class to Perl, aggregating an instance of a Fill and a FillData.
|
||||
class Filler
|
||||
{
|
||||
public:
|
||||
Filler() : fill(NULL) {}
|
||||
~Filler() {
|
||||
delete fill;
|
||||
fill = NULL;
|
||||
}
|
||||
Fill *fill;
|
||||
FillParams params;
|
||||
};
|
||||
|
||||
void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out);
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // slic3r_Fill_hpp_
|
||||
204
src/libslic3r/Fill/Fill3DHoneycomb.cpp
Normal file
204
src/libslic3r/Fill/Fill3DHoneycomb.cpp
Normal file
|
|
@ -0,0 +1,204 @@
|
|||
#include "../ClipperUtils.hpp"
|
||||
#include "../PolylineCollection.hpp"
|
||||
#include "../Surface.hpp"
|
||||
|
||||
#include "Fill3DHoneycomb.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
/*
|
||||
Creates a contiguous sequence of points at a specified height that make
|
||||
up a horizontal slice of the edges of a space filling truncated
|
||||
octahedron tesselation. The octahedrons are oriented so that the
|
||||
square faces are in the horizontal plane with edges parallel to the X
|
||||
and Y axes.
|
||||
|
||||
Credits: David Eccles (gringer).
|
||||
*/
|
||||
|
||||
// Generate an array of points that are in the same direction as the
|
||||
// basic printing line (i.e. Y points for columns, X points for rows)
|
||||
// Note: a negative offset only causes a change in the perpendicular
|
||||
// direction
|
||||
static std::vector<coordf_t> colinearPoints(const coordf_t offset, const size_t baseLocation, size_t gridLength)
|
||||
{
|
||||
const coordf_t offset2 = std::abs(offset / coordf_t(2.));
|
||||
std::vector<coordf_t> points;
|
||||
points.push_back(baseLocation - offset2);
|
||||
for (size_t i = 0; i < gridLength; ++i) {
|
||||
points.push_back(baseLocation + i + offset2);
|
||||
points.push_back(baseLocation + i + 1 - offset2);
|
||||
}
|
||||
points.push_back(baseLocation + gridLength + offset2);
|
||||
return points;
|
||||
}
|
||||
|
||||
// Generate an array of points for the dimension that is perpendicular to
|
||||
// the basic printing line (i.e. X points for columns, Y points for rows)
|
||||
static std::vector<coordf_t> perpendPoints(const coordf_t offset, const size_t baseLocation, size_t gridLength)
|
||||
{
|
||||
coordf_t offset2 = offset / coordf_t(2.);
|
||||
coord_t side = 2 * (baseLocation & 1) - 1;
|
||||
std::vector<coordf_t> points;
|
||||
points.push_back(baseLocation - offset2 * side);
|
||||
for (size_t i = 0; i < gridLength; ++i) {
|
||||
side = 2*((i+baseLocation) & 1) - 1;
|
||||
points.push_back(baseLocation + offset2 * side);
|
||||
points.push_back(baseLocation + offset2 * side);
|
||||
}
|
||||
points.push_back(baseLocation - offset2 * side);
|
||||
return points;
|
||||
}
|
||||
|
||||
// Trims an array of points to specified rectangular limits. Point
|
||||
// components that are outside these limits are set to the limits.
|
||||
static inline void trim(Pointfs &pts, coordf_t minX, coordf_t minY, coordf_t maxX, coordf_t maxY)
|
||||
{
|
||||
for (Vec2d &pt : pts) {
|
||||
pt(0) = clamp(minX, maxX, pt(0));
|
||||
pt(1) = clamp(minY, maxY, pt(1));
|
||||
}
|
||||
}
|
||||
|
||||
static inline Pointfs zip(const std::vector<coordf_t> &x, const std::vector<coordf_t> &y)
|
||||
{
|
||||
assert(x.size() == y.size());
|
||||
Pointfs out;
|
||||
out.reserve(x.size());
|
||||
for (size_t i = 0; i < x.size(); ++ i)
|
||||
out.push_back(Vec2d(x[i], y[i]));
|
||||
return out;
|
||||
}
|
||||
|
||||
// Generate a set of curves (array of array of 2d points) that describe a
|
||||
// horizontal slice of a truncated regular octahedron with edge length 1.
|
||||
// curveType specifies which lines to print, 1 for vertical lines
|
||||
// (columns), 2 for horizontal lines (rows), and 3 for both.
|
||||
static std::vector<Pointfs> makeNormalisedGrid(coordf_t z, size_t gridWidth, size_t gridHeight, size_t curveType)
|
||||
{
|
||||
// offset required to create a regular octagram
|
||||
coordf_t octagramGap = coordf_t(0.5);
|
||||
|
||||
// sawtooth wave function for range f($z) = [-$octagramGap .. $octagramGap]
|
||||
coordf_t a = std::sqrt(coordf_t(2.)); // period
|
||||
coordf_t wave = fabs(fmod(z, a) - a/2.)/a*4. - 1.;
|
||||
coordf_t offset = wave * octagramGap;
|
||||
|
||||
std::vector<Pointfs> points;
|
||||
if ((curveType & 1) != 0) {
|
||||
for (size_t x = 0; x <= gridWidth; ++x) {
|
||||
points.push_back(Pointfs());
|
||||
Pointfs &newPoints = points.back();
|
||||
newPoints = zip(
|
||||
perpendPoints(offset, x, gridHeight),
|
||||
colinearPoints(offset, 0, gridHeight));
|
||||
// trim points to grid edges
|
||||
trim(newPoints, coordf_t(0.), coordf_t(0.), coordf_t(gridWidth), coordf_t(gridHeight));
|
||||
if (x & 1)
|
||||
std::reverse(newPoints.begin(), newPoints.end());
|
||||
}
|
||||
}
|
||||
if ((curveType & 2) != 0) {
|
||||
for (size_t y = 0; y <= gridHeight; ++y) {
|
||||
points.push_back(Pointfs());
|
||||
Pointfs &newPoints = points.back();
|
||||
newPoints = zip(
|
||||
colinearPoints(offset, 0, gridWidth),
|
||||
perpendPoints(offset, y, gridWidth));
|
||||
// trim points to grid edges
|
||||
trim(newPoints, coordf_t(0.), coordf_t(0.), coordf_t(gridWidth), coordf_t(gridHeight));
|
||||
if (y & 1)
|
||||
std::reverse(newPoints.begin(), newPoints.end());
|
||||
}
|
||||
}
|
||||
return points;
|
||||
}
|
||||
|
||||
// Generate a set of curves (array of array of 2d points) that describe a
|
||||
// horizontal slice of a truncated regular octahedron with a specified
|
||||
// grid square size.
|
||||
static Polylines makeGrid(coord_t z, coord_t gridSize, size_t gridWidth, size_t gridHeight, size_t curveType)
|
||||
{
|
||||
coord_t scaleFactor = gridSize;
|
||||
coordf_t normalisedZ = coordf_t(z) / coordf_t(scaleFactor);
|
||||
std::vector<Pointfs> polylines = makeNormalisedGrid(normalisedZ, gridWidth, gridHeight, curveType);
|
||||
Polylines result;
|
||||
result.reserve(polylines.size());
|
||||
for (std::vector<Pointfs>::const_iterator it_polylines = polylines.begin(); it_polylines != polylines.end(); ++ it_polylines) {
|
||||
result.push_back(Polyline());
|
||||
Polyline &polyline = result.back();
|
||||
for (Pointfs::const_iterator it = it_polylines->begin(); it != it_polylines->end(); ++ it)
|
||||
polyline.points.push_back(Point(coord_t((*it)(0) * scaleFactor), coord_t((*it)(1) * scaleFactor)));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void Fill3DHoneycomb::_fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out)
|
||||
{
|
||||
// no rotation is supported for this infill pattern
|
||||
BoundingBox bb = expolygon.contour.bounding_box();
|
||||
coord_t distance = coord_t(scale_(this->spacing) / params.density);
|
||||
|
||||
// align bounding box to a multiple of our honeycomb grid module
|
||||
// (a module is 2*$distance since one $distance half-module is
|
||||
// growing while the other $distance half-module is shrinking)
|
||||
bb.merge(_align_to_grid(bb.min, Point(2*distance, 2*distance)));
|
||||
|
||||
// generate pattern
|
||||
Polylines polylines = makeGrid(
|
||||
scale_(this->z),
|
||||
distance,
|
||||
ceil(bb.size()(0) / distance) + 1,
|
||||
ceil(bb.size()(1) / distance) + 1,
|
||||
((this->layer_id/thickness_layers) % 2) + 1);
|
||||
|
||||
// move pattern in place
|
||||
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it)
|
||||
it->translate(bb.min(0), bb.min(1));
|
||||
|
||||
// clip pattern to boundaries
|
||||
polylines = intersection_pl(polylines, (Polygons)expolygon);
|
||||
|
||||
// connect lines
|
||||
if (! params.dont_connect && ! polylines.empty()) { // prevent calling leftmost_point() on empty collections
|
||||
ExPolygon expolygon_off;
|
||||
{
|
||||
ExPolygons expolygons_off = offset_ex(expolygon, SCALED_EPSILON);
|
||||
if (! expolygons_off.empty()) {
|
||||
// When expanding a polygon, the number of islands could only shrink. Therefore the offset_ex shall generate exactly one expanded island for one input island.
|
||||
assert(expolygons_off.size() == 1);
|
||||
std::swap(expolygon_off, expolygons_off.front());
|
||||
}
|
||||
}
|
||||
Polylines chained = PolylineCollection::chained_path_from(
|
||||
std::move(polylines),
|
||||
PolylineCollection::leftmost_point(polylines), false); // reverse allowed
|
||||
bool first = true;
|
||||
for (Polylines::iterator it_polyline = chained.begin(); it_polyline != chained.end(); ++ it_polyline) {
|
||||
if (! first) {
|
||||
// Try to connect the lines.
|
||||
Points &pts_end = polylines_out.back().points;
|
||||
const Point &first_point = it_polyline->points.front();
|
||||
const Point &last_point = pts_end.back();
|
||||
// TODO: we should also check that both points are on a fill_boundary to avoid
|
||||
// connecting paths on the boundaries of internal regions
|
||||
if ((last_point - first_point).cast<double>().norm() <= 1.5 * distance &&
|
||||
expolygon_off.contains(Line(last_point, first_point))) {
|
||||
// Append the polyline.
|
||||
pts_end.insert(pts_end.end(), it_polyline->points.begin(), it_polyline->points.end());
|
||||
continue;
|
||||
}
|
||||
}
|
||||
// The lines cannot be connected.
|
||||
polylines_out.emplace_back(std::move(*it_polyline));
|
||||
first = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
32
src/libslic3r/Fill/Fill3DHoneycomb.hpp
Normal file
32
src/libslic3r/Fill/Fill3DHoneycomb.hpp
Normal file
|
|
@ -0,0 +1,32 @@
|
|||
#ifndef slic3r_Fill3DHoneycomb_hpp_
|
||||
#define slic3r_Fill3DHoneycomb_hpp_
|
||||
|
||||
#include <map>
|
||||
|
||||
#include "../libslic3r.h"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Fill3DHoneycomb : public Fill
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new Fill3DHoneycomb(*this); };
|
||||
virtual ~Fill3DHoneycomb() {}
|
||||
|
||||
// require bridge flow since most of this pattern hangs in air
|
||||
virtual bool use_bridge_flow() const { return true; }
|
||||
|
||||
protected:
|
||||
virtual void _fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out);
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // slic3r_Fill3DHoneycomb_hpp_
|
||||
133
src/libslic3r/Fill/FillBase.cpp
Normal file
133
src/libslic3r/Fill/FillBase.cpp
Normal file
|
|
@ -0,0 +1,133 @@
|
|||
#include <stdio.h>
|
||||
|
||||
#include "../ClipperUtils.hpp"
|
||||
#include "../Surface.hpp"
|
||||
#include "../PrintConfig.hpp"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
#include "FillConcentric.hpp"
|
||||
#include "FillHoneycomb.hpp"
|
||||
#include "Fill3DHoneycomb.hpp"
|
||||
#include "FillGyroid.hpp"
|
||||
#include "FillPlanePath.hpp"
|
||||
#include "FillRectilinear.hpp"
|
||||
#include "FillRectilinear2.hpp"
|
||||
#include "FillRectilinear3.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
Fill* Fill::new_from_type(const InfillPattern type)
|
||||
{
|
||||
switch (type) {
|
||||
case ipConcentric: return new FillConcentric();
|
||||
case ipHoneycomb: return new FillHoneycomb();
|
||||
case ip3DHoneycomb: return new Fill3DHoneycomb();
|
||||
case ipGyroid: return new FillGyroid();
|
||||
case ipRectilinear: return new FillRectilinear2();
|
||||
// case ipRectilinear: return new FillRectilinear();
|
||||
case ipLine: return new FillLine();
|
||||
case ipGrid: return new FillGrid2();
|
||||
case ipTriangles: return new FillTriangles();
|
||||
case ipStars: return new FillStars();
|
||||
case ipCubic: return new FillCubic();
|
||||
// case ipGrid: return new FillGrid();
|
||||
case ipArchimedeanChords: return new FillArchimedeanChords();
|
||||
case ipHilbertCurve: return new FillHilbertCurve();
|
||||
case ipOctagramSpiral: return new FillOctagramSpiral();
|
||||
default: throw std::invalid_argument("unknown type");;
|
||||
}
|
||||
}
|
||||
|
||||
Fill* Fill::new_from_type(const std::string &type)
|
||||
{
|
||||
const t_config_enum_values &enum_keys_map = ConfigOptionEnum<InfillPattern>::get_enum_values();
|
||||
t_config_enum_values::const_iterator it = enum_keys_map.find(type);
|
||||
return (it == enum_keys_map.end()) ? nullptr : new_from_type(InfillPattern(it->second));
|
||||
}
|
||||
|
||||
Polylines Fill::fill_surface(const Surface *surface, const FillParams ¶ms)
|
||||
{
|
||||
// Perform offset.
|
||||
Slic3r::ExPolygons expp = offset_ex(surface->expolygon, float(scale_(this->overlap - 0.5 * this->spacing)));
|
||||
// Create the infills for each of the regions.
|
||||
Polylines polylines_out;
|
||||
for (size_t i = 0; i < expp.size(); ++ i)
|
||||
_fill_surface_single(
|
||||
params,
|
||||
surface->thickness_layers,
|
||||
_infill_direction(surface),
|
||||
expp[i],
|
||||
polylines_out);
|
||||
return polylines_out;
|
||||
}
|
||||
|
||||
// Calculate a new spacing to fill width with possibly integer number of lines,
|
||||
// the first and last line being centered at the interval ends.
|
||||
// This function possibly increases the spacing, never decreases,
|
||||
// and for a narrow width the increase in spacing may become severe,
|
||||
// therefore the adjustment is limited to 20% increase.
|
||||
coord_t Fill::_adjust_solid_spacing(const coord_t width, const coord_t distance)
|
||||
{
|
||||
assert(width >= 0);
|
||||
assert(distance > 0);
|
||||
// floor(width / distance)
|
||||
coord_t number_of_intervals = (width - EPSILON) / distance;
|
||||
coord_t distance_new = (number_of_intervals == 0) ?
|
||||
distance :
|
||||
((width - EPSILON) / number_of_intervals);
|
||||
const coordf_t factor = coordf_t(distance_new) / coordf_t(distance);
|
||||
assert(factor > 1. - 1e-5);
|
||||
// How much could the extrusion width be increased? By 20%.
|
||||
const coordf_t factor_max = 1.2;
|
||||
if (factor > factor_max)
|
||||
distance_new = coord_t(floor((coordf_t(distance) * factor_max + 0.5)));
|
||||
return distance_new;
|
||||
}
|
||||
|
||||
// Returns orientation of the infill and the reference point of the infill pattern.
|
||||
// For a normal print, the reference point is the center of a bounding box of the STL.
|
||||
std::pair<float, Point> Fill::_infill_direction(const Surface *surface) const
|
||||
{
|
||||
// set infill angle
|
||||
float out_angle = this->angle;
|
||||
|
||||
if (out_angle == FLT_MAX) {
|
||||
//FIXME Vojtech: Add a warning?
|
||||
printf("Using undefined infill angle\n");
|
||||
out_angle = 0.f;
|
||||
}
|
||||
|
||||
// Bounding box is the bounding box of a perl object Slic3r::Print::Object (c++ object Slic3r::PrintObject)
|
||||
// The bounding box is only undefined in unit tests.
|
||||
Point out_shift = empty(this->bounding_box) ?
|
||||
surface->expolygon.contour.bounding_box().center() :
|
||||
this->bounding_box.center();
|
||||
|
||||
#if 0
|
||||
if (empty(this->bounding_box)) {
|
||||
printf("Fill::_infill_direction: empty bounding box!");
|
||||
} else {
|
||||
printf("Fill::_infill_direction: reference point %d, %d\n", out_shift.x, out_shift.y);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (surface->bridge_angle >= 0) {
|
||||
// use bridge angle
|
||||
//FIXME Vojtech: Add a debugf?
|
||||
// Slic3r::debugf "Filling bridge with angle %d\n", rad2deg($surface->bridge_angle);
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf("Filling bridge with angle %f\n", surface->bridge_angle);
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
out_angle = surface->bridge_angle;
|
||||
} else if (this->layer_id != size_t(-1)) {
|
||||
// alternate fill direction
|
||||
out_angle += this->_layer_angle(this->layer_id / surface->thickness_layers);
|
||||
} else {
|
||||
// printf("Layer_ID undefined!\n");
|
||||
}
|
||||
|
||||
out_angle += float(M_PI/2.);
|
||||
return std::pair<float, Point>(out_angle, out_shift);
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
133
src/libslic3r/Fill/FillBase.hpp
Normal file
133
src/libslic3r/Fill/FillBase.hpp
Normal file
|
|
@ -0,0 +1,133 @@
|
|||
#ifndef slic3r_FillBase_hpp_
|
||||
#define slic3r_FillBase_hpp_
|
||||
|
||||
#include <assert.h>
|
||||
#include <memory.h>
|
||||
#include <float.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "../libslic3r.h"
|
||||
#include "../BoundingBox.hpp"
|
||||
#include "../PrintConfig.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Surface;
|
||||
|
||||
struct FillParams
|
||||
{
|
||||
FillParams() {
|
||||
memset(this, 0, sizeof(FillParams));
|
||||
// Adjustment does not work.
|
||||
dont_adjust = true;
|
||||
}
|
||||
|
||||
bool full_infill() const { return density > 0.9999f; }
|
||||
|
||||
// Fill density, fraction in <0, 1>
|
||||
float density;
|
||||
|
||||
// Don't connect the fill lines around the inner perimeter.
|
||||
bool dont_connect;
|
||||
|
||||
// Don't adjust spacing to fill the space evenly.
|
||||
bool dont_adjust;
|
||||
|
||||
// For Honeycomb.
|
||||
// we were requested to complete each loop;
|
||||
// in this case we don't try to make more continuous paths
|
||||
bool complete;
|
||||
};
|
||||
|
||||
class Fill
|
||||
{
|
||||
public:
|
||||
// Index of the layer.
|
||||
size_t layer_id;
|
||||
// Z coordinate of the top print surface, in unscaled coordinates
|
||||
coordf_t z;
|
||||
// in unscaled coordinates
|
||||
coordf_t spacing;
|
||||
// infill / perimeter overlap, in unscaled coordinates
|
||||
coordf_t overlap;
|
||||
// in radians, ccw, 0 = East
|
||||
float angle;
|
||||
// In scaled coordinates. Maximum lenght of a perimeter segment connecting two infill lines.
|
||||
// Used by the FillRectilinear2, FillGrid2, FillTriangles, FillStars and FillCubic.
|
||||
// If left to zero, the links will not be limited.
|
||||
coord_t link_max_length;
|
||||
// In scaled coordinates. Used by the concentric infill pattern to clip the loops to create extrusion paths.
|
||||
coord_t loop_clipping;
|
||||
// In scaled coordinates. Bounding box of the 2D projection of the object.
|
||||
BoundingBox bounding_box;
|
||||
|
||||
public:
|
||||
virtual ~Fill() {}
|
||||
|
||||
static Fill* new_from_type(const InfillPattern type);
|
||||
static Fill* new_from_type(const std::string &type);
|
||||
|
||||
void set_bounding_box(const Slic3r::BoundingBox &bbox) { bounding_box = bbox; }
|
||||
|
||||
// Use bridge flow for the fill?
|
||||
virtual bool use_bridge_flow() const { return false; }
|
||||
|
||||
// Do not sort the fill lines to optimize the print head path?
|
||||
virtual bool no_sort() const { return false; }
|
||||
|
||||
// Perform the fill.
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
Fill() :
|
||||
layer_id(size_t(-1)),
|
||||
z(0.),
|
||||
spacing(0.),
|
||||
// Infill / perimeter overlap.
|
||||
overlap(0.),
|
||||
// Initial angle is undefined.
|
||||
angle(FLT_MAX),
|
||||
link_max_length(0),
|
||||
loop_clipping(0),
|
||||
// The initial bounding box is empty, therefore undefined.
|
||||
bounding_box(Point(0, 0), Point(-1, -1))
|
||||
{}
|
||||
|
||||
// The expolygon may be modified by the method to avoid a copy.
|
||||
virtual void _fill_surface_single(
|
||||
const FillParams & /* params */,
|
||||
unsigned int /* thickness_layers */,
|
||||
const std::pair<float, Point> & /* direction */,
|
||||
ExPolygon & /* expolygon */,
|
||||
Polylines & /* polylines_out */) {};
|
||||
|
||||
virtual float _layer_angle(size_t idx) const { return (idx & 1) ? float(M_PI/2.) : 0; }
|
||||
|
||||
virtual std::pair<float, Point> _infill_direction(const Surface *surface) const;
|
||||
|
||||
public:
|
||||
static coord_t _adjust_solid_spacing(const coord_t width, const coord_t distance);
|
||||
|
||||
// Align a coordinate to a grid. The coordinate may be negative,
|
||||
// the aligned value will never be bigger than the original one.
|
||||
static coord_t _align_to_grid(const coord_t coord, const coord_t spacing) {
|
||||
// Current C++ standard defines the result of integer division to be rounded to zero,
|
||||
// for both positive and negative numbers. Here we want to round down for negative
|
||||
// numbers as well.
|
||||
coord_t aligned = (coord < 0) ?
|
||||
((coord - spacing + 1) / spacing) * spacing :
|
||||
(coord / spacing) * spacing;
|
||||
assert(aligned <= coord);
|
||||
return aligned;
|
||||
}
|
||||
static Point _align_to_grid(Point coord, Point spacing)
|
||||
{ return Point(_align_to_grid(coord(0), spacing(0)), _align_to_grid(coord(1), spacing(1))); }
|
||||
static coord_t _align_to_grid(coord_t coord, coord_t spacing, coord_t base)
|
||||
{ return base + _align_to_grid(coord - base, spacing); }
|
||||
static Point _align_to_grid(Point coord, Point spacing, Point base)
|
||||
{ return Point(_align_to_grid(coord(0), spacing(0), base(0)), _align_to_grid(coord(1), spacing(1), base(1))); }
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // slic3r_FillBase_hpp_
|
||||
64
src/libslic3r/Fill/FillConcentric.cpp
Normal file
64
src/libslic3r/Fill/FillConcentric.cpp
Normal file
|
|
@ -0,0 +1,64 @@
|
|||
#include "../ClipperUtils.hpp"
|
||||
#include "../ExPolygon.hpp"
|
||||
#include "../Surface.hpp"
|
||||
|
||||
#include "FillConcentric.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
void FillConcentric::_fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out)
|
||||
{
|
||||
// no rotation is supported for this infill pattern
|
||||
BoundingBox bounding_box = expolygon.contour.bounding_box();
|
||||
|
||||
coord_t min_spacing = scale_(this->spacing);
|
||||
coord_t distance = coord_t(min_spacing / params.density);
|
||||
|
||||
if (params.density > 0.9999f && !params.dont_adjust) {
|
||||
distance = this->_adjust_solid_spacing(bounding_box.size()(0), distance);
|
||||
this->spacing = unscale<double>(distance);
|
||||
}
|
||||
|
||||
Polygons loops = (Polygons)expolygon;
|
||||
Polygons last = loops;
|
||||
while (! last.empty()) {
|
||||
last = offset2(last, -(distance + min_spacing/2), +min_spacing/2);
|
||||
loops.insert(loops.end(), last.begin(), last.end());
|
||||
}
|
||||
|
||||
// generate paths from the outermost to the innermost, to avoid
|
||||
// adhesion problems of the first central tiny loops
|
||||
loops = union_pt_chained(loops, false);
|
||||
|
||||
// split paths using a nearest neighbor search
|
||||
size_t iPathFirst = polylines_out.size();
|
||||
Point last_pos(0, 0);
|
||||
for (const Polygon &loop : loops) {
|
||||
polylines_out.push_back(loop.split_at_index(last_pos.nearest_point_index(loop)));
|
||||
last_pos = polylines_out.back().last_point();
|
||||
}
|
||||
|
||||
// clip the paths to prevent the extruder from getting exactly on the first point of the loop
|
||||
// Keep valid paths only.
|
||||
size_t j = iPathFirst;
|
||||
for (size_t i = iPathFirst; i < polylines_out.size(); ++ i) {
|
||||
polylines_out[i].clip_end(this->loop_clipping);
|
||||
if (polylines_out[i].is_valid()) {
|
||||
if (j < i)
|
||||
polylines_out[j] = std::move(polylines_out[i]);
|
||||
++ j;
|
||||
}
|
||||
}
|
||||
if (j < polylines_out.size())
|
||||
polylines_out.erase(polylines_out.begin() + j, polylines_out.end());
|
||||
//TODO: return ExtrusionLoop objects to get better chained paths,
|
||||
// otherwise the outermost loop starts at the closest point to (0, 0).
|
||||
// We want the loops to be split inside the G-code generator to get optimum path planning.
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
27
src/libslic3r/Fill/FillConcentric.hpp
Normal file
27
src/libslic3r/Fill/FillConcentric.hpp
Normal file
|
|
@ -0,0 +1,27 @@
|
|||
#ifndef slic3r_FillConcentric_hpp_
|
||||
#define slic3r_FillConcentric_hpp_
|
||||
|
||||
#include "FillBase.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class FillConcentric : public Fill
|
||||
{
|
||||
public:
|
||||
virtual ~FillConcentric() {}
|
||||
|
||||
protected:
|
||||
virtual Fill* clone() const { return new FillConcentric(*this); };
|
||||
virtual void _fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out);
|
||||
|
||||
virtual bool no_sort() const { return true; }
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // slic3r_FillConcentric_hpp_
|
||||
196
src/libslic3r/Fill/FillGyroid.cpp
Normal file
196
src/libslic3r/Fill/FillGyroid.cpp
Normal file
|
|
@ -0,0 +1,196 @@
|
|||
#include "../ClipperUtils.hpp"
|
||||
#include "../PolylineCollection.hpp"
|
||||
#include "../Surface.hpp"
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
|
||||
#include "FillGyroid.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
static inline double f(double x, double z_sin, double z_cos, bool vertical, bool flip)
|
||||
{
|
||||
if (vertical) {
|
||||
double phase_offset = (z_cos < 0 ? M_PI : 0) + M_PI;
|
||||
double a = sin(x + phase_offset);
|
||||
double b = - z_cos;
|
||||
double res = z_sin * cos(x + phase_offset + (flip ? M_PI : 0.));
|
||||
double r = sqrt(sqr(a) + sqr(b));
|
||||
return asin(a/r) + asin(res/r) + M_PI;
|
||||
}
|
||||
else {
|
||||
double phase_offset = z_sin < 0 ? M_PI : 0.;
|
||||
double a = cos(x + phase_offset);
|
||||
double b = - z_sin;
|
||||
double res = z_cos * sin(x + phase_offset + (flip ? 0 : M_PI));
|
||||
double r = sqrt(sqr(a) + sqr(b));
|
||||
return (asin(a/r) + asin(res/r) + 0.5 * M_PI);
|
||||
}
|
||||
}
|
||||
|
||||
static inline Polyline make_wave(
|
||||
const std::vector<Vec2d>& one_period, double width, double height, double offset, double scaleFactor,
|
||||
double z_cos, double z_sin, bool vertical)
|
||||
{
|
||||
std::vector<Vec2d> points = one_period;
|
||||
double period = points.back()(0);
|
||||
points.pop_back();
|
||||
int n = points.size();
|
||||
do {
|
||||
points.emplace_back(Vec2d(points[points.size()-n](0) + period, points[points.size()-n](1)));
|
||||
} while (points.back()(0) < width);
|
||||
points.back()(0) = width;
|
||||
|
||||
// and construct the final polyline to return:
|
||||
Polyline polyline;
|
||||
for (auto& point : points) {
|
||||
point(1) += offset;
|
||||
point(1) = clamp(0., height, double(point(1)));
|
||||
if (vertical)
|
||||
std::swap(point(0), point(1));
|
||||
polyline.points.emplace_back((point * scaleFactor).cast<coord_t>());
|
||||
}
|
||||
|
||||
return polyline;
|
||||
}
|
||||
|
||||
static std::vector<Vec2d> make_one_period(double width, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip)
|
||||
{
|
||||
std::vector<Vec2d> points;
|
||||
double dx = M_PI_4; // very coarse spacing to begin with
|
||||
double limit = std::min(2*M_PI, width);
|
||||
for (double x = 0.; x < limit + EPSILON; x += dx) { // so the last point is there too
|
||||
x = std::min(x, limit);
|
||||
points.emplace_back(Vec2d(x,f(x, z_sin,z_cos, vertical, flip)));
|
||||
}
|
||||
|
||||
// now we will check all internal points and in case some are too far from the line connecting its neighbours,
|
||||
// we will add one more point on each side:
|
||||
const double tolerance = .1;
|
||||
for (unsigned int i=1;i<points.size()-1;++i) {
|
||||
auto& lp = points[i-1]; // left point
|
||||
auto& tp = points[i]; // this point
|
||||
Vec2d lrv = tp - lp;
|
||||
auto& rp = points[i+1]; // right point
|
||||
// calculate distance of the point to the line:
|
||||
double dist_mm = unscale<double>(scaleFactor) * std::abs(cross2(rp, lp) - cross2(rp - lp, tp)) / lrv.norm();
|
||||
if (dist_mm > tolerance) { // if the difference from straight line is more than this
|
||||
double x = 0.5f * (points[i-1](0) + points[i](0));
|
||||
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
|
||||
x = 0.5f * (points[i+1](0) + points[i](0));
|
||||
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
|
||||
// we added the points to the end, but need them all in order
|
||||
std::sort(points.begin(), points.end(), [](const Vec2d &lhs, const Vec2d &rhs){ return lhs < rhs; });
|
||||
// decrement i so we also check the first newly added point
|
||||
--i;
|
||||
}
|
||||
}
|
||||
return points;
|
||||
}
|
||||
|
||||
static Polylines make_gyroid_waves(double gridZ, double density_adjusted, double line_spacing, double width, double height)
|
||||
{
|
||||
const double scaleFactor = scale_(line_spacing) / density_adjusted;
|
||||
//scale factor for 5% : 8 712 388
|
||||
// 1z = 10^-6 mm ?
|
||||
const double z = gridZ / scaleFactor;
|
||||
const double z_sin = sin(z);
|
||||
const double z_cos = cos(z);
|
||||
|
||||
bool vertical = (std::abs(z_sin) <= std::abs(z_cos));
|
||||
double lower_bound = 0.;
|
||||
double upper_bound = height;
|
||||
bool flip = true;
|
||||
if (vertical) {
|
||||
flip = false;
|
||||
lower_bound = -M_PI;
|
||||
upper_bound = width - M_PI_2;
|
||||
std::swap(width,height);
|
||||
}
|
||||
|
||||
std::vector<Vec2d> one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // creates one period of the waves, so it doesn't have to be recalculated all the time
|
||||
Polylines result;
|
||||
|
||||
for (double y0 = lower_bound; y0 < upper_bound+EPSILON; y0 += 2*M_PI) // creates odd polylines
|
||||
result.emplace_back(make_wave(one_period, width, height, y0, scaleFactor, z_cos, z_sin, vertical));
|
||||
|
||||
flip = !flip; // even polylines are a bit shifted
|
||||
one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // updates the one period sample
|
||||
for (double y0 = lower_bound + M_PI; y0 < upper_bound+EPSILON; y0 += 2*M_PI) // creates even polylines
|
||||
result.emplace_back(make_wave(one_period, width, height, y0, scaleFactor, z_cos, z_sin, vertical));
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void FillGyroid::_fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out)
|
||||
{
|
||||
// no rotation is supported for this infill pattern (yet)
|
||||
BoundingBox bb = expolygon.contour.bounding_box();
|
||||
// Density adjusted to have a good %of weight.
|
||||
double density_adjusted = std::max(0., params.density * 2.);
|
||||
// Distance between the gyroid waves in scaled coordinates.
|
||||
coord_t distance = coord_t(scale_(this->spacing) / density_adjusted);
|
||||
|
||||
// align bounding box to a multiple of our grid module
|
||||
bb.merge(_align_to_grid(bb.min, Point(2.*M_PI*distance, 2.*M_PI*distance)));
|
||||
|
||||
// generate pattern
|
||||
Polylines polylines = make_gyroid_waves(
|
||||
scale_(this->z),
|
||||
density_adjusted,
|
||||
this->spacing,
|
||||
ceil(bb.size()(0) / distance) + 1.,
|
||||
ceil(bb.size()(1) / distance) + 1.);
|
||||
|
||||
// move pattern in place
|
||||
for (Polyline &polyline : polylines)
|
||||
polyline.translate(bb.min(0), bb.min(1));
|
||||
|
||||
// clip pattern to boundaries
|
||||
polylines = intersection_pl(polylines, (Polygons)expolygon);
|
||||
|
||||
// connect lines
|
||||
if (! params.dont_connect && ! polylines.empty()) { // prevent calling leftmost_point() on empty collections
|
||||
ExPolygon expolygon_off;
|
||||
{
|
||||
ExPolygons expolygons_off = offset_ex(expolygon, (float)SCALED_EPSILON);
|
||||
if (! expolygons_off.empty()) {
|
||||
// When expanding a polygon, the number of islands could only shrink. Therefore the offset_ex shall generate exactly one expanded island for one input island.
|
||||
assert(expolygons_off.size() == 1);
|
||||
std::swap(expolygon_off, expolygons_off.front());
|
||||
}
|
||||
}
|
||||
Polylines chained = PolylineCollection::chained_path_from(
|
||||
std::move(polylines),
|
||||
PolylineCollection::leftmost_point(polylines), false); // reverse allowed
|
||||
bool first = true;
|
||||
for (Polyline &polyline : chained) {
|
||||
if (! first) {
|
||||
// Try to connect the lines.
|
||||
Points &pts_end = polylines_out.back().points;
|
||||
const Point &first_point = polyline.points.front();
|
||||
const Point &last_point = pts_end.back();
|
||||
// TODO: we should also check that both points are on a fill_boundary to avoid
|
||||
// connecting paths on the boundaries of internal regions
|
||||
// TODO: avoid crossing current infill path
|
||||
if ((last_point - first_point).cast<double>().norm() <= 5 * distance &&
|
||||
expolygon_off.contains(Line(last_point, first_point))) {
|
||||
// Append the polyline.
|
||||
pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
|
||||
continue;
|
||||
}
|
||||
}
|
||||
// The lines cannot be connected.
|
||||
polylines_out.emplace_back(std::move(polyline));
|
||||
first = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
30
src/libslic3r/Fill/FillGyroid.hpp
Normal file
30
src/libslic3r/Fill/FillGyroid.hpp
Normal file
|
|
@ -0,0 +1,30 @@
|
|||
#ifndef slic3r_FillGyroid_hpp_
|
||||
#define slic3r_FillGyroid_hpp_
|
||||
|
||||
#include "../libslic3r.h"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class FillGyroid : public Fill
|
||||
{
|
||||
public:
|
||||
FillGyroid() {}
|
||||
virtual Fill* clone() const { return new FillGyroid(*this); }
|
||||
|
||||
// require bridge flow since most of this pattern hangs in air
|
||||
virtual bool use_bridge_flow() const { return false; }
|
||||
|
||||
protected:
|
||||
virtual void _fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out);
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // slic3r_FillGyroid_hpp_
|
||||
125
src/libslic3r/Fill/FillHoneycomb.cpp
Normal file
125
src/libslic3r/Fill/FillHoneycomb.cpp
Normal file
|
|
@ -0,0 +1,125 @@
|
|||
#include "../ClipperUtils.hpp"
|
||||
#include "../PolylineCollection.hpp"
|
||||
#include "../Surface.hpp"
|
||||
|
||||
#include "FillHoneycomb.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
void FillHoneycomb::_fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out)
|
||||
{
|
||||
// cache hexagons math
|
||||
CacheID cache_id(params.density, this->spacing);
|
||||
Cache::iterator it_m = this->cache.find(cache_id);
|
||||
if (it_m == this->cache.end()) {
|
||||
it_m = this->cache.insert(it_m, std::pair<CacheID, CacheData>(cache_id, CacheData()));
|
||||
CacheData &m = it_m->second;
|
||||
coord_t min_spacing = scale_(this->spacing);
|
||||
m.distance = min_spacing / params.density;
|
||||
m.hex_side = m.distance / (sqrt(3)/2);
|
||||
m.hex_width = m.distance * 2; // $m->{hex_width} == $m->{hex_side} * sqrt(3);
|
||||
coord_t hex_height = m.hex_side * 2;
|
||||
m.pattern_height = hex_height + m.hex_side;
|
||||
m.y_short = m.distance * sqrt(3)/3;
|
||||
m.x_offset = min_spacing / 2;
|
||||
m.y_offset = m.x_offset * sqrt(3)/3;
|
||||
m.hex_center = Point(m.hex_width/2, m.hex_side);
|
||||
}
|
||||
CacheData &m = it_m->second;
|
||||
|
||||
Polygons polygons;
|
||||
{
|
||||
// adjust actual bounding box to the nearest multiple of our hex pattern
|
||||
// and align it so that it matches across layers
|
||||
|
||||
BoundingBox bounding_box = expolygon.contour.bounding_box();
|
||||
{
|
||||
// rotate bounding box according to infill direction
|
||||
Polygon bb_polygon = bounding_box.polygon();
|
||||
bb_polygon.rotate(direction.first, m.hex_center);
|
||||
bounding_box = bb_polygon.bounding_box();
|
||||
|
||||
// extend bounding box so that our pattern will be aligned with other layers
|
||||
// $bounding_box->[X1] and [Y1] represent the displacement between new bounding box offset and old one
|
||||
// The infill is not aligned to the object bounding box, but to a world coordinate system. Supposedly good enough.
|
||||
bounding_box.merge(_align_to_grid(bounding_box.min, Point(m.hex_width, m.pattern_height)));
|
||||
}
|
||||
|
||||
coord_t x = bounding_box.min(0);
|
||||
while (x <= bounding_box.max(0)) {
|
||||
Polygon p;
|
||||
coord_t ax[2] = { x + m.x_offset, x + m.distance - m.x_offset };
|
||||
for (size_t i = 0; i < 2; ++ i) {
|
||||
std::reverse(p.points.begin(), p.points.end()); // turn first half upside down
|
||||
for (coord_t y = bounding_box.min(1); y <= bounding_box.max(1); y += m.y_short + m.hex_side + m.y_short + m.hex_side) {
|
||||
p.points.push_back(Point(ax[1], y + m.y_offset));
|
||||
p.points.push_back(Point(ax[0], y + m.y_short - m.y_offset));
|
||||
p.points.push_back(Point(ax[0], y + m.y_short + m.hex_side + m.y_offset));
|
||||
p.points.push_back(Point(ax[1], y + m.y_short + m.hex_side + m.y_short - m.y_offset));
|
||||
p.points.push_back(Point(ax[1], y + m.y_short + m.hex_side + m.y_short + m.hex_side + m.y_offset));
|
||||
}
|
||||
ax[0] = ax[0] + m.distance;
|
||||
ax[1] = ax[1] + m.distance;
|
||||
std::swap(ax[0], ax[1]); // draw symmetrical pattern
|
||||
x += m.distance;
|
||||
}
|
||||
p.rotate(-direction.first, m.hex_center);
|
||||
polygons.push_back(p);
|
||||
}
|
||||
}
|
||||
|
||||
if (params.complete || true) {
|
||||
// we were requested to complete each loop;
|
||||
// in this case we don't try to make more continuous paths
|
||||
Polygons polygons_trimmed = intersection((Polygons)expolygon, polygons);
|
||||
for (Polygons::iterator it = polygons_trimmed.begin(); it != polygons_trimmed.end(); ++ it)
|
||||
polylines_out.push_back(it->split_at_first_point());
|
||||
} else {
|
||||
// consider polygons as polylines without re-appending the initial point:
|
||||
// this cuts the last segment on purpose, so that the jump to the next
|
||||
// path is more straight
|
||||
Polylines paths;
|
||||
{
|
||||
Polylines p;
|
||||
for (Polygon &poly : polygons)
|
||||
p.emplace_back(poly.points);
|
||||
paths = intersection_pl(p, to_polygons(expolygon));
|
||||
}
|
||||
|
||||
// connect paths
|
||||
if (! paths.empty()) { // prevent calling leftmost_point() on empty collections
|
||||
Polylines chained = PolylineCollection::chained_path_from(
|
||||
std::move(paths),
|
||||
PolylineCollection::leftmost_point(paths), false);
|
||||
assert(paths.empty());
|
||||
paths.clear();
|
||||
for (Polylines::iterator it_path = chained.begin(); it_path != chained.end(); ++ it_path) {
|
||||
if (! paths.empty()) {
|
||||
// distance between first point of this path and last point of last path
|
||||
double distance = (it_path->first_point() - paths.back().last_point()).cast<double>().norm();
|
||||
if (distance <= m.hex_width) {
|
||||
paths.back().points.insert(paths.back().points.end(), it_path->points.begin(), it_path->points.end());
|
||||
continue;
|
||||
}
|
||||
}
|
||||
// Don't connect the paths.
|
||||
paths.push_back(*it_path);
|
||||
}
|
||||
}
|
||||
|
||||
// clip paths again to prevent connection segments from crossing the expolygon boundaries
|
||||
paths = intersection_pl(paths, to_polygons(offset_ex(expolygon, SCALED_EPSILON)));
|
||||
// Move the polylines to the output, avoid a deep copy.
|
||||
size_t j = polylines_out.size();
|
||||
polylines_out.resize(j + paths.size(), Polyline());
|
||||
for (size_t i = 0; i < paths.size(); ++ i)
|
||||
std::swap(polylines_out[j ++], paths[i]);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
57
src/libslic3r/Fill/FillHoneycomb.hpp
Normal file
57
src/libslic3r/Fill/FillHoneycomb.hpp
Normal file
|
|
@ -0,0 +1,57 @@
|
|||
#ifndef slic3r_FillHoneycomb_hpp_
|
||||
#define slic3r_FillHoneycomb_hpp_
|
||||
|
||||
#include <map>
|
||||
|
||||
#include "../libslic3r.h"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class FillHoneycomb : public Fill
|
||||
{
|
||||
public:
|
||||
virtual ~FillHoneycomb() {}
|
||||
|
||||
protected:
|
||||
virtual Fill* clone() const { return new FillHoneycomb(*this); };
|
||||
virtual void _fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out);
|
||||
|
||||
// Caching the
|
||||
struct CacheID
|
||||
{
|
||||
CacheID(float adensity, coordf_t aspacing) :
|
||||
density(adensity), spacing(aspacing) {}
|
||||
float density;
|
||||
coordf_t spacing;
|
||||
bool operator<(const CacheID &other) const
|
||||
{ return (density < other.density) || (density == other.density && spacing < other.spacing); }
|
||||
bool operator==(const CacheID &other) const
|
||||
{ return density == other.density && spacing == other.spacing; }
|
||||
};
|
||||
struct CacheData
|
||||
{
|
||||
coord_t distance;
|
||||
coord_t hex_side;
|
||||
coord_t hex_width;
|
||||
coord_t pattern_height;
|
||||
coord_t y_short;
|
||||
coord_t x_offset;
|
||||
coord_t y_offset;
|
||||
Point hex_center;
|
||||
};
|
||||
typedef std::map<CacheID, CacheData> Cache;
|
||||
Cache cache;
|
||||
|
||||
virtual float _layer_angle(size_t idx) const { return float(M_PI/3.) * (idx % 3); }
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // slic3r_FillHoneycomb_hpp_
|
||||
203
src/libslic3r/Fill/FillPlanePath.cpp
Normal file
203
src/libslic3r/Fill/FillPlanePath.cpp
Normal file
|
|
@ -0,0 +1,203 @@
|
|||
#include "../ClipperUtils.hpp"
|
||||
#include "../PolylineCollection.hpp"
|
||||
#include "../Surface.hpp"
|
||||
|
||||
#include "FillPlanePath.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
void FillPlanePath::_fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out)
|
||||
{
|
||||
expolygon.rotate(- direction.first);
|
||||
|
||||
coord_t distance_between_lines = scale_(this->spacing) / params.density;
|
||||
|
||||
// align infill across layers using the object's bounding box
|
||||
// Rotated bounding box of the whole object.
|
||||
BoundingBox bounding_box = this->bounding_box.rotated(- direction.first);
|
||||
|
||||
Point shift = this->_centered() ?
|
||||
bounding_box.center() :
|
||||
bounding_box.min;
|
||||
expolygon.translate(-shift(0), -shift(1));
|
||||
bounding_box.translate(-shift(0), -shift(1));
|
||||
|
||||
Pointfs pts = _generate(
|
||||
coord_t(ceil(coordf_t(bounding_box.min(0)) / distance_between_lines)),
|
||||
coord_t(ceil(coordf_t(bounding_box.min(1)) / distance_between_lines)),
|
||||
coord_t(ceil(coordf_t(bounding_box.max(0)) / distance_between_lines)),
|
||||
coord_t(ceil(coordf_t(bounding_box.max(1)) / distance_between_lines)));
|
||||
|
||||
Polylines polylines;
|
||||
if (pts.size() >= 2) {
|
||||
// Convert points to a polyline, upscale.
|
||||
polylines.push_back(Polyline());
|
||||
Polyline &polyline = polylines.back();
|
||||
polyline.points.reserve(pts.size());
|
||||
for (Pointfs::iterator it = pts.begin(); it != pts.end(); ++ it)
|
||||
polyline.points.push_back(Point(
|
||||
coord_t(floor((*it)(0) * distance_between_lines + 0.5)),
|
||||
coord_t(floor((*it)(1) * distance_between_lines + 0.5))));
|
||||
// intersection(polylines_src, offset((Polygons)expolygon, scale_(0.02)), &polylines);
|
||||
polylines = intersection_pl(polylines, to_polygons(expolygon));
|
||||
|
||||
/*
|
||||
if (1) {
|
||||
require "Slic3r/SVG.pm";
|
||||
print "Writing fill.svg\n";
|
||||
Slic3r::SVG::output("fill.svg",
|
||||
no_arrows => 1,
|
||||
polygons => \@$expolygon,
|
||||
green_polygons => [ $bounding_box->polygon ],
|
||||
polylines => [ $polyline ],
|
||||
red_polylines => \@paths,
|
||||
);
|
||||
}
|
||||
*/
|
||||
|
||||
// paths must be repositioned and rotated back
|
||||
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it) {
|
||||
it->translate(shift(0), shift(1));
|
||||
it->rotate(direction.first);
|
||||
}
|
||||
}
|
||||
|
||||
// Move the polylines to the output, avoid a deep copy.
|
||||
size_t j = polylines_out.size();
|
||||
polylines_out.resize(j + polylines.size(), Polyline());
|
||||
for (size_t i = 0; i < polylines.size(); ++ i)
|
||||
std::swap(polylines_out[j ++], polylines[i]);
|
||||
}
|
||||
|
||||
// Follow an Archimedean spiral, in polar coordinates: r=a+b\theta
|
||||
Pointfs FillArchimedeanChords::_generate(coord_t min_x, coord_t min_y, coord_t max_x, coord_t max_y)
|
||||
{
|
||||
// Radius to achieve.
|
||||
coordf_t rmax = std::sqrt(coordf_t(max_x)*coordf_t(max_x)+coordf_t(max_y)*coordf_t(max_y)) * std::sqrt(2.) + 1.5;
|
||||
// Now unwind the spiral.
|
||||
coordf_t a = 1.;
|
||||
coordf_t b = 1./(2.*M_PI);
|
||||
coordf_t theta = 0.;
|
||||
coordf_t r = 1;
|
||||
Pointfs out;
|
||||
//FIXME Vojtech: If used as a solid infill, there is a gap left at the center.
|
||||
out.push_back(Vec2d(0, 0));
|
||||
out.push_back(Vec2d(1, 0));
|
||||
while (r < rmax) {
|
||||
theta += 1. / r;
|
||||
r = a + b * theta;
|
||||
out.push_back(Vec2d(r * cos(theta), r * sin(theta)));
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
// Adapted from
|
||||
// http://cpansearch.perl.org/src/KRYDE/Math-PlanePath-122/lib/Math/PlanePath/HilbertCurve.pm
|
||||
//
|
||||
// state=0 3--2 plain
|
||||
// |
|
||||
// 0--1
|
||||
//
|
||||
// state=4 1--2 transpose
|
||||
// | |
|
||||
// 0 3
|
||||
//
|
||||
// state=8
|
||||
//
|
||||
// state=12 3 0 rot180 + transpose
|
||||
// | |
|
||||
// 2--1
|
||||
//
|
||||
static inline Point hilbert_n_to_xy(const size_t n)
|
||||
{
|
||||
static const int next_state[16] = { 4,0,0,12, 0,4,4,8, 12,8,8,4, 8,12,12,0 };
|
||||
static const int digit_to_x[16] = { 0,1,1,0, 0,0,1,1, 1,0,0,1, 1,1,0,0 };
|
||||
static const int digit_to_y[16] = { 0,0,1,1, 0,1,1,0, 1,1,0,0, 1,0,0,1 };
|
||||
|
||||
// Number of 2 bit digits.
|
||||
size_t ndigits = 0;
|
||||
{
|
||||
size_t nc = n;
|
||||
while(nc > 0) {
|
||||
nc >>= 2;
|
||||
++ ndigits;
|
||||
}
|
||||
}
|
||||
int state = (ndigits & 1) ? 4 : 0;
|
||||
int dirstate = (ndigits & 1) ? 0 : 4;
|
||||
coord_t x = 0;
|
||||
coord_t y = 0;
|
||||
for (int i = (int)ndigits - 1; i >= 0; -- i) {
|
||||
int digit = (n >> (i * 2)) & 3;
|
||||
state += digit;
|
||||
if (digit != 3)
|
||||
dirstate = state; // lowest non-3 digit
|
||||
x |= digit_to_x[state] << i;
|
||||
y |= digit_to_y[state] << i;
|
||||
state = next_state[state];
|
||||
}
|
||||
return Point(x, y);
|
||||
}
|
||||
|
||||
Pointfs FillHilbertCurve::_generate(coord_t min_x, coord_t min_y, coord_t max_x, coord_t max_y)
|
||||
{
|
||||
// Minimum power of two square to fit the domain.
|
||||
size_t sz = 2;
|
||||
size_t pw = 1;
|
||||
{
|
||||
size_t sz0 = std::max(max_x + 1 - min_x, max_y + 1 - min_y);
|
||||
while (sz < sz0) {
|
||||
sz = sz << 1;
|
||||
++ pw;
|
||||
}
|
||||
}
|
||||
|
||||
size_t sz2 = sz * sz;
|
||||
Pointfs line;
|
||||
line.reserve(sz2);
|
||||
for (size_t i = 0; i < sz2; ++ i) {
|
||||
Point p = hilbert_n_to_xy(i);
|
||||
line.push_back(Vec2d(p(0) + min_x, p(1) + min_y));
|
||||
}
|
||||
return line;
|
||||
}
|
||||
|
||||
Pointfs FillOctagramSpiral::_generate(coord_t min_x, coord_t min_y, coord_t max_x, coord_t max_y)
|
||||
{
|
||||
// Radius to achieve.
|
||||
coordf_t rmax = std::sqrt(coordf_t(max_x)*coordf_t(max_x)+coordf_t(max_y)*coordf_t(max_y)) * std::sqrt(2.) + 1.5;
|
||||
// Now unwind the spiral.
|
||||
coordf_t r = 0;
|
||||
coordf_t r_inc = sqrt(2.);
|
||||
Pointfs out;
|
||||
out.push_back(Vec2d(0, 0));
|
||||
while (r < rmax) {
|
||||
r += r_inc;
|
||||
coordf_t rx = r / sqrt(2.);
|
||||
coordf_t r2 = r + rx;
|
||||
out.push_back(Vec2d( r, 0.));
|
||||
out.push_back(Vec2d( r2, rx));
|
||||
out.push_back(Vec2d( rx, rx));
|
||||
out.push_back(Vec2d( rx, r2));
|
||||
out.push_back(Vec2d(0., r));
|
||||
out.push_back(Vec2d(-rx, r2));
|
||||
out.push_back(Vec2d(-rx, rx));
|
||||
out.push_back(Vec2d(-r2, rx));
|
||||
out.push_back(Vec2d(-r, 0.));
|
||||
out.push_back(Vec2d(-r2, -rx));
|
||||
out.push_back(Vec2d(-rx, -rx));
|
||||
out.push_back(Vec2d(-rx, -r2));
|
||||
out.push_back(Vec2d(0., -r));
|
||||
out.push_back(Vec2d( rx, -r2));
|
||||
out.push_back(Vec2d( rx, -rx));
|
||||
out.push_back(Vec2d( r2+r_inc, -rx));
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
69
src/libslic3r/Fill/FillPlanePath.hpp
Normal file
69
src/libslic3r/Fill/FillPlanePath.hpp
Normal file
|
|
@ -0,0 +1,69 @@
|
|||
#ifndef slic3r_FillPlanePath_hpp_
|
||||
#define slic3r_FillPlanePath_hpp_
|
||||
|
||||
#include <map>
|
||||
|
||||
#include "../libslic3r.h"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
// The original Perl code used path generators from Math::PlanePath library:
|
||||
// http://user42.tuxfamily.org/math-planepath/
|
||||
// http://user42.tuxfamily.org/math-planepath/gallery.html
|
||||
|
||||
class FillPlanePath : public Fill
|
||||
{
|
||||
public:
|
||||
virtual ~FillPlanePath() {}
|
||||
|
||||
protected:
|
||||
virtual void _fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out);
|
||||
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
virtual bool _centered() const = 0;
|
||||
virtual Pointfs _generate(coord_t min_x, coord_t min_y, coord_t max_x, coord_t max_y) = 0;
|
||||
};
|
||||
|
||||
class FillArchimedeanChords : public FillPlanePath
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new FillArchimedeanChords(*this); };
|
||||
virtual ~FillArchimedeanChords() {}
|
||||
|
||||
protected:
|
||||
virtual bool _centered() const { return true; }
|
||||
virtual Pointfs _generate(coord_t min_x, coord_t min_y, coord_t max_x, coord_t max_y);
|
||||
};
|
||||
|
||||
class FillHilbertCurve : public FillPlanePath
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new FillHilbertCurve(*this); };
|
||||
virtual ~FillHilbertCurve() {}
|
||||
|
||||
protected:
|
||||
virtual bool _centered() const { return false; }
|
||||
virtual Pointfs _generate(coord_t min_x, coord_t min_y, coord_t max_x, coord_t max_y);
|
||||
};
|
||||
|
||||
class FillOctagramSpiral : public FillPlanePath
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new FillOctagramSpiral(*this); };
|
||||
virtual ~FillOctagramSpiral() {}
|
||||
|
||||
protected:
|
||||
virtual bool _centered() const { return true; }
|
||||
virtual Pointfs _generate(coord_t min_x, coord_t min_y, coord_t max_x, coord_t max_y);
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // slic3r_FillPlanePath_hpp_
|
||||
130
src/libslic3r/Fill/FillRectilinear.cpp
Normal file
130
src/libslic3r/Fill/FillRectilinear.cpp
Normal file
|
|
@ -0,0 +1,130 @@
|
|||
#include "../ClipperUtils.hpp"
|
||||
#include "../ExPolygon.hpp"
|
||||
#include "../PolylineCollection.hpp"
|
||||
#include "../Surface.hpp"
|
||||
|
||||
#include "FillRectilinear.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
void FillRectilinear::_fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out)
|
||||
{
|
||||
// rotate polygons so that we can work with vertical lines here
|
||||
expolygon.rotate(- direction.first);
|
||||
|
||||
this->_min_spacing = scale_(this->spacing);
|
||||
assert(params.density > 0.0001f && params.density <= 1.f);
|
||||
this->_line_spacing = coord_t(coordf_t(this->_min_spacing) / params.density);
|
||||
this->_diagonal_distance = this->_line_spacing * 2;
|
||||
this->_line_oscillation = this->_line_spacing - this->_min_spacing; // only for Line infill
|
||||
BoundingBox bounding_box = expolygon.contour.bounding_box();
|
||||
|
||||
// define flow spacing according to requested density
|
||||
if (params.density > 0.9999f && !params.dont_adjust) {
|
||||
this->_line_spacing = this->_adjust_solid_spacing(bounding_box.size()(0), this->_line_spacing);
|
||||
this->spacing = unscale<double>(this->_line_spacing);
|
||||
} else {
|
||||
// extend bounding box so that our pattern will be aligned with other layers
|
||||
// Transform the reference point to the rotated coordinate system.
|
||||
bounding_box.merge(_align_to_grid(
|
||||
bounding_box.min,
|
||||
Point(this->_line_spacing, this->_line_spacing),
|
||||
direction.second.rotated(- direction.first)));
|
||||
}
|
||||
|
||||
// generate the basic pattern
|
||||
coord_t x_max = bounding_box.max(0) + SCALED_EPSILON;
|
||||
Lines lines;
|
||||
for (coord_t x = bounding_box.min(0); x <= x_max; x += this->_line_spacing)
|
||||
lines.push_back(this->_line(lines.size(), x, bounding_box.min(1), bounding_box.max(1)));
|
||||
if (this->_horizontal_lines()) {
|
||||
coord_t y_max = bounding_box.max(1) + SCALED_EPSILON;
|
||||
for (coord_t y = bounding_box.min(1); y <= y_max; y += this->_line_spacing)
|
||||
lines.push_back(Line(Point(bounding_box.min(0), y), Point(bounding_box.max(0), y)));
|
||||
}
|
||||
|
||||
// clip paths against a slightly larger expolygon, so that the first and last paths
|
||||
// are kept even if the expolygon has vertical sides
|
||||
// the minimum offset for preventing edge lines from being clipped is SCALED_EPSILON;
|
||||
// however we use a larger offset to support expolygons with slightly skewed sides and
|
||||
// not perfectly straight
|
||||
//FIXME Vojtech: Update the intersecton function to work directly with lines.
|
||||
Polylines polylines_src;
|
||||
polylines_src.reserve(lines.size());
|
||||
for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++ it) {
|
||||
polylines_src.push_back(Polyline());
|
||||
Points &pts = polylines_src.back().points;
|
||||
pts.reserve(2);
|
||||
pts.push_back(it->a);
|
||||
pts.push_back(it->b);
|
||||
}
|
||||
Polylines polylines = intersection_pl(polylines_src, offset(to_polygons(expolygon), scale_(0.02)), false);
|
||||
|
||||
// FIXME Vojtech: This is only performed for horizontal lines, not for the vertical lines!
|
||||
const float INFILL_OVERLAP_OVER_SPACING = 0.3f;
|
||||
// How much to extend an infill path from expolygon outside?
|
||||
coord_t extra = coord_t(floor(this->_min_spacing * INFILL_OVERLAP_OVER_SPACING + 0.5f));
|
||||
for (Polylines::iterator it_polyline = polylines.begin(); it_polyline != polylines.end(); ++ it_polyline) {
|
||||
Point *first_point = &it_polyline->points.front();
|
||||
Point *last_point = &it_polyline->points.back();
|
||||
if (first_point->y() > last_point->y())
|
||||
std::swap(first_point, last_point);
|
||||
first_point->y() -= extra;
|
||||
last_point->y() += extra;
|
||||
}
|
||||
|
||||
size_t n_polylines_out_old = polylines_out.size();
|
||||
|
||||
// connect lines
|
||||
if (! params.dont_connect && ! polylines.empty()) { // prevent calling leftmost_point() on empty collections
|
||||
// offset the expolygon by max(min_spacing/2, extra)
|
||||
ExPolygon expolygon_off;
|
||||
{
|
||||
ExPolygons expolygons_off = offset_ex(expolygon, this->_min_spacing/2);
|
||||
if (! expolygons_off.empty()) {
|
||||
// When expanding a polygon, the number of islands could only shrink. Therefore the offset_ex shall generate exactly one expanded island for one input island.
|
||||
assert(expolygons_off.size() == 1);
|
||||
std::swap(expolygon_off, expolygons_off.front());
|
||||
}
|
||||
}
|
||||
Polylines chained = PolylineCollection::chained_path_from(
|
||||
std::move(polylines),
|
||||
PolylineCollection::leftmost_point(polylines), false); // reverse allowed
|
||||
bool first = true;
|
||||
for (Polylines::iterator it_polyline = chained.begin(); it_polyline != chained.end(); ++ it_polyline) {
|
||||
if (! first) {
|
||||
// Try to connect the lines.
|
||||
Points &pts_end = polylines_out.back().points;
|
||||
const Point &first_point = it_polyline->points.front();
|
||||
const Point &last_point = pts_end.back();
|
||||
// Distance in X, Y.
|
||||
const Vector distance = last_point - first_point;
|
||||
// TODO: we should also check that both points are on a fill_boundary to avoid
|
||||
// connecting paths on the boundaries of internal regions
|
||||
if (this->_can_connect(std::abs(distance(0)), std::abs(distance(1))) &&
|
||||
expolygon_off.contains(Line(last_point, first_point))) {
|
||||
// Append the polyline.
|
||||
pts_end.insert(pts_end.end(), it_polyline->points.begin(), it_polyline->points.end());
|
||||
continue;
|
||||
}
|
||||
}
|
||||
// The lines cannot be connected.
|
||||
polylines_out.emplace_back(std::move(*it_polyline));
|
||||
first = false;
|
||||
}
|
||||
}
|
||||
|
||||
// paths must be rotated back
|
||||
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_old; it != polylines_out.end(); ++ it) {
|
||||
// No need to translate, the absolute position is irrelevant.
|
||||
// it->translate(- direction.second(0), - direction.second(1));
|
||||
it->rotate(direction.first);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
79
src/libslic3r/Fill/FillRectilinear.hpp
Normal file
79
src/libslic3r/Fill/FillRectilinear.hpp
Normal file
|
|
@ -0,0 +1,79 @@
|
|||
#ifndef slic3r_FillRectilinear_hpp_
|
||||
#define slic3r_FillRectilinear_hpp_
|
||||
|
||||
#include "../libslic3r.h"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Surface;
|
||||
|
||||
class FillRectilinear : public Fill
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new FillRectilinear(*this); };
|
||||
virtual ~FillRectilinear() {}
|
||||
|
||||
protected:
|
||||
virtual void _fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
const std::pair<float, Point> &direction,
|
||||
ExPolygon &expolygon,
|
||||
Polylines &polylines_out);
|
||||
|
||||
coord_t _min_spacing;
|
||||
coord_t _line_spacing;
|
||||
// distance threshold for allowing the horizontal infill lines to be connected into a continuous path
|
||||
coord_t _diagonal_distance;
|
||||
// only for line infill
|
||||
coord_t _line_oscillation;
|
||||
|
||||
// Enabled for the grid infill, disabled for the rectilinear and line infill.
|
||||
virtual bool _horizontal_lines() const { return false; }
|
||||
|
||||
virtual Line _line(int i, coord_t x, coord_t y_min, coord_t y_max) const
|
||||
{ return Line(Point(x, y_min), Point(x, y_max)); }
|
||||
|
||||
virtual bool _can_connect(coord_t dist_X, coord_t dist_Y) {
|
||||
return dist_X <= this->_diagonal_distance
|
||||
&& dist_Y <= this->_diagonal_distance;
|
||||
}
|
||||
};
|
||||
|
||||
class FillLine : public FillRectilinear
|
||||
{
|
||||
public:
|
||||
virtual ~FillLine() {}
|
||||
|
||||
protected:
|
||||
virtual Line _line(int i, coord_t x, coord_t y_min, coord_t y_max) const {
|
||||
coord_t osc = (i & 1) ? this->_line_oscillation : 0;
|
||||
return Line(Point(x - osc, y_min), Point(x + osc, y_max));
|
||||
}
|
||||
|
||||
virtual bool _can_connect(coord_t dist_X, coord_t dist_Y)
|
||||
{
|
||||
coord_t TOLERANCE = 10 * SCALED_EPSILON;
|
||||
return (dist_X >= (this->_line_spacing - this->_line_oscillation) - TOLERANCE)
|
||||
&& (dist_X <= (this->_line_spacing + this->_line_oscillation) + TOLERANCE)
|
||||
&& (dist_Y <= this->_diagonal_distance);
|
||||
}
|
||||
};
|
||||
|
||||
class FillGrid : public FillRectilinear
|
||||
{
|
||||
public:
|
||||
virtual ~FillGrid() {}
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
// Flag for Slic3r::Fill::Rectilinear to fill both directions.
|
||||
virtual bool _horizontal_lines() const { return true; }
|
||||
};
|
||||
|
||||
}; // namespace Slic3r
|
||||
|
||||
#endif // slic3r_FillRectilinear_hpp_
|
||||
1475
src/libslic3r/Fill/FillRectilinear2.cpp
Normal file
1475
src/libslic3r/Fill/FillRectilinear2.cpp
Normal file
File diff suppressed because it is too large
Load diff
74
src/libslic3r/Fill/FillRectilinear2.hpp
Normal file
74
src/libslic3r/Fill/FillRectilinear2.hpp
Normal file
|
|
@ -0,0 +1,74 @@
|
|||
#ifndef slic3r_FillRectilinear2_hpp_
|
||||
#define slic3r_FillRectilinear2_hpp_
|
||||
|
||||
#include "../libslic3r.h"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Surface;
|
||||
|
||||
class FillRectilinear2 : public Fill
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new FillRectilinear2(*this); };
|
||||
virtual ~FillRectilinear2() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
bool fill_surface_by_lines(const Surface *surface, const FillParams ¶ms, float angleBase, float pattern_shift, Polylines &polylines_out);
|
||||
};
|
||||
|
||||
class FillGrid2 : public FillRectilinear2
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new FillGrid2(*this); };
|
||||
virtual ~FillGrid2() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
};
|
||||
|
||||
class FillTriangles : public FillRectilinear2
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new FillTriangles(*this); };
|
||||
virtual ~FillTriangles() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
};
|
||||
|
||||
class FillStars : public FillRectilinear2
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new FillStars(*this); };
|
||||
virtual ~FillStars() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
};
|
||||
|
||||
class FillCubic : public FillRectilinear2
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new FillCubic(*this); };
|
||||
virtual ~FillCubic() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
};
|
||||
|
||||
|
||||
}; // namespace Slic3r
|
||||
|
||||
#endif // slic3r_FillRectilinear2_hpp_
|
||||
1642
src/libslic3r/Fill/FillRectilinear3.cpp
Normal file
1642
src/libslic3r/Fill/FillRectilinear3.cpp
Normal file
File diff suppressed because it is too large
Load diff
83
src/libslic3r/Fill/FillRectilinear3.hpp
Normal file
83
src/libslic3r/Fill/FillRectilinear3.hpp
Normal file
|
|
@ -0,0 +1,83 @@
|
|||
#ifndef slic3r_FillRectilinear3_hpp_
|
||||
#define slic3r_FillRectilinear3_hpp_
|
||||
|
||||
#include "../libslic3r.h"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Surface;
|
||||
|
||||
class FillRectilinear3 : public Fill
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new FillRectilinear3(*this); };
|
||||
virtual ~FillRectilinear3() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
struct FillDirParams
|
||||
{
|
||||
FillDirParams(coordf_t spacing, double angle, coordf_t pattern_shift = 0.f) :
|
||||
spacing(spacing), angle(angle), pattern_shift(pattern_shift) {}
|
||||
coordf_t spacing;
|
||||
double angle;
|
||||
coordf_t pattern_shift;
|
||||
};
|
||||
|
||||
protected:
|
||||
bool fill_surface_by_lines(const Surface *surface, const FillParams ¶ms, std::vector<FillDirParams> &fill_dir_params, Polylines &polylines_out);
|
||||
};
|
||||
|
||||
class FillGrid3 : public FillRectilinear3
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new FillGrid3(*this); };
|
||||
virtual ~FillGrid3() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t /* idx */) const { return 0.f; }
|
||||
};
|
||||
|
||||
class FillTriangles3 : public FillRectilinear3
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new FillTriangles3(*this); };
|
||||
virtual ~FillTriangles3() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t /* idx */) const { return 0.f; }
|
||||
};
|
||||
|
||||
class FillStars3 : public FillRectilinear3
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new FillStars3(*this); };
|
||||
virtual ~FillStars3() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t /* idx */) const { return 0.f; }
|
||||
};
|
||||
|
||||
class FillCubic3 : public FillRectilinear3
|
||||
{
|
||||
public:
|
||||
virtual Fill* clone() const { return new FillCubic3(*this); };
|
||||
virtual ~FillCubic3() {}
|
||||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t /* idx */) const { return 0.f; }
|
||||
};
|
||||
|
||||
|
||||
}; // namespace Slic3r
|
||||
|
||||
#endif // slic3r_FillRectilinear3_hpp_
|
||||
148
src/libslic3r/Flow.cpp
Normal file
148
src/libslic3r/Flow.cpp
Normal file
|
|
@ -0,0 +1,148 @@
|
|||
#include "Flow.hpp"
|
||||
#include "Print.hpp"
|
||||
#include <cmath>
|
||||
#include <assert.h>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
// This static method returns a sane extrusion width default.
|
||||
static inline float auto_extrusion_width(FlowRole role, float nozzle_diameter, float height)
|
||||
{
|
||||
switch (role) {
|
||||
case frSupportMaterial:
|
||||
case frSupportMaterialInterface:
|
||||
case frTopSolidInfill:
|
||||
return nozzle_diameter;
|
||||
default:
|
||||
case frExternalPerimeter:
|
||||
case frPerimeter:
|
||||
case frSolidInfill:
|
||||
case frInfill:
|
||||
return 1.125f * nozzle_diameter;
|
||||
}
|
||||
}
|
||||
|
||||
// This constructor builds a Flow object from an extrusion width config setting
|
||||
// and other context properties.
|
||||
Flow Flow::new_from_config_width(FlowRole role, const ConfigOptionFloatOrPercent &width, float nozzle_diameter, float height, float bridge_flow_ratio)
|
||||
{
|
||||
// we need layer height unless it's a bridge
|
||||
if (height <= 0 && bridge_flow_ratio == 0)
|
||||
throw std::invalid_argument("Invalid flow height supplied to new_from_config_width()");
|
||||
|
||||
float w;
|
||||
if (bridge_flow_ratio > 0) {
|
||||
// If bridge flow was requested, calculate the bridge width.
|
||||
height = w = (bridge_flow_ratio == 1.) ?
|
||||
// optimization to avoid sqrt()
|
||||
nozzle_diameter :
|
||||
sqrt(bridge_flow_ratio) * nozzle_diameter;
|
||||
} else if (! width.percent && width.value == 0.) {
|
||||
// If user left option to 0, calculate a sane default width.
|
||||
w = auto_extrusion_width(role, nozzle_diameter, height);
|
||||
} else {
|
||||
// If user set a manual value, use it.
|
||||
w = float(width.get_abs_value(height));
|
||||
}
|
||||
|
||||
return Flow(w, height, nozzle_diameter, bridge_flow_ratio > 0);
|
||||
}
|
||||
|
||||
// This constructor builds a Flow object from a given centerline spacing.
|
||||
Flow Flow::new_from_spacing(float spacing, float nozzle_diameter, float height, bool bridge)
|
||||
{
|
||||
// we need layer height unless it's a bridge
|
||||
if (height <= 0 && !bridge)
|
||||
throw std::invalid_argument("Invalid flow height supplied to new_from_spacing()");
|
||||
// Calculate width from spacing.
|
||||
// For normal extrusons, extrusion width is wider than the spacing due to the rounding and squishing of the extrusions.
|
||||
// For bridge extrusions, the extrusions are placed with a tiny BRIDGE_EXTRA_SPACING gaps between the threads.
|
||||
float width = float(bridge ?
|
||||
(spacing - BRIDGE_EXTRA_SPACING) :
|
||||
#ifdef HAS_PERIMETER_LINE_OVERLAP
|
||||
(spacing + PERIMETER_LINE_OVERLAP_FACTOR * height * (1. - 0.25 * PI));
|
||||
#else
|
||||
(spacing + height * (1. - 0.25 * PI)));
|
||||
#endif
|
||||
return Flow(width, bridge ? width : height, nozzle_diameter, bridge);
|
||||
}
|
||||
|
||||
// This method returns the centerline spacing between two adjacent extrusions
|
||||
// having the same extrusion width (and other properties).
|
||||
float Flow::spacing() const
|
||||
{
|
||||
#ifdef HAS_PERIMETER_LINE_OVERLAP
|
||||
if (this->bridge)
|
||||
return this->width + BRIDGE_EXTRA_SPACING;
|
||||
// rectangle with semicircles at the ends
|
||||
float min_flow_spacing = this->width - this->height * (1. - 0.25 * PI);
|
||||
return this->width - PERIMETER_LINE_OVERLAP_FACTOR * (this->width - min_flow_spacing);
|
||||
#else
|
||||
return float(this->bridge ? (this->width + BRIDGE_EXTRA_SPACING) : (this->width - this->height * (1. - 0.25 * PI)));
|
||||
#endif
|
||||
}
|
||||
|
||||
// This method returns the centerline spacing between an extrusion using this
|
||||
// flow and another one using another flow.
|
||||
// this->spacing(other) shall return the same value as other.spacing(*this)
|
||||
float Flow::spacing(const Flow &other) const
|
||||
{
|
||||
assert(this->height == other.height);
|
||||
assert(this->bridge == other.bridge);
|
||||
return float(this->bridge ?
|
||||
0.5 * this->width + 0.5 * other.width + BRIDGE_EXTRA_SPACING :
|
||||
0.5 * this->spacing() + 0.5 * other.spacing());
|
||||
}
|
||||
|
||||
// This method returns extrusion volume per head move unit.
|
||||
double Flow::mm3_per_mm() const
|
||||
{
|
||||
double res = this->bridge ?
|
||||
// Area of a circle with dmr of this->width.
|
||||
(this->width * this->width) * 0.25 * PI :
|
||||
// Rectangle with semicircles at the ends. ~ h (w - 0.215 h)
|
||||
this->height * (this->width - this->height * (1. - 0.25 * PI));
|
||||
assert(res > 0.);
|
||||
return res;
|
||||
}
|
||||
|
||||
Flow support_material_flow(const PrintObject *object, float layer_height)
|
||||
{
|
||||
return Flow::new_from_config_width(
|
||||
frSupportMaterial,
|
||||
// The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution.
|
||||
(object->config().support_material_extrusion_width.value > 0) ? object->config().support_material_extrusion_width : object->config().extrusion_width,
|
||||
// if object->config().support_material_extruder == 0 (which means to not trigger tool change, but use the current extruder instead), get_at will return the 0th component.
|
||||
float(object->print()->config().nozzle_diameter.get_at(object->config().support_material_extruder-1)),
|
||||
(layer_height > 0.f) ? layer_height : float(object->config().layer_height.value),
|
||||
// bridge_flow_ratio
|
||||
0.f);
|
||||
}
|
||||
|
||||
Flow support_material_1st_layer_flow(const PrintObject *object, float layer_height)
|
||||
{
|
||||
const auto &width = (object->print()->config().first_layer_extrusion_width.value > 0) ? object->print()->config().first_layer_extrusion_width : object->config().support_material_extrusion_width;
|
||||
return Flow::new_from_config_width(
|
||||
frSupportMaterial,
|
||||
// The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution.
|
||||
(width.value > 0) ? width : object->config().extrusion_width,
|
||||
float(object->print()->config().nozzle_diameter.get_at(object->config().support_material_extruder-1)),
|
||||
(layer_height > 0.f) ? layer_height : float(object->config().first_layer_height.get_abs_value(object->config().layer_height.value)),
|
||||
// bridge_flow_ratio
|
||||
0.f);
|
||||
}
|
||||
|
||||
Flow support_material_interface_flow(const PrintObject *object, float layer_height)
|
||||
{
|
||||
return Flow::new_from_config_width(
|
||||
frSupportMaterialInterface,
|
||||
// The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution.
|
||||
(object->config().support_material_extrusion_width > 0) ? object->config().support_material_extrusion_width : object->config().extrusion_width,
|
||||
// if object->config().support_material_interface_extruder == 0 (which means to not trigger tool change, but use the current extruder instead), get_at will return the 0th component.
|
||||
float(object->print()->config().nozzle_diameter.get_at(object->config().support_material_interface_extruder-1)),
|
||||
(layer_height > 0.f) ? layer_height : float(object->config().layer_height.value),
|
||||
// bridge_flow_ratio
|
||||
0.f);
|
||||
}
|
||||
|
||||
}
|
||||
67
src/libslic3r/Flow.hpp
Normal file
67
src/libslic3r/Flow.hpp
Normal file
|
|
@ -0,0 +1,67 @@
|
|||
#ifndef slic3r_Flow_hpp_
|
||||
#define slic3r_Flow_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "Config.hpp"
|
||||
#include "ExtrusionEntity.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class PrintObject;
|
||||
|
||||
// Extra spacing of bridge threads, in mm.
|
||||
#define BRIDGE_EXTRA_SPACING 0.05
|
||||
|
||||
// Overlap factor of perimeter lines. Currently no overlap.
|
||||
#ifdef HAS_PERIMETER_LINE_OVERLAP
|
||||
#define PERIMETER_LINE_OVERLAP_FACTOR 1.0
|
||||
#endif
|
||||
|
||||
enum FlowRole {
|
||||
frExternalPerimeter,
|
||||
frPerimeter,
|
||||
frInfill,
|
||||
frSolidInfill,
|
||||
frTopSolidInfill,
|
||||
frSupportMaterial,
|
||||
frSupportMaterialInterface,
|
||||
};
|
||||
|
||||
class Flow
|
||||
{
|
||||
public:
|
||||
// Non bridging flow: Maximum width of an extrusion with semicircles at the ends.
|
||||
// Bridging flow: Bridge thread diameter.
|
||||
float width;
|
||||
// Non bridging flow: Layer height.
|
||||
// Bridging flow: Bridge thread diameter = layer height.
|
||||
float height;
|
||||
// Nozzle diameter.
|
||||
float nozzle_diameter;
|
||||
// Is it a bridge?
|
||||
bool bridge;
|
||||
|
||||
Flow(float _w, float _h, float _nd, bool _bridge = false) :
|
||||
width(_w), height(_h), nozzle_diameter(_nd), bridge(_bridge) {};
|
||||
|
||||
float spacing() const;
|
||||
float spacing(const Flow &other) const;
|
||||
double mm3_per_mm() const;
|
||||
coord_t scaled_width() const { return coord_t(scale_(this->width)); };
|
||||
coord_t scaled_spacing() const { return coord_t(scale_(this->spacing())); };
|
||||
coord_t scaled_spacing(const Flow &other) const { return coord_t(scale_(this->spacing(other))); };
|
||||
|
||||
static Flow new_from_config_width(FlowRole role, const ConfigOptionFloatOrPercent &width, float nozzle_diameter, float height, float bridge_flow_ratio);
|
||||
// Create a flow from the spacing of extrusion lines.
|
||||
// This method is used exclusively to calculate new flow of 100% infill, where the extrusion width was allowed to scale
|
||||
// to fit a region with integer number of lines.
|
||||
static Flow new_from_spacing(float spacing, float nozzle_diameter, float height, bool bridge);
|
||||
};
|
||||
|
||||
extern Flow support_material_flow(const PrintObject *object, float layer_height = 0.f);
|
||||
extern Flow support_material_1st_layer_flow(const PrintObject *object, float layer_height = 0.f);
|
||||
extern Flow support_material_interface_flow(const PrintObject *object, float layer_height = 0.f);
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
2159
src/libslic3r/Format/3mf.cpp
Normal file
2159
src/libslic3r/Format/3mf.cpp
Normal file
File diff suppressed because it is too large
Load diff
18
src/libslic3r/Format/3mf.hpp
Normal file
18
src/libslic3r/Format/3mf.hpp
Normal file
|
|
@ -0,0 +1,18 @@
|
|||
#ifndef slic3r_Format_3mf_hpp_
|
||||
#define slic3r_Format_3mf_hpp_
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Model;
|
||||
class DynamicPrintConfig;
|
||||
|
||||
// Load the content of a 3mf file into the given model and preset bundle.
|
||||
extern bool load_3mf(const char* path, DynamicPrintConfig* config, Model* model);
|
||||
|
||||
// Save the given model and the config data contained in the given Print into a 3mf file.
|
||||
// The model could be modified during the export process if meshes are not repaired or have no shared vertices
|
||||
extern bool store_3mf(const char* path, Model* model, const DynamicPrintConfig* config);
|
||||
|
||||
}; // namespace Slic3r
|
||||
|
||||
#endif /* slic3r_Format_3mf_hpp_ */
|
||||
1024
src/libslic3r/Format/AMF.cpp
Normal file
1024
src/libslic3r/Format/AMF.cpp
Normal file
File diff suppressed because it is too large
Load diff
18
src/libslic3r/Format/AMF.hpp
Normal file
18
src/libslic3r/Format/AMF.hpp
Normal file
|
|
@ -0,0 +1,18 @@
|
|||
#ifndef slic3r_Format_AMF_hpp_
|
||||
#define slic3r_Format_AMF_hpp_
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Model;
|
||||
class DynamicPrintConfig;
|
||||
|
||||
// Load the content of an amf file into the given model and configuration.
|
||||
extern bool load_amf(const char *path, DynamicPrintConfig *config, Model *model);
|
||||
|
||||
// Save the given model and the config data into an amf file.
|
||||
// The model could be modified during the export process if meshes are not repaired or have no shared vertices
|
||||
extern bool store_amf(const char *path, Model *model, const DynamicPrintConfig *config);
|
||||
|
||||
}; // namespace Slic3r
|
||||
|
||||
#endif /* slic3r_Format_AMF_hpp_ */
|
||||
118
src/libslic3r/Format/OBJ.cpp
Normal file
118
src/libslic3r/Format/OBJ.cpp
Normal file
|
|
@ -0,0 +1,118 @@
|
|||
#include "../libslic3r.h"
|
||||
#include "../Model.hpp"
|
||||
#include "../TriangleMesh.hpp"
|
||||
|
||||
#include "OBJ.hpp"
|
||||
#include "objparser.hpp"
|
||||
|
||||
#include <string>
|
||||
|
||||
#ifdef _WIN32
|
||||
#define DIR_SEPARATOR '\\'
|
||||
#else
|
||||
#define DIR_SEPARATOR '/'
|
||||
#endif
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
bool load_obj(const char *path, Model *model, const char *object_name_in)
|
||||
{
|
||||
// Parse the OBJ file.
|
||||
ObjParser::ObjData data;
|
||||
if (! ObjParser::objparse(path, data)) {
|
||||
// die "Failed to parse $file\n" if !-e $path;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Count the faces and verify, that all faces are triangular.
|
||||
size_t num_faces = 0;
|
||||
size_t num_quads = 0;
|
||||
for (size_t i = 0; i < data.vertices.size(); ) {
|
||||
size_t j = i;
|
||||
for (; j < data.vertices.size() && data.vertices[j].coordIdx != -1; ++ j) ;
|
||||
if (i == j)
|
||||
continue;
|
||||
size_t face_vertices = j - i;
|
||||
if (face_vertices != 3 && face_vertices != 4) {
|
||||
// Non-triangular and non-quad faces are not supported as of now.
|
||||
return false;
|
||||
}
|
||||
if (face_vertices == 4)
|
||||
++ num_quads;
|
||||
++ num_faces;
|
||||
i = j + 1;
|
||||
}
|
||||
|
||||
// Convert ObjData into STL.
|
||||
TriangleMesh mesh;
|
||||
stl_file &stl = mesh.stl;
|
||||
stl.stats.type = inmemory;
|
||||
stl.stats.number_of_facets = int(num_faces + num_quads);
|
||||
stl.stats.original_num_facets = int(num_faces + num_quads);
|
||||
// stl_allocate clears all the allocated data to zero, all normals are set to zeros as well.
|
||||
stl_allocate(&stl);
|
||||
size_t i_face = 0;
|
||||
for (size_t i = 0; i < data.vertices.size(); ++ i) {
|
||||
if (data.vertices[i].coordIdx == -1)
|
||||
continue;
|
||||
stl_facet &facet = stl.facet_start[i_face ++];
|
||||
size_t num_normals = 0;
|
||||
stl_normal normal(stl_normal::Zero());
|
||||
for (unsigned int v = 0; v < 3; ++ v) {
|
||||
const ObjParser::ObjVertex &vertex = data.vertices[i++];
|
||||
memcpy(facet.vertex[v].data(), &data.coordinates[vertex.coordIdx*4], 3 * sizeof(float));
|
||||
if (vertex.normalIdx != -1) {
|
||||
normal(0) += data.normals[vertex.normalIdx*3];
|
||||
normal(1) += data.normals[vertex.normalIdx*3+1];
|
||||
normal(2) += data.normals[vertex.normalIdx*3+2];
|
||||
++ num_normals;
|
||||
}
|
||||
}
|
||||
if (data.vertices[i].coordIdx != -1) {
|
||||
// This is a quad. Produce the other triangle.
|
||||
stl_facet &facet2 = stl.facet_start[i_face++];
|
||||
facet2.vertex[0] = facet.vertex[0];
|
||||
facet2.vertex[1] = facet.vertex[2];
|
||||
const ObjParser::ObjVertex &vertex = data.vertices[i++];
|
||||
memcpy(facet2.vertex[2].data(), &data.coordinates[vertex.coordIdx * 4], 3 * sizeof(float));
|
||||
if (vertex.normalIdx != -1) {
|
||||
normal(0) += data.normals[vertex.normalIdx*3];
|
||||
normal(1) += data.normals[vertex.normalIdx*3+1];
|
||||
normal(2) += data.normals[vertex.normalIdx*3+2];
|
||||
++ num_normals;
|
||||
}
|
||||
if (num_normals == 4) {
|
||||
// Normalize an average normal of a quad.
|
||||
float len = facet.normal.norm();
|
||||
if (len > EPSILON) {
|
||||
normal /= len;
|
||||
facet.normal = normal;
|
||||
facet2.normal = normal;
|
||||
}
|
||||
}
|
||||
} else if (num_normals == 3) {
|
||||
// Normalize an average normal of a triangle.
|
||||
float len = facet.normal.norm();
|
||||
if (len > EPSILON)
|
||||
facet.normal = normal / len;
|
||||
}
|
||||
}
|
||||
stl_get_size(&stl);
|
||||
mesh.repair();
|
||||
if (mesh.facets_count() == 0) {
|
||||
// die "This STL file couldn't be read because it's empty.\n"
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string object_name;
|
||||
if (object_name_in == nullptr) {
|
||||
const char *last_slash = strrchr(path, DIR_SEPARATOR);
|
||||
object_name.assign((last_slash == nullptr) ? path : last_slash + 1);
|
||||
} else
|
||||
object_name.assign(object_name_in);
|
||||
|
||||
model->add_object(object_name.c_str(), path, std::move(mesh));
|
||||
return true;
|
||||
}
|
||||
|
||||
}; // namespace Slic3r
|
||||
14
src/libslic3r/Format/OBJ.hpp
Normal file
14
src/libslic3r/Format/OBJ.hpp
Normal file
|
|
@ -0,0 +1,14 @@
|
|||
#ifndef slic3r_Format_OBJ_hpp_
|
||||
#define slic3r_Format_OBJ_hpp_
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class TriangleMesh;
|
||||
class Model;
|
||||
|
||||
// Load an OBJ file into a provided model.
|
||||
extern bool load_obj(const char *path, Model *model, const char *object_name = nullptr);
|
||||
|
||||
}; // namespace Slic3r
|
||||
|
||||
#endif /* slic3r_Format_OBJ_hpp_ */
|
||||
354
src/libslic3r/Format/PRUS.cpp
Normal file
354
src/libslic3r/Format/PRUS.cpp
Normal file
|
|
@ -0,0 +1,354 @@
|
|||
#include <string.h>
|
||||
#include <exception>
|
||||
|
||||
#include <boost/algorithm/string.hpp>
|
||||
#include <boost/nowide/convert.hpp>
|
||||
|
||||
#include <miniz/miniz_zip.h>
|
||||
|
||||
#include <Eigen/Geometry>
|
||||
|
||||
#include "../libslic3r.h"
|
||||
#include "../Model.hpp"
|
||||
|
||||
#include "PRUS.hpp"
|
||||
|
||||
#if 0
|
||||
// Enable debugging and assert in this file.
|
||||
#define DEBUG
|
||||
#define _DEBUG
|
||||
#undef NDEBUG
|
||||
#endif
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
namespace Slic3r
|
||||
{
|
||||
|
||||
struct StlHeader
|
||||
{
|
||||
char comment[80];
|
||||
uint32_t nTriangles;
|
||||
};
|
||||
|
||||
static_assert(sizeof(StlHeader) == 84, "StlHeader size not correct");
|
||||
|
||||
// Buffered line reader to a string buffer.
|
||||
class LineReader
|
||||
{
|
||||
public:
|
||||
LineReader(std::vector<char> &data) : m_buffer(data), m_pos(0), m_len((int)data.size()) {}
|
||||
|
||||
const char* next_line() {
|
||||
// Skip empty lines.
|
||||
while (m_pos < m_len && (m_buffer[m_pos] == '\r' || m_buffer[m_pos] == '\n'))
|
||||
++ m_pos;
|
||||
if (m_pos == m_len) {
|
||||
// End of file.
|
||||
return nullptr;
|
||||
}
|
||||
// The buffer is nonempty and it does not start with end of lines. Find the first end of line.
|
||||
int end = m_pos + 1;
|
||||
while (end < m_len && m_buffer[end] != '\r' && m_buffer[end] != '\n')
|
||||
++ end;
|
||||
char *ptr_out = m_buffer.data() + m_pos;
|
||||
m_pos = end + 1;
|
||||
m_buffer[end] = 0;
|
||||
return ptr_out;
|
||||
}
|
||||
|
||||
int next_line_scanf(const char *format, ...)
|
||||
{
|
||||
const char *line = next_line();
|
||||
if (line == nullptr)
|
||||
return -1;
|
||||
int result;
|
||||
va_list arglist;
|
||||
va_start(arglist, format);
|
||||
result = vsscanf(line, format, arglist);
|
||||
va_end(arglist);
|
||||
return result;
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<char> &m_buffer;
|
||||
int m_pos;
|
||||
int m_len;
|
||||
};
|
||||
|
||||
static void extract_model_from_archive(
|
||||
// name of the model file
|
||||
const char *name,
|
||||
// path to the archive
|
||||
const char *path,
|
||||
// content of scene.xml
|
||||
const std::vector<char> &scene_xml_data,
|
||||
// loaded data of this STL
|
||||
std::vector<char> &data,
|
||||
// Model, to which the newly loaded objects will be added
|
||||
Model *model,
|
||||
// To map multiple STLs into a single model object for multi-material prints.
|
||||
std::map<int, ModelObject*> &group_to_model_object)
|
||||
{
|
||||
// Find the model entry in the XML data.
|
||||
char model_name_tag[1024];
|
||||
sprintf(model_name_tag, "<model name=\"%s\">", name);
|
||||
const char *model_xml = strstr(scene_xml_data.data(), model_name_tag);
|
||||
const char *zero_tag = "<zero>";
|
||||
const char *zero_xml = strstr(scene_xml_data.data(), zero_tag);
|
||||
float trafo[3][4] = { 0 };
|
||||
Vec3d instance_rotation = Vec3d::Zero();
|
||||
Vec3d instance_scaling_factor = Vec3d::Ones();
|
||||
Vec3d instance_offset = Vec3d::Zero();
|
||||
bool trafo_set = false;
|
||||
unsigned int group_id = (unsigned int)-1;
|
||||
unsigned int extruder_id = (unsigned int)-1;
|
||||
ModelObject *model_object = nullptr;
|
||||
if (model_xml != nullptr) {
|
||||
model_xml += strlen(model_name_tag);
|
||||
const char *position_tag = "<position>";
|
||||
const char *position_xml = strstr(model_xml, position_tag);
|
||||
const char *rotation_tag = "<rotation>";
|
||||
const char *rotation_xml = strstr(model_xml, rotation_tag);
|
||||
const char *scale_tag = "<scale>";
|
||||
const char *scale_xml = strstr(model_xml, scale_tag);
|
||||
float position[3], rotation[3], scale[3], zero[3];
|
||||
if (position_xml != nullptr && rotation_xml != nullptr && scale_xml != nullptr && zero_xml != nullptr &&
|
||||
sscanf(position_xml+strlen(position_tag),
|
||||
"[%f, %f, %f]", position, position+1, position+2) == 3 &&
|
||||
sscanf(rotation_xml+strlen(rotation_tag),
|
||||
"[%f, %f, %f]", rotation, rotation+1, rotation+2) == 3 &&
|
||||
sscanf(scale_xml+strlen(scale_tag),
|
||||
"[%f, %f, %f]", scale, scale+1, scale+2) == 3 &&
|
||||
sscanf(zero_xml+strlen(zero_tag),
|
||||
"[%f, %f, %f]", zero, zero+1, zero+2) == 3) {
|
||||
instance_scaling_factor = Vec3d((double)scale[0], (double)scale[1], (double)scale[2]);
|
||||
instance_rotation = Vec3d(-(double)rotation[0], -(double)rotation[1], -(double)rotation[2]);
|
||||
Eigen::Matrix3f mat_rot, mat_scale, mat_trafo;
|
||||
mat_rot = Eigen::AngleAxisf(-rotation[2], Eigen::Vector3f::UnitZ()) *
|
||||
Eigen::AngleAxisf(-rotation[1], Eigen::Vector3f::UnitY()) *
|
||||
Eigen::AngleAxisf(-rotation[0], Eigen::Vector3f::UnitX());
|
||||
mat_scale = Eigen::Scaling(scale[0], scale[1], scale[2]);
|
||||
mat_trafo = mat_rot * mat_scale;
|
||||
for (size_t r = 0; r < 3; ++ r) {
|
||||
for (size_t c = 0; c < 3; ++ c)
|
||||
trafo[r][c] += mat_trafo(r, c);
|
||||
}
|
||||
instance_offset = Vec3d((double)(position[0] - zero[0]), (double)(position[1] - zero[1]), (double)(position[2] - zero[2]));
|
||||
// CHECK_ME -> Is the following correct ?
|
||||
trafo[2][3] = position[2] / (float)instance_scaling_factor(2);
|
||||
trafo_set = true;
|
||||
}
|
||||
const char *group_tag = "<group>";
|
||||
const char *group_xml = strstr(model_xml, group_tag);
|
||||
const char *extruder_tag = "<extruder>";
|
||||
const char *extruder_xml = strstr(model_xml, extruder_tag);
|
||||
if (group_xml != nullptr) {
|
||||
int group = atoi(group_xml + strlen(group_tag));
|
||||
if (group > 0) {
|
||||
group_id = group;
|
||||
auto it = group_to_model_object.find(group_id);
|
||||
if (it != group_to_model_object.end())
|
||||
model_object = it->second;
|
||||
}
|
||||
}
|
||||
if (extruder_xml != nullptr) {
|
||||
int e = atoi(extruder_xml + strlen(extruder_tag));
|
||||
if (e > 0)
|
||||
extruder_id = e;
|
||||
}
|
||||
}
|
||||
if (! trafo_set)
|
||||
throw std::runtime_error(std::string("Archive ") + path + " does not contain a valid entry in scene.xml for " + name);
|
||||
|
||||
// Extract the STL.
|
||||
StlHeader header;
|
||||
TriangleMesh mesh;
|
||||
bool mesh_valid = false;
|
||||
bool stl_ascii = false;
|
||||
if (data.size() > sizeof(StlHeader)) {
|
||||
memcpy((char*)&header, data.data(), sizeof(StlHeader));
|
||||
if (strncmp(header.comment, "solid ", 6) == 0)
|
||||
stl_ascii = true;
|
||||
else {
|
||||
// Header has been extracted. Now read the faces.
|
||||
stl_file &stl = mesh.stl;
|
||||
stl.error = 0;
|
||||
stl.stats.type = inmemory;
|
||||
stl.stats.number_of_facets = header.nTriangles;
|
||||
stl.stats.original_num_facets = header.nTriangles;
|
||||
stl_allocate(&stl);
|
||||
if (header.nTriangles > 0 && data.size() == 50 * header.nTriangles + sizeof(StlHeader)) {
|
||||
memcpy((char*)stl.facet_start, data.data() + sizeof(StlHeader), 50 * header.nTriangles);
|
||||
if (sizeof(stl_facet) > SIZEOF_STL_FACET) {
|
||||
// The stl.facet_start is not packed tightly. Unpack the array of stl_facets.
|
||||
unsigned char *data = (unsigned char*)stl.facet_start;
|
||||
for (size_t i = header.nTriangles - 1; i > 0; -- i)
|
||||
memmove(data + i * sizeof(stl_facet), data + i * SIZEOF_STL_FACET, SIZEOF_STL_FACET);
|
||||
}
|
||||
// All the faces have been read.
|
||||
stl_get_size(&stl);
|
||||
mesh.repair();
|
||||
// Transform the model.
|
||||
stl_transform(&stl, &trafo[0][0]);
|
||||
if (std::abs(stl.stats.min(2)) < EPSILON)
|
||||
stl.stats.min(2) = 0.;
|
||||
// Add a mesh to a model.
|
||||
if (mesh.facets_count() > 0)
|
||||
mesh_valid = true;
|
||||
}
|
||||
}
|
||||
} else
|
||||
stl_ascii = true;
|
||||
|
||||
if (stl_ascii) {
|
||||
// Try to parse ASCII STL.
|
||||
char normal_buf[3][32];
|
||||
stl_facet facet;
|
||||
std::vector<stl_facet> facets;
|
||||
LineReader line_reader(data);
|
||||
std::string solid_name;
|
||||
facet.extra[0] = facet.extra[1] = 0;
|
||||
for (;;) {
|
||||
const char *line = line_reader.next_line();
|
||||
if (line == nullptr)
|
||||
// End of file.
|
||||
break;
|
||||
if (strncmp(line, "solid", 5) == 0) {
|
||||
// Opening the "solid" block.
|
||||
if (! solid_name.empty()) {
|
||||
// Error, solid block is already open.
|
||||
facets.clear();
|
||||
break;
|
||||
}
|
||||
solid_name = line + 5;
|
||||
if (solid_name.empty())
|
||||
solid_name = "unknown";
|
||||
continue;
|
||||
}
|
||||
if (strncmp(line, "endsolid", 8) == 0) {
|
||||
// Closing the "solid" block.
|
||||
if (solid_name.empty()) {
|
||||
// Error, no solid block is open.
|
||||
facets.clear();
|
||||
break;
|
||||
}
|
||||
solid_name.clear();
|
||||
continue;
|
||||
}
|
||||
// Line has to start with the word solid.
|
||||
int res_normal = sscanf(line, " facet normal %31s %31s %31s", normal_buf[0], normal_buf[1], normal_buf[2]);
|
||||
assert(res_normal == 3);
|
||||
int res_outer_loop = line_reader.next_line_scanf(" outer loop");
|
||||
assert(res_outer_loop == 0);
|
||||
int res_vertex1 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[0](0), &facet.vertex[0](1), &facet.vertex[0](2));
|
||||
assert(res_vertex1 == 3);
|
||||
int res_vertex2 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[1](0), &facet.vertex[1](1), &facet.vertex[1](2));
|
||||
assert(res_vertex2 == 3);
|
||||
int res_vertex3 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[2](0), &facet.vertex[2](1), &facet.vertex[2](2));
|
||||
assert(res_vertex3 == 3);
|
||||
int res_endloop = line_reader.next_line_scanf(" endloop");
|
||||
assert(res_endloop == 0);
|
||||
int res_endfacet = line_reader.next_line_scanf(" endfacet");
|
||||
if (res_normal != 3 || res_outer_loop != 0 || res_vertex1 != 3 || res_vertex2 != 3 || res_vertex3 != 3 || res_endloop != 0 || res_endfacet != 0) {
|
||||
// perror("Something is syntactically very wrong with this ASCII STL!");
|
||||
facets.clear();
|
||||
break;
|
||||
}
|
||||
// The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition.
|
||||
if (sscanf(normal_buf[0], "%f", &facet.normal(0)) != 1 ||
|
||||
sscanf(normal_buf[1], "%f", &facet.normal(1)) != 1 ||
|
||||
sscanf(normal_buf[2], "%f", &facet.normal(2)) != 1) {
|
||||
// Normal was mangled. Maybe denormals or "not a number" were stored?
|
||||
// Just reset the normal and silently ignore it.
|
||||
memset(&facet.normal, 0, sizeof(facet.normal));
|
||||
}
|
||||
facets.emplace_back(facet);
|
||||
}
|
||||
if (! facets.empty() && solid_name.empty()) {
|
||||
stl_file &stl = mesh.stl;
|
||||
stl.stats.type = inmemory;
|
||||
stl.stats.number_of_facets = (uint32_t)facets.size();
|
||||
stl.stats.original_num_facets = (int)facets.size();
|
||||
stl_allocate(&stl);
|
||||
memcpy((void*)stl.facet_start, facets.data(), facets.size() * 50);
|
||||
stl_get_size(&stl);
|
||||
mesh.repair();
|
||||
// Transform the model.
|
||||
stl_transform(&stl, &trafo[0][0]);
|
||||
// Add a mesh to a model.
|
||||
if (mesh.facets_count() > 0)
|
||||
mesh_valid = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (! mesh_valid)
|
||||
throw std::runtime_error(std::string("Archive ") + path + " does not contain a valid mesh for " + name);
|
||||
|
||||
// Add this mesh to the model.
|
||||
ModelVolume *volume = nullptr;
|
||||
if (model_object == nullptr) {
|
||||
// This is a first mesh of a group. Create a new object & volume.
|
||||
model_object = model->add_object(name, path, std::move(mesh));
|
||||
volume = model_object->volumes.front();
|
||||
ModelInstance *instance = model_object->add_instance();
|
||||
instance->set_rotation(instance_rotation);
|
||||
instance->set_scaling_factor(instance_scaling_factor);
|
||||
instance->set_offset(instance_offset);
|
||||
if (group_id != (size_t)-1)
|
||||
group_to_model_object[group_id] = model_object;
|
||||
} else {
|
||||
// This is not the 1st mesh of a group. Add it to the ModelObject.
|
||||
volume = model_object->add_volume(std::move(mesh));
|
||||
volume->name = name;
|
||||
}
|
||||
// Set the extruder to the volume.
|
||||
if (extruder_id != (unsigned int)-1) {
|
||||
char str_extruder[64];
|
||||
sprintf(str_extruder, "%ud", extruder_id);
|
||||
volume->config.set_deserialize("extruder", str_extruder);
|
||||
}
|
||||
}
|
||||
|
||||
// Load a PrusaControl project file into a provided model.
|
||||
bool load_prus(const char *path, Model *model)
|
||||
{
|
||||
mz_zip_archive archive;
|
||||
mz_zip_zero_struct(&archive);
|
||||
mz_bool res = mz_zip_reader_init_file(&archive, path, 0);
|
||||
size_t n_models_initial = model->objects.size();
|
||||
try {
|
||||
if (res == MZ_FALSE)
|
||||
throw std::runtime_error(std::string("Unable to init zip reader for ") + path);
|
||||
std::vector<char> scene_xml_data;
|
||||
// For grouping multiple STLs into a single ModelObject for multi-material prints.
|
||||
std::map<int, ModelObject*> group_to_model_object;
|
||||
mz_uint num_entries = mz_zip_reader_get_num_files(&archive);
|
||||
for (mz_uint i = 0; i < num_entries; ++ i) {
|
||||
mz_zip_archive_file_stat stat;
|
||||
if (! mz_zip_reader_file_stat(&archive, i, &stat))
|
||||
continue;
|
||||
std::vector<char> buffer;
|
||||
buffer.assign((size_t)stat.m_uncomp_size + 1, 0);
|
||||
res = mz_zip_reader_extract_file_to_mem(&archive, stat.m_filename, (char*)buffer.data(), (size_t)stat.m_uncomp_size, 0);
|
||||
if (res == MZ_FALSE)
|
||||
std::runtime_error(std::string("Error while extracting a file from ") + path);
|
||||
if (strcmp(stat.m_filename, "scene.xml") == 0) {
|
||||
if (! scene_xml_data.empty())
|
||||
throw std::runtime_error(std::string("Multiple scene.xml were found in the archive.") + path);
|
||||
scene_xml_data = std::move(buffer);
|
||||
} else if (boost::iends_with(stat.m_filename, ".stl")) {
|
||||
// May throw std::exception
|
||||
extract_model_from_archive(stat.m_filename, path, scene_xml_data, buffer, model, group_to_model_object);
|
||||
}
|
||||
}
|
||||
} catch (std::exception &ex) {
|
||||
mz_zip_reader_end(&archive);
|
||||
throw ex;
|
||||
}
|
||||
|
||||
mz_zip_reader_end(&archive);
|
||||
return model->objects.size() > n_models_initial;
|
||||
}
|
||||
|
||||
}; // namespace Slic3r
|
||||
11
src/libslic3r/Format/PRUS.hpp
Normal file
11
src/libslic3r/Format/PRUS.hpp
Normal file
|
|
@ -0,0 +1,11 @@
|
|||
#define slic3r_Format_PRUS_hpp_
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class TriangleMesh;
|
||||
class Model;
|
||||
|
||||
// Load a PrusaControl project file into a provided model.
|
||||
extern bool load_prus(const char *path, Model *model);
|
||||
|
||||
}; // namespace Slic3r
|
||||
58
src/libslic3r/Format/STL.cpp
Normal file
58
src/libslic3r/Format/STL.cpp
Normal file
|
|
@ -0,0 +1,58 @@
|
|||
#include "../libslic3r.h"
|
||||
#include "../Model.hpp"
|
||||
#include "../TriangleMesh.hpp"
|
||||
|
||||
#include "STL.hpp"
|
||||
|
||||
#include <string>
|
||||
|
||||
#ifdef _WIN32
|
||||
#define DIR_SEPARATOR '\\'
|
||||
#else
|
||||
#define DIR_SEPARATOR '/'
|
||||
#endif
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
bool load_stl(const char *path, Model *model, const char *object_name_in)
|
||||
{
|
||||
TriangleMesh mesh;
|
||||
mesh.ReadSTLFile(path);
|
||||
if (mesh.stl.error) {
|
||||
// die "Failed to open $file\n" if !-e $path;
|
||||
return false;
|
||||
}
|
||||
mesh.repair();
|
||||
if (mesh.facets_count() == 0) {
|
||||
// die "This STL file couldn't be read because it's empty.\n"
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string object_name;
|
||||
if (object_name_in == nullptr) {
|
||||
const char *last_slash = strrchr(path, DIR_SEPARATOR);
|
||||
object_name.assign((last_slash == nullptr) ? path : last_slash + 1);
|
||||
} else
|
||||
object_name.assign(object_name_in);
|
||||
|
||||
model->add_object(object_name.c_str(), path, std::move(mesh));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool store_stl(const char *path, TriangleMesh *mesh, bool binary)
|
||||
{
|
||||
if (binary)
|
||||
mesh->write_binary(path);
|
||||
else
|
||||
mesh->write_ascii(path);
|
||||
//FIXME returning false even if write failed.
|
||||
return true;
|
||||
}
|
||||
|
||||
bool store_stl(const char *path, ModelObject *model_object, bool binary)
|
||||
{
|
||||
TriangleMesh mesh = model_object->mesh();
|
||||
return store_stl(path, &mesh, binary);
|
||||
}
|
||||
|
||||
}; // namespace Slic3r
|
||||
17
src/libslic3r/Format/STL.hpp
Normal file
17
src/libslic3r/Format/STL.hpp
Normal file
|
|
@ -0,0 +1,17 @@
|
|||
#ifndef slic3r_Format_STL_hpp_
|
||||
#define slic3r_Format_STL_hpp_
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class TriangleMesh;
|
||||
class ModelObject;
|
||||
|
||||
// Load an STL file into a provided model.
|
||||
extern bool load_stl(const char *path, Model *model, const char *object_name = nullptr);
|
||||
|
||||
extern bool store_stl(const char *path, TriangleMesh *mesh, bool binary);
|
||||
extern bool store_stl(const char *path, ModelObject *model_object, bool binary);
|
||||
|
||||
}; // namespace Slic3r
|
||||
|
||||
#endif /* slic3r_Format_STL_hpp_ */
|
||||
540
src/libslic3r/Format/objparser.cpp
Normal file
540
src/libslic3r/Format/objparser.cpp
Normal file
|
|
@ -0,0 +1,540 @@
|
|||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <boost/nowide/cstdio.hpp>
|
||||
|
||||
#include "objparser.hpp"
|
||||
|
||||
namespace ObjParser {
|
||||
|
||||
static bool obj_parseline(const char *line, ObjData &data)
|
||||
{
|
||||
#define EATWS() while (*line == ' ' || *line == '\t') ++ line
|
||||
|
||||
if (*line == 0)
|
||||
return true;
|
||||
|
||||
// Ignore whitespaces at the beginning of the line.
|
||||
//FIXME is this a good idea?
|
||||
EATWS();
|
||||
|
||||
char c1 = *line ++;
|
||||
switch (c1) {
|
||||
case '#':
|
||||
// Comment, ignore the rest of the line.
|
||||
break;
|
||||
case 'v':
|
||||
{
|
||||
// Parse vertex geometry (position, normal, texture coordinates)
|
||||
char c2 = *line ++;
|
||||
switch (c2) {
|
||||
case 't':
|
||||
{
|
||||
// vt - vertex texture parameter
|
||||
// u v [w], w == 0 (or w == 1)
|
||||
char c2 = *line ++;
|
||||
if (c2 != ' ' && c2 != '\t')
|
||||
return false;
|
||||
EATWS();
|
||||
char *endptr = 0;
|
||||
double u = strtod(line, &endptr);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t'))
|
||||
return false;
|
||||
line = endptr;
|
||||
EATWS();
|
||||
double v = 0;
|
||||
if (*line != 0) {
|
||||
v = strtod(line, &endptr);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t' && *endptr != 0))
|
||||
return false;
|
||||
line = endptr;
|
||||
EATWS();
|
||||
}
|
||||
double w = 0;
|
||||
if (*line != 0) {
|
||||
w = strtod(line, &endptr);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t' && *endptr != 0))
|
||||
return false;
|
||||
line = endptr;
|
||||
EATWS();
|
||||
}
|
||||
if (*line != 0)
|
||||
return false;
|
||||
data.textureCoordinates.push_back((float)u);
|
||||
data.textureCoordinates.push_back((float)v);
|
||||
data.textureCoordinates.push_back((float)w);
|
||||
break;
|
||||
}
|
||||
case 'n':
|
||||
{
|
||||
// vn - vertex normal
|
||||
// x y z
|
||||
char c2 = *line ++;
|
||||
if (c2 != ' ' && c2 != '\t')
|
||||
return false;
|
||||
EATWS();
|
||||
char *endptr = 0;
|
||||
double x = strtod(line, &endptr);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t'))
|
||||
return false;
|
||||
line = endptr;
|
||||
EATWS();
|
||||
double y = strtod(line, &endptr);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t'))
|
||||
return false;
|
||||
line = endptr;
|
||||
EATWS();
|
||||
double z = strtod(line, &endptr);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t' && *endptr != 0))
|
||||
return false;
|
||||
line = endptr;
|
||||
EATWS();
|
||||
if (*line != 0)
|
||||
return false;
|
||||
data.normals.push_back((float)x);
|
||||
data.normals.push_back((float)y);
|
||||
data.normals.push_back((float)z);
|
||||
break;
|
||||
}
|
||||
case 'p':
|
||||
{
|
||||
// vp - vertex parameter
|
||||
char c2 = *line ++;
|
||||
if (c2 != ' ' && c2 != '\t')
|
||||
return false;
|
||||
EATWS();
|
||||
char *endptr = 0;
|
||||
double u = strtod(line, &endptr);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t' && *endptr != 0))
|
||||
return false;
|
||||
line = endptr;
|
||||
EATWS();
|
||||
double v = strtod(line, &endptr);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t' && *endptr != 0))
|
||||
return false;
|
||||
line = endptr;
|
||||
EATWS();
|
||||
double w = 0;
|
||||
if (*line != 0) {
|
||||
w = strtod(line, &endptr);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t' && *endptr != 0))
|
||||
return false;
|
||||
line = endptr;
|
||||
EATWS();
|
||||
}
|
||||
if (*line != 0)
|
||||
return false;
|
||||
data.parameters.push_back((float)u);
|
||||
data.parameters.push_back((float)v);
|
||||
data.parameters.push_back((float)w);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
// v - vertex geometry
|
||||
if (c2 != ' ' && c2 != '\t')
|
||||
return false;
|
||||
EATWS();
|
||||
char *endptr = 0;
|
||||
double x = strtod(line, &endptr);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t'))
|
||||
return false;
|
||||
line = endptr;
|
||||
EATWS();
|
||||
double y = strtod(line, &endptr);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t'))
|
||||
return false;
|
||||
line = endptr;
|
||||
EATWS();
|
||||
double z = strtod(line, &endptr);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t' && *endptr != 0))
|
||||
return false;
|
||||
line = endptr;
|
||||
EATWS();
|
||||
double w = 1.0;
|
||||
if (*line != 0) {
|
||||
w = strtod(line, &endptr);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t' && *endptr != 0))
|
||||
return false;
|
||||
line = endptr;
|
||||
EATWS();
|
||||
}
|
||||
if (*line != 0)
|
||||
return false;
|
||||
data.coordinates.push_back((float)x);
|
||||
data.coordinates.push_back((float)y);
|
||||
data.coordinates.push_back((float)z);
|
||||
data.coordinates.push_back((float)w);
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 'f':
|
||||
{
|
||||
// face
|
||||
EATWS();
|
||||
if (*line == 0)
|
||||
return false;
|
||||
// number of vertices of this face
|
||||
int n = 0;
|
||||
// current vertex to be parsed
|
||||
ObjVertex vertex;
|
||||
char *endptr = 0;
|
||||
while (*line != 0) {
|
||||
// Parse a single vertex reference.
|
||||
vertex.coordIdx = 0;
|
||||
vertex.normalIdx = 0;
|
||||
vertex.textureCoordIdx = 0;
|
||||
vertex.coordIdx = strtol(line, &endptr, 10);
|
||||
// Coordinate has to be defined
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t' && *endptr != '/' && *endptr != 0))
|
||||
return false;
|
||||
line = endptr;
|
||||
if (*line == '/') {
|
||||
++ line;
|
||||
// Texture coordinate index may be missing after a 1st slash, but then the normal index has to be present.
|
||||
if (*line != '/') {
|
||||
// Parse the texture coordinate index.
|
||||
vertex.textureCoordIdx = strtol(line, &endptr, 10);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t' && *endptr != '/' && *endptr != 0))
|
||||
return false;
|
||||
line = endptr;
|
||||
}
|
||||
if (*line == '/') {
|
||||
// Parse normal index.
|
||||
++ line;
|
||||
vertex.normalIdx = strtol(line, &endptr, 10);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t' && *endptr != 0))
|
||||
return false;
|
||||
line = endptr;
|
||||
}
|
||||
}
|
||||
if (vertex.coordIdx < 0)
|
||||
vertex.coordIdx += data.coordinates.size() / 4;
|
||||
else
|
||||
-- vertex.coordIdx;
|
||||
if (vertex.normalIdx < 0)
|
||||
vertex.normalIdx += data.normals.size() / 3;
|
||||
else
|
||||
-- vertex.normalIdx;
|
||||
if (vertex.textureCoordIdx < 0)
|
||||
vertex.textureCoordIdx += data.textureCoordinates.size() / 3;
|
||||
else
|
||||
-- vertex.textureCoordIdx;
|
||||
data.vertices.push_back(vertex);
|
||||
EATWS();
|
||||
}
|
||||
vertex.coordIdx = -1;
|
||||
vertex.normalIdx = -1;
|
||||
vertex.textureCoordIdx = -1;
|
||||
data.vertices.push_back(vertex);
|
||||
break;
|
||||
}
|
||||
case 'm':
|
||||
{
|
||||
if (*(line ++) != 't' ||
|
||||
*(line ++) != 'l' ||
|
||||
*(line ++) != 'l' ||
|
||||
*(line ++) != 'i' ||
|
||||
*(line ++) != 'b')
|
||||
return false;
|
||||
// mtllib [external .mtl file name]
|
||||
// printf("mtllib %s\r\n", line);
|
||||
EATWS();
|
||||
data.mtllibs.push_back(std::string(line));
|
||||
break;
|
||||
}
|
||||
case 'u':
|
||||
{
|
||||
if (*(line ++) != 's' ||
|
||||
*(line ++) != 'e' ||
|
||||
*(line ++) != 'm' ||
|
||||
*(line ++) != 't' ||
|
||||
*(line ++) != 'l')
|
||||
return false;
|
||||
// usemtl [material name]
|
||||
// printf("usemtl %s\r\n", line);
|
||||
EATWS();
|
||||
ObjUseMtl usemtl;
|
||||
usemtl.vertexIdxFirst = data.vertices.size();
|
||||
usemtl.name = line;
|
||||
data.usemtls.push_back(usemtl);
|
||||
break;
|
||||
}
|
||||
case 'o':
|
||||
{
|
||||
// o [object name]
|
||||
EATWS();
|
||||
const char *name = line;
|
||||
while (*line != ' ' && *line != '\t' && *line != 0)
|
||||
++ line;
|
||||
// copy name to line.
|
||||
EATWS();
|
||||
if (*line != 0)
|
||||
return false;
|
||||
ObjObject object;
|
||||
object.vertexIdxFirst = data.vertices.size();
|
||||
object.name = line;
|
||||
data.objects.push_back(object);
|
||||
break;
|
||||
}
|
||||
case 'g':
|
||||
{
|
||||
// g [group name]
|
||||
// printf("group %s\r\n", line);
|
||||
ObjGroup group;
|
||||
group.vertexIdxFirst = data.vertices.size();
|
||||
group.name = line;
|
||||
data.groups.push_back(group);
|
||||
break;
|
||||
}
|
||||
case 's':
|
||||
{
|
||||
// s 1 / off
|
||||
char c2 = *line ++;
|
||||
if (c2 != ' ' && c2 != '\t')
|
||||
return false;
|
||||
EATWS();
|
||||
char *endptr = 0;
|
||||
long g = strtol(line, &endptr, 10);
|
||||
if (endptr == 0 || (*endptr != ' ' && *endptr != '\t' && *endptr != 0))
|
||||
return false;
|
||||
line = endptr;
|
||||
EATWS();
|
||||
if (*line != 0)
|
||||
return false;
|
||||
ObjSmoothingGroup group;
|
||||
group.vertexIdxFirst = data.vertices.size();
|
||||
group.smoothingGroupID = g;
|
||||
data.smoothingGroups.push_back(group);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
printf("ObjParser: Unknown command: %c\r\n", c1);
|
||||
break;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool objparse(const char *path, ObjData &data)
|
||||
{
|
||||
FILE *pFile = boost::nowide::fopen(path, "rt");
|
||||
if (pFile == 0)
|
||||
return false;
|
||||
|
||||
try {
|
||||
char buf[65536 * 2];
|
||||
size_t len = 0;
|
||||
size_t lenPrev = 0;
|
||||
while ((len = ::fread(buf + lenPrev, 1, 65536, pFile)) != 0) {
|
||||
len += lenPrev;
|
||||
size_t lastLine = 0;
|
||||
for (size_t i = 0; i < len; ++ i)
|
||||
if (buf[i] == '\r' || buf[i] == '\n') {
|
||||
buf[i] = 0;
|
||||
char *c = buf + lastLine;
|
||||
while (*c == ' ' || *c == '\t')
|
||||
++ c;
|
||||
obj_parseline(c, data);
|
||||
lastLine = i + 1;
|
||||
}
|
||||
lenPrev = len - lastLine;
|
||||
memmove(buf, buf + lastLine, lenPrev);
|
||||
}
|
||||
} catch (std::bad_alloc &ex) {
|
||||
printf("Out of memory\r\n");
|
||||
}
|
||||
::fclose(pFile);
|
||||
|
||||
// printf("vertices: %d\r\n", data.vertices.size() / 4);
|
||||
// printf("coords: %d\r\n", data.coordinates.size());
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool savevector(FILE *pFile, const std::vector<T> &v)
|
||||
{
|
||||
size_t cnt = v.size();
|
||||
::fwrite(&cnt, 1, sizeof(cnt), pFile);
|
||||
//FIXME sizeof(T) works for data types leaving no gaps in the allocated vector because of alignment of the T type.
|
||||
if (! v.empty())
|
||||
::fwrite(&v.front(), 1, sizeof(T) * cnt, pFile);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool savevector(FILE *pFile, const std::vector<std::string> &v)
|
||||
{
|
||||
size_t cnt = v.size();
|
||||
::fwrite(&cnt, 1, sizeof(cnt), pFile);
|
||||
for (size_t i = 0; i < cnt; ++ i) {
|
||||
size_t len = v[i].size();
|
||||
::fwrite(&len, 1, sizeof(cnt), pFile);
|
||||
::fwrite(v[i].c_str(), 1, len, pFile);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool savevectornameidx(FILE *pFile, const std::vector<T> &v)
|
||||
{
|
||||
size_t cnt = v.size();
|
||||
::fwrite(&cnt, 1, sizeof(cnt), pFile);
|
||||
for (size_t i = 0; i < cnt; ++ i) {
|
||||
::fwrite(&v[i].vertexIdxFirst, 1, sizeof(int), pFile);
|
||||
size_t len = v[i].name.size();
|
||||
::fwrite(&len, 1, sizeof(cnt), pFile);
|
||||
::fwrite(v[i].name.c_str(), 1, len, pFile);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool loadvector(FILE *pFile, std::vector<T> &v)
|
||||
{
|
||||
v.clear();
|
||||
size_t cnt = 0;
|
||||
if (::fread(&cnt, sizeof(cnt), 1, pFile) != 1)
|
||||
return false;
|
||||
//FIXME sizeof(T) works for data types leaving no gaps in the allocated vector because of alignment of the T type.
|
||||
if (cnt != 0) {
|
||||
v.assign(cnt, T());
|
||||
if (::fread(&v.front(), sizeof(T), cnt, pFile) != cnt)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool loadvector(FILE *pFile, std::vector<std::string> &v)
|
||||
{
|
||||
v.clear();
|
||||
size_t cnt = 0;
|
||||
if (::fread(&cnt, sizeof(cnt), 1, pFile) != 1)
|
||||
return false;
|
||||
v.reserve(cnt);
|
||||
for (size_t i = 0; i < cnt; ++ i) {
|
||||
size_t len = 0;
|
||||
if (::fread(&len, sizeof(len), 1, pFile) != 1)
|
||||
return false;
|
||||
std::string s(" ", len);
|
||||
if (::fread(const_cast<char*>(s.c_str()), 1, len, pFile) != len)
|
||||
return false;
|
||||
v.push_back(std::move(s));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool loadvectornameidx(FILE *pFile, std::vector<T> &v)
|
||||
{
|
||||
v.clear();
|
||||
size_t cnt = 0;
|
||||
if (::fread(&cnt, sizeof(cnt), 1, pFile) != 1)
|
||||
return false;
|
||||
v.assign(cnt, T());
|
||||
for (size_t i = 0; i < cnt; ++ i) {
|
||||
if (::fread(&v[i].vertexIdxFirst, sizeof(int), 1, pFile) != 1)
|
||||
return false;
|
||||
size_t len = 0;
|
||||
if (::fread(&len, sizeof(len), 1, pFile) != 1)
|
||||
return false;
|
||||
v[i].name.assign(" ", len);
|
||||
if (::fread(const_cast<char*>(v[i].name.c_str()), 1, len, pFile) != len)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool objbinsave(const char *path, const ObjData &data)
|
||||
{
|
||||
FILE *pFile = boost::nowide::fopen(path, "wb");
|
||||
if (pFile == 0)
|
||||
return false;
|
||||
|
||||
size_t version = 1;
|
||||
::fwrite(&version, 1, sizeof(version), pFile);
|
||||
|
||||
bool result =
|
||||
savevector(pFile, data.coordinates) &&
|
||||
savevector(pFile, data.textureCoordinates) &&
|
||||
savevector(pFile, data.normals) &&
|
||||
savevector(pFile, data.parameters) &&
|
||||
savevector(pFile, data.mtllibs) &&
|
||||
savevectornameidx(pFile, data.usemtls) &&
|
||||
savevectornameidx(pFile, data.objects) &&
|
||||
savevectornameidx(pFile, data.groups) &&
|
||||
savevector(pFile, data.smoothingGroups) &&
|
||||
savevector(pFile, data.vertices);
|
||||
|
||||
::fclose(pFile);
|
||||
return result;
|
||||
}
|
||||
|
||||
bool objbinload(const char *path, ObjData &data)
|
||||
{
|
||||
FILE *pFile = boost::nowide::fopen(path, "rb");
|
||||
if (pFile == 0)
|
||||
return false;
|
||||
|
||||
data.version = 0;
|
||||
if (::fread(&data.version, sizeof(data.version), 1, pFile) != 1)
|
||||
return false;
|
||||
if (data.version != 1)
|
||||
return false;
|
||||
|
||||
bool result =
|
||||
loadvector(pFile, data.coordinates) &&
|
||||
loadvector(pFile, data.textureCoordinates) &&
|
||||
loadvector(pFile, data.normals) &&
|
||||
loadvector(pFile, data.parameters) &&
|
||||
loadvector(pFile, data.mtllibs) &&
|
||||
loadvectornameidx(pFile, data.usemtls) &&
|
||||
loadvectornameidx(pFile, data.objects) &&
|
||||
loadvectornameidx(pFile, data.groups) &&
|
||||
loadvector(pFile, data.smoothingGroups) &&
|
||||
loadvector(pFile, data.vertices);
|
||||
|
||||
::fclose(pFile);
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool vectorequal(const std::vector<T> &v1, const std::vector<T> &v2)
|
||||
{
|
||||
if (v1.size() != v2.size())
|
||||
return false;
|
||||
for (size_t i = 0; i < v1.size(); ++ i)
|
||||
if (! (v1[i] == v2[i]))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool vectorequal(const std::vector<std::string> &v1, const std::vector<std::string> &v2)
|
||||
{
|
||||
if (v1.size() != v2.size())
|
||||
return false;
|
||||
for (size_t i = 0; i < v1.size(); ++ i)
|
||||
if (v1[i].compare(v2[i]) != 0)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
extern bool objequal(const ObjData &data1, const ObjData &data2)
|
||||
{
|
||||
//FIXME ignore version number
|
||||
// version;
|
||||
|
||||
return
|
||||
vectorequal(data1.coordinates, data2.coordinates) &&
|
||||
vectorequal(data1.textureCoordinates, data2.textureCoordinates) &&
|
||||
vectorequal(data1.normals, data2.normals) &&
|
||||
vectorequal(data1.parameters, data2.parameters) &&
|
||||
vectorequal(data1.mtllibs, data2.mtllibs) &&
|
||||
vectorequal(data1.usemtls, data2.usemtls) &&
|
||||
vectorequal(data1.objects, data2.objects) &&
|
||||
vectorequal(data1.groups, data2.groups) &&
|
||||
vectorequal(data1.vertices, data2.vertices);
|
||||
}
|
||||
|
||||
} // namespace ObjParser
|
||||
109
src/libslic3r/Format/objparser.hpp
Normal file
109
src/libslic3r/Format/objparser.hpp
Normal file
|
|
@ -0,0 +1,109 @@
|
|||
#ifndef slic3r_Format_objparser_hpp_
|
||||
#define slic3r_Format_objparser_hpp_
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace ObjParser {
|
||||
|
||||
struct ObjVertex
|
||||
{
|
||||
int coordIdx;
|
||||
int textureCoordIdx;
|
||||
int normalIdx;
|
||||
};
|
||||
|
||||
inline bool operator==(const ObjVertex &v1, const ObjVertex &v2)
|
||||
{
|
||||
return
|
||||
v1.coordIdx == v2.coordIdx &&
|
||||
v1.textureCoordIdx == v2.textureCoordIdx &&
|
||||
v1.normalIdx == v2.normalIdx;
|
||||
}
|
||||
|
||||
struct ObjUseMtl
|
||||
{
|
||||
int vertexIdxFirst;
|
||||
std::string name;
|
||||
};
|
||||
|
||||
inline bool operator==(const ObjUseMtl &v1, const ObjUseMtl &v2)
|
||||
{
|
||||
return
|
||||
v1.vertexIdxFirst == v2.vertexIdxFirst &&
|
||||
v1.name.compare(v2.name) == 0;
|
||||
}
|
||||
|
||||
struct ObjObject
|
||||
{
|
||||
int vertexIdxFirst;
|
||||
std::string name;
|
||||
};
|
||||
|
||||
inline bool operator==(const ObjObject &v1, const ObjObject &v2)
|
||||
{
|
||||
return
|
||||
v1.vertexIdxFirst == v2.vertexIdxFirst &&
|
||||
v1.name.compare(v2.name) == 0;
|
||||
}
|
||||
|
||||
struct ObjGroup
|
||||
{
|
||||
int vertexIdxFirst;
|
||||
std::string name;
|
||||
};
|
||||
|
||||
inline bool operator==(const ObjGroup &v1, const ObjGroup &v2)
|
||||
{
|
||||
return
|
||||
v1.vertexIdxFirst == v2.vertexIdxFirst &&
|
||||
v1.name.compare(v2.name) == 0;
|
||||
}
|
||||
|
||||
struct ObjSmoothingGroup
|
||||
{
|
||||
int vertexIdxFirst;
|
||||
int smoothingGroupID;
|
||||
};
|
||||
|
||||
inline bool operator==(const ObjSmoothingGroup &v1, const ObjSmoothingGroup &v2)
|
||||
{
|
||||
return
|
||||
v1.vertexIdxFirst == v2.vertexIdxFirst &&
|
||||
v1.smoothingGroupID == v2.smoothingGroupID;
|
||||
}
|
||||
|
||||
struct ObjData {
|
||||
// Version of the data structure for load / store in the private binary format.
|
||||
int version;
|
||||
|
||||
// x, y, z, w
|
||||
std::vector<float> coordinates;
|
||||
// u, v, w
|
||||
std::vector<float> textureCoordinates;
|
||||
// x, y, z
|
||||
std::vector<float> normals;
|
||||
// u, v, w
|
||||
std::vector<float> parameters;
|
||||
|
||||
std::vector<std::string> mtllibs;
|
||||
std::vector<ObjUseMtl> usemtls;
|
||||
std::vector<ObjObject> objects;
|
||||
std::vector<ObjGroup> groups;
|
||||
std::vector<ObjSmoothingGroup> smoothingGroups;
|
||||
|
||||
// List of faces, delimited by an ObjVertex with all members set to -1.
|
||||
std::vector<ObjVertex> vertices;
|
||||
};
|
||||
|
||||
extern bool objparse(const char *path, ObjData &data);
|
||||
|
||||
extern bool objbinsave(const char *path, const ObjData &data);
|
||||
|
||||
extern bool objbinload(const char *path, ObjData &data);
|
||||
|
||||
extern bool objequal(const ObjData &data1, const ObjData &data2);
|
||||
|
||||
} // namespace ObjParser
|
||||
|
||||
#endif /* slic3r_Format_objparser_hpp_ */
|
||||
2747
src/libslic3r/GCode.cpp
Normal file
2747
src/libslic3r/GCode.cpp
Normal file
File diff suppressed because it is too large
Load diff
368
src/libslic3r/GCode.hpp
Normal file
368
src/libslic3r/GCode.hpp
Normal file
|
|
@ -0,0 +1,368 @@
|
|||
#ifndef slic3r_GCode_hpp_
|
||||
#define slic3r_GCode_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "ExPolygon.hpp"
|
||||
#include "GCodeWriter.hpp"
|
||||
#include "Layer.hpp"
|
||||
#include "MotionPlanner.hpp"
|
||||
#include "Point.hpp"
|
||||
#include "PlaceholderParser.hpp"
|
||||
#include "Print.hpp"
|
||||
#include "PrintConfig.hpp"
|
||||
#include "GCode/CoolingBuffer.hpp"
|
||||
#include "GCode/PressureEqualizer.hpp"
|
||||
#include "GCode/SpiralVase.hpp"
|
||||
#include "GCode/ToolOrdering.hpp"
|
||||
#include "GCode/WipeTower.hpp"
|
||||
#include "GCodeTimeEstimator.hpp"
|
||||
#include "EdgeGrid.hpp"
|
||||
#include "GCode/Analyzer.hpp"
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
// Forward declarations.
|
||||
class GCode;
|
||||
class GCodePreviewData;
|
||||
|
||||
class AvoidCrossingPerimeters {
|
||||
public:
|
||||
|
||||
// this flag triggers the use of the external configuration space
|
||||
bool use_external_mp;
|
||||
bool use_external_mp_once; // just for the next travel move
|
||||
|
||||
// this flag disables avoid_crossing_perimeters just for the next travel move
|
||||
// we enable it by default for the first travel move in print
|
||||
bool disable_once;
|
||||
|
||||
AvoidCrossingPerimeters() : use_external_mp(false), use_external_mp_once(false), disable_once(true) {}
|
||||
~AvoidCrossingPerimeters() {}
|
||||
|
||||
void init_external_mp(const ExPolygons &islands) { m_external_mp = Slic3r::make_unique<MotionPlanner>(islands); }
|
||||
void init_layer_mp(const ExPolygons &islands) { m_layer_mp = Slic3r::make_unique<MotionPlanner>(islands); }
|
||||
|
||||
Polyline travel_to(const GCode &gcodegen, const Point &point);
|
||||
|
||||
private:
|
||||
std::unique_ptr<MotionPlanner> m_external_mp;
|
||||
std::unique_ptr<MotionPlanner> m_layer_mp;
|
||||
};
|
||||
|
||||
class OozePrevention {
|
||||
public:
|
||||
bool enable;
|
||||
Points standby_points;
|
||||
|
||||
OozePrevention() : enable(false) {}
|
||||
std::string pre_toolchange(GCode &gcodegen);
|
||||
std::string post_toolchange(GCode &gcodegen);
|
||||
|
||||
private:
|
||||
int _get_temp(GCode &gcodegen);
|
||||
};
|
||||
|
||||
class Wipe {
|
||||
public:
|
||||
bool enable;
|
||||
Polyline path;
|
||||
|
||||
Wipe() : enable(false) {}
|
||||
bool has_path() const { return !this->path.points.empty(); }
|
||||
void reset_path() { this->path = Polyline(); }
|
||||
std::string wipe(GCode &gcodegen, bool toolchange = false);
|
||||
};
|
||||
|
||||
class WipeTowerIntegration {
|
||||
public:
|
||||
WipeTowerIntegration(
|
||||
const PrintConfig &print_config,
|
||||
const WipeTower::ToolChangeResult &priming,
|
||||
const std::vector<std::vector<WipeTower::ToolChangeResult>> &tool_changes,
|
||||
const WipeTower::ToolChangeResult &final_purge) :
|
||||
m_left(/*float(print_config.wipe_tower_x.value)*/ 0.f),
|
||||
m_right(float(/*print_config.wipe_tower_x.value +*/ print_config.wipe_tower_width.value)),
|
||||
m_wipe_tower_pos(float(print_config.wipe_tower_x.value), float(print_config.wipe_tower_y.value)),
|
||||
m_wipe_tower_rotation(float(print_config.wipe_tower_rotation_angle)),
|
||||
m_priming(priming),
|
||||
m_tool_changes(tool_changes),
|
||||
m_final_purge(final_purge),
|
||||
m_layer_idx(-1),
|
||||
m_tool_change_idx(0),
|
||||
m_brim_done(false) {}
|
||||
|
||||
std::string prime(GCode &gcodegen);
|
||||
void next_layer() { ++ m_layer_idx; m_tool_change_idx = 0; }
|
||||
std::string tool_change(GCode &gcodegen, int extruder_id, bool finish_layer);
|
||||
std::string finalize(GCode &gcodegen);
|
||||
std::vector<float> used_filament_length() const;
|
||||
|
||||
private:
|
||||
WipeTowerIntegration& operator=(const WipeTowerIntegration&);
|
||||
std::string append_tcr(GCode &gcodegen, const WipeTower::ToolChangeResult &tcr, int new_extruder_id) const;
|
||||
|
||||
// Postprocesses gcode: rotates and moves all G1 extrusions and returns result
|
||||
std::string rotate_wipe_tower_moves(const std::string& gcode_original, const WipeTower::xy& start_pos, const WipeTower::xy& translation, float angle) const;
|
||||
|
||||
// Left / right edges of the wipe tower, for the planning of wipe moves.
|
||||
const float m_left;
|
||||
const float m_right;
|
||||
const WipeTower::xy m_wipe_tower_pos;
|
||||
const float m_wipe_tower_rotation;
|
||||
// Reference to cached values at the Printer class.
|
||||
const WipeTower::ToolChangeResult &m_priming;
|
||||
const std::vector<std::vector<WipeTower::ToolChangeResult>> &m_tool_changes;
|
||||
const WipeTower::ToolChangeResult &m_final_purge;
|
||||
// Current layer index.
|
||||
int m_layer_idx;
|
||||
int m_tool_change_idx;
|
||||
bool m_brim_done;
|
||||
bool i_have_brim = false;
|
||||
};
|
||||
|
||||
class GCode {
|
||||
public:
|
||||
GCode() :
|
||||
m_origin(Vec2d::Zero()),
|
||||
m_enable_loop_clipping(true),
|
||||
m_enable_cooling_markers(false),
|
||||
m_enable_extrusion_role_markers(false),
|
||||
m_enable_analyzer(false),
|
||||
m_last_analyzer_extrusion_role(erNone),
|
||||
m_layer_count(0),
|
||||
m_layer_index(-1),
|
||||
m_layer(nullptr),
|
||||
m_volumetric_speed(0),
|
||||
m_last_pos_defined(false),
|
||||
m_last_extrusion_role(erNone),
|
||||
m_last_mm3_per_mm(GCodeAnalyzer::Default_mm3_per_mm),
|
||||
m_last_width(GCodeAnalyzer::Default_Width),
|
||||
m_last_height(GCodeAnalyzer::Default_Height),
|
||||
m_brim_done(false),
|
||||
m_second_layer_things_done(false),
|
||||
m_normal_time_estimator(GCodeTimeEstimator::Normal),
|
||||
m_silent_time_estimator(GCodeTimeEstimator::Silent),
|
||||
m_silent_time_estimator_enabled(false),
|
||||
m_last_obj_copy(nullptr, Point(std::numeric_limits<coord_t>::max(), std::numeric_limits<coord_t>::max()))
|
||||
{}
|
||||
~GCode() {}
|
||||
|
||||
// throws std::runtime_exception on error,
|
||||
// throws CanceledException through print->throw_if_canceled().
|
||||
void do_export(Print *print, const char *path, GCodePreviewData *preview_data = nullptr);
|
||||
|
||||
// Exported for the helper classes (OozePrevention, Wipe) and for the Perl binding for unit tests.
|
||||
const Vec2d& origin() const { return m_origin; }
|
||||
void set_origin(const Vec2d &pointf);
|
||||
void set_origin(const coordf_t x, const coordf_t y) { this->set_origin(Vec2d(x, y)); }
|
||||
const Point& last_pos() const { return m_last_pos; }
|
||||
Vec2d point_to_gcode(const Point &point) const;
|
||||
Point gcode_to_point(const Vec2d &point) const;
|
||||
const FullPrintConfig &config() const { return m_config; }
|
||||
const Layer* layer() const { return m_layer; }
|
||||
GCodeWriter& writer() { return m_writer; }
|
||||
PlaceholderParser& placeholder_parser() { return m_placeholder_parser; }
|
||||
const PlaceholderParser& placeholder_parser() const { return m_placeholder_parser; }
|
||||
// Process a template through the placeholder parser, collect error messages to be reported
|
||||
// inside the generated string and after the G-code export finishes.
|
||||
std::string placeholder_parser_process(const std::string &name, const std::string &templ, unsigned int current_extruder_id, const DynamicConfig *config_override = nullptr);
|
||||
bool enable_cooling_markers() const { return m_enable_cooling_markers; }
|
||||
|
||||
// For Perl bindings, to be used exclusively by unit tests.
|
||||
unsigned int layer_count() const { return m_layer_count; }
|
||||
void set_layer_count(unsigned int value) { m_layer_count = value; }
|
||||
void apply_print_config(const PrintConfig &print_config);
|
||||
|
||||
// append full config to the given string
|
||||
static void append_full_config(const Print& print, std::string& str);
|
||||
|
||||
protected:
|
||||
void _do_export(Print &print, FILE *file, GCodePreviewData *preview_data);
|
||||
|
||||
// Object and support extrusions of the same PrintObject at the same print_z.
|
||||
struct LayerToPrint
|
||||
{
|
||||
LayerToPrint() : object_layer(nullptr), support_layer(nullptr) {}
|
||||
const Layer *object_layer;
|
||||
const SupportLayer *support_layer;
|
||||
const Layer* layer() const { return (object_layer != nullptr) ? object_layer : support_layer; }
|
||||
const PrintObject* object() const { return (this->layer() != nullptr) ? this->layer()->object() : nullptr; }
|
||||
coordf_t print_z() const { return (object_layer != nullptr && support_layer != nullptr) ? 0.5 * (object_layer->print_z + support_layer->print_z) : this->layer()->print_z; }
|
||||
};
|
||||
static std::vector<GCode::LayerToPrint> collect_layers_to_print(const PrintObject &object);
|
||||
static std::vector<std::pair<coordf_t, std::vector<LayerToPrint>>> collect_layers_to_print(const Print &print);
|
||||
void process_layer(
|
||||
// Write into the output file.
|
||||
FILE *file,
|
||||
const Print &print,
|
||||
// Set of object & print layers of the same PrintObject and with the same print_z.
|
||||
const std::vector<LayerToPrint> &layers,
|
||||
const LayerTools &layer_tools,
|
||||
// If set to size_t(-1), then print all copies of all objects.
|
||||
// Otherwise print a single copy of a single object.
|
||||
const size_t single_object_idx = size_t(-1));
|
||||
|
||||
void set_last_pos(const Point &pos) { m_last_pos = pos; m_last_pos_defined = true; }
|
||||
bool last_pos_defined() const { return m_last_pos_defined; }
|
||||
void set_extruders(const std::vector<unsigned int> &extruder_ids);
|
||||
std::string preamble();
|
||||
std::string change_layer(coordf_t print_z);
|
||||
std::string extrude_entity(const ExtrusionEntity &entity, std::string description = "", double speed = -1., std::unique_ptr<EdgeGrid::Grid> *lower_layer_edge_grid = nullptr);
|
||||
std::string extrude_loop(ExtrusionLoop loop, std::string description, double speed = -1., std::unique_ptr<EdgeGrid::Grid> *lower_layer_edge_grid = nullptr);
|
||||
std::string extrude_multi_path(ExtrusionMultiPath multipath, std::string description = "", double speed = -1.);
|
||||
std::string extrude_path(ExtrusionPath path, std::string description = "", double speed = -1.);
|
||||
|
||||
typedef std::vector<int> ExtruderPerCopy;
|
||||
// Extruding multiple objects with soluble / non-soluble / combined supports
|
||||
// on a multi-material printer, trying to minimize tool switches.
|
||||
// Following structures sort extrusions by the extruder ID, by an order of objects and object islands.
|
||||
struct ObjectByExtruder
|
||||
{
|
||||
ObjectByExtruder() : support(nullptr), support_extrusion_role(erNone) {}
|
||||
const ExtrusionEntityCollection *support;
|
||||
// erSupportMaterial / erSupportMaterialInterface or erMixed.
|
||||
ExtrusionRole support_extrusion_role;
|
||||
|
||||
struct Island
|
||||
{
|
||||
struct Region {
|
||||
ExtrusionEntityCollection perimeters;
|
||||
ExtrusionEntityCollection infills;
|
||||
|
||||
std::vector<const ExtruderPerCopy*> infills_overrides;
|
||||
std::vector<const ExtruderPerCopy*> perimeters_overrides;
|
||||
|
||||
// Appends perimeter/infill entities and writes don't indices of those that are not to be extruder as part of perimeter/infill wiping
|
||||
void append(const std::string& type, const ExtrusionEntityCollection* eec, const ExtruderPerCopy* copy_extruders, unsigned int object_copies_num);
|
||||
};
|
||||
|
||||
std::vector<Region> by_region; // all extrusions for this island, grouped by regions
|
||||
const std::vector<Region>& by_region_per_copy(unsigned int copy, int extruder, bool wiping_entities = false); // returns reference to subvector of by_region
|
||||
|
||||
private:
|
||||
std::vector<Region> by_region_per_copy_cache; // caches vector generated by function above to avoid copying and recalculating
|
||||
};
|
||||
std::vector<Island> islands;
|
||||
};
|
||||
|
||||
|
||||
std::string extrude_perimeters(const Print &print, const std::vector<ObjectByExtruder::Island::Region> &by_region, std::unique_ptr<EdgeGrid::Grid> &lower_layer_edge_grid);
|
||||
std::string extrude_infill(const Print &print, const std::vector<ObjectByExtruder::Island::Region> &by_region);
|
||||
std::string extrude_support(const ExtrusionEntityCollection &support_fills);
|
||||
|
||||
std::string travel_to(const Point &point, ExtrusionRole role, std::string comment);
|
||||
bool needs_retraction(const Polyline &travel, ExtrusionRole role = erNone);
|
||||
std::string retract(bool toolchange = false);
|
||||
std::string unretract() { return m_writer.unlift() + m_writer.unretract(); }
|
||||
std::string set_extruder(unsigned int extruder_id);
|
||||
|
||||
/* Origin of print coordinates expressed in unscaled G-code coordinates.
|
||||
This affects the input arguments supplied to the extrude*() and travel_to()
|
||||
methods. */
|
||||
Vec2d m_origin;
|
||||
FullPrintConfig m_config;
|
||||
GCodeWriter m_writer;
|
||||
PlaceholderParser m_placeholder_parser;
|
||||
// Collection of templates, on which the placeholder substitution failed.
|
||||
std::set<std::string> m_placeholder_parser_failed_templates;
|
||||
OozePrevention m_ooze_prevention;
|
||||
Wipe m_wipe;
|
||||
AvoidCrossingPerimeters m_avoid_crossing_perimeters;
|
||||
bool m_enable_loop_clipping;
|
||||
// If enabled, the G-code generator will put following comments at the ends
|
||||
// of the G-code lines: _EXTRUDE_SET_SPEED, _WIPE, _BRIDGE_FAN_START, _BRIDGE_FAN_END
|
||||
// Those comments are received and consumed (removed from the G-code) by the CoolingBuffer.pm Perl module.
|
||||
bool m_enable_cooling_markers;
|
||||
// Markers for the Pressure Equalizer to recognize the extrusion type.
|
||||
// The Pressure Equalizer removes the markers from the final G-code.
|
||||
bool m_enable_extrusion_role_markers;
|
||||
// Enableds the G-code Analyzer.
|
||||
// Extended markers will be added during G-code generation.
|
||||
// The G-code Analyzer will remove these comments from the final G-code.
|
||||
bool m_enable_analyzer;
|
||||
ExtrusionRole m_last_analyzer_extrusion_role;
|
||||
// How many times will change_layer() be called?
|
||||
// change_layer() will update the progress bar.
|
||||
unsigned int m_layer_count;
|
||||
// Progress bar indicator. Increments from -1 up to layer_count.
|
||||
int m_layer_index;
|
||||
// Current layer processed. Insequential printing mode, only a single copy will be printed.
|
||||
// In non-sequential mode, all its copies will be printed.
|
||||
const Layer* m_layer;
|
||||
std::map<const PrintObject*,Point> m_seam_position;
|
||||
double m_volumetric_speed;
|
||||
// Support for the extrusion role markers. Which marker is active?
|
||||
ExtrusionRole m_last_extrusion_role;
|
||||
// Support for G-Code Analyzer
|
||||
double m_last_mm3_per_mm;
|
||||
float m_last_width;
|
||||
float m_last_height;
|
||||
|
||||
Point m_last_pos;
|
||||
bool m_last_pos_defined;
|
||||
|
||||
std::unique_ptr<CoolingBuffer> m_cooling_buffer;
|
||||
std::unique_ptr<SpiralVase> m_spiral_vase;
|
||||
std::unique_ptr<PressureEqualizer> m_pressure_equalizer;
|
||||
std::unique_ptr<WipeTowerIntegration> m_wipe_tower;
|
||||
|
||||
// Heights at which the skirt has already been extruded.
|
||||
std::vector<coordf_t> m_skirt_done;
|
||||
// Has the brim been extruded already? Brim is being extruded only for the first object of a multi-object print.
|
||||
bool m_brim_done;
|
||||
// Flag indicating whether the nozzle temperature changes from 1st to 2nd layer were performed.
|
||||
bool m_second_layer_things_done;
|
||||
// Index of a last object copy extruded.
|
||||
std::pair<const PrintObject*, Point> m_last_obj_copy;
|
||||
// Layer heights for colorprint - updated before the export and erased during the process
|
||||
// so no toolchange occurs twice.
|
||||
std::vector<float> m_colorprint_heights;
|
||||
|
||||
// Time estimators
|
||||
GCodeTimeEstimator m_normal_time_estimator;
|
||||
GCodeTimeEstimator m_silent_time_estimator;
|
||||
bool m_silent_time_estimator_enabled;
|
||||
|
||||
// Analyzer
|
||||
GCodeAnalyzer m_analyzer;
|
||||
|
||||
// Write a string into a file.
|
||||
void _write(FILE* file, const std::string& what) { this->_write(file, what.c_str()); }
|
||||
void _write(FILE* file, const char *what);
|
||||
|
||||
// Write a string into a file.
|
||||
// Add a newline, if the string does not end with a newline already.
|
||||
// Used to export a custom G-code section processed by the PlaceholderParser.
|
||||
void _writeln(FILE* file, const std::string& what);
|
||||
|
||||
// Formats and write into a file the given data.
|
||||
void _write_format(FILE* file, const char* format, ...);
|
||||
|
||||
std::string _extrude(const ExtrusionPath &path, std::string description = "", double speed = -1);
|
||||
void print_machine_envelope(FILE *file, Print &print);
|
||||
void _print_first_layer_bed_temperature(FILE *file, Print &print, const std::string &gcode, unsigned int first_printing_extruder_id, bool wait);
|
||||
void _print_first_layer_extruder_temperatures(FILE *file, Print &print, const std::string &gcode, unsigned int first_printing_extruder_id, bool wait);
|
||||
// this flag triggers first layer speeds
|
||||
bool on_first_layer() const { return m_layer != nullptr && m_layer->id() == 0; }
|
||||
|
||||
friend ObjectByExtruder& object_by_extruder(
|
||||
std::map<unsigned int, std::vector<ObjectByExtruder>> &by_extruder,
|
||||
unsigned int extruder_id,
|
||||
size_t object_idx,
|
||||
size_t num_objects);
|
||||
friend std::vector<ObjectByExtruder::Island>& object_islands_by_extruder(
|
||||
std::map<unsigned int, std::vector<ObjectByExtruder>> &by_extruder,
|
||||
unsigned int extruder_id,
|
||||
size_t object_idx,
|
||||
size_t num_objects,
|
||||
size_t num_islands);
|
||||
|
||||
friend class WipeTowerIntegration;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
842
src/libslic3r/GCode/Analyzer.cpp
Normal file
842
src/libslic3r/GCode/Analyzer.cpp
Normal file
|
|
@ -0,0 +1,842 @@
|
|||
#include <memory.h>
|
||||
#include <string.h>
|
||||
#include <float.h>
|
||||
|
||||
#include "../libslic3r.h"
|
||||
#include "../PrintConfig.hpp"
|
||||
#include "Print.hpp"
|
||||
|
||||
#include "Analyzer.hpp"
|
||||
#include "PreviewData.hpp"
|
||||
|
||||
static const std::string AXIS_STR = "XYZE";
|
||||
static const float MMMIN_TO_MMSEC = 1.0f / 60.0f;
|
||||
static const float INCHES_TO_MM = 25.4f;
|
||||
static const float DEFAULT_FEEDRATE = 0.0f;
|
||||
static const unsigned int DEFAULT_EXTRUDER_ID = 0;
|
||||
static const Slic3r::Vec3d DEFAULT_START_POSITION = Slic3r::Vec3d(0.0f, 0.0f, 0.0f);
|
||||
static const float DEFAULT_START_EXTRUSION = 0.0f;
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
const std::string GCodeAnalyzer::Extrusion_Role_Tag = "_ANALYZER_EXTR_ROLE:";
|
||||
const std::string GCodeAnalyzer::Mm3_Per_Mm_Tag = "_ANALYZER_MM3_PER_MM:";
|
||||
const std::string GCodeAnalyzer::Width_Tag = "_ANALYZER_WIDTH:";
|
||||
const std::string GCodeAnalyzer::Height_Tag = "_ANALYZER_HEIGHT:";
|
||||
|
||||
const double GCodeAnalyzer::Default_mm3_per_mm = 0.0;
|
||||
const float GCodeAnalyzer::Default_Width = 0.0f;
|
||||
const float GCodeAnalyzer::Default_Height = 0.0f;
|
||||
|
||||
GCodeAnalyzer::Metadata::Metadata()
|
||||
: extrusion_role(erNone)
|
||||
, extruder_id(DEFAULT_EXTRUDER_ID)
|
||||
, mm3_per_mm(GCodeAnalyzer::Default_mm3_per_mm)
|
||||
, width(GCodeAnalyzer::Default_Width)
|
||||
, height(GCodeAnalyzer::Default_Height)
|
||||
, feedrate(DEFAULT_FEEDRATE)
|
||||
{
|
||||
}
|
||||
|
||||
GCodeAnalyzer::Metadata::Metadata(ExtrusionRole extrusion_role, unsigned int extruder_id, double mm3_per_mm, float width, float height, float feedrate)
|
||||
: extrusion_role(extrusion_role)
|
||||
, extruder_id(extruder_id)
|
||||
, mm3_per_mm(mm3_per_mm)
|
||||
, width(width)
|
||||
, height(height)
|
||||
, feedrate(feedrate)
|
||||
{
|
||||
}
|
||||
|
||||
bool GCodeAnalyzer::Metadata::operator != (const GCodeAnalyzer::Metadata& other) const
|
||||
{
|
||||
if (extrusion_role != other.extrusion_role)
|
||||
return true;
|
||||
|
||||
if (extruder_id != other.extruder_id)
|
||||
return true;
|
||||
|
||||
if (mm3_per_mm != other.mm3_per_mm)
|
||||
return true;
|
||||
|
||||
if (width != other.width)
|
||||
return true;
|
||||
|
||||
if (height != other.height)
|
||||
return true;
|
||||
|
||||
if (feedrate != other.feedrate)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
GCodeAnalyzer::GCodeMove::GCodeMove(GCodeMove::EType type, ExtrusionRole extrusion_role, unsigned int extruder_id, double mm3_per_mm, float width, float height, float feedrate, const Vec3d& start_position, const Vec3d& end_position, float delta_extruder)
|
||||
: type(type)
|
||||
, data(extrusion_role, extruder_id, mm3_per_mm, width, height, feedrate)
|
||||
, start_position(start_position)
|
||||
, end_position(end_position)
|
||||
, delta_extruder(delta_extruder)
|
||||
{
|
||||
}
|
||||
|
||||
GCodeAnalyzer::GCodeMove::GCodeMove(GCodeMove::EType type, const GCodeAnalyzer::Metadata& data, const Vec3d& start_position, const Vec3d& end_position, float delta_extruder)
|
||||
: type(type)
|
||||
, data(data)
|
||||
, start_position(start_position)
|
||||
, end_position(end_position)
|
||||
, delta_extruder(delta_extruder)
|
||||
{
|
||||
}
|
||||
|
||||
GCodeAnalyzer::GCodeAnalyzer()
|
||||
{
|
||||
reset();
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::reset()
|
||||
{
|
||||
_set_units(Millimeters);
|
||||
_set_global_positioning_type(Absolute);
|
||||
_set_e_local_positioning_type(Absolute);
|
||||
_set_extrusion_role(erNone);
|
||||
_set_extruder_id(DEFAULT_EXTRUDER_ID);
|
||||
_set_mm3_per_mm(Default_mm3_per_mm);
|
||||
_set_width(Default_Width);
|
||||
_set_height(Default_Height);
|
||||
_set_feedrate(DEFAULT_FEEDRATE);
|
||||
_set_start_position(DEFAULT_START_POSITION);
|
||||
_set_start_extrusion(DEFAULT_START_EXTRUSION);
|
||||
_reset_axes_position();
|
||||
|
||||
m_moves_map.clear();
|
||||
}
|
||||
|
||||
const std::string& GCodeAnalyzer::process_gcode(const std::string& gcode)
|
||||
{
|
||||
m_process_output = "";
|
||||
|
||||
m_parser.parse_buffer(gcode,
|
||||
[this](GCodeReader& reader, const GCodeReader::GCodeLine& line)
|
||||
{ this->_process_gcode_line(reader, line); });
|
||||
|
||||
return m_process_output;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::calc_gcode_preview_data(GCodePreviewData& preview_data)
|
||||
{
|
||||
// resets preview data
|
||||
preview_data.reset();
|
||||
|
||||
// calculates extrusion layers
|
||||
_calc_gcode_preview_extrusion_layers(preview_data);
|
||||
|
||||
// calculates travel
|
||||
_calc_gcode_preview_travel(preview_data);
|
||||
|
||||
// calculates retractions
|
||||
_calc_gcode_preview_retractions(preview_data);
|
||||
|
||||
// calculates unretractions
|
||||
_calc_gcode_preview_unretractions(preview_data);
|
||||
}
|
||||
|
||||
bool GCodeAnalyzer::is_valid_extrusion_role(ExtrusionRole role)
|
||||
{
|
||||
return ((erPerimeter <= role) && (role < erMixed));
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_process_gcode_line(GCodeReader&, const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
// processes 'special' comments contained in line
|
||||
if (_process_tags(line))
|
||||
{
|
||||
#if 0
|
||||
// DEBUG ONLY: puts the line back into the gcode
|
||||
m_process_output += line.raw() + "\n";
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
|
||||
// sets new start position/extrusion
|
||||
_set_start_position(_get_end_position());
|
||||
_set_start_extrusion(_get_axis_position(E));
|
||||
|
||||
// processes 'normal' gcode lines
|
||||
std::string cmd = line.cmd();
|
||||
if (cmd.length() > 1)
|
||||
{
|
||||
switch (::toupper(cmd[0]))
|
||||
{
|
||||
case 'G':
|
||||
{
|
||||
switch (::atoi(&cmd[1]))
|
||||
{
|
||||
case 1: // Move
|
||||
{
|
||||
_processG1(line);
|
||||
break;
|
||||
}
|
||||
case 10: // Retract
|
||||
{
|
||||
_processG10(line);
|
||||
break;
|
||||
}
|
||||
case 11: // Unretract
|
||||
{
|
||||
_processG11(line);
|
||||
break;
|
||||
}
|
||||
case 22: // Firmware controlled Retract
|
||||
{
|
||||
_processG22(line);
|
||||
break;
|
||||
}
|
||||
case 23: // Firmware controlled Unretract
|
||||
{
|
||||
_processG23(line);
|
||||
break;
|
||||
}
|
||||
case 90: // Set to Absolute Positioning
|
||||
{
|
||||
_processG90(line);
|
||||
break;
|
||||
}
|
||||
case 91: // Set to Relative Positioning
|
||||
{
|
||||
_processG91(line);
|
||||
break;
|
||||
}
|
||||
case 92: // Set Position
|
||||
{
|
||||
_processG92(line);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
case 'M':
|
||||
{
|
||||
switch (::atoi(&cmd[1]))
|
||||
{
|
||||
case 82: // Set extruder to absolute mode
|
||||
{
|
||||
_processM82(line);
|
||||
break;
|
||||
}
|
||||
case 83: // Set extruder to relative mode
|
||||
{
|
||||
_processM83(line);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
case 'T': // Select Tools
|
||||
{
|
||||
_processT(line);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// puts the line back into the gcode
|
||||
m_process_output += line.raw() + "\n";
|
||||
}
|
||||
|
||||
// Returns the new absolute position on the given axis in dependence of the given parameters
|
||||
float axis_absolute_position_from_G1_line(GCodeAnalyzer::EAxis axis, const GCodeReader::GCodeLine& lineG1, GCodeAnalyzer::EUnits units, bool is_relative, float current_absolute_position)
|
||||
{
|
||||
float lengthsScaleFactor = (units == GCodeAnalyzer::Inches) ? INCHES_TO_MM : 1.0f;
|
||||
if (lineG1.has(Slic3r::Axis(axis)))
|
||||
{
|
||||
float ret = lineG1.value(Slic3r::Axis(axis)) * lengthsScaleFactor;
|
||||
return is_relative ? current_absolute_position + ret : ret;
|
||||
}
|
||||
else
|
||||
return current_absolute_position;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processG1(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
// updates axes positions from line
|
||||
EUnits units = _get_units();
|
||||
float new_pos[Num_Axis];
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
bool is_relative = (_get_global_positioning_type() == Relative);
|
||||
if (a == E)
|
||||
is_relative |= (_get_e_local_positioning_type() == Relative);
|
||||
|
||||
new_pos[a] = axis_absolute_position_from_G1_line((EAxis)a, line, units, is_relative, _get_axis_position((EAxis)a));
|
||||
}
|
||||
|
||||
// updates feedrate from line, if present
|
||||
if (line.has_f())
|
||||
_set_feedrate(line.f() * MMMIN_TO_MMSEC);
|
||||
|
||||
// calculates movement deltas
|
||||
float delta_pos[Num_Axis];
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
delta_pos[a] = new_pos[a] - _get_axis_position((EAxis)a);
|
||||
}
|
||||
|
||||
// Detects move type
|
||||
GCodeMove::EType type = GCodeMove::Noop;
|
||||
|
||||
if (delta_pos[E] < 0.0f)
|
||||
{
|
||||
if ((delta_pos[X] != 0.0f) || (delta_pos[Y] != 0.0f) || (delta_pos[Z] != 0.0f))
|
||||
type = GCodeMove::Move;
|
||||
else
|
||||
type = GCodeMove::Retract;
|
||||
}
|
||||
else if (delta_pos[E] > 0.0f)
|
||||
{
|
||||
if ((delta_pos[X] == 0.0f) && (delta_pos[Y] == 0.0f) && (delta_pos[Z] == 0.0f))
|
||||
type = GCodeMove::Unretract;
|
||||
else if ((delta_pos[X] != 0.0f) || (delta_pos[Y] != 0.0f))
|
||||
type = GCodeMove::Extrude;
|
||||
}
|
||||
else if ((delta_pos[X] != 0.0f) || (delta_pos[Y] != 0.0f) || (delta_pos[Z] != 0.0f))
|
||||
type = GCodeMove::Move;
|
||||
|
||||
ExtrusionRole role = _get_extrusion_role();
|
||||
if ((type == GCodeMove::Extrude) && ((_get_width() == 0.0f) || (_get_height() == 0.0f) || !is_valid_extrusion_role(role)))
|
||||
type = GCodeMove::Move;
|
||||
|
||||
// updates axis positions
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
_set_axis_position((EAxis)a, new_pos[a]);
|
||||
}
|
||||
|
||||
// stores the move
|
||||
if (type != GCodeMove::Noop)
|
||||
_store_move(type);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processG10(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
// stores retract move
|
||||
_store_move(GCodeMove::Retract);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processG11(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
// stores unretract move
|
||||
_store_move(GCodeMove::Unretract);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processG22(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
// stores retract move
|
||||
_store_move(GCodeMove::Retract);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processG23(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
// stores unretract move
|
||||
_store_move(GCodeMove::Unretract);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processG90(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
_set_global_positioning_type(Absolute);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processG91(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
_set_global_positioning_type(Relative);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processG92(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
float lengthsScaleFactor = (_get_units() == Inches) ? INCHES_TO_MM : 1.0f;
|
||||
bool anyFound = false;
|
||||
|
||||
if (line.has_x())
|
||||
{
|
||||
_set_axis_position(X, line.x() * lengthsScaleFactor);
|
||||
anyFound = true;
|
||||
}
|
||||
|
||||
if (line.has_y())
|
||||
{
|
||||
_set_axis_position(Y, line.y() * lengthsScaleFactor);
|
||||
anyFound = true;
|
||||
}
|
||||
|
||||
if (line.has_z())
|
||||
{
|
||||
_set_axis_position(Z, line.z() * lengthsScaleFactor);
|
||||
anyFound = true;
|
||||
}
|
||||
|
||||
if (line.has_e())
|
||||
{
|
||||
_set_axis_position(E, line.e() * lengthsScaleFactor);
|
||||
anyFound = true;
|
||||
}
|
||||
|
||||
if (!anyFound)
|
||||
{
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
_set_axis_position((EAxis)a, 0.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processM82(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
_set_e_local_positioning_type(Absolute);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processM83(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
_set_e_local_positioning_type(Relative);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processT(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
std::string cmd = line.cmd();
|
||||
if (cmd.length() > 1)
|
||||
{
|
||||
unsigned int id = (unsigned int)::strtol(cmd.substr(1).c_str(), nullptr, 10);
|
||||
if (_get_extruder_id() != id)
|
||||
{
|
||||
_set_extruder_id(id);
|
||||
|
||||
// stores tool change move
|
||||
_store_move(GCodeMove::Tool_change);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool GCodeAnalyzer::_process_tags(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
std::string comment = line.comment();
|
||||
|
||||
// extrusion role tag
|
||||
size_t pos = comment.find(Extrusion_Role_Tag);
|
||||
if (pos != comment.npos)
|
||||
{
|
||||
_process_extrusion_role_tag(comment, pos);
|
||||
return true;
|
||||
}
|
||||
|
||||
// mm3 per mm tag
|
||||
pos = comment.find(Mm3_Per_Mm_Tag);
|
||||
if (pos != comment.npos)
|
||||
{
|
||||
_process_mm3_per_mm_tag(comment, pos);
|
||||
return true;
|
||||
}
|
||||
|
||||
// width tag
|
||||
pos = comment.find(Width_Tag);
|
||||
if (pos != comment.npos)
|
||||
{
|
||||
_process_width_tag(comment, pos);
|
||||
return true;
|
||||
}
|
||||
|
||||
// height tag
|
||||
pos = comment.find(Height_Tag);
|
||||
if (pos != comment.npos)
|
||||
{
|
||||
_process_height_tag(comment, pos);
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_process_extrusion_role_tag(const std::string& comment, size_t pos)
|
||||
{
|
||||
int role = (int)::strtol(comment.substr(pos + Extrusion_Role_Tag.length()).c_str(), nullptr, 10);
|
||||
if (_is_valid_extrusion_role(role))
|
||||
_set_extrusion_role((ExtrusionRole)role);
|
||||
else
|
||||
{
|
||||
// todo: show some error ?
|
||||
}
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_process_mm3_per_mm_tag(const std::string& comment, size_t pos)
|
||||
{
|
||||
_set_mm3_per_mm(::strtod(comment.substr(pos + Mm3_Per_Mm_Tag.length()).c_str(), nullptr));
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_process_width_tag(const std::string& comment, size_t pos)
|
||||
{
|
||||
_set_width((float)::strtod(comment.substr(pos + Width_Tag.length()).c_str(), nullptr));
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_process_height_tag(const std::string& comment, size_t pos)
|
||||
{
|
||||
_set_height((float)::strtod(comment.substr(pos + Height_Tag.length()).c_str(), nullptr));
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_units(GCodeAnalyzer::EUnits units)
|
||||
{
|
||||
m_state.units = units;
|
||||
}
|
||||
|
||||
GCodeAnalyzer::EUnits GCodeAnalyzer::_get_units() const
|
||||
{
|
||||
return m_state.units;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_global_positioning_type(GCodeAnalyzer::EPositioningType type)
|
||||
{
|
||||
m_state.global_positioning_type = type;
|
||||
}
|
||||
|
||||
GCodeAnalyzer::EPositioningType GCodeAnalyzer::_get_global_positioning_type() const
|
||||
{
|
||||
return m_state.global_positioning_type;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_e_local_positioning_type(GCodeAnalyzer::EPositioningType type)
|
||||
{
|
||||
m_state.e_local_positioning_type = type;
|
||||
}
|
||||
|
||||
GCodeAnalyzer::EPositioningType GCodeAnalyzer::_get_e_local_positioning_type() const
|
||||
{
|
||||
return m_state.e_local_positioning_type;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_extrusion_role(ExtrusionRole extrusion_role)
|
||||
{
|
||||
m_state.data.extrusion_role = extrusion_role;
|
||||
}
|
||||
|
||||
ExtrusionRole GCodeAnalyzer::_get_extrusion_role() const
|
||||
{
|
||||
return m_state.data.extrusion_role;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_extruder_id(unsigned int id)
|
||||
{
|
||||
m_state.data.extruder_id = id;
|
||||
}
|
||||
|
||||
unsigned int GCodeAnalyzer::_get_extruder_id() const
|
||||
{
|
||||
return m_state.data.extruder_id;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_mm3_per_mm(double value)
|
||||
{
|
||||
m_state.data.mm3_per_mm = value;
|
||||
}
|
||||
|
||||
double GCodeAnalyzer::_get_mm3_per_mm() const
|
||||
{
|
||||
return m_state.data.mm3_per_mm;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_width(float width)
|
||||
{
|
||||
m_state.data.width = width;
|
||||
}
|
||||
|
||||
float GCodeAnalyzer::_get_width() const
|
||||
{
|
||||
return m_state.data.width;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_height(float height)
|
||||
{
|
||||
m_state.data.height = height;
|
||||
}
|
||||
|
||||
float GCodeAnalyzer::_get_height() const
|
||||
{
|
||||
return m_state.data.height;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_feedrate(float feedrate_mm_sec)
|
||||
{
|
||||
m_state.data.feedrate = feedrate_mm_sec;
|
||||
}
|
||||
|
||||
float GCodeAnalyzer::_get_feedrate() const
|
||||
{
|
||||
return m_state.data.feedrate;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_axis_position(EAxis axis, float position)
|
||||
{
|
||||
m_state.position[axis] = position;
|
||||
}
|
||||
|
||||
float GCodeAnalyzer::_get_axis_position(EAxis axis) const
|
||||
{
|
||||
return m_state.position[axis];
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_reset_axes_position()
|
||||
{
|
||||
::memset((void*)m_state.position, 0, Num_Axis * sizeof(float));
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_start_position(const Vec3d& position)
|
||||
{
|
||||
m_state.start_position = position;
|
||||
}
|
||||
|
||||
const Vec3d& GCodeAnalyzer::_get_start_position() const
|
||||
{
|
||||
return m_state.start_position;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_start_extrusion(float extrusion)
|
||||
{
|
||||
m_state.start_extrusion = extrusion;
|
||||
}
|
||||
|
||||
float GCodeAnalyzer::_get_start_extrusion() const
|
||||
{
|
||||
return m_state.start_extrusion;
|
||||
}
|
||||
|
||||
float GCodeAnalyzer::_get_delta_extrusion() const
|
||||
{
|
||||
return _get_axis_position(E) - m_state.start_extrusion;
|
||||
}
|
||||
|
||||
Vec3d GCodeAnalyzer::_get_end_position() const
|
||||
{
|
||||
return Vec3d(m_state.position[X], m_state.position[Y], m_state.position[Z]);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_store_move(GCodeAnalyzer::GCodeMove::EType type)
|
||||
{
|
||||
// if type non mapped yet, map it
|
||||
TypeToMovesMap::iterator it = m_moves_map.find(type);
|
||||
if (it == m_moves_map.end())
|
||||
it = m_moves_map.insert(TypeToMovesMap::value_type(type, GCodeMovesList())).first;
|
||||
|
||||
// store move
|
||||
it->second.emplace_back(type, _get_extrusion_role(), _get_extruder_id(), _get_mm3_per_mm(), _get_width(), _get_height(), _get_feedrate(), _get_start_position(), _get_end_position(), _get_delta_extrusion());
|
||||
}
|
||||
|
||||
bool GCodeAnalyzer::_is_valid_extrusion_role(int value) const
|
||||
{
|
||||
return ((int)erNone <= value) && (value <= (int)erMixed);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_calc_gcode_preview_extrusion_layers(GCodePreviewData& preview_data)
|
||||
{
|
||||
struct Helper
|
||||
{
|
||||
static GCodePreviewData::Extrusion::Layer& get_layer_at_z(GCodePreviewData::Extrusion::LayersList& layers, float z)
|
||||
{
|
||||
for (GCodePreviewData::Extrusion::Layer& layer : layers)
|
||||
{
|
||||
// if layer found, return it
|
||||
if (layer.z == z)
|
||||
return layer;
|
||||
}
|
||||
|
||||
// if layer not found, create and return it
|
||||
layers.emplace_back(z, ExtrusionPaths());
|
||||
return layers.back();
|
||||
}
|
||||
|
||||
static void store_polyline(const Polyline& polyline, const Metadata& data, float z, GCodePreviewData& preview_data)
|
||||
{
|
||||
// if the polyline is valid, create the extrusion path from it and store it
|
||||
if (polyline.is_valid())
|
||||
{
|
||||
ExtrusionPath path(data.extrusion_role, data.mm3_per_mm, data.width, data.height);
|
||||
path.polyline = polyline;
|
||||
path.feedrate = data.feedrate;
|
||||
path.extruder_id = data.extruder_id;
|
||||
|
||||
get_layer_at_z(preview_data.extrusion.layers, z).paths.push_back(path);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TypeToMovesMap::iterator extrude_moves = m_moves_map.find(GCodeMove::Extrude);
|
||||
if (extrude_moves == m_moves_map.end())
|
||||
return;
|
||||
|
||||
Metadata data;
|
||||
float z = FLT_MAX;
|
||||
Polyline polyline;
|
||||
Vec3d position(FLT_MAX, FLT_MAX, FLT_MAX);
|
||||
float volumetric_rate = FLT_MAX;
|
||||
GCodePreviewData::Range height_range;
|
||||
GCodePreviewData::Range width_range;
|
||||
GCodePreviewData::Range feedrate_range;
|
||||
GCodePreviewData::Range volumetric_rate_range;
|
||||
|
||||
// constructs the polylines while traversing the moves
|
||||
for (const GCodeMove& move : extrude_moves->second)
|
||||
{
|
||||
if ((data != move.data) || (z != move.start_position.z()) || (position != move.start_position) || (volumetric_rate != move.data.feedrate * (float)move.data.mm3_per_mm))
|
||||
{
|
||||
// store current polyline
|
||||
polyline.remove_duplicate_points();
|
||||
Helper::store_polyline(polyline, data, z, preview_data);
|
||||
|
||||
// reset current polyline
|
||||
polyline = Polyline();
|
||||
|
||||
// add both vertices of the move
|
||||
polyline.append(Point(scale_(move.start_position.x()), scale_(move.start_position.y())));
|
||||
polyline.append(Point(scale_(move.end_position.x()), scale_(move.end_position.y())));
|
||||
|
||||
// update current values
|
||||
data = move.data;
|
||||
z = (float)move.start_position.z();
|
||||
volumetric_rate = move.data.feedrate * (float)move.data.mm3_per_mm;
|
||||
height_range.update_from(move.data.height);
|
||||
width_range.update_from(move.data.width);
|
||||
feedrate_range.update_from(move.data.feedrate);
|
||||
volumetric_rate_range.update_from(volumetric_rate);
|
||||
}
|
||||
else
|
||||
// append end vertex of the move to current polyline
|
||||
polyline.append(Point(scale_(move.end_position.x()), scale_(move.end_position.y())));
|
||||
|
||||
// update current values
|
||||
position = move.end_position;
|
||||
}
|
||||
|
||||
// store last polyline
|
||||
polyline.remove_duplicate_points();
|
||||
Helper::store_polyline(polyline, data, z, preview_data);
|
||||
|
||||
// updates preview ranges data
|
||||
preview_data.ranges.height.update_from(height_range);
|
||||
preview_data.ranges.width.update_from(width_range);
|
||||
preview_data.ranges.feedrate.update_from(feedrate_range);
|
||||
preview_data.ranges.volumetric_rate.update_from(volumetric_rate_range);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_calc_gcode_preview_travel(GCodePreviewData& preview_data)
|
||||
{
|
||||
struct Helper
|
||||
{
|
||||
static void store_polyline(const Polyline3& polyline, GCodePreviewData::Travel::EType type, GCodePreviewData::Travel::Polyline::EDirection direction,
|
||||
float feedrate, unsigned int extruder_id, GCodePreviewData& preview_data)
|
||||
{
|
||||
// if the polyline is valid, store it
|
||||
if (polyline.is_valid())
|
||||
preview_data.travel.polylines.emplace_back(type, direction, feedrate, extruder_id, polyline);
|
||||
}
|
||||
};
|
||||
|
||||
TypeToMovesMap::iterator travel_moves = m_moves_map.find(GCodeMove::Move);
|
||||
if (travel_moves == m_moves_map.end())
|
||||
return;
|
||||
|
||||
Polyline3 polyline;
|
||||
Vec3d position(FLT_MAX, FLT_MAX, FLT_MAX);
|
||||
GCodePreviewData::Travel::EType type = GCodePreviewData::Travel::Num_Types;
|
||||
GCodePreviewData::Travel::Polyline::EDirection direction = GCodePreviewData::Travel::Polyline::Num_Directions;
|
||||
float feedrate = FLT_MAX;
|
||||
unsigned int extruder_id = -1;
|
||||
|
||||
GCodePreviewData::Range height_range;
|
||||
GCodePreviewData::Range width_range;
|
||||
GCodePreviewData::Range feedrate_range;
|
||||
|
||||
// constructs the polylines while traversing the moves
|
||||
for (const GCodeMove& move : travel_moves->second)
|
||||
{
|
||||
GCodePreviewData::Travel::EType move_type = (move.delta_extruder < 0.0f) ? GCodePreviewData::Travel::Retract : ((move.delta_extruder > 0.0f) ? GCodePreviewData::Travel::Extrude : GCodePreviewData::Travel::Move);
|
||||
GCodePreviewData::Travel::Polyline::EDirection move_direction = ((move.start_position.x() != move.end_position.x()) || (move.start_position.y() != move.end_position.y())) ? GCodePreviewData::Travel::Polyline::Generic : GCodePreviewData::Travel::Polyline::Vertical;
|
||||
|
||||
if ((type != move_type) || (direction != move_direction) || (feedrate != move.data.feedrate) || (position != move.start_position) || (extruder_id != move.data.extruder_id))
|
||||
{
|
||||
// store current polyline
|
||||
polyline.remove_duplicate_points();
|
||||
Helper::store_polyline(polyline, type, direction, feedrate, extruder_id, preview_data);
|
||||
|
||||
// reset current polyline
|
||||
polyline = Polyline3();
|
||||
|
||||
// add both vertices of the move
|
||||
polyline.append(Vec3crd(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z())));
|
||||
polyline.append(Vec3crd(scale_(move.end_position.x()), scale_(move.end_position.y()), scale_(move.end_position.z())));
|
||||
}
|
||||
else
|
||||
// append end vertex of the move to current polyline
|
||||
polyline.append(Vec3crd(scale_(move.end_position.x()), scale_(move.end_position.y()), scale_(move.end_position.z())));
|
||||
|
||||
// update current values
|
||||
position = move.end_position;
|
||||
type = move_type;
|
||||
feedrate = move.data.feedrate;
|
||||
extruder_id = move.data.extruder_id;
|
||||
height_range.update_from(move.data.height);
|
||||
width_range.update_from(move.data.width);
|
||||
feedrate_range.update_from(move.data.feedrate);
|
||||
}
|
||||
|
||||
// store last polyline
|
||||
polyline.remove_duplicate_points();
|
||||
Helper::store_polyline(polyline, type, direction, feedrate, extruder_id, preview_data);
|
||||
|
||||
// updates preview ranges data
|
||||
preview_data.ranges.height.update_from(height_range);
|
||||
preview_data.ranges.width.update_from(width_range);
|
||||
preview_data.ranges.feedrate.update_from(feedrate_range);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_calc_gcode_preview_retractions(GCodePreviewData& preview_data)
|
||||
{
|
||||
TypeToMovesMap::iterator retraction_moves = m_moves_map.find(GCodeMove::Retract);
|
||||
if (retraction_moves == m_moves_map.end())
|
||||
return;
|
||||
|
||||
for (const GCodeMove& move : retraction_moves->second)
|
||||
{
|
||||
// store position
|
||||
Vec3crd position(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z()));
|
||||
preview_data.retraction.positions.emplace_back(position, move.data.width, move.data.height);
|
||||
}
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_calc_gcode_preview_unretractions(GCodePreviewData& preview_data)
|
||||
{
|
||||
TypeToMovesMap::iterator unretraction_moves = m_moves_map.find(GCodeMove::Unretract);
|
||||
if (unretraction_moves == m_moves_map.end())
|
||||
return;
|
||||
|
||||
for (const GCodeMove& move : unretraction_moves->second)
|
||||
{
|
||||
// store position
|
||||
Vec3crd position(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z()));
|
||||
preview_data.unretraction.positions.emplace_back(position, move.data.width, move.data.height);
|
||||
}
|
||||
}
|
||||
|
||||
GCodePreviewData::Color operator + (const GCodePreviewData::Color& c1, const GCodePreviewData::Color& c2)
|
||||
{
|
||||
return GCodePreviewData::Color(clamp(0.0f, 1.0f, c1.rgba[0] + c2.rgba[0]),
|
||||
clamp(0.0f, 1.0f, c1.rgba[1] + c2.rgba[1]),
|
||||
clamp(0.0f, 1.0f, c1.rgba[2] + c2.rgba[2]),
|
||||
clamp(0.0f, 1.0f, c1.rgba[3] + c2.rgba[3]));
|
||||
}
|
||||
|
||||
GCodePreviewData::Color operator * (float f, const GCodePreviewData::Color& color)
|
||||
{
|
||||
return GCodePreviewData::Color(clamp(0.0f, 1.0f, f * color.rgba[0]),
|
||||
clamp(0.0f, 1.0f, f * color.rgba[1]),
|
||||
clamp(0.0f, 1.0f, f * color.rgba[2]),
|
||||
clamp(0.0f, 1.0f, f * color.rgba[3]));
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
233
src/libslic3r/GCode/Analyzer.hpp
Normal file
233
src/libslic3r/GCode/Analyzer.hpp
Normal file
|
|
@ -0,0 +1,233 @@
|
|||
#ifndef slic3r_GCode_Analyzer_hpp_
|
||||
#define slic3r_GCode_Analyzer_hpp_
|
||||
|
||||
#include "../libslic3r.h"
|
||||
#include "../PrintConfig.hpp"
|
||||
#include "../ExtrusionEntity.hpp"
|
||||
|
||||
#include "Point.hpp"
|
||||
#include "GCodeReader.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class GCodePreviewData;
|
||||
|
||||
class GCodeAnalyzer
|
||||
{
|
||||
public:
|
||||
static const std::string Extrusion_Role_Tag;
|
||||
static const std::string Mm3_Per_Mm_Tag;
|
||||
static const std::string Width_Tag;
|
||||
static const std::string Height_Tag;
|
||||
|
||||
static const double Default_mm3_per_mm;
|
||||
static const float Default_Width;
|
||||
static const float Default_Height;
|
||||
|
||||
enum EUnits : unsigned char
|
||||
{
|
||||
Millimeters,
|
||||
Inches
|
||||
};
|
||||
|
||||
enum EAxis : unsigned char
|
||||
{
|
||||
X,
|
||||
Y,
|
||||
Z,
|
||||
E,
|
||||
Num_Axis
|
||||
};
|
||||
|
||||
enum EPositioningType : unsigned char
|
||||
{
|
||||
Absolute,
|
||||
Relative
|
||||
};
|
||||
|
||||
struct Metadata
|
||||
{
|
||||
ExtrusionRole extrusion_role;
|
||||
unsigned int extruder_id;
|
||||
double mm3_per_mm;
|
||||
float width; // mm
|
||||
float height; // mm
|
||||
float feedrate; // mm/s
|
||||
|
||||
Metadata();
|
||||
Metadata(ExtrusionRole extrusion_role, unsigned int extruder_id, double mm3_per_mm, float width, float height, float feedrate);
|
||||
|
||||
bool operator != (const Metadata& other) const;
|
||||
};
|
||||
|
||||
struct GCodeMove
|
||||
{
|
||||
enum EType : unsigned char
|
||||
{
|
||||
Noop,
|
||||
Retract,
|
||||
Unretract,
|
||||
Tool_change,
|
||||
Move,
|
||||
Extrude,
|
||||
Num_Types
|
||||
};
|
||||
|
||||
EType type;
|
||||
Metadata data;
|
||||
Vec3d start_position;
|
||||
Vec3d end_position;
|
||||
float delta_extruder;
|
||||
|
||||
GCodeMove(EType type, ExtrusionRole extrusion_role, unsigned int extruder_id, double mm3_per_mm, float width, float height, float feedrate, const Vec3d& start_position, const Vec3d& end_position, float delta_extruder);
|
||||
GCodeMove(EType type, const Metadata& data, const Vec3d& start_position, const Vec3d& end_position, float delta_extruder);
|
||||
};
|
||||
|
||||
typedef std::vector<GCodeMove> GCodeMovesList;
|
||||
typedef std::map<GCodeMove::EType, GCodeMovesList> TypeToMovesMap;
|
||||
|
||||
private:
|
||||
struct State
|
||||
{
|
||||
EUnits units;
|
||||
EPositioningType global_positioning_type;
|
||||
EPositioningType e_local_positioning_type;
|
||||
Metadata data;
|
||||
Vec3d start_position = Vec3d::Zero();
|
||||
float start_extrusion;
|
||||
float position[Num_Axis];
|
||||
};
|
||||
|
||||
private:
|
||||
State m_state;
|
||||
GCodeReader m_parser;
|
||||
TypeToMovesMap m_moves_map;
|
||||
|
||||
// The output of process_layer()
|
||||
std::string m_process_output;
|
||||
|
||||
public:
|
||||
GCodeAnalyzer();
|
||||
|
||||
// Reinitialize the analyzer
|
||||
void reset();
|
||||
|
||||
// Adds the gcode contained in the given string to the analysis and returns it after removing the workcodes
|
||||
const std::string& process_gcode(const std::string& gcode);
|
||||
|
||||
// Calculates all data needed for gcode visualization
|
||||
void calc_gcode_preview_data(GCodePreviewData& preview_data);
|
||||
|
||||
static bool is_valid_extrusion_role(ExtrusionRole role);
|
||||
|
||||
private:
|
||||
// Processes the given gcode line
|
||||
void _process_gcode_line(GCodeReader& reader, const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Move
|
||||
void _processG1(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Retract
|
||||
void _processG10(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Unretract
|
||||
void _processG11(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Firmware controlled Retract
|
||||
void _processG22(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Firmware controlled Unretract
|
||||
void _processG23(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set to Absolute Positioning
|
||||
void _processG90(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set to Relative Positioning
|
||||
void _processG91(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set Position
|
||||
void _processG92(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set extruder to absolute mode
|
||||
void _processM82(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set extruder to relative mode
|
||||
void _processM83(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Processes T line (Select Tool)
|
||||
void _processT(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Processes the tags
|
||||
// Returns true if any tag has been processed
|
||||
bool _process_tags(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Processes extrusion role tag
|
||||
void _process_extrusion_role_tag(const std::string& comment, size_t pos);
|
||||
|
||||
// Processes mm3_per_mm tag
|
||||
void _process_mm3_per_mm_tag(const std::string& comment, size_t pos);
|
||||
|
||||
// Processes width tag
|
||||
void _process_width_tag(const std::string& comment, size_t pos);
|
||||
|
||||
// Processes height tag
|
||||
void _process_height_tag(const std::string& comment, size_t pos);
|
||||
|
||||
void _set_units(EUnits units);
|
||||
EUnits _get_units() const;
|
||||
|
||||
void _set_global_positioning_type(EPositioningType type);
|
||||
EPositioningType _get_global_positioning_type() const;
|
||||
|
||||
void _set_e_local_positioning_type(EPositioningType type);
|
||||
EPositioningType _get_e_local_positioning_type() const;
|
||||
|
||||
void _set_extrusion_role(ExtrusionRole extrusion_role);
|
||||
ExtrusionRole _get_extrusion_role() const;
|
||||
|
||||
void _set_extruder_id(unsigned int id);
|
||||
unsigned int _get_extruder_id() const;
|
||||
|
||||
void _set_mm3_per_mm(double value);
|
||||
double _get_mm3_per_mm() const;
|
||||
|
||||
void _set_width(float width);
|
||||
float _get_width() const;
|
||||
|
||||
void _set_height(float height);
|
||||
float _get_height() const;
|
||||
|
||||
void _set_feedrate(float feedrate_mm_sec);
|
||||
float _get_feedrate() const;
|
||||
|
||||
void _set_axis_position(EAxis axis, float position);
|
||||
float _get_axis_position(EAxis axis) const;
|
||||
|
||||
// Sets axes position to zero
|
||||
void _reset_axes_position();
|
||||
|
||||
void _set_start_position(const Vec3d& position);
|
||||
const Vec3d& _get_start_position() const;
|
||||
|
||||
void _set_start_extrusion(float extrusion);
|
||||
float _get_start_extrusion() const;
|
||||
float _get_delta_extrusion() const;
|
||||
|
||||
// Returns current xyz position (from m_state.position[])
|
||||
Vec3d _get_end_position() const;
|
||||
|
||||
// Adds a new move with the given data
|
||||
void _store_move(GCodeMove::EType type);
|
||||
|
||||
// Checks if the given int is a valid extrusion role (contained into enum ExtrusionRole)
|
||||
bool _is_valid_extrusion_role(int value) const;
|
||||
|
||||
void _calc_gcode_preview_extrusion_layers(GCodePreviewData& preview_data);
|
||||
void _calc_gcode_preview_travel(GCodePreviewData& preview_data);
|
||||
void _calc_gcode_preview_retractions(GCodePreviewData& preview_data);
|
||||
void _calc_gcode_preview_unretractions(GCodePreviewData& preview_data);
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif /* slic3r_GCode_Analyzer_hpp_ */
|
||||
749
src/libslic3r/GCode/CoolingBuffer.cpp
Normal file
749
src/libslic3r/GCode/CoolingBuffer.cpp
Normal file
|
|
@ -0,0 +1,749 @@
|
|||
#include "../GCode.hpp"
|
||||
#include "CoolingBuffer.hpp"
|
||||
#include <boost/algorithm/string/predicate.hpp>
|
||||
#include <boost/algorithm/string/replace.hpp>
|
||||
#include <iostream>
|
||||
#include <float.h>
|
||||
|
||||
#if 0
|
||||
#define DEBUG
|
||||
#define _DEBUG
|
||||
#undef NDEBUG
|
||||
#endif
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
CoolingBuffer::CoolingBuffer(GCode &gcodegen) : m_gcodegen(gcodegen), m_current_extruder(0)
|
||||
{
|
||||
this->reset();
|
||||
}
|
||||
|
||||
void CoolingBuffer::reset()
|
||||
{
|
||||
m_current_pos.assign(5, 0.f);
|
||||
Vec3d pos = m_gcodegen.writer().get_position();
|
||||
m_current_pos[0] = float(pos(0));
|
||||
m_current_pos[1] = float(pos(1));
|
||||
m_current_pos[2] = float(pos(2));
|
||||
m_current_pos[4] = float(m_gcodegen.config().travel_speed.value);
|
||||
}
|
||||
|
||||
struct CoolingLine
|
||||
{
|
||||
enum Type {
|
||||
TYPE_SET_TOOL = 1 << 0,
|
||||
TYPE_EXTRUDE_END = 1 << 1,
|
||||
TYPE_BRIDGE_FAN_START = 1 << 2,
|
||||
TYPE_BRIDGE_FAN_END = 1 << 3,
|
||||
TYPE_G0 = 1 << 4,
|
||||
TYPE_G1 = 1 << 5,
|
||||
TYPE_ADJUSTABLE = 1 << 6,
|
||||
TYPE_EXTERNAL_PERIMETER = 1 << 7,
|
||||
// The line sets a feedrate.
|
||||
TYPE_HAS_F = 1 << 8,
|
||||
TYPE_WIPE = 1 << 9,
|
||||
TYPE_G4 = 1 << 10,
|
||||
TYPE_G92 = 1 << 11,
|
||||
};
|
||||
|
||||
CoolingLine(unsigned int type, size_t line_start, size_t line_end) :
|
||||
type(type), line_start(line_start), line_end(line_end),
|
||||
length(0.f), feedrate(0.f), time(0.f), time_max(0.f), slowdown(false) {}
|
||||
|
||||
bool adjustable(bool slowdown_external_perimeters) const {
|
||||
return (this->type & TYPE_ADJUSTABLE) &&
|
||||
(! (this->type & TYPE_EXTERNAL_PERIMETER) || slowdown_external_perimeters) &&
|
||||
this->time < this->time_max;
|
||||
}
|
||||
|
||||
bool adjustable() const {
|
||||
return (this->type & TYPE_ADJUSTABLE) && this->time < this->time_max;
|
||||
}
|
||||
|
||||
size_t type;
|
||||
// Start of this line at the G-code snippet.
|
||||
size_t line_start;
|
||||
// End of this line at the G-code snippet.
|
||||
size_t line_end;
|
||||
// XY Euclidian length of this segment.
|
||||
float length;
|
||||
// Current feedrate, possibly adjusted.
|
||||
float feedrate;
|
||||
// Current duration of this segment.
|
||||
float time;
|
||||
// Maximum duration of this segment.
|
||||
float time_max;
|
||||
// If marked with the "slowdown" flag, the line has been slowed down.
|
||||
bool slowdown;
|
||||
};
|
||||
|
||||
// Calculate the required per extruder time stretches.
|
||||
struct PerExtruderAdjustments
|
||||
{
|
||||
// Calculate the total elapsed time per this extruder, adjusted for the slowdown.
|
||||
float elapsed_time_total() {
|
||||
float time_total = 0.f;
|
||||
for (const CoolingLine &line : lines)
|
||||
time_total += line.time;
|
||||
return time_total;
|
||||
}
|
||||
// Calculate the total elapsed time when slowing down
|
||||
// to the minimum extrusion feed rate defined for the current material.
|
||||
float maximum_time_after_slowdown(bool slowdown_external_perimeters) {
|
||||
float time_total = 0.f;
|
||||
for (const CoolingLine &line : lines)
|
||||
if (line.adjustable(slowdown_external_perimeters)) {
|
||||
if (line.time_max == FLT_MAX)
|
||||
return FLT_MAX;
|
||||
else
|
||||
time_total += line.time_max;
|
||||
} else
|
||||
time_total += line.time;
|
||||
return time_total;
|
||||
}
|
||||
// Calculate the adjustable part of the total time.
|
||||
float adjustable_time(bool slowdown_external_perimeters) {
|
||||
float time_total = 0.f;
|
||||
for (const CoolingLine &line : lines)
|
||||
if (line.adjustable(slowdown_external_perimeters))
|
||||
time_total += line.time;
|
||||
return time_total;
|
||||
}
|
||||
// Calculate the non-adjustable part of the total time.
|
||||
float non_adjustable_time(bool slowdown_external_perimeters) {
|
||||
float time_total = 0.f;
|
||||
for (const CoolingLine &line : lines)
|
||||
if (! line.adjustable(slowdown_external_perimeters))
|
||||
time_total += line.time;
|
||||
return time_total;
|
||||
}
|
||||
// Slow down the adjustable extrusions to the minimum feedrate allowed for the current extruder material.
|
||||
// Used by both proportional and non-proportional slow down.
|
||||
float slowdown_to_minimum_feedrate(bool slowdown_external_perimeters) {
|
||||
float time_total = 0.f;
|
||||
for (CoolingLine &line : lines) {
|
||||
if (line.adjustable(slowdown_external_perimeters)) {
|
||||
assert(line.time_max >= 0.f && line.time_max < FLT_MAX);
|
||||
line.slowdown = true;
|
||||
line.time = line.time_max;
|
||||
line.feedrate = line.length / line.time;
|
||||
}
|
||||
time_total += line.time;
|
||||
}
|
||||
return time_total;
|
||||
}
|
||||
// Slow down each adjustable G-code line proportionally by a factor.
|
||||
// Used by the proportional slow down.
|
||||
float slow_down_proportional(float factor, bool slowdown_external_perimeters) {
|
||||
assert(factor >= 1.f);
|
||||
float time_total = 0.f;
|
||||
for (CoolingLine &line : lines) {
|
||||
if (line.adjustable(slowdown_external_perimeters)) {
|
||||
line.slowdown = true;
|
||||
line.time = std::min(line.time_max, line.time * factor);
|
||||
line.feedrate = line.length / line.time;
|
||||
}
|
||||
time_total += line.time;
|
||||
}
|
||||
return time_total;
|
||||
}
|
||||
|
||||
// Sort the lines, adjustable first, higher feedrate first.
|
||||
// Used by non-proportional slow down.
|
||||
void sort_lines_by_decreasing_feedrate() {
|
||||
std::sort(lines.begin(), lines.end(), [](const CoolingLine &l1, const CoolingLine &l2) {
|
||||
bool adj1 = l1.adjustable();
|
||||
bool adj2 = l2.adjustable();
|
||||
return (adj1 == adj2) ? l1.feedrate > l2.feedrate : adj1;
|
||||
});
|
||||
for (n_lines_adjustable = 0;
|
||||
n_lines_adjustable < lines.size() && this->lines[n_lines_adjustable].adjustable();
|
||||
++ n_lines_adjustable);
|
||||
time_non_adjustable = 0.f;
|
||||
for (size_t i = n_lines_adjustable; i < lines.size(); ++ i)
|
||||
time_non_adjustable += lines[i].time;
|
||||
}
|
||||
|
||||
// Calculate the maximum time stretch when slowing down to min_feedrate.
|
||||
// Slowdown to min_feedrate shall be allowed for this extruder's material.
|
||||
// Used by non-proportional slow down.
|
||||
float time_stretch_when_slowing_down_to_feedrate(float min_feedrate) {
|
||||
float time_stretch = 0.f;
|
||||
assert(this->min_print_speed < min_feedrate + EPSILON);
|
||||
for (size_t i = 0; i < n_lines_adjustable; ++ i) {
|
||||
const CoolingLine &line = lines[i];
|
||||
if (line.feedrate > min_feedrate)
|
||||
time_stretch += line.time * (line.feedrate / min_feedrate - 1.f);
|
||||
}
|
||||
return time_stretch;
|
||||
}
|
||||
|
||||
// Slow down all adjustable lines down to min_feedrate.
|
||||
// Slowdown to min_feedrate shall be allowed for this extruder's material.
|
||||
// Used by non-proportional slow down.
|
||||
void slow_down_to_feedrate(float min_feedrate) {
|
||||
assert(this->min_print_speed < min_feedrate + EPSILON);
|
||||
for (size_t i = 0; i < n_lines_adjustable; ++ i) {
|
||||
CoolingLine &line = lines[i];
|
||||
if (line.feedrate > min_feedrate) {
|
||||
line.time *= std::max(1.f, line.feedrate / min_feedrate);
|
||||
line.feedrate = min_feedrate;
|
||||
line.slowdown = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Extruder, for which the G-code will be adjusted.
|
||||
unsigned int extruder_id = 0;
|
||||
// Is the cooling slow down logic enabled for this extruder's material?
|
||||
bool cooling_slow_down_enabled = false;
|
||||
// Slow down the print down to min_print_speed if the total layer time is below slowdown_below_layer_time.
|
||||
float slowdown_below_layer_time = 0.f;
|
||||
// Minimum print speed allowed for this extruder.
|
||||
float min_print_speed = 0.f;
|
||||
|
||||
// Parsed lines.
|
||||
std::vector<CoolingLine> lines;
|
||||
// The following two values are set by sort_lines_by_decreasing_feedrate():
|
||||
// Number of adjustable lines, at the start of lines.
|
||||
size_t n_lines_adjustable = 0;
|
||||
// Non-adjustable time of lines starting with n_lines_adjustable.
|
||||
float time_non_adjustable = 0;
|
||||
// Current total time for this extruder.
|
||||
float time_total = 0;
|
||||
// Maximum time for this extruder, when the maximum slow down is applied.
|
||||
float time_maximum = 0;
|
||||
|
||||
// Temporaries for processing the slow down. Both thresholds go from 0 to n_lines_adjustable.
|
||||
size_t idx_line_begin = 0;
|
||||
size_t idx_line_end = 0;
|
||||
};
|
||||
|
||||
std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_id)
|
||||
{
|
||||
std::vector<PerExtruderAdjustments> per_extruder_adjustments = this->parse_layer_gcode(gcode, m_current_pos);
|
||||
float layer_time_stretched = this->calculate_layer_slowdown(per_extruder_adjustments);
|
||||
return this->apply_layer_cooldown(gcode, layer_id, layer_time_stretched, per_extruder_adjustments);
|
||||
}
|
||||
|
||||
// Parse the layer G-code for the moves, which could be adjusted.
|
||||
// Return the list of parsed lines, bucketed by an extruder.
|
||||
std::vector<PerExtruderAdjustments> CoolingBuffer::parse_layer_gcode(const std::string &gcode, std::vector<float> ¤t_pos) const
|
||||
{
|
||||
const FullPrintConfig &config = m_gcodegen.config();
|
||||
const std::vector<Extruder> &extruders = m_gcodegen.writer().extruders();
|
||||
unsigned int num_extruders = 0;
|
||||
for (const Extruder &ex : extruders)
|
||||
num_extruders = std::max(ex.id() + 1, num_extruders);
|
||||
|
||||
std::vector<PerExtruderAdjustments> per_extruder_adjustments(extruders.size());
|
||||
std::vector<size_t> map_extruder_to_per_extruder_adjustment(num_extruders, 0);
|
||||
for (size_t i = 0; i < extruders.size(); ++ i) {
|
||||
PerExtruderAdjustments &adj = per_extruder_adjustments[i];
|
||||
unsigned int extruder_id = extruders[i].id();
|
||||
adj.extruder_id = extruder_id;
|
||||
adj.cooling_slow_down_enabled = config.cooling.get_at(extruder_id);
|
||||
adj.slowdown_below_layer_time = config.slowdown_below_layer_time.get_at(extruder_id);
|
||||
adj.min_print_speed = config.min_print_speed.get_at(extruder_id);
|
||||
map_extruder_to_per_extruder_adjustment[extruder_id] = i;
|
||||
}
|
||||
|
||||
const std::string toolchange_prefix = m_gcodegen.writer().toolchange_prefix();
|
||||
unsigned int current_extruder = m_current_extruder;
|
||||
PerExtruderAdjustments *adjustment = &per_extruder_adjustments[map_extruder_to_per_extruder_adjustment[current_extruder]];
|
||||
const char *line_start = gcode.c_str();
|
||||
const char *line_end = line_start;
|
||||
const char extrusion_axis = config.get_extrusion_axis()[0];
|
||||
// Index of an existing CoolingLine of the current adjustment, which holds the feedrate setting command
|
||||
// for a sequence of extrusion moves.
|
||||
size_t active_speed_modifier = size_t(-1);
|
||||
|
||||
for (; *line_start != 0; line_start = line_end)
|
||||
{
|
||||
while (*line_end != '\n' && *line_end != 0)
|
||||
++ line_end;
|
||||
// sline will not contain the trailing '\n'.
|
||||
std::string sline(line_start, line_end);
|
||||
// CoolingLine will contain the trailing '\n'.
|
||||
if (*line_end == '\n')
|
||||
++ line_end;
|
||||
CoolingLine line(0, line_start - gcode.c_str(), line_end - gcode.c_str());
|
||||
if (boost::starts_with(sline, "G0 "))
|
||||
line.type = CoolingLine::TYPE_G0;
|
||||
else if (boost::starts_with(sline, "G1 "))
|
||||
line.type = CoolingLine::TYPE_G1;
|
||||
else if (boost::starts_with(sline, "G92 "))
|
||||
line.type = CoolingLine::TYPE_G92;
|
||||
if (line.type) {
|
||||
// G0, G1 or G92
|
||||
// Parse the G-code line.
|
||||
std::vector<float> new_pos(current_pos);
|
||||
const char *c = sline.data() + 3;
|
||||
for (;;) {
|
||||
// Skip whitespaces.
|
||||
for (; *c == ' ' || *c == '\t'; ++ c);
|
||||
if (*c == 0 || *c == ';')
|
||||
break;
|
||||
// Parse the axis.
|
||||
size_t axis = (*c >= 'X' && *c <= 'Z') ? (*c - 'X') :
|
||||
(*c == extrusion_axis) ? 3 : (*c == 'F') ? 4 : size_t(-1);
|
||||
if (axis != size_t(-1)) {
|
||||
new_pos[axis] = float(atof(++c));
|
||||
if (axis == 4) {
|
||||
// Convert mm/min to mm/sec.
|
||||
new_pos[4] /= 60.f;
|
||||
if ((line.type & CoolingLine::TYPE_G92) == 0)
|
||||
// This is G0 or G1 line and it sets the feedrate. This mark is used for reducing the duplicate F calls.
|
||||
line.type |= CoolingLine::TYPE_HAS_F;
|
||||
}
|
||||
}
|
||||
// Skip this word.
|
||||
for (; *c != ' ' && *c != '\t' && *c != 0; ++ c);
|
||||
}
|
||||
bool external_perimeter = boost::contains(sline, ";_EXTERNAL_PERIMETER");
|
||||
bool wipe = boost::contains(sline, ";_WIPE");
|
||||
if (external_perimeter)
|
||||
line.type |= CoolingLine::TYPE_EXTERNAL_PERIMETER;
|
||||
if (wipe)
|
||||
line.type |= CoolingLine::TYPE_WIPE;
|
||||
if (boost::contains(sline, ";_EXTRUDE_SET_SPEED") && ! wipe) {
|
||||
line.type |= CoolingLine::TYPE_ADJUSTABLE;
|
||||
active_speed_modifier = adjustment->lines.size();
|
||||
}
|
||||
if ((line.type & CoolingLine::TYPE_G92) == 0) {
|
||||
// G0 or G1. Calculate the duration.
|
||||
if (config.use_relative_e_distances.value)
|
||||
// Reset extruder accumulator.
|
||||
current_pos[3] = 0.f;
|
||||
float dif[4];
|
||||
for (size_t i = 0; i < 4; ++ i)
|
||||
dif[i] = new_pos[i] - current_pos[i];
|
||||
float dxy2 = dif[0] * dif[0] + dif[1] * dif[1];
|
||||
float dxyz2 = dxy2 + dif[2] * dif[2];
|
||||
if (dxyz2 > 0.f) {
|
||||
// Movement in xyz, calculate time from the xyz Euclidian distance.
|
||||
line.length = sqrt(dxyz2);
|
||||
} else if (std::abs(dif[3]) > 0.f) {
|
||||
// Movement in the extruder axis.
|
||||
line.length = std::abs(dif[3]);
|
||||
}
|
||||
line.feedrate = new_pos[4];
|
||||
assert((line.type & CoolingLine::TYPE_ADJUSTABLE) == 0 || line.feedrate > 0.f);
|
||||
if (line.length > 0)
|
||||
line.time = line.length / line.feedrate;
|
||||
line.time_max = line.time;
|
||||
if ((line.type & CoolingLine::TYPE_ADJUSTABLE) || active_speed_modifier != size_t(-1))
|
||||
line.time_max = (adjustment->min_print_speed == 0.f) ? FLT_MAX : std::max(line.time, line.length / adjustment->min_print_speed);
|
||||
if (active_speed_modifier < adjustment->lines.size() && (line.type & CoolingLine::TYPE_G1)) {
|
||||
// Inside the ";_EXTRUDE_SET_SPEED" blocks, there must not be a G1 Fxx entry.
|
||||
assert((line.type & CoolingLine::TYPE_HAS_F) == 0);
|
||||
CoolingLine &sm = adjustment->lines[active_speed_modifier];
|
||||
assert(sm.feedrate > 0.f);
|
||||
sm.length += line.length;
|
||||
sm.time += line.time;
|
||||
if (sm.time_max != FLT_MAX) {
|
||||
if (line.time_max == FLT_MAX)
|
||||
sm.time_max = FLT_MAX;
|
||||
else
|
||||
sm.time_max += line.time_max;
|
||||
}
|
||||
// Don't store this line.
|
||||
line.type = 0;
|
||||
}
|
||||
}
|
||||
current_pos = std::move(new_pos);
|
||||
} else if (boost::starts_with(sline, ";_EXTRUDE_END")) {
|
||||
line.type = CoolingLine::TYPE_EXTRUDE_END;
|
||||
active_speed_modifier = size_t(-1);
|
||||
} else if (boost::starts_with(sline, toolchange_prefix)) {
|
||||
// Switch the tool.
|
||||
line.type = CoolingLine::TYPE_SET_TOOL;
|
||||
unsigned int new_extruder = (unsigned int)atoi(sline.c_str() + toolchange_prefix.size());
|
||||
if (new_extruder != current_extruder) {
|
||||
current_extruder = new_extruder;
|
||||
adjustment = &per_extruder_adjustments[map_extruder_to_per_extruder_adjustment[current_extruder]];
|
||||
}
|
||||
} else if (boost::starts_with(sline, ";_BRIDGE_FAN_START")) {
|
||||
line.type = CoolingLine::TYPE_BRIDGE_FAN_START;
|
||||
} else if (boost::starts_with(sline, ";_BRIDGE_FAN_END")) {
|
||||
line.type = CoolingLine::TYPE_BRIDGE_FAN_END;
|
||||
} else if (boost::starts_with(sline, "G4 ")) {
|
||||
// Parse the wait time.
|
||||
line.type = CoolingLine::TYPE_G4;
|
||||
size_t pos_S = sline.find('S', 3);
|
||||
size_t pos_P = sline.find('P', 3);
|
||||
line.time = line.time_max = float(
|
||||
(pos_S > 0) ? atof(sline.c_str() + pos_S + 1) :
|
||||
(pos_P > 0) ? atof(sline.c_str() + pos_P + 1) * 0.001 : 0.);
|
||||
}
|
||||
if (line.type != 0)
|
||||
adjustment->lines.emplace_back(std::move(line));
|
||||
}
|
||||
|
||||
return per_extruder_adjustments;
|
||||
}
|
||||
|
||||
// Slow down an extruder range proportionally down to slowdown_below_layer_time.
|
||||
// Return the total time for the complete layer.
|
||||
static inline float extruder_range_slow_down_proportional(
|
||||
std::vector<PerExtruderAdjustments*>::iterator it_begin,
|
||||
std::vector<PerExtruderAdjustments*>::iterator it_end,
|
||||
// Elapsed time for the extruders already processed.
|
||||
float elapsed_time_total0,
|
||||
// Initial total elapsed time before slow down.
|
||||
float elapsed_time_before_slowdown,
|
||||
// Target time for the complete layer (all extruders applied).
|
||||
float slowdown_below_layer_time)
|
||||
{
|
||||
// Total layer time after the slow down has been applied.
|
||||
float total_after_slowdown = elapsed_time_before_slowdown;
|
||||
// Now decide, whether the external perimeters shall be slowed down as well.
|
||||
float max_time_nep = elapsed_time_total0;
|
||||
for (auto it = it_begin; it != it_end; ++ it)
|
||||
max_time_nep += (*it)->maximum_time_after_slowdown(false);
|
||||
if (max_time_nep > slowdown_below_layer_time) {
|
||||
// It is sufficient to slow down the non-external perimeter moves to reach the target layer time.
|
||||
// Slow down the non-external perimeters proportionally.
|
||||
float non_adjustable_time = elapsed_time_total0;
|
||||
for (auto it = it_begin; it != it_end; ++ it)
|
||||
non_adjustable_time += (*it)->non_adjustable_time(false);
|
||||
// The following step is a linear programming task due to the minimum movement speeds of the print moves.
|
||||
// Run maximum 5 iterations until a good enough approximation is reached.
|
||||
for (size_t iter = 0; iter < 5; ++ iter) {
|
||||
float factor = (slowdown_below_layer_time - non_adjustable_time) / (total_after_slowdown - non_adjustable_time);
|
||||
assert(factor > 1.f);
|
||||
total_after_slowdown = elapsed_time_total0;
|
||||
for (auto it = it_begin; it != it_end; ++ it)
|
||||
total_after_slowdown += (*it)->slow_down_proportional(factor, false);
|
||||
if (total_after_slowdown > 0.95f * slowdown_below_layer_time)
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
// Slow down everything. First slow down the non-external perimeters to maximum.
|
||||
for (auto it = it_begin; it != it_end; ++ it)
|
||||
(*it)->slowdown_to_minimum_feedrate(false);
|
||||
// Slow down the external perimeters proportionally.
|
||||
float non_adjustable_time = elapsed_time_total0;
|
||||
for (auto it = it_begin; it != it_end; ++ it)
|
||||
non_adjustable_time += (*it)->non_adjustable_time(true);
|
||||
for (size_t iter = 0; iter < 5; ++ iter) {
|
||||
float factor = (slowdown_below_layer_time - non_adjustable_time) / (total_after_slowdown - non_adjustable_time);
|
||||
assert(factor > 1.f);
|
||||
total_after_slowdown = elapsed_time_total0;
|
||||
for (auto it = it_begin; it != it_end; ++ it)
|
||||
total_after_slowdown += (*it)->slow_down_proportional(factor, true);
|
||||
if (total_after_slowdown > 0.95f * slowdown_below_layer_time)
|
||||
break;
|
||||
}
|
||||
}
|
||||
return total_after_slowdown;
|
||||
}
|
||||
|
||||
// Slow down an extruder range to slowdown_below_layer_time.
|
||||
// Return the total time for the complete layer.
|
||||
static inline void extruder_range_slow_down_non_proportional(
|
||||
std::vector<PerExtruderAdjustments*>::iterator it_begin,
|
||||
std::vector<PerExtruderAdjustments*>::iterator it_end,
|
||||
float time_stretch)
|
||||
{
|
||||
// Slow down. Try to equalize the feedrates.
|
||||
std::vector<PerExtruderAdjustments*> by_min_print_speed(it_begin, it_end);
|
||||
// Find the next highest adjustable feedrate among the extruders.
|
||||
float feedrate = 0;
|
||||
for (PerExtruderAdjustments *adj : by_min_print_speed) {
|
||||
adj->idx_line_begin = 0;
|
||||
adj->idx_line_end = 0;
|
||||
assert(adj->idx_line_begin < adj->n_lines_adjustable);
|
||||
if (adj->lines[adj->idx_line_begin].feedrate > feedrate)
|
||||
feedrate = adj->lines[adj->idx_line_begin].feedrate;
|
||||
}
|
||||
assert(feedrate > 0.f);
|
||||
// Sort by min_print_speed, maximum speed first.
|
||||
std::sort(by_min_print_speed.begin(), by_min_print_speed.end(),
|
||||
[](const PerExtruderAdjustments *p1, const PerExtruderAdjustments *p2){ return p1->min_print_speed > p2->min_print_speed; });
|
||||
// Slow down, fast moves first.
|
||||
for (;;) {
|
||||
// For each extruder, find the span of lines with a feedrate close to feedrate.
|
||||
for (PerExtruderAdjustments *adj : by_min_print_speed) {
|
||||
for (adj->idx_line_end = adj->idx_line_begin;
|
||||
adj->idx_line_end < adj->n_lines_adjustable && adj->lines[adj->idx_line_end].feedrate > feedrate - EPSILON;
|
||||
++ adj->idx_line_end) ;
|
||||
}
|
||||
// Find the next highest adjustable feedrate among the extruders.
|
||||
float feedrate_next = 0.f;
|
||||
for (PerExtruderAdjustments *adj : by_min_print_speed)
|
||||
if (adj->idx_line_end < adj->n_lines_adjustable && adj->lines[adj->idx_line_end].feedrate > feedrate_next)
|
||||
feedrate_next = adj->lines[adj->idx_line_end].feedrate;
|
||||
// Slow down, limited by max(feedrate_next, min_print_speed).
|
||||
for (auto adj = by_min_print_speed.begin(); adj != by_min_print_speed.end();) {
|
||||
// Slow down at most by time_stretch.
|
||||
if ((*adj)->min_print_speed == 0.f) {
|
||||
// All the adjustable speeds are now lowered to the same speed,
|
||||
// and the minimum speed is set to zero.
|
||||
float time_adjustable = 0.f;
|
||||
for (auto it = adj; it != by_min_print_speed.end(); ++ it)
|
||||
time_adjustable += (*it)->adjustable_time(true);
|
||||
float rate = (time_adjustable + time_stretch) / time_adjustable;
|
||||
for (auto it = adj; it != by_min_print_speed.end(); ++ it)
|
||||
(*it)->slow_down_proportional(rate, true);
|
||||
return;
|
||||
} else {
|
||||
float feedrate_limit = std::max(feedrate_next, (*adj)->min_print_speed);
|
||||
bool done = false;
|
||||
float time_stretch_max = 0.f;
|
||||
for (auto it = adj; it != by_min_print_speed.end(); ++ it)
|
||||
time_stretch_max += (*it)->time_stretch_when_slowing_down_to_feedrate(feedrate_limit);
|
||||
if (time_stretch_max >= time_stretch) {
|
||||
feedrate_limit = feedrate - (feedrate - feedrate_limit) * time_stretch / time_stretch_max;
|
||||
done = true;
|
||||
} else
|
||||
time_stretch -= time_stretch_max;
|
||||
for (auto it = adj; it != by_min_print_speed.end(); ++ it)
|
||||
(*it)->slow_down_to_feedrate(feedrate_limit);
|
||||
if (done)
|
||||
return;
|
||||
}
|
||||
// Skip the other extruders with nearly the same min_print_speed, as they have been processed already.
|
||||
auto next = adj;
|
||||
for (++ next; next != by_min_print_speed.end() && (*next)->min_print_speed > (*adj)->min_print_speed - EPSILON; ++ next);
|
||||
adj = next;
|
||||
}
|
||||
if (feedrate_next == 0.f)
|
||||
// There are no other extrusions available for slow down.
|
||||
break;
|
||||
for (PerExtruderAdjustments *adj : by_min_print_speed) {
|
||||
adj->idx_line_begin = adj->idx_line_end;
|
||||
feedrate = feedrate_next;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate slow down for all the extruders.
|
||||
float CoolingBuffer::calculate_layer_slowdown(std::vector<PerExtruderAdjustments> &per_extruder_adjustments)
|
||||
{
|
||||
// Sort the extruders by an increasing slowdown_below_layer_time.
|
||||
// The layers with a lower slowdown_below_layer_time are slowed down
|
||||
// together with all the other layers with slowdown_below_layer_time above.
|
||||
std::vector<PerExtruderAdjustments*> by_slowdown_time;
|
||||
by_slowdown_time.reserve(per_extruder_adjustments.size());
|
||||
// Only insert entries, which are adjustable (have cooling enabled and non-zero stretchable time).
|
||||
// Collect total print time of non-adjustable extruders.
|
||||
float elapsed_time_total0 = 0.f;
|
||||
for (PerExtruderAdjustments &adj : per_extruder_adjustments) {
|
||||
// Curren total time for this extruder.
|
||||
adj.time_total = adj.elapsed_time_total();
|
||||
// Maximum time for this extruder, when all extrusion moves are slowed down to min_extrusion_speed.
|
||||
adj.time_maximum = adj.maximum_time_after_slowdown(true);
|
||||
if (adj.cooling_slow_down_enabled && adj.lines.size() > 0) {
|
||||
by_slowdown_time.emplace_back(&adj);
|
||||
if (! m_cooling_logic_proportional)
|
||||
// sorts the lines, also sets adj.time_non_adjustable
|
||||
adj.sort_lines_by_decreasing_feedrate();
|
||||
} else
|
||||
elapsed_time_total0 += adj.elapsed_time_total();
|
||||
}
|
||||
std::sort(by_slowdown_time.begin(), by_slowdown_time.end(),
|
||||
[](const PerExtruderAdjustments *adj1, const PerExtruderAdjustments *adj2)
|
||||
{ return adj1->slowdown_below_layer_time < adj2->slowdown_below_layer_time; });
|
||||
|
||||
for (auto cur_begin = by_slowdown_time.begin(); cur_begin != by_slowdown_time.end(); ++ cur_begin) {
|
||||
PerExtruderAdjustments &adj = *(*cur_begin);
|
||||
// Calculate the current adjusted elapsed_time_total over the non-finalized extruders.
|
||||
float total = elapsed_time_total0;
|
||||
for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
|
||||
total += (*it)->time_total;
|
||||
float slowdown_below_layer_time = adj.slowdown_below_layer_time * 1.001f;
|
||||
if (total > slowdown_below_layer_time) {
|
||||
// The current total time is above the minimum threshold of the rest of the extruders, don't adjust anything.
|
||||
} else {
|
||||
// Adjust this and all the following (higher config.slowdown_below_layer_time) extruders.
|
||||
// Sum maximum slow down time as if everything was slowed down including the external perimeters.
|
||||
float max_time = elapsed_time_total0;
|
||||
for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
|
||||
max_time += (*it)->time_maximum;
|
||||
if (max_time > slowdown_below_layer_time) {
|
||||
if (m_cooling_logic_proportional)
|
||||
extruder_range_slow_down_proportional(cur_begin, by_slowdown_time.end(), elapsed_time_total0, total, slowdown_below_layer_time);
|
||||
else
|
||||
extruder_range_slow_down_non_proportional(cur_begin, by_slowdown_time.end(), slowdown_below_layer_time - total);
|
||||
} else {
|
||||
// Slow down to maximum possible.
|
||||
for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
|
||||
(*it)->slowdown_to_minimum_feedrate(true);
|
||||
}
|
||||
}
|
||||
elapsed_time_total0 += adj.elapsed_time_total();
|
||||
}
|
||||
|
||||
return elapsed_time_total0;
|
||||
}
|
||||
|
||||
// Apply slow down over G-code lines stored in per_extruder_adjustments, enable fan if needed.
|
||||
// Returns the adjusted G-code.
|
||||
std::string CoolingBuffer::apply_layer_cooldown(
|
||||
// Source G-code for the current layer.
|
||||
const std::string &gcode,
|
||||
// ID of the current layer, used to disable fan for the first n layers.
|
||||
size_t layer_id,
|
||||
// Total time of this layer after slow down, used to control the fan.
|
||||
float layer_time,
|
||||
// Per extruder list of G-code lines and their cool down attributes.
|
||||
std::vector<PerExtruderAdjustments> &per_extruder_adjustments)
|
||||
{
|
||||
// First sort the adjustment lines by of multiple extruders by their position in the source G-code.
|
||||
std::vector<const CoolingLine*> lines;
|
||||
{
|
||||
size_t n_lines = 0;
|
||||
for (const PerExtruderAdjustments &adj : per_extruder_adjustments)
|
||||
n_lines += adj.lines.size();
|
||||
lines.reserve(n_lines);
|
||||
for (const PerExtruderAdjustments &adj : per_extruder_adjustments)
|
||||
for (const CoolingLine &line : adj.lines)
|
||||
lines.emplace_back(&line);
|
||||
std::sort(lines.begin(), lines.end(), [](const CoolingLine *ln1, const CoolingLine *ln2) { return ln1->line_start < ln2->line_start; } );
|
||||
}
|
||||
// Second generate the adjusted G-code.
|
||||
std::string new_gcode;
|
||||
new_gcode.reserve(gcode.size() * 2);
|
||||
int fan_speed = -1;
|
||||
bool bridge_fan_control = false;
|
||||
int bridge_fan_speed = 0;
|
||||
auto change_extruder_set_fan = [ this, layer_id, layer_time, &new_gcode, &fan_speed, &bridge_fan_control, &bridge_fan_speed ]() {
|
||||
const FullPrintConfig &config = m_gcodegen.config();
|
||||
#define EXTRUDER_CONFIG(OPT) config.OPT.get_at(m_current_extruder)
|
||||
int min_fan_speed = EXTRUDER_CONFIG(min_fan_speed);
|
||||
int fan_speed_new = EXTRUDER_CONFIG(fan_always_on) ? min_fan_speed : 0;
|
||||
if (layer_id >= EXTRUDER_CONFIG(disable_fan_first_layers)) {
|
||||
int max_fan_speed = EXTRUDER_CONFIG(max_fan_speed);
|
||||
float slowdown_below_layer_time = float(EXTRUDER_CONFIG(slowdown_below_layer_time));
|
||||
float fan_below_layer_time = float(EXTRUDER_CONFIG(fan_below_layer_time));
|
||||
if (EXTRUDER_CONFIG(cooling)) {
|
||||
if (layer_time < slowdown_below_layer_time) {
|
||||
// Layer time very short. Enable the fan to a full throttle.
|
||||
fan_speed_new = max_fan_speed;
|
||||
} else if (layer_time < fan_below_layer_time) {
|
||||
// Layer time quite short. Enable the fan proportionally according to the current layer time.
|
||||
assert(layer_time >= slowdown_below_layer_time);
|
||||
double t = (layer_time - slowdown_below_layer_time) / (fan_below_layer_time - slowdown_below_layer_time);
|
||||
fan_speed_new = int(floor(t * min_fan_speed + (1. - t) * max_fan_speed) + 0.5);
|
||||
}
|
||||
}
|
||||
bridge_fan_speed = EXTRUDER_CONFIG(bridge_fan_speed);
|
||||
#undef EXTRUDER_CONFIG
|
||||
bridge_fan_control = bridge_fan_speed > fan_speed_new;
|
||||
} else {
|
||||
bridge_fan_control = false;
|
||||
bridge_fan_speed = 0;
|
||||
fan_speed_new = 0;
|
||||
}
|
||||
if (fan_speed_new != fan_speed) {
|
||||
fan_speed = fan_speed_new;
|
||||
new_gcode += m_gcodegen.writer().set_fan(fan_speed);
|
||||
}
|
||||
};
|
||||
|
||||
const char *pos = gcode.c_str();
|
||||
int current_feedrate = 0;
|
||||
const std::string toolchange_prefix = m_gcodegen.writer().toolchange_prefix();
|
||||
change_extruder_set_fan();
|
||||
for (const CoolingLine *line : lines) {
|
||||
const char *line_start = gcode.c_str() + line->line_start;
|
||||
const char *line_end = gcode.c_str() + line->line_end;
|
||||
if (line_start > pos)
|
||||
new_gcode.append(pos, line_start - pos);
|
||||
if (line->type & CoolingLine::TYPE_SET_TOOL) {
|
||||
unsigned int new_extruder = (unsigned int)atoi(line_start + toolchange_prefix.size());
|
||||
if (new_extruder != m_current_extruder) {
|
||||
m_current_extruder = new_extruder;
|
||||
change_extruder_set_fan();
|
||||
}
|
||||
new_gcode.append(line_start, line_end - line_start);
|
||||
} else if (line->type & CoolingLine::TYPE_BRIDGE_FAN_START) {
|
||||
if (bridge_fan_control)
|
||||
new_gcode += m_gcodegen.writer().set_fan(bridge_fan_speed, true);
|
||||
} else if (line->type & CoolingLine::TYPE_BRIDGE_FAN_END) {
|
||||
if (bridge_fan_control)
|
||||
new_gcode += m_gcodegen.writer().set_fan(fan_speed, true);
|
||||
} else if (line->type & CoolingLine::TYPE_EXTRUDE_END) {
|
||||
// Just remove this comment.
|
||||
} else if (line->type & (CoolingLine::TYPE_ADJUSTABLE | CoolingLine::TYPE_EXTERNAL_PERIMETER | CoolingLine::TYPE_WIPE | CoolingLine::TYPE_HAS_F)) {
|
||||
// Find the start of a comment, or roll to the end of line.
|
||||
const char *end = line_start;
|
||||
for (; end < line_end && *end != ';'; ++ end);
|
||||
// Find the 'F' word.
|
||||
const char *fpos = strstr(line_start + 2, " F") + 2;
|
||||
int new_feedrate = current_feedrate;
|
||||
bool modify = false;
|
||||
assert(fpos != nullptr);
|
||||
if (line->slowdown) {
|
||||
modify = true;
|
||||
new_feedrate = int(floor(60. * line->feedrate + 0.5));
|
||||
} else {
|
||||
new_feedrate = atoi(fpos);
|
||||
if (new_feedrate != current_feedrate) {
|
||||
// Append the line without the comment.
|
||||
new_gcode.append(line_start, end - line_start);
|
||||
current_feedrate = new_feedrate;
|
||||
} else if ((line->type & (CoolingLine::TYPE_ADJUSTABLE | CoolingLine::TYPE_EXTERNAL_PERIMETER | CoolingLine::TYPE_WIPE)) || line->length == 0.) {
|
||||
// Feedrate does not change and this line does not move the print head. Skip the complete G-code line including the G-code comment.
|
||||
end = line_end;
|
||||
} else {
|
||||
// Remove the feedrate from the G0/G1 line.
|
||||
modify = true;
|
||||
}
|
||||
}
|
||||
if (modify) {
|
||||
if (new_feedrate != current_feedrate) {
|
||||
// Replace the feedrate.
|
||||
new_gcode.append(line_start, fpos - line_start);
|
||||
current_feedrate = new_feedrate;
|
||||
char buf[64];
|
||||
sprintf(buf, "%d", int(current_feedrate));
|
||||
new_gcode += buf;
|
||||
} else {
|
||||
// Remove the feedrate word.
|
||||
const char *f = fpos;
|
||||
// Roll the pointer before the 'F' word.
|
||||
for (f -= 2; f > line_start && (*f == ' ' || *f == '\t'); -- f);
|
||||
// Append up to the F word, without the trailing whitespace.
|
||||
new_gcode.append(line_start, f - line_start + 1);
|
||||
}
|
||||
// Skip the non-whitespaces of the F parameter up the comment or end of line.
|
||||
for (; fpos != end && *fpos != ' ' && *fpos != ';' && *fpos != '\n'; ++fpos);
|
||||
// Append the rest of the line without the comment.
|
||||
if (fpos < end)
|
||||
new_gcode.append(fpos, end - fpos);
|
||||
// There should never be an empty G1 statement emited by the filter. Such lines should be removed completely.
|
||||
assert(new_gcode.size() < 4 || new_gcode.substr(new_gcode.size() - 4) != "G1 \n");
|
||||
}
|
||||
// Process the rest of the line.
|
||||
if (end < line_end) {
|
||||
if (line->type & (CoolingLine::TYPE_ADJUSTABLE | CoolingLine::TYPE_EXTERNAL_PERIMETER | CoolingLine::TYPE_WIPE)) {
|
||||
// Process comments, remove ";_EXTRUDE_SET_SPEED", ";_EXTERNAL_PERIMETER", ";_WIPE"
|
||||
std::string comment(end, line_end);
|
||||
boost::replace_all(comment, ";_EXTRUDE_SET_SPEED", "");
|
||||
if (line->type & CoolingLine::TYPE_EXTERNAL_PERIMETER)
|
||||
boost::replace_all(comment, ";_EXTERNAL_PERIMETER", "");
|
||||
if (line->type & CoolingLine::TYPE_WIPE)
|
||||
boost::replace_all(comment, ";_WIPE", "");
|
||||
new_gcode += comment;
|
||||
} else {
|
||||
// Just attach the rest of the source line.
|
||||
new_gcode.append(end, line_end - end);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
new_gcode.append(line_start, line_end - line_start);
|
||||
}
|
||||
pos = line_end;
|
||||
}
|
||||
const char *gcode_end = gcode.c_str() + gcode.size();
|
||||
if (pos < gcode_end)
|
||||
new_gcode.append(pos, gcode_end - pos);
|
||||
|
||||
return new_gcode;
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
53
src/libslic3r/GCode/CoolingBuffer.hpp
Normal file
53
src/libslic3r/GCode/CoolingBuffer.hpp
Normal file
|
|
@ -0,0 +1,53 @@
|
|||
#ifndef slic3r_CoolingBuffer_hpp_
|
||||
#define slic3r_CoolingBuffer_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class GCode;
|
||||
class Layer;
|
||||
class PerExtruderAdjustments;
|
||||
|
||||
// A standalone G-code filter, to control cooling of the print.
|
||||
// The G-code is processed per layer. Once a layer is collected, fan start / stop commands are edited
|
||||
// and the print is modified to stretch over a minimum layer time.
|
||||
//
|
||||
// The simple it sounds, the actual implementation is significantly more complex.
|
||||
// Namely, for a multi-extruder print, each material may require a different cooling logic.
|
||||
// For example, some materials may not like to print too slowly, while with some materials
|
||||
// we may slow down significantly.
|
||||
//
|
||||
class CoolingBuffer {
|
||||
public:
|
||||
CoolingBuffer(GCode &gcodegen);
|
||||
void reset();
|
||||
void set_current_extruder(unsigned int extruder_id) { m_current_extruder = extruder_id; }
|
||||
std::string process_layer(const std::string &gcode, size_t layer_id);
|
||||
GCode* gcodegen() { return &m_gcodegen; }
|
||||
|
||||
private:
|
||||
CoolingBuffer& operator=(const CoolingBuffer&) = delete;
|
||||
std::vector<PerExtruderAdjustments> parse_layer_gcode(const std::string &gcode, std::vector<float> ¤t_pos) const;
|
||||
float calculate_layer_slowdown(std::vector<PerExtruderAdjustments> &per_extruder_adjustments);
|
||||
// Apply slow down over G-code lines stored in per_extruder_adjustments, enable fan if needed.
|
||||
// Returns the adjusted G-code.
|
||||
std::string apply_layer_cooldown(const std::string &gcode, size_t layer_id, float layer_time, std::vector<PerExtruderAdjustments> &per_extruder_adjustments);
|
||||
|
||||
GCode& m_gcodegen;
|
||||
std::string m_gcode;
|
||||
// Internal data.
|
||||
// X,Y,Z,E,F
|
||||
std::vector<char> m_axis;
|
||||
std::vector<float> m_current_pos;
|
||||
unsigned int m_current_extruder;
|
||||
|
||||
// Old logic: proportional.
|
||||
bool m_cooling_logic_proportional = false;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
60
src/libslic3r/GCode/PostProcessor.cpp
Normal file
60
src/libslic3r/GCode/PostProcessor.cpp
Normal file
|
|
@ -0,0 +1,60 @@
|
|||
#include "PostProcessor.hpp"
|
||||
|
||||
#if 1
|
||||
//#ifdef WIN32
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
//FIXME Ignore until we include boost::process
|
||||
void run_post_process_scripts(const std::string &path, const PrintConfig &config)
|
||||
{
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#else
|
||||
|
||||
#include <boost/process/system.hpp>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
void run_post_process_scripts(const std::string &path, const PrintConfig &config)
|
||||
{
|
||||
if (config.post_process.values.empty())
|
||||
return;
|
||||
config.setenv_();
|
||||
for (std::string script: config.post_process.values) {
|
||||
// Ignore empty post processing script lines.
|
||||
boost::trim(script);
|
||||
if (script.empty())
|
||||
continue;
|
||||
BOOST_LOG_TRIVIAL(info) << "Executing script " << script << " on file " << path;
|
||||
if (! boost::filesystem::exists(boost::filesystem::path(path)))
|
||||
throw std::runtime_exception(std::string("The configured post-processing script does not exist: ") + path);
|
||||
#ifndef WIN32
|
||||
file_status fs = boost::filesystem::status(path);
|
||||
//FIXME test if executible by the effective UID / GID.
|
||||
// throw std::runtime_exception(std::string("The configured post-processing script is not executable: check permissions. ") + path));
|
||||
#endif
|
||||
int result = 0;
|
||||
#ifdef WIN32
|
||||
if (boost::iends_with(file, ".gcode")) {
|
||||
// The current process may be slic3r.exe or slic3r-console.exe.
|
||||
// Find the path of the process:
|
||||
wchar_t wpath_exe[_MAX_PATH + 1];
|
||||
::GetModuleFileNameW(nullptr, wpath_exe, _MAX_PATH);
|
||||
boost::filesystem::path path_exe(wpath_exe);
|
||||
// Replace it with the current perl interpreter.
|
||||
result = boost::process::system((path_exe.parent_path() / "perl5.24.0.exe").string(), script, output_file);
|
||||
} else
|
||||
#else
|
||||
result = boost::process::system(script, output_file);
|
||||
#endif
|
||||
if (result < 0)
|
||||
BOOST_LOG_TRIVIAL(error) << "Script " << script << " on file " << path << " failed. Negative error code returned.";
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif
|
||||
15
src/libslic3r/GCode/PostProcessor.hpp
Normal file
15
src/libslic3r/GCode/PostProcessor.hpp
Normal file
|
|
@ -0,0 +1,15 @@
|
|||
#ifndef slic3r_GCode_PostProcessor_hpp_
|
||||
#define slic3r_GCode_PostProcessor_hpp_
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "../libslic3r.h"
|
||||
#include "../PrintConfig.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
extern void run_post_process_scripts(const std::string &path, const PrintConfig &config);
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif /* slic3r_GCode_PostProcessor_hpp_ */
|
||||
621
src/libslic3r/GCode/PressureEqualizer.cpp
Normal file
621
src/libslic3r/GCode/PressureEqualizer.cpp
Normal file
|
|
@ -0,0 +1,621 @@
|
|||
#include <memory.h>
|
||||
#include <string.h>
|
||||
#include <float.h>
|
||||
|
||||
#include "../libslic3r.h"
|
||||
#include "../PrintConfig.hpp"
|
||||
|
||||
#include "PressureEqualizer.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
PressureEqualizer::PressureEqualizer(const Slic3r::GCodeConfig *config) :
|
||||
m_config(config)
|
||||
{
|
||||
reset();
|
||||
}
|
||||
|
||||
PressureEqualizer::~PressureEqualizer()
|
||||
{
|
||||
}
|
||||
|
||||
void PressureEqualizer::reset()
|
||||
{
|
||||
circular_buffer_pos = 0;
|
||||
circular_buffer_size = 100;
|
||||
circular_buffer_items = 0;
|
||||
circular_buffer.assign(circular_buffer_size, GCodeLine());
|
||||
|
||||
// Preallocate some data, so that output_buffer.data() will return an empty string.
|
||||
output_buffer.assign(32, 0);
|
||||
output_buffer_length = 0;
|
||||
|
||||
m_current_extruder = 0;
|
||||
// Zero the position of the XYZE axes + the current feed
|
||||
memset(m_current_pos, 0, sizeof(float) * 5);
|
||||
m_current_extrusion_role = erNone;
|
||||
// Expect the first command to fill the nozzle (deretract).
|
||||
m_retracted = true;
|
||||
|
||||
// Calculate filamet crossections for the multiple extruders.
|
||||
m_filament_crossections.clear();
|
||||
for (size_t i = 0; i < m_config->filament_diameter.values.size(); ++ i) {
|
||||
double r = m_config->filament_diameter.values[i];
|
||||
double a = 0.25f*M_PI*r*r;
|
||||
m_filament_crossections.push_back(float(a));
|
||||
}
|
||||
|
||||
m_max_segment_length = 20.f;
|
||||
// Volumetric rate of a 0.45mm x 0.2mm extrusion at 60mm/s XY movement: 0.45*0.2*60*60=5.4*60 = 324 mm^3/min
|
||||
// Volumetric rate of a 0.45mm x 0.2mm extrusion at 20mm/s XY movement: 0.45*0.2*20*60=1.8*60 = 108 mm^3/min
|
||||
// Slope of the volumetric rate, changing from 20mm/s to 60mm/s over 2 seconds: (5.4-1.8)*60*60/2=60*60*1.8 = 6480 mm^3/min^2 = 1.8 mm^3/s^2
|
||||
m_max_volumetric_extrusion_rate_slope_positive = (m_config == NULL) ? 6480.f :
|
||||
m_config->max_volumetric_extrusion_rate_slope_positive.value * 60.f * 60.f;
|
||||
m_max_volumetric_extrusion_rate_slope_negative = (m_config == NULL) ? 6480.f :
|
||||
m_config->max_volumetric_extrusion_rate_slope_negative.value * 60.f * 60.f;
|
||||
|
||||
for (size_t i = 0; i < numExtrusionRoles; ++ i) {
|
||||
m_max_volumetric_extrusion_rate_slopes[i].negative = m_max_volumetric_extrusion_rate_slope_negative;
|
||||
m_max_volumetric_extrusion_rate_slopes[i].positive = m_max_volumetric_extrusion_rate_slope_positive;
|
||||
}
|
||||
|
||||
// Don't regulate the pressure in infill.
|
||||
m_max_volumetric_extrusion_rate_slopes[erBridgeInfill].negative = 0;
|
||||
m_max_volumetric_extrusion_rate_slopes[erBridgeInfill].positive = 0;
|
||||
// Don't regulate the pressure in gap fill.
|
||||
m_max_volumetric_extrusion_rate_slopes[erGapFill].negative = 0;
|
||||
m_max_volumetric_extrusion_rate_slopes[erGapFill].positive = 0;
|
||||
|
||||
m_stat.reset();
|
||||
line_idx = 0;
|
||||
}
|
||||
|
||||
const char* PressureEqualizer::process(const char *szGCode, bool flush)
|
||||
{
|
||||
// Reset length of the output_buffer.
|
||||
output_buffer_length = 0;
|
||||
|
||||
if (szGCode != 0) {
|
||||
const char *p = szGCode;
|
||||
while (*p != 0) {
|
||||
// Find end of the line.
|
||||
const char *endl = p;
|
||||
// Slic3r always generates end of lines in a Unix style.
|
||||
for (; *endl != 0 && *endl != '\n'; ++ endl) ;
|
||||
if (circular_buffer_items == circular_buffer_size)
|
||||
// Buffer is full. Push out the oldest line.
|
||||
output_gcode_line(circular_buffer[circular_buffer_pos]);
|
||||
else
|
||||
++ circular_buffer_items;
|
||||
// Process a G-code line, store it into the provided GCodeLine object.
|
||||
size_t idx_tail = circular_buffer_pos;
|
||||
circular_buffer_pos = circular_buffer_idx_next(circular_buffer_pos);
|
||||
if (! process_line(p, endl - p, circular_buffer[idx_tail])) {
|
||||
// The line has to be forgotten. It contains comment marks, which shall be
|
||||
// filtered out of the target g-code.
|
||||
circular_buffer_pos = idx_tail;
|
||||
-- circular_buffer_items;
|
||||
}
|
||||
p = endl;
|
||||
if (*p == '\n')
|
||||
++ p;
|
||||
}
|
||||
}
|
||||
|
||||
if (flush) {
|
||||
// Flush the remaining valid lines of the circular buffer.
|
||||
for (size_t idx = circular_buffer_idx_head(); circular_buffer_items > 0; -- circular_buffer_items) {
|
||||
output_gcode_line(circular_buffer[idx]);
|
||||
if (++ idx == circular_buffer_size)
|
||||
idx = 0;
|
||||
}
|
||||
// Reset the index pointer.
|
||||
assert(circular_buffer_items == 0);
|
||||
circular_buffer_pos = 0;
|
||||
|
||||
#if 1
|
||||
printf("Statistics: \n");
|
||||
printf("Minimum volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_min);
|
||||
printf("Maximum volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_max);
|
||||
if (m_stat.extrusion_length > 0)
|
||||
m_stat.volumetric_extrusion_rate_avg /= m_stat.extrusion_length;
|
||||
printf("Average volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_avg);
|
||||
m_stat.reset();
|
||||
#endif
|
||||
}
|
||||
|
||||
return output_buffer.data();
|
||||
}
|
||||
|
||||
// Is a white space?
|
||||
static inline bool is_ws(const char c) { return c == ' ' || c == '\t'; }
|
||||
// Is it an end of line? Consider a comment to be an end of line as well.
|
||||
static inline bool is_eol(const char c) { return c == 0 || c == '\r' || c == '\n' || c == ';'; };
|
||||
// Is it a white space or end of line?
|
||||
static inline bool is_ws_or_eol(const char c) { return is_ws(c) || is_eol(c); };
|
||||
|
||||
// Eat whitespaces.
|
||||
static void eatws(const char *&line)
|
||||
{
|
||||
while (is_ws(*line))
|
||||
++ line;
|
||||
}
|
||||
|
||||
// Parse an int starting at the current position of a line.
|
||||
// If succeeded, the line pointer is advanced.
|
||||
static inline int parse_int(const char *&line)
|
||||
{
|
||||
char *endptr = NULL;
|
||||
long result = strtol(line, &endptr, 10);
|
||||
if (endptr == NULL || !is_ws_or_eol(*endptr))
|
||||
throw std::runtime_error("PressureEqualizer: Error parsing an int");
|
||||
line = endptr;
|
||||
return int(result);
|
||||
};
|
||||
|
||||
// Parse an int starting at the current position of a line.
|
||||
// If succeeded, the line pointer is advanced.
|
||||
static inline float parse_float(const char *&line)
|
||||
{
|
||||
char *endptr = NULL;
|
||||
float result = strtof(line, &endptr);
|
||||
if (endptr == NULL || !is_ws_or_eol(*endptr))
|
||||
throw std::runtime_error("PressureEqualizer: Error parsing a float");
|
||||
line = endptr;
|
||||
return result;
|
||||
};
|
||||
|
||||
#define EXTRUSION_ROLE_TAG ";_EXTRUSION_ROLE:"
|
||||
bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLine &buf)
|
||||
{
|
||||
if (strncmp(line, EXTRUSION_ROLE_TAG, strlen(EXTRUSION_ROLE_TAG)) == 0) {
|
||||
line += strlen(EXTRUSION_ROLE_TAG);
|
||||
int role = atoi(line);
|
||||
m_current_extrusion_role = ExtrusionRole(role);
|
||||
++ line_idx;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Set the type, copy the line to the buffer.
|
||||
buf.type = GCODELINETYPE_OTHER;
|
||||
buf.modified = false;
|
||||
if (buf.raw.size() < len + 1)
|
||||
buf.raw.assign(line, line + len + 1);
|
||||
else
|
||||
memcpy(buf.raw.data(), line, len);
|
||||
buf.raw[len] = 0;
|
||||
buf.raw_length = len;
|
||||
|
||||
memcpy(buf.pos_start, m_current_pos, sizeof(float)*5);
|
||||
memcpy(buf.pos_end, m_current_pos, sizeof(float)*5);
|
||||
memset(buf.pos_provided, 0, 5);
|
||||
|
||||
buf.volumetric_extrusion_rate = 0.f;
|
||||
buf.volumetric_extrusion_rate_start = 0.f;
|
||||
buf.volumetric_extrusion_rate_end = 0.f;
|
||||
buf.max_volumetric_extrusion_rate_slope_positive = 0.f;
|
||||
buf.max_volumetric_extrusion_rate_slope_negative = 0.f;
|
||||
buf.extrusion_role = m_current_extrusion_role;
|
||||
|
||||
// Parse the G-code line, store the result into the buf.
|
||||
switch (toupper(*line ++)) {
|
||||
case 'G': {
|
||||
int gcode = parse_int(line);
|
||||
eatws(line);
|
||||
switch (gcode) {
|
||||
case 0:
|
||||
case 1:
|
||||
{
|
||||
// G0, G1: A FFF 3D printer does not make a difference between the two.
|
||||
float new_pos[5];
|
||||
memcpy(new_pos, m_current_pos, sizeof(float)*5);
|
||||
bool changed[5] = { false, false, false, false, false };
|
||||
while (!is_eol(*line)) {
|
||||
char axis = toupper(*line++);
|
||||
int i = -1;
|
||||
switch (axis) {
|
||||
case 'X':
|
||||
case 'Y':
|
||||
case 'Z':
|
||||
i = axis - 'X';
|
||||
break;
|
||||
case 'E':
|
||||
i = 3;
|
||||
break;
|
||||
case 'F':
|
||||
i = 4;
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
if (i == -1)
|
||||
throw std::runtime_error(std::string("GCode::PressureEqualizer: Invalid axis for G0/G1: ") + axis);
|
||||
buf.pos_provided[i] = true;
|
||||
new_pos[i] = parse_float(line);
|
||||
if (i == 3 && m_config->use_relative_e_distances.value)
|
||||
new_pos[i] += m_current_pos[i];
|
||||
changed[i] = new_pos[i] != m_current_pos[i];
|
||||
eatws(line);
|
||||
}
|
||||
if (changed[3]) {
|
||||
// Extrusion, retract or unretract.
|
||||
float diff = new_pos[3] - m_current_pos[3];
|
||||
if (diff < 0) {
|
||||
buf.type = GCODELINETYPE_RETRACT;
|
||||
m_retracted = true;
|
||||
} else if (! changed[0] && ! changed[1] && ! changed[2]) {
|
||||
// assert(m_retracted);
|
||||
buf.type = GCODELINETYPE_UNRETRACT;
|
||||
m_retracted = false;
|
||||
} else {
|
||||
assert(changed[0] || changed[1]);
|
||||
// Moving in XY plane.
|
||||
buf.type = GCODELINETYPE_EXTRUDE;
|
||||
// Calculate the volumetric extrusion rate.
|
||||
float diff[4];
|
||||
for (size_t i = 0; i < 4; ++ i)
|
||||
diff[i] = new_pos[i] - m_current_pos[i];
|
||||
// volumetric extrusion rate = A_filament * F_xyz * L_e / L_xyz [mm^3/min]
|
||||
float len2 = diff[0]*diff[0]+diff[1]*diff[1]+diff[2]*diff[2];
|
||||
float rate = m_filament_crossections[m_current_extruder] * new_pos[4] * sqrt((diff[3]*diff[3])/len2);
|
||||
buf.volumetric_extrusion_rate = rate;
|
||||
buf.volumetric_extrusion_rate_start = rate;
|
||||
buf.volumetric_extrusion_rate_end = rate;
|
||||
m_stat.update(rate, sqrt(len2));
|
||||
if (rate < 40.f) {
|
||||
printf("Extremely low flow rate: %f. Line %d, Length: %f, extrusion: %f Old position: (%f, %f, %f), new position: (%f, %f, %f)\n",
|
||||
rate,
|
||||
int(line_idx),
|
||||
sqrt(len2), sqrt((diff[3]*diff[3])/len2),
|
||||
m_current_pos[0], m_current_pos[1], m_current_pos[2],
|
||||
new_pos[0], new_pos[1], new_pos[2]);
|
||||
}
|
||||
}
|
||||
} else if (changed[0] || changed[1] || changed[2]) {
|
||||
// Moving without extrusion.
|
||||
buf.type = GCODELINETYPE_MOVE;
|
||||
}
|
||||
memcpy(m_current_pos, new_pos, sizeof(float) * 5);
|
||||
break;
|
||||
}
|
||||
case 92:
|
||||
{
|
||||
// G92 : Set Position
|
||||
// Set a logical coordinate position to a new value without actually moving the machine motors.
|
||||
// Which axes to set?
|
||||
bool set = false;
|
||||
while (!is_eol(*line)) {
|
||||
char axis = toupper(*line++);
|
||||
switch (axis) {
|
||||
case 'X':
|
||||
case 'Y':
|
||||
case 'Z':
|
||||
m_current_pos[axis - 'X'] = (!is_ws_or_eol(*line)) ? parse_float(line) : 0.f;
|
||||
set = true;
|
||||
break;
|
||||
case 'E':
|
||||
m_current_pos[3] = (!is_ws_or_eol(*line)) ? parse_float(line) : 0.f;
|
||||
set = true;
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(std::string("GCode::PressureEqualizer: Incorrect axis in a G92 G-code: ") + axis);
|
||||
}
|
||||
eatws(line);
|
||||
}
|
||||
assert(set);
|
||||
break;
|
||||
}
|
||||
case 10:
|
||||
case 22:
|
||||
// Firmware retract.
|
||||
buf.type = GCODELINETYPE_RETRACT;
|
||||
m_retracted = true;
|
||||
break;
|
||||
case 11:
|
||||
case 23:
|
||||
// Firmware unretract.
|
||||
buf.type = GCODELINETYPE_UNRETRACT;
|
||||
m_retracted = false;
|
||||
break;
|
||||
default:
|
||||
// Ignore the rest.
|
||||
break;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 'M': {
|
||||
int mcode = parse_int(line);
|
||||
eatws(line);
|
||||
switch (mcode) {
|
||||
default:
|
||||
// Ignore the rest of the M-codes.
|
||||
break;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 'T':
|
||||
{
|
||||
// Activate an extruder head.
|
||||
int new_extruder = parse_int(line);
|
||||
if (new_extruder != m_current_extruder) {
|
||||
m_current_extruder = new_extruder;
|
||||
m_retracted = true;
|
||||
buf.type = GCODELINETYPE_TOOL_CHANGE;
|
||||
} else {
|
||||
buf.type = GCODELINETYPE_NOOP;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
buf.extruder_id = m_current_extruder;
|
||||
memcpy(buf.pos_end, m_current_pos, sizeof(float)*5);
|
||||
|
||||
adjust_volumetric_rate();
|
||||
++ line_idx;
|
||||
return true;
|
||||
}
|
||||
|
||||
void PressureEqualizer::output_gcode_line(GCodeLine &line)
|
||||
{
|
||||
if (! line.modified) {
|
||||
push_to_output(line.raw.data(), line.raw_length, true);
|
||||
return;
|
||||
}
|
||||
|
||||
// The line was modified.
|
||||
// Find the comment.
|
||||
const char *comment = line.raw.data();
|
||||
while (*comment != ';' && *comment != 0) ++comment;
|
||||
if (*comment != ';')
|
||||
comment = NULL;
|
||||
|
||||
// Emit the line with lowered extrusion rates.
|
||||
float l2 = line.dist_xyz2();
|
||||
float l = sqrt(l2);
|
||||
size_t nSegments = size_t(ceil(l / m_max_segment_length));
|
||||
if (nSegments == 1) {
|
||||
// Just update this segment.
|
||||
push_line_to_output(line, line.feedrate() * line.volumetric_correction_avg(), comment);
|
||||
} else {
|
||||
bool accelerating = line.volumetric_extrusion_rate_start < line.volumetric_extrusion_rate_end;
|
||||
// Update the initial and final feed rate values.
|
||||
line.pos_start[4] = line.volumetric_extrusion_rate_start * line.pos_end[4] / line.volumetric_extrusion_rate;
|
||||
line.pos_end [4] = line.volumetric_extrusion_rate_end * line.pos_end[4] / line.volumetric_extrusion_rate;
|
||||
float feed_avg = 0.5f * (line.pos_start[4] + line.pos_end[4]);
|
||||
// Limiting volumetric extrusion rate slope for this segment.
|
||||
float max_volumetric_extrusion_rate_slope = accelerating ?
|
||||
line.max_volumetric_extrusion_rate_slope_positive : line.max_volumetric_extrusion_rate_slope_negative;
|
||||
// Total time for the segment, corrected for the possibly lowered volumetric feed rate,
|
||||
// if accelerating / decelerating over the complete segment.
|
||||
float t_total = line.dist_xyz() / feed_avg;
|
||||
// Time of the acceleration / deceleration part of the segment, if accelerating / decelerating
|
||||
// with the maximum volumetric extrusion rate slope.
|
||||
float t_acc = 0.5f * (line.volumetric_extrusion_rate_start + line.volumetric_extrusion_rate_end) / max_volumetric_extrusion_rate_slope;
|
||||
float l_acc = l;
|
||||
float l_steady = 0.f;
|
||||
if (t_acc < t_total) {
|
||||
// One may achieve higher print speeds if part of the segment is not speed limited.
|
||||
float l_acc = t_acc * feed_avg;
|
||||
float l_steady = l - l_acc;
|
||||
if (l_steady < 0.5f * m_max_segment_length) {
|
||||
l_acc = l;
|
||||
l_steady = 0.f;
|
||||
} else
|
||||
nSegments = size_t(ceil(l_acc / m_max_segment_length));
|
||||
}
|
||||
float pos_start[5];
|
||||
float pos_end [5];
|
||||
float pos_end2 [4];
|
||||
memcpy(pos_start, line.pos_start, sizeof(float)*5);
|
||||
memcpy(pos_end , line.pos_end , sizeof(float)*5);
|
||||
if (l_steady > 0.f) {
|
||||
// There will be a steady feed segment emitted.
|
||||
if (accelerating) {
|
||||
// Prepare the final steady feed rate segment.
|
||||
memcpy(pos_end2, pos_end, sizeof(float)*4);
|
||||
float t = l_acc / l;
|
||||
for (int i = 0; i < 4; ++ i) {
|
||||
pos_end[i] = pos_start[i] + (pos_end[i] - pos_start[i]) * t;
|
||||
line.pos_provided[i] = true;
|
||||
}
|
||||
} else {
|
||||
// Emit the steady feed rate segment.
|
||||
float t = l_steady / l;
|
||||
for (int i = 0; i < 4; ++ i) {
|
||||
line.pos_end[i] = pos_start[i] + (pos_end[i] - pos_start[i]) * t;
|
||||
line.pos_provided[i] = true;
|
||||
}
|
||||
push_line_to_output(line, pos_start[4], comment);
|
||||
comment = NULL;
|
||||
memcpy(line.pos_start, line.pos_end, sizeof(float)*5);
|
||||
memcpy(pos_start, line.pos_end, sizeof(float)*5);
|
||||
}
|
||||
}
|
||||
// Split the segment into pieces.
|
||||
for (size_t i = 1; i < nSegments; ++ i) {
|
||||
float t = float(i) / float(nSegments);
|
||||
for (size_t j = 0; j < 4; ++ j) {
|
||||
line.pos_end[j] = pos_start[j] + (pos_end[j] - pos_start[j]) * t;
|
||||
line.pos_provided[j] = true;
|
||||
}
|
||||
// Interpolate the feed rate at the center of the segment.
|
||||
push_line_to_output(line, pos_start[4] + (pos_end[4] - pos_start[4]) * (float(i) - 0.5f) / float(nSegments), comment);
|
||||
comment = NULL;
|
||||
memcpy(line.pos_start, line.pos_end, sizeof(float)*5);
|
||||
}
|
||||
if (l_steady > 0.f && accelerating) {
|
||||
for (int i = 0; i < 4; ++ i) {
|
||||
line.pos_end[i] = pos_end2[i];
|
||||
line.pos_provided[i] = true;
|
||||
}
|
||||
push_line_to_output(line, pos_end[4], comment);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PressureEqualizer::adjust_volumetric_rate()
|
||||
{
|
||||
if (circular_buffer_items < 2)
|
||||
return;
|
||||
|
||||
// Go back from the current circular_buffer_pos and lower the feedtrate to decrease the slope of the extrusion rate changes.
|
||||
const size_t idx_head = circular_buffer_idx_head();
|
||||
const size_t idx_tail = circular_buffer_idx_prev(circular_buffer_idx_tail());
|
||||
size_t idx = idx_tail;
|
||||
if (idx == idx_head || ! circular_buffer[idx].extruding())
|
||||
// Nothing to do, the last move is not extruding.
|
||||
return;
|
||||
|
||||
float feedrate_per_extrusion_role[numExtrusionRoles];
|
||||
for (size_t i = 0; i < numExtrusionRoles; ++ i)
|
||||
feedrate_per_extrusion_role[i] = FLT_MAX;
|
||||
feedrate_per_extrusion_role[circular_buffer[idx].extrusion_role] = circular_buffer[idx].volumetric_extrusion_rate_start;
|
||||
|
||||
bool modified = true;
|
||||
while (modified && idx != idx_head) {
|
||||
size_t idx_prev = circular_buffer_idx_prev(idx);
|
||||
for (; ! circular_buffer[idx_prev].extruding() && idx_prev != idx_head; idx_prev = circular_buffer_idx_prev(idx_prev)) ;
|
||||
if (! circular_buffer[idx_prev].extruding())
|
||||
break;
|
||||
// Volumetric extrusion rate at the start of the succeding segment.
|
||||
float rate_succ = circular_buffer[idx].volumetric_extrusion_rate_start;
|
||||
// What is the gradient of the extrusion rate between idx_prev and idx?
|
||||
idx = idx_prev;
|
||||
GCodeLine &line = circular_buffer[idx];
|
||||
for (size_t iRole = 1; iRole < numExtrusionRoles; ++ iRole) {
|
||||
float rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].negative;
|
||||
if (rate_slope == 0)
|
||||
// The negative rate is unlimited.
|
||||
continue;
|
||||
float rate_end = feedrate_per_extrusion_role[iRole];
|
||||
if (iRole == line.extrusion_role && rate_succ < rate_end)
|
||||
// Limit by the succeeding volumetric flow rate.
|
||||
rate_end = rate_succ;
|
||||
if (line.volumetric_extrusion_rate_end > rate_end) {
|
||||
line.volumetric_extrusion_rate_end = rate_end;
|
||||
line.modified = true;
|
||||
} else if (iRole == line.extrusion_role) {
|
||||
rate_end = line.volumetric_extrusion_rate_end;
|
||||
} else if (rate_end == FLT_MAX) {
|
||||
// The rate for ExtrusionRole iRole is unlimited.
|
||||
continue;
|
||||
} else {
|
||||
// Use the original, 'floating' extrusion rate as a starting point for the limiter.
|
||||
}
|
||||
// modified = false;
|
||||
float rate_start = rate_end + rate_slope * line.time_corrected();
|
||||
if (rate_start < line.volumetric_extrusion_rate_start) {
|
||||
// Limit the volumetric extrusion rate at the start of this segment due to a segment
|
||||
// of ExtrusionType iRole, which will be extruded in the future.
|
||||
line.volumetric_extrusion_rate_start = rate_start;
|
||||
line.max_volumetric_extrusion_rate_slope_negative = rate_slope;
|
||||
line.modified = true;
|
||||
// modified = true;
|
||||
}
|
||||
feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_start : rate_start;
|
||||
}
|
||||
}
|
||||
|
||||
// Go forward and adjust the feedrate to decrease the slope of the extrusion rate changes.
|
||||
for (size_t i = 0; i < numExtrusionRoles; ++ i)
|
||||
feedrate_per_extrusion_role[i] = FLT_MAX;
|
||||
feedrate_per_extrusion_role[circular_buffer[idx].extrusion_role] = circular_buffer[idx].volumetric_extrusion_rate_end;
|
||||
|
||||
assert(circular_buffer[idx].extruding());
|
||||
while (idx != idx_tail) {
|
||||
size_t idx_next = circular_buffer_idx_next(idx);
|
||||
for (; ! circular_buffer[idx_next].extruding() && idx_next != idx_tail; idx_next = circular_buffer_idx_next(idx_next)) ;
|
||||
if (! circular_buffer[idx_next].extruding())
|
||||
break;
|
||||
float rate_prec = circular_buffer[idx].volumetric_extrusion_rate_end;
|
||||
// What is the gradient of the extrusion rate between idx_prev and idx?
|
||||
idx = idx_next;
|
||||
GCodeLine &line = circular_buffer[idx];
|
||||
for (size_t iRole = 1; iRole < numExtrusionRoles; ++ iRole) {
|
||||
float rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].positive;
|
||||
if (rate_slope == 0)
|
||||
// The positive rate is unlimited.
|
||||
continue;
|
||||
float rate_start = feedrate_per_extrusion_role[iRole];
|
||||
if (iRole == line.extrusion_role && rate_prec < rate_start)
|
||||
rate_start = rate_prec;
|
||||
if (line.volumetric_extrusion_rate_start > rate_start) {
|
||||
line.volumetric_extrusion_rate_start = rate_start;
|
||||
line.modified = true;
|
||||
} else if (iRole == line.extrusion_role) {
|
||||
rate_start = line.volumetric_extrusion_rate_start;
|
||||
} else if (rate_start == FLT_MAX) {
|
||||
// The rate for ExtrusionRole iRole is unlimited.
|
||||
continue;
|
||||
} else {
|
||||
// Use the original, 'floating' extrusion rate as a starting point for the limiter.
|
||||
}
|
||||
float rate_end = (rate_slope == 0) ? FLT_MAX : rate_start + rate_slope * line.time_corrected();
|
||||
if (rate_end < line.volumetric_extrusion_rate_end) {
|
||||
// Limit the volumetric extrusion rate at the start of this segment due to a segment
|
||||
// of ExtrusionType iRole, which was extruded before.
|
||||
line.volumetric_extrusion_rate_end = rate_end;
|
||||
line.max_volumetric_extrusion_rate_slope_positive = rate_slope;
|
||||
line.modified = true;
|
||||
}
|
||||
feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_end : rate_end;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PressureEqualizer::push_axis_to_output(const char axis, const float value, bool add_eol)
|
||||
{
|
||||
char buf[2048];
|
||||
int len = sprintf(buf,
|
||||
(axis == 'E') ? " %c%.3f" : " %c%.5f",
|
||||
axis, value);
|
||||
push_to_output(buf, len, add_eol);
|
||||
}
|
||||
|
||||
void PressureEqualizer::push_to_output(const char *text, const size_t len, bool add_eol)
|
||||
{
|
||||
// New length of the output buffer content.
|
||||
size_t len_new = output_buffer_length + len + 1;
|
||||
if (add_eol)
|
||||
++ len_new;
|
||||
|
||||
// Resize the output buffer to a power of 2 higher than the required memory.
|
||||
if (output_buffer.size() < len_new) {
|
||||
size_t v = len_new;
|
||||
// Compute the next highest power of 2 of 32-bit v
|
||||
// http://graphics.stanford.edu/~seander/bithacks.html
|
||||
v--;
|
||||
v |= v >> 1;
|
||||
v |= v >> 2;
|
||||
v |= v >> 4;
|
||||
v |= v >> 8;
|
||||
v |= v >> 16;
|
||||
v++;
|
||||
output_buffer.resize(v);
|
||||
}
|
||||
|
||||
// Copy the text to the output.
|
||||
if (len != 0) {
|
||||
memcpy(output_buffer.data() + output_buffer_length, text, len);
|
||||
output_buffer_length += len;
|
||||
}
|
||||
if (add_eol)
|
||||
output_buffer[output_buffer_length ++] = '\n';
|
||||
output_buffer[output_buffer_length] = 0;
|
||||
}
|
||||
|
||||
void PressureEqualizer::push_line_to_output(const GCodeLine &line, const float new_feedrate, const char *comment)
|
||||
{
|
||||
push_to_output("G1", 2, false);
|
||||
for (char i = 0; i < 3; ++ i)
|
||||
if (line.pos_provided[i])
|
||||
push_axis_to_output('X'+i, line.pos_end[i]);
|
||||
push_axis_to_output('E', m_config->use_relative_e_distances.value ? (line.pos_end[3] - line.pos_start[3]) : line.pos_end[3]);
|
||||
// if (line.pos_provided[4] || fabs(line.feedrate() - new_feedrate) > 1e-5)
|
||||
push_axis_to_output('F', new_feedrate);
|
||||
// output comment and EOL
|
||||
push_to_output(comment, (comment == NULL) ? 0 : strlen(comment), true);
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
212
src/libslic3r/GCode/PressureEqualizer.hpp
Normal file
212
src/libslic3r/GCode/PressureEqualizer.hpp
Normal file
|
|
@ -0,0 +1,212 @@
|
|||
#ifndef slic3r_GCode_PressureEqualizer_hpp_
|
||||
#define slic3r_GCode_PressureEqualizer_hpp_
|
||||
|
||||
#include "../libslic3r.h"
|
||||
#include "../PrintConfig.hpp"
|
||||
#include "../ExtrusionEntity.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
// Processes a G-code. Finds changes in the volumetric extrusion speed and adjusts the transitions
|
||||
// between these paths to limit fast changes in the volumetric extrusion speed.
|
||||
class PressureEqualizer
|
||||
{
|
||||
public:
|
||||
PressureEqualizer(const Slic3r::GCodeConfig *config);
|
||||
~PressureEqualizer();
|
||||
|
||||
void reset();
|
||||
|
||||
// Process a next batch of G-code lines. Flush the internal buffers if asked for.
|
||||
const char* process(const char *szGCode, bool flush);
|
||||
|
||||
size_t get_output_buffer_length() const { return output_buffer_length; }
|
||||
|
||||
private:
|
||||
struct Statistics
|
||||
{
|
||||
void reset() {
|
||||
volumetric_extrusion_rate_min = std::numeric_limits<float>::max();
|
||||
volumetric_extrusion_rate_max = 0.f;
|
||||
volumetric_extrusion_rate_avg = 0.f;
|
||||
extrusion_length = 0.f;
|
||||
}
|
||||
void update(float volumetric_extrusion_rate, float length) {
|
||||
volumetric_extrusion_rate_min = std::min(volumetric_extrusion_rate_min, volumetric_extrusion_rate);
|
||||
volumetric_extrusion_rate_max = std::max(volumetric_extrusion_rate_max, volumetric_extrusion_rate);
|
||||
volumetric_extrusion_rate_avg += volumetric_extrusion_rate * length;
|
||||
extrusion_length += length;
|
||||
}
|
||||
float volumetric_extrusion_rate_min;
|
||||
float volumetric_extrusion_rate_max;
|
||||
float volumetric_extrusion_rate_avg;
|
||||
float extrusion_length;
|
||||
};
|
||||
|
||||
struct Statistics m_stat;
|
||||
|
||||
// Keeps the reference, does not own the config.
|
||||
const Slic3r::GCodeConfig *m_config;
|
||||
|
||||
// Private configuration values
|
||||
// How fast could the volumetric extrusion rate increase / decrase? mm^3/sec^2
|
||||
struct ExtrusionRateSlope {
|
||||
float positive;
|
||||
float negative;
|
||||
};
|
||||
enum { numExtrusionRoles = erSupportMaterialInterface + 1 };
|
||||
ExtrusionRateSlope m_max_volumetric_extrusion_rate_slopes[numExtrusionRoles];
|
||||
float m_max_volumetric_extrusion_rate_slope_positive;
|
||||
float m_max_volumetric_extrusion_rate_slope_negative;
|
||||
// Maximum segment length to split a long segment, if the initial and the final flow rate differ.
|
||||
float m_max_segment_length;
|
||||
|
||||
// Configuration extracted from config.
|
||||
// Area of the crossestion of each filament. Necessary to calculate the volumetric flow rate.
|
||||
std::vector<float> m_filament_crossections;
|
||||
|
||||
// Internal data.
|
||||
// X,Y,Z,E,F
|
||||
float m_current_pos[5];
|
||||
size_t m_current_extruder;
|
||||
ExtrusionRole m_current_extrusion_role;
|
||||
bool m_retracted;
|
||||
|
||||
enum GCodeLineType
|
||||
{
|
||||
GCODELINETYPE_INVALID,
|
||||
GCODELINETYPE_NOOP,
|
||||
GCODELINETYPE_OTHER,
|
||||
GCODELINETYPE_RETRACT,
|
||||
GCODELINETYPE_UNRETRACT,
|
||||
GCODELINETYPE_TOOL_CHANGE,
|
||||
GCODELINETYPE_MOVE,
|
||||
GCODELINETYPE_EXTRUDE,
|
||||
};
|
||||
|
||||
struct GCodeLine
|
||||
{
|
||||
GCodeLine() :
|
||||
type(GCODELINETYPE_INVALID),
|
||||
raw_length(0),
|
||||
modified(false),
|
||||
extruder_id(0),
|
||||
volumetric_extrusion_rate(0.f),
|
||||
volumetric_extrusion_rate_start(0.f),
|
||||
volumetric_extrusion_rate_end(0.f)
|
||||
{}
|
||||
|
||||
bool moving_xy() const { return fabs(pos_end[0] - pos_start[0]) > 0.f || fabs(pos_end[1] - pos_start[1]) > 0.f; }
|
||||
bool moving_z () const { return fabs(pos_end[2] - pos_start[2]) > 0.f; }
|
||||
bool extruding() const { return moving_xy() && pos_end[3] > pos_start[3]; }
|
||||
bool retracting() const { return pos_end[3] < pos_start[3]; }
|
||||
bool deretracting() const { return ! moving_xy() && pos_end[3] > pos_start[3]; }
|
||||
|
||||
float dist_xy2() const { return (pos_end[0] - pos_start[0]) * (pos_end[0] - pos_start[0]) + (pos_end[1] - pos_start[1]) * (pos_end[1] - pos_start[1]); }
|
||||
float dist_xyz2() const { return (pos_end[0] - pos_start[0]) * (pos_end[0] - pos_start[0]) + (pos_end[1] - pos_start[1]) * (pos_end[1] - pos_start[1]) + (pos_end[2] - pos_start[2]) * (pos_end[2] - pos_start[2]); }
|
||||
float dist_xy() const { return sqrt(dist_xy2()); }
|
||||
float dist_xyz() const { return sqrt(dist_xyz2()); }
|
||||
float dist_e() const { return fabs(pos_end[3] - pos_start[3]); }
|
||||
|
||||
float feedrate() const { return pos_end[4]; }
|
||||
float time() const { return dist_xyz() / feedrate(); }
|
||||
float time_inv() const { return feedrate() / dist_xyz(); }
|
||||
float volumetric_correction_avg() const {
|
||||
float avg_correction = 0.5f * (volumetric_extrusion_rate_start + volumetric_extrusion_rate_end) / volumetric_extrusion_rate;
|
||||
assert(avg_correction > 0.f);
|
||||
assert(avg_correction <= 1.00000001f);
|
||||
return avg_correction;
|
||||
}
|
||||
float time_corrected() const { return time() * volumetric_correction_avg(); }
|
||||
|
||||
GCodeLineType type;
|
||||
|
||||
// We try to keep the string buffer once it has been allocated, so it will not be reallocated over and over.
|
||||
std::vector<char> raw;
|
||||
size_t raw_length;
|
||||
// If modified, the raw text has to be adapted by the new extrusion rate,
|
||||
// or maybe the line needs to be split into multiple lines.
|
||||
bool modified;
|
||||
|
||||
// float timeStart;
|
||||
// float timeEnd;
|
||||
// X,Y,Z,E,F. Storing the state of the currently active extruder only.
|
||||
float pos_start[5];
|
||||
float pos_end[5];
|
||||
// Was the axis found on the G-code line? X,Y,Z,F
|
||||
bool pos_provided[5];
|
||||
|
||||
// Index of the active extruder.
|
||||
size_t extruder_id;
|
||||
// Extrusion role of this segment.
|
||||
ExtrusionRole extrusion_role;
|
||||
|
||||
// Current volumetric extrusion rate.
|
||||
float volumetric_extrusion_rate;
|
||||
// Volumetric extrusion rate at the start of this segment.
|
||||
float volumetric_extrusion_rate_start;
|
||||
// Volumetric extrusion rate at the end of this segment.
|
||||
float volumetric_extrusion_rate_end;
|
||||
|
||||
// Volumetric extrusion rate slope limiting this segment.
|
||||
// If set to zero, the slope is unlimited.
|
||||
float max_volumetric_extrusion_rate_slope_positive;
|
||||
float max_volumetric_extrusion_rate_slope_negative;
|
||||
};
|
||||
|
||||
// Circular buffer of GCode lines. The circular buffer size will be limited to circular_buffer_size.
|
||||
std::vector<GCodeLine> circular_buffer;
|
||||
// Current position of the circular buffer (index, where to write the next line to, the line has to be pushed out before it is overwritten).
|
||||
size_t circular_buffer_pos;
|
||||
// Circular buffer size, configuration value.
|
||||
size_t circular_buffer_size;
|
||||
// Number of valid lines in the circular buffer. Lower or equal to circular_buffer_size.
|
||||
size_t circular_buffer_items;
|
||||
|
||||
// Output buffer will only grow. It will not be reallocated over and over.
|
||||
std::vector<char> output_buffer;
|
||||
size_t output_buffer_length;
|
||||
|
||||
// For debugging purposes. Index of the G-code line processed.
|
||||
size_t line_idx;
|
||||
|
||||
bool process_line(const char *line, const size_t len, GCodeLine &buf);
|
||||
void output_gcode_line(GCodeLine &buf);
|
||||
|
||||
// Go back from the current circular_buffer_pos and lower the feedtrate to decrease the slope of the extrusion rate changes.
|
||||
// Then go forward and adjust the feedrate to decrease the slope of the extrusion rate changes.
|
||||
void adjust_volumetric_rate();
|
||||
|
||||
// Push the text to the end of the output_buffer.
|
||||
void push_to_output(const char *text, const size_t len, bool add_eol = true);
|
||||
// Push an axis assignment to the end of the output buffer.
|
||||
void push_axis_to_output(const char axis, const float value, bool add_eol = false);
|
||||
// Push a G-code line to the output,
|
||||
void push_line_to_output(const GCodeLine &line, const float new_feedrate, const char *comment);
|
||||
|
||||
size_t circular_buffer_idx_head() const {
|
||||
size_t idx = circular_buffer_pos + circular_buffer_size - circular_buffer_items;
|
||||
if (idx >= circular_buffer_size)
|
||||
idx -= circular_buffer_size;
|
||||
return idx;
|
||||
}
|
||||
|
||||
size_t circular_buffer_idx_tail() const { return circular_buffer_pos; }
|
||||
|
||||
size_t circular_buffer_idx_prev(size_t idx) const {
|
||||
idx += circular_buffer_size - 1;
|
||||
if (idx >= circular_buffer_size)
|
||||
idx -= circular_buffer_size;
|
||||
return idx;
|
||||
}
|
||||
|
||||
size_t circular_buffer_idx_next(size_t idx) const {
|
||||
if (++ idx >= circular_buffer_size)
|
||||
idx -= circular_buffer_size;
|
||||
return idx;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif /* slic3r_GCode_PressureEqualizer_hpp_ */
|
||||
455
src/libslic3r/GCode/PreviewData.cpp
Normal file
455
src/libslic3r/GCode/PreviewData.cpp
Normal file
|
|
@ -0,0 +1,455 @@
|
|||
#include "Analyzer.hpp"
|
||||
#include "PreviewData.hpp"
|
||||
#include <float.h>
|
||||
#include <I18N.hpp>
|
||||
|
||||
#include <boost/format.hpp>
|
||||
|
||||
//! macro used to mark string used at localization,
|
||||
#define L(s) (s)
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
const GCodePreviewData::Color GCodePreviewData::Color::Dummy(0.0f, 0.0f, 0.0f, 0.0f);
|
||||
|
||||
GCodePreviewData::Color::Color()
|
||||
{
|
||||
rgba[0] = 1.0f;
|
||||
rgba[1] = 1.0f;
|
||||
rgba[2] = 1.0f;
|
||||
rgba[3] = 1.0f;
|
||||
}
|
||||
|
||||
GCodePreviewData::Color::Color(float r, float g, float b, float a)
|
||||
{
|
||||
rgba[0] = r;
|
||||
rgba[1] = g;
|
||||
rgba[2] = b;
|
||||
rgba[3] = a;
|
||||
}
|
||||
|
||||
std::vector<unsigned char> GCodePreviewData::Color::as_bytes() const
|
||||
{
|
||||
std::vector<unsigned char> ret;
|
||||
for (unsigned int i = 0; i < 4; ++i)
|
||||
{
|
||||
ret.push_back((unsigned char)(255.0f * rgba[i]));
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
GCodePreviewData::Extrusion::Layer::Layer(float z, const ExtrusionPaths& paths)
|
||||
: z(z)
|
||||
, paths(paths)
|
||||
{
|
||||
}
|
||||
|
||||
GCodePreviewData::Travel::Polyline::Polyline(EType type, EDirection direction, float feedrate, unsigned int extruder_id, const Polyline3& polyline)
|
||||
: type(type)
|
||||
, direction(direction)
|
||||
, feedrate(feedrate)
|
||||
, extruder_id(extruder_id)
|
||||
, polyline(polyline)
|
||||
{
|
||||
}
|
||||
|
||||
const GCodePreviewData::Color GCodePreviewData::Range::Default_Colors[Colors_Count] =
|
||||
{
|
||||
Color(0.043f, 0.173f, 0.478f, 1.0f),
|
||||
Color(0.075f, 0.349f, 0.522f, 1.0f),
|
||||
Color(0.110f, 0.533f, 0.569f, 1.0f),
|
||||
Color(0.016f, 0.839f, 0.059f, 1.0f),
|
||||
Color(0.667f, 0.949f, 0.000f, 1.0f),
|
||||
Color(0.988f, 0.975f, 0.012f, 1.0f),
|
||||
Color(0.961f, 0.808f, 0.039f, 1.0f),
|
||||
Color(0.890f, 0.533f, 0.125f, 1.0f),
|
||||
Color(0.820f, 0.408f, 0.188f, 1.0f),
|
||||
Color(0.761f, 0.322f, 0.235f, 1.0f)
|
||||
};
|
||||
|
||||
GCodePreviewData::Range::Range()
|
||||
{
|
||||
reset();
|
||||
}
|
||||
|
||||
void GCodePreviewData::Range::reset()
|
||||
{
|
||||
min = FLT_MAX;
|
||||
max = -FLT_MAX;
|
||||
}
|
||||
|
||||
bool GCodePreviewData::Range::empty() const
|
||||
{
|
||||
return min == max;
|
||||
}
|
||||
|
||||
void GCodePreviewData::Range::update_from(float value)
|
||||
{
|
||||
min = std::min(min, value);
|
||||
max = std::max(max, value);
|
||||
}
|
||||
|
||||
void GCodePreviewData::Range::update_from(const Range& other)
|
||||
{
|
||||
min = std::min(min, other.min);
|
||||
max = std::max(max, other.max);
|
||||
}
|
||||
|
||||
void GCodePreviewData::Range::set_from(const Range& other)
|
||||
{
|
||||
min = other.min;
|
||||
max = other.max;
|
||||
}
|
||||
|
||||
float GCodePreviewData::Range::step_size() const
|
||||
{
|
||||
return (max - min) / (float)(Colors_Count - 1);
|
||||
}
|
||||
|
||||
GCodePreviewData::Color GCodePreviewData::Range::get_color_at(float value) const
|
||||
{
|
||||
if (empty())
|
||||
return Color::Dummy;
|
||||
|
||||
float global_t = (value - min) / step_size();
|
||||
|
||||
unsigned int low = (unsigned int)global_t;
|
||||
unsigned int high = clamp((unsigned int)0, Colors_Count - 1, low + 1);
|
||||
|
||||
Color color_low = colors[low];
|
||||
Color color_high = colors[high];
|
||||
|
||||
float local_t = global_t - (float)low;
|
||||
|
||||
// interpolate in RGB space
|
||||
Color ret;
|
||||
for (unsigned int i = 0; i < 4; ++i)
|
||||
{
|
||||
ret.rgba[i] = lerp(color_low.rgba[i], color_high.rgba[i], local_t);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
GCodePreviewData::LegendItem::LegendItem(const std::string& text, const GCodePreviewData::Color& color)
|
||||
: text(text)
|
||||
, color(color)
|
||||
{
|
||||
}
|
||||
|
||||
const GCodePreviewData::Color GCodePreviewData::Extrusion::Default_Extrusion_Role_Colors[Num_Extrusion_Roles] =
|
||||
{
|
||||
Color(0.0f, 0.0f, 0.0f, 1.0f), // erNone
|
||||
Color(1.0f, 0.0f, 0.0f, 1.0f), // erPerimeter
|
||||
Color(0.0f, 1.0f, 0.0f, 1.0f), // erExternalPerimeter
|
||||
Color(0.0f, 0.0f, 1.0f, 1.0f), // erOverhangPerimeter
|
||||
Color(1.0f, 1.0f, 0.0f, 1.0f), // erInternalInfill
|
||||
Color(1.0f, 0.0f, 1.0f, 1.0f), // erSolidInfill
|
||||
Color(0.0f, 1.0f, 1.0f, 1.0f), // erTopSolidInfill
|
||||
Color(0.5f, 0.5f, 0.5f, 1.0f), // erBridgeInfill
|
||||
Color(1.0f, 1.0f, 1.0f, 1.0f), // erGapFill
|
||||
Color(0.5f, 0.0f, 0.0f, 1.0f), // erSkirt
|
||||
Color(0.0f, 0.5f, 0.0f, 1.0f), // erSupportMaterial
|
||||
Color(0.0f, 0.0f, 0.5f, 1.0f), // erSupportMaterialInterface
|
||||
Color(0.7f, 0.89f, 0.67f, 1.0f), // erWipeTower
|
||||
Color(1.0f, 1.0f, 0.0f, 1.0f), // erCustom
|
||||
Color(0.0f, 0.0f, 0.0f, 1.0f) // erMixed
|
||||
};
|
||||
|
||||
// todo: merge with Slic3r::ExtrusionRole2String() from GCode.cpp
|
||||
const std::string GCodePreviewData::Extrusion::Default_Extrusion_Role_Names[Num_Extrusion_Roles]
|
||||
{
|
||||
L("None"),
|
||||
L("Perimeter"),
|
||||
L("External perimeter"),
|
||||
L("Overhang perimeter"),
|
||||
L("Internal infill"),
|
||||
L("Solid infill"),
|
||||
L("Top solid infill"),
|
||||
L("Bridge infill"),
|
||||
L("Gap fill"),
|
||||
L("Skirt"),
|
||||
L("Support material"),
|
||||
L("Support material interface"),
|
||||
L("Wipe tower"),
|
||||
L("Custom"),
|
||||
L("Mixed")
|
||||
};
|
||||
|
||||
const GCodePreviewData::Extrusion::EViewType GCodePreviewData::Extrusion::Default_View_Type = GCodePreviewData::Extrusion::FeatureType;
|
||||
|
||||
void GCodePreviewData::Extrusion::set_default()
|
||||
{
|
||||
view_type = Default_View_Type;
|
||||
|
||||
::memcpy((void*)role_colors, (const void*)Default_Extrusion_Role_Colors, Num_Extrusion_Roles * sizeof(Color));
|
||||
|
||||
for (unsigned int i = 0; i < Num_Extrusion_Roles; ++i)
|
||||
{
|
||||
role_names[i] = Default_Extrusion_Role_Names[i];
|
||||
}
|
||||
|
||||
role_flags = 0;
|
||||
for (unsigned int i = 0; i < Num_Extrusion_Roles; ++i)
|
||||
{
|
||||
role_flags |= 1 << i;
|
||||
}
|
||||
}
|
||||
|
||||
bool GCodePreviewData::Extrusion::is_role_flag_set(ExtrusionRole role) const
|
||||
{
|
||||
return is_role_flag_set(role_flags, role);
|
||||
}
|
||||
|
||||
bool GCodePreviewData::Extrusion::is_role_flag_set(unsigned int flags, ExtrusionRole role)
|
||||
{
|
||||
return GCodeAnalyzer::is_valid_extrusion_role(role) && (flags & (1 << (role - erPerimeter))) != 0;
|
||||
}
|
||||
|
||||
const float GCodePreviewData::Travel::Default_Width = 0.075f;
|
||||
const float GCodePreviewData::Travel::Default_Height = 0.075f;
|
||||
const GCodePreviewData::Color GCodePreviewData::Travel::Default_Type_Colors[Num_Types] =
|
||||
{
|
||||
Color(0.0f, 0.0f, 0.75f, 1.0f), // Move
|
||||
Color(0.0f, 0.75f, 0.0f, 1.0f), // Extrude
|
||||
Color(0.75f, 0.0f, 0.0f, 1.0f), // Retract
|
||||
};
|
||||
|
||||
void GCodePreviewData::Travel::set_default()
|
||||
{
|
||||
width = Default_Width;
|
||||
height = Default_Height;
|
||||
::memcpy((void*)type_colors, (const void*)Default_Type_Colors, Num_Types * sizeof(Color));
|
||||
|
||||
is_visible = false;
|
||||
}
|
||||
|
||||
const GCodePreviewData::Color GCodePreviewData::Retraction::Default_Color = GCodePreviewData::Color(1.0f, 1.0f, 1.0f, 1.0f);
|
||||
|
||||
GCodePreviewData::Retraction::Position::Position(const Vec3crd& position, float width, float height)
|
||||
: position(position)
|
||||
, width(width)
|
||||
, height(height)
|
||||
{
|
||||
}
|
||||
|
||||
void GCodePreviewData::Retraction::set_default()
|
||||
{
|
||||
color = Default_Color;
|
||||
is_visible = false;
|
||||
}
|
||||
|
||||
void GCodePreviewData::Shell::set_default()
|
||||
{
|
||||
is_visible = false;
|
||||
}
|
||||
|
||||
GCodePreviewData::GCodePreviewData()
|
||||
{
|
||||
set_default();
|
||||
}
|
||||
|
||||
void GCodePreviewData::set_default()
|
||||
{
|
||||
::memcpy((void*)ranges.height.colors, (const void*)Range::Default_Colors, Range::Colors_Count * sizeof(Color));
|
||||
::memcpy((void*)ranges.width.colors, (const void*)Range::Default_Colors, Range::Colors_Count * sizeof(Color));
|
||||
::memcpy((void*)ranges.feedrate.colors, (const void*)Range::Default_Colors, Range::Colors_Count * sizeof(Color));
|
||||
::memcpy((void*)ranges.volumetric_rate.colors, (const void*)Range::Default_Colors, Range::Colors_Count * sizeof(Color));
|
||||
|
||||
extrusion.set_default();
|
||||
travel.set_default();
|
||||
retraction.set_default();
|
||||
unretraction.set_default();
|
||||
shell.set_default();
|
||||
}
|
||||
|
||||
void GCodePreviewData::reset()
|
||||
{
|
||||
ranges.width.reset();
|
||||
ranges.height.reset();
|
||||
ranges.feedrate.reset();
|
||||
ranges.volumetric_rate.reset();
|
||||
extrusion.layers.clear();
|
||||
travel.polylines.clear();
|
||||
retraction.positions.clear();
|
||||
unretraction.positions.clear();
|
||||
}
|
||||
|
||||
bool GCodePreviewData::empty() const
|
||||
{
|
||||
return extrusion.layers.empty() && travel.polylines.empty() && retraction.positions.empty() && unretraction.positions.empty();
|
||||
}
|
||||
|
||||
GCodePreviewData::Color GCodePreviewData::get_extrusion_role_color(ExtrusionRole role) const
|
||||
{
|
||||
return extrusion.role_colors[role];
|
||||
}
|
||||
|
||||
GCodePreviewData::Color GCodePreviewData::get_height_color(float height) const
|
||||
{
|
||||
return ranges.height.get_color_at(height);
|
||||
}
|
||||
|
||||
GCodePreviewData::Color GCodePreviewData::get_width_color(float width) const
|
||||
{
|
||||
return ranges.width.get_color_at(width);
|
||||
}
|
||||
|
||||
GCodePreviewData::Color GCodePreviewData::get_feedrate_color(float feedrate) const
|
||||
{
|
||||
return ranges.feedrate.get_color_at(feedrate);
|
||||
}
|
||||
|
||||
GCodePreviewData::Color GCodePreviewData::get_volumetric_rate_color(float rate) const
|
||||
{
|
||||
return ranges.volumetric_rate.get_color_at(rate);
|
||||
}
|
||||
|
||||
void GCodePreviewData::set_extrusion_role_color(const std::string& role_name, float red, float green, float blue, float alpha)
|
||||
{
|
||||
for (unsigned int i = 0; i < Extrusion::Num_Extrusion_Roles; ++i)
|
||||
{
|
||||
if (role_name == extrusion.role_names[i])
|
||||
{
|
||||
extrusion.role_colors[i] = Color(red, green, blue, alpha);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void GCodePreviewData::set_extrusion_paths_colors(const std::vector<std::string>& colors)
|
||||
{
|
||||
unsigned int size = (unsigned int)colors.size();
|
||||
|
||||
if (size % 2 != 0)
|
||||
return;
|
||||
|
||||
for (unsigned int i = 0; i < size; i += 2)
|
||||
{
|
||||
const std::string& color_str = colors[i + 1];
|
||||
|
||||
if (color_str.size() == 6)
|
||||
{
|
||||
bool valid = true;
|
||||
for (int c = 0; c < 6; ++c)
|
||||
{
|
||||
if (::isxdigit(color_str[c]) == 0)
|
||||
{
|
||||
valid = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (valid)
|
||||
{
|
||||
unsigned int color;
|
||||
std::stringstream ss;
|
||||
ss << std::hex << color_str;
|
||||
ss >> color;
|
||||
|
||||
float den = 1.0f / 255.0f;
|
||||
|
||||
float r = (float)((color & 0xFF0000) >> 16) * den;
|
||||
float g = (float)((color & 0x00FF00) >> 8) * den;
|
||||
float b = (float)(color & 0x0000FF) * den;
|
||||
|
||||
this->set_extrusion_role_color(colors[i], r, g, b, 1.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::string GCodePreviewData::get_legend_title() const
|
||||
{
|
||||
switch (extrusion.view_type)
|
||||
{
|
||||
case Extrusion::FeatureType:
|
||||
return L("Feature type");
|
||||
case Extrusion::Height:
|
||||
return L("Height (mm)");
|
||||
case Extrusion::Width:
|
||||
return L("Width (mm)");
|
||||
case Extrusion::Feedrate:
|
||||
return L("Speed (mm/s)");
|
||||
case Extrusion::VolumetricRate:
|
||||
return L("Volumetric flow rate (mm3/s)");
|
||||
case Extrusion::Tool:
|
||||
return L("Tool");
|
||||
}
|
||||
|
||||
return "";
|
||||
}
|
||||
|
||||
GCodePreviewData::LegendItemsList GCodePreviewData::get_legend_items(const std::vector<float>& tool_colors) const
|
||||
{
|
||||
struct Helper
|
||||
{
|
||||
static void FillListFromRange(LegendItemsList& list, const Range& range, unsigned int decimals, float scale_factor)
|
||||
{
|
||||
list.reserve(Range::Colors_Count);
|
||||
|
||||
float step = range.step_size();
|
||||
for (int i = Range::Colors_Count - 1; i >= 0; --i)
|
||||
{
|
||||
char buf[1024];
|
||||
sprintf(buf, "%.*f", decimals, scale_factor * (range.min + (float)i * step));
|
||||
list.emplace_back(buf, range.colors[i]);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
LegendItemsList items;
|
||||
|
||||
switch (extrusion.view_type)
|
||||
{
|
||||
case Extrusion::FeatureType:
|
||||
{
|
||||
ExtrusionRole first_valid = erPerimeter;
|
||||
ExtrusionRole last_valid = erCustom;
|
||||
|
||||
items.reserve(last_valid - first_valid + 1);
|
||||
for (unsigned int i = (unsigned int)first_valid; i <= (unsigned int)last_valid; ++i)
|
||||
{
|
||||
items.emplace_back(Slic3r::I18N::translate(extrusion.role_names[i]), extrusion.role_colors[i]);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
case Extrusion::Height:
|
||||
{
|
||||
Helper::FillListFromRange(items, ranges.height, 3, 1.0f);
|
||||
break;
|
||||
}
|
||||
case Extrusion::Width:
|
||||
{
|
||||
Helper::FillListFromRange(items, ranges.width, 3, 1.0f);
|
||||
break;
|
||||
}
|
||||
case Extrusion::Feedrate:
|
||||
{
|
||||
Helper::FillListFromRange(items, ranges.feedrate, 1, 1.0f);
|
||||
break;
|
||||
}
|
||||
case Extrusion::VolumetricRate:
|
||||
{
|
||||
Helper::FillListFromRange(items, ranges.volumetric_rate, 3, 1.0f);
|
||||
break;
|
||||
}
|
||||
case Extrusion::Tool:
|
||||
{
|
||||
unsigned int tools_colors_count = tool_colors.size() / 4;
|
||||
items.reserve(tools_colors_count);
|
||||
for (unsigned int i = 0; i < tools_colors_count; ++i)
|
||||
{
|
||||
GCodePreviewData::Color color;
|
||||
::memcpy((void*)color.rgba, (const void*)(tool_colors.data() + i * 4), 4 * sizeof(float));
|
||||
items.emplace_back((boost::format(Slic3r::I18N::translate(L("Extruder %d"))) % (i + 1)).str(), color);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return items;
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
208
src/libslic3r/GCode/PreviewData.hpp
Normal file
208
src/libslic3r/GCode/PreviewData.hpp
Normal file
|
|
@ -0,0 +1,208 @@
|
|||
#ifndef slic3r_GCode_PreviewData_hpp_
|
||||
#define slic3r_GCode_PreviewData_hpp_
|
||||
|
||||
#include "../libslic3r.h"
|
||||
#include "../ExtrusionEntity.hpp"
|
||||
|
||||
#include "Point.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class GCodePreviewData
|
||||
{
|
||||
public:
|
||||
struct Color
|
||||
{
|
||||
float rgba[4];
|
||||
|
||||
Color();
|
||||
Color(float r, float g, float b, float a);
|
||||
|
||||
std::vector<unsigned char> as_bytes() const;
|
||||
|
||||
static const Color Dummy;
|
||||
};
|
||||
|
||||
struct Range
|
||||
{
|
||||
static const unsigned int Colors_Count = 10;
|
||||
static const Color Default_Colors[Colors_Count];
|
||||
|
||||
Color colors[Colors_Count];
|
||||
float min;
|
||||
float max;
|
||||
|
||||
Range();
|
||||
|
||||
void reset();
|
||||
bool empty() const;
|
||||
void update_from(float value);
|
||||
void update_from(const Range& other);
|
||||
void set_from(const Range& other);
|
||||
float step_size() const;
|
||||
|
||||
Color get_color_at(float value) const;
|
||||
};
|
||||
|
||||
struct Ranges
|
||||
{
|
||||
Range height;
|
||||
Range width;
|
||||
Range feedrate;
|
||||
Range volumetric_rate;
|
||||
};
|
||||
|
||||
struct LegendItem
|
||||
{
|
||||
std::string text;
|
||||
Color color;
|
||||
|
||||
LegendItem(const std::string& text, const Color& color);
|
||||
};
|
||||
|
||||
typedef std::vector<LegendItem> LegendItemsList;
|
||||
|
||||
struct Extrusion
|
||||
{
|
||||
enum EViewType : unsigned char
|
||||
{
|
||||
FeatureType,
|
||||
Height,
|
||||
Width,
|
||||
Feedrate,
|
||||
VolumetricRate,
|
||||
Tool,
|
||||
Num_View_Types
|
||||
};
|
||||
|
||||
static const unsigned int Num_Extrusion_Roles = (unsigned int)erMixed + 1;
|
||||
static const Color Default_Extrusion_Role_Colors[Num_Extrusion_Roles];
|
||||
static const std::string Default_Extrusion_Role_Names[Num_Extrusion_Roles];
|
||||
static const EViewType Default_View_Type;
|
||||
|
||||
struct Layer
|
||||
{
|
||||
float z;
|
||||
ExtrusionPaths paths;
|
||||
|
||||
Layer(float z, const ExtrusionPaths& paths);
|
||||
};
|
||||
|
||||
typedef std::vector<Layer> LayersList;
|
||||
|
||||
EViewType view_type;
|
||||
Color role_colors[Num_Extrusion_Roles];
|
||||
std::string role_names[Num_Extrusion_Roles];
|
||||
LayersList layers;
|
||||
unsigned int role_flags;
|
||||
|
||||
void set_default();
|
||||
bool is_role_flag_set(ExtrusionRole role) const;
|
||||
|
||||
static bool is_role_flag_set(unsigned int flags, ExtrusionRole role);
|
||||
};
|
||||
|
||||
struct Travel
|
||||
{
|
||||
enum EType : unsigned char
|
||||
{
|
||||
Move,
|
||||
Extrude,
|
||||
Retract,
|
||||
Num_Types
|
||||
};
|
||||
|
||||
static const float Default_Width;
|
||||
static const float Default_Height;
|
||||
static const Color Default_Type_Colors[Num_Types];
|
||||
|
||||
struct Polyline
|
||||
{
|
||||
enum EDirection
|
||||
{
|
||||
Vertical,
|
||||
Generic,
|
||||
Num_Directions
|
||||
};
|
||||
|
||||
EType type;
|
||||
EDirection direction;
|
||||
float feedrate;
|
||||
unsigned int extruder_id;
|
||||
Polyline3 polyline;
|
||||
|
||||
Polyline(EType type, EDirection direction, float feedrate, unsigned int extruder_id, const Polyline3& polyline);
|
||||
};
|
||||
|
||||
typedef std::vector<Polyline> PolylinesList;
|
||||
|
||||
PolylinesList polylines;
|
||||
float width;
|
||||
float height;
|
||||
Color type_colors[Num_Types];
|
||||
bool is_visible;
|
||||
|
||||
void set_default();
|
||||
};
|
||||
|
||||
struct Retraction
|
||||
{
|
||||
static const Color Default_Color;
|
||||
|
||||
struct Position
|
||||
{
|
||||
Vec3crd position;
|
||||
float width;
|
||||
float height;
|
||||
|
||||
Position(const Vec3crd& position, float width, float height);
|
||||
};
|
||||
|
||||
typedef std::vector<Position> PositionsList;
|
||||
|
||||
PositionsList positions;
|
||||
Color color;
|
||||
bool is_visible;
|
||||
|
||||
void set_default();
|
||||
};
|
||||
|
||||
struct Shell
|
||||
{
|
||||
bool is_visible;
|
||||
|
||||
void set_default();
|
||||
};
|
||||
|
||||
Extrusion extrusion;
|
||||
Travel travel;
|
||||
Retraction retraction;
|
||||
Retraction unretraction;
|
||||
Shell shell;
|
||||
Ranges ranges;
|
||||
|
||||
GCodePreviewData();
|
||||
|
||||
void set_default();
|
||||
void reset();
|
||||
bool empty() const;
|
||||
|
||||
Color get_extrusion_role_color(ExtrusionRole role) const;
|
||||
Color get_height_color(float height) const;
|
||||
Color get_width_color(float width) const;
|
||||
Color get_feedrate_color(float feedrate) const;
|
||||
Color get_volumetric_rate_color(float rate) const;
|
||||
|
||||
void set_extrusion_role_color(const std::string& role_name, float red, float green, float blue, float alpha);
|
||||
void set_extrusion_paths_colors(const std::vector<std::string>& colors);
|
||||
|
||||
std::string get_legend_title() const;
|
||||
LegendItemsList get_legend_items(const std::vector<float>& tool_colors) const;
|
||||
};
|
||||
|
||||
GCodePreviewData::Color operator + (const GCodePreviewData::Color& c1, const GCodePreviewData::Color& c2);
|
||||
GCodePreviewData::Color operator * (float f, const GCodePreviewData::Color& color);
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif /* slic3r_GCode_PreviewData_hpp_ */
|
||||
186
src/libslic3r/GCode/PrintExtents.cpp
Normal file
186
src/libslic3r/GCode/PrintExtents.cpp
Normal file
|
|
@ -0,0 +1,186 @@
|
|||
// Calculate extents of the extrusions assigned to Print / PrintObject.
|
||||
// The extents are used for assessing collisions of the print with the priming towers,
|
||||
// to decide whether to pause the print after the priming towers are extruded
|
||||
// to let the operator remove them from the print bed.
|
||||
|
||||
#include "../BoundingBox.hpp"
|
||||
#include "../ExtrusionEntity.hpp"
|
||||
#include "../ExtrusionEntityCollection.hpp"
|
||||
#include "../Print.hpp"
|
||||
|
||||
#include "PrintExtents.hpp"
|
||||
#include "WipeTower.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
static inline BoundingBox extrusion_polyline_extents(const Polyline &polyline, const coord_t radius)
|
||||
{
|
||||
BoundingBox bbox;
|
||||
if (! polyline.points.empty())
|
||||
bbox.merge(polyline.points.front());
|
||||
for (const Point &pt : polyline.points) {
|
||||
bbox.min(0) = std::min(bbox.min(0), pt(0) - radius);
|
||||
bbox.min(1) = std::min(bbox.min(1), pt(1) - radius);
|
||||
bbox.max(0) = std::max(bbox.max(0), pt(0) + radius);
|
||||
bbox.max(1) = std::max(bbox.max(1), pt(1) + radius);
|
||||
}
|
||||
return bbox;
|
||||
}
|
||||
|
||||
static inline BoundingBoxf extrusionentity_extents(const ExtrusionPath &extrusion_path)
|
||||
{
|
||||
BoundingBox bbox = extrusion_polyline_extents(extrusion_path.polyline, scale_(0.5 * extrusion_path.width));
|
||||
BoundingBoxf bboxf;
|
||||
if (! empty(bbox)) {
|
||||
bboxf.min = unscale(bbox.min);
|
||||
bboxf.max = unscale(bbox.max);
|
||||
bboxf.defined = true;
|
||||
}
|
||||
return bboxf;
|
||||
}
|
||||
|
||||
static inline BoundingBoxf extrusionentity_extents(const ExtrusionLoop &extrusion_loop)
|
||||
{
|
||||
BoundingBox bbox;
|
||||
for (const ExtrusionPath &extrusion_path : extrusion_loop.paths)
|
||||
bbox.merge(extrusion_polyline_extents(extrusion_path.polyline, scale_(0.5 * extrusion_path.width)));
|
||||
BoundingBoxf bboxf;
|
||||
if (! empty(bbox)) {
|
||||
bboxf.min = unscale(bbox.min);
|
||||
bboxf.max = unscale(bbox.max);
|
||||
bboxf.defined = true;
|
||||
}
|
||||
return bboxf;
|
||||
}
|
||||
|
||||
static inline BoundingBoxf extrusionentity_extents(const ExtrusionMultiPath &extrusion_multi_path)
|
||||
{
|
||||
BoundingBox bbox;
|
||||
for (const ExtrusionPath &extrusion_path : extrusion_multi_path.paths)
|
||||
bbox.merge(extrusion_polyline_extents(extrusion_path.polyline, scale_(0.5 * extrusion_path.width)));
|
||||
BoundingBoxf bboxf;
|
||||
if (! empty(bbox)) {
|
||||
bboxf.min = unscale(bbox.min);
|
||||
bboxf.max = unscale(bbox.max);
|
||||
bboxf.defined = true;
|
||||
}
|
||||
return bboxf;
|
||||
}
|
||||
|
||||
static BoundingBoxf extrusionentity_extents(const ExtrusionEntity *extrusion_entity);
|
||||
|
||||
static inline BoundingBoxf extrusionentity_extents(const ExtrusionEntityCollection &extrusion_entity_collection)
|
||||
{
|
||||
BoundingBoxf bbox;
|
||||
for (const ExtrusionEntity *extrusion_entity : extrusion_entity_collection.entities)
|
||||
bbox.merge(extrusionentity_extents(extrusion_entity));
|
||||
return bbox;
|
||||
}
|
||||
|
||||
static BoundingBoxf extrusionentity_extents(const ExtrusionEntity *extrusion_entity)
|
||||
{
|
||||
if (extrusion_entity == nullptr)
|
||||
return BoundingBoxf();
|
||||
auto *extrusion_path = dynamic_cast<const ExtrusionPath*>(extrusion_entity);
|
||||
if (extrusion_path != nullptr)
|
||||
return extrusionentity_extents(*extrusion_path);
|
||||
auto *extrusion_loop = dynamic_cast<const ExtrusionLoop*>(extrusion_entity);
|
||||
if (extrusion_loop != nullptr)
|
||||
return extrusionentity_extents(*extrusion_loop);
|
||||
auto *extrusion_multi_path = dynamic_cast<const ExtrusionMultiPath*>(extrusion_entity);
|
||||
if (extrusion_multi_path != nullptr)
|
||||
return extrusionentity_extents(*extrusion_multi_path);
|
||||
auto *extrusion_entity_collection = dynamic_cast<const ExtrusionEntityCollection*>(extrusion_entity);
|
||||
if (extrusion_entity_collection != nullptr)
|
||||
return extrusionentity_extents(*extrusion_entity_collection);
|
||||
throw std::runtime_error("Unexpected extrusion_entity type in extrusionentity_extents()");
|
||||
return BoundingBoxf();
|
||||
}
|
||||
|
||||
BoundingBoxf get_print_extrusions_extents(const Print &print)
|
||||
{
|
||||
BoundingBoxf bbox(extrusionentity_extents(print.brim()));
|
||||
bbox.merge(extrusionentity_extents(print.skirt()));
|
||||
return bbox;
|
||||
}
|
||||
|
||||
BoundingBoxf get_print_object_extrusions_extents(const PrintObject &print_object, const coordf_t max_print_z)
|
||||
{
|
||||
BoundingBoxf bbox;
|
||||
for (const Layer *layer : print_object.layers()) {
|
||||
if (layer->print_z > max_print_z)
|
||||
break;
|
||||
BoundingBoxf bbox_this;
|
||||
for (const LayerRegion *layerm : layer->regions()) {
|
||||
bbox_this.merge(extrusionentity_extents(layerm->perimeters));
|
||||
for (const ExtrusionEntity *ee : layerm->fills.entities)
|
||||
// fill represents infill extrusions of a single island.
|
||||
bbox_this.merge(extrusionentity_extents(*dynamic_cast<const ExtrusionEntityCollection*>(ee)));
|
||||
}
|
||||
const SupportLayer *support_layer = dynamic_cast<const SupportLayer*>(layer);
|
||||
if (support_layer)
|
||||
for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities)
|
||||
bbox_this.merge(extrusionentity_extents(extrusion_entity));
|
||||
for (const Point &offset : print_object.copies()) {
|
||||
BoundingBoxf bbox_translated(bbox_this);
|
||||
bbox_translated.translate(unscale(offset));
|
||||
bbox.merge(bbox_translated);
|
||||
}
|
||||
}
|
||||
return bbox;
|
||||
}
|
||||
|
||||
// Returns a bounding box of a projection of the wipe tower for the layers <= max_print_z.
|
||||
// The projection does not contain the priming regions.
|
||||
BoundingBoxf get_wipe_tower_extrusions_extents(const Print &print, const coordf_t max_print_z)
|
||||
{
|
||||
// Wipe tower extrusions are saved as if the tower was at the origin with no rotation
|
||||
// We need to get position and angle of the wipe tower to transform them to actual position.
|
||||
Transform2d trafo =
|
||||
Eigen::Translation2d(print.config().wipe_tower_x.value, print.config().wipe_tower_y.value) *
|
||||
Eigen::Rotation2Dd(print.config().wipe_tower_rotation_angle.value);
|
||||
|
||||
BoundingBoxf bbox;
|
||||
for (const std::vector<WipeTower::ToolChangeResult> &tool_changes : print.wipe_tower_data().tool_changes) {
|
||||
if (! tool_changes.empty() && tool_changes.front().print_z > max_print_z)
|
||||
break;
|
||||
for (const WipeTower::ToolChangeResult &tcr : tool_changes) {
|
||||
for (size_t i = 1; i < tcr.extrusions.size(); ++ i) {
|
||||
const WipeTower::Extrusion &e = tcr.extrusions[i];
|
||||
if (e.width > 0) {
|
||||
Vec2d delta = 0.5 * Vec2d(e.width, e.width);
|
||||
Vec2d p1 = trafo * Vec2d((&e - 1)->pos.x, (&e - 1)->pos.y);
|
||||
Vec2d p2 = trafo * Vec2d(e.pos.x, e.pos.y);
|
||||
bbox.merge(p1.cwiseMin(p2) - delta);
|
||||
bbox.merge(p1.cwiseMax(p2) + delta);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return bbox;
|
||||
}
|
||||
|
||||
// Returns a bounding box of the wipe tower priming extrusions.
|
||||
BoundingBoxf get_wipe_tower_priming_extrusions_extents(const Print &print)
|
||||
{
|
||||
BoundingBoxf bbox;
|
||||
if (print.wipe_tower_data().priming != nullptr) {
|
||||
const WipeTower::ToolChangeResult &tcr = *print.wipe_tower_data().priming;
|
||||
for (size_t i = 1; i < tcr.extrusions.size(); ++ i) {
|
||||
const WipeTower::Extrusion &e = tcr.extrusions[i];
|
||||
if (e.width > 0) {
|
||||
Vec2d p1((&e - 1)->pos.x, (&e - 1)->pos.y);
|
||||
Vec2d p2(e.pos.x, e.pos.y);
|
||||
bbox.merge(p1);
|
||||
coordf_t radius = 0.5 * e.width;
|
||||
bbox.min(0) = std::min(bbox.min(0), std::min(p1(0), p2(0)) - radius);
|
||||
bbox.min(1) = std::min(bbox.min(1), std::min(p1(1), p2(1)) - radius);
|
||||
bbox.max(0) = std::max(bbox.max(0), std::max(p1(0), p2(0)) + radius);
|
||||
bbox.max(1) = std::max(bbox.max(1), std::max(p1(1), p2(1)) + radius);
|
||||
}
|
||||
}
|
||||
}
|
||||
return bbox;
|
||||
}
|
||||
|
||||
}
|
||||
30
src/libslic3r/GCode/PrintExtents.hpp
Normal file
30
src/libslic3r/GCode/PrintExtents.hpp
Normal file
|
|
@ -0,0 +1,30 @@
|
|||
// Measure extents of the planned extrusions.
|
||||
// To be used for collision reporting.
|
||||
|
||||
#ifndef slic3r_PrintExtents_hpp_
|
||||
#define slic3r_PrintExtents_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Print;
|
||||
class PrintObject;
|
||||
class BoundingBoxf;
|
||||
|
||||
// Returns a bounding box of a projection of the brim and skirt.
|
||||
BoundingBoxf get_print_extrusions_extents(const Print &print);
|
||||
|
||||
// Returns a bounding box of a projection of the object extrusions at z <= max_print_z.
|
||||
BoundingBoxf get_print_object_extrusions_extents(const PrintObject &print_object, const coordf_t max_print_z);
|
||||
|
||||
// Returns a bounding box of a projection of the wipe tower for the layers <= max_print_z.
|
||||
// The projection does not contain the priming regions.
|
||||
BoundingBoxf get_wipe_tower_extrusions_extents(const Print &print, const coordf_t max_print_z);
|
||||
|
||||
// Returns a bounding box of the wipe tower priming extrusions.
|
||||
BoundingBoxf get_wipe_tower_priming_extrusions_extents(const Print &print);
|
||||
|
||||
};
|
||||
|
||||
#endif /* slic3r_PrintExtents_hpp_ */
|
||||
87
src/libslic3r/GCode/SpiralVase.cpp
Normal file
87
src/libslic3r/GCode/SpiralVase.cpp
Normal file
|
|
@ -0,0 +1,87 @@
|
|||
#include "SpiralVase.hpp"
|
||||
#include "GCode.hpp"
|
||||
#include <sstream>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
std::string SpiralVase::process_layer(const std::string &gcode)
|
||||
{
|
||||
/* This post-processor relies on several assumptions:
|
||||
- all layers are processed through it, including those that are not supposed
|
||||
to be transformed, in order to update the reader with the XY positions
|
||||
- each call to this method includes a full layer, with a single Z move
|
||||
at the beginning
|
||||
- each layer is composed by suitable geometry (i.e. a single complete loop)
|
||||
- loops were not clipped before calling this method */
|
||||
|
||||
// If we're not going to modify G-code, just feed it to the reader
|
||||
// in order to update positions.
|
||||
if (!this->enable) {
|
||||
this->_reader.parse_buffer(gcode);
|
||||
return gcode;
|
||||
}
|
||||
|
||||
// Get total XY length for this layer by summing all extrusion moves.
|
||||
float total_layer_length = 0;
|
||||
float layer_height = 0;
|
||||
float z;
|
||||
bool set_z = false;
|
||||
|
||||
{
|
||||
//FIXME Performance warning: This copies the GCodeConfig of the reader.
|
||||
GCodeReader r = this->_reader; // clone
|
||||
r.parse_buffer(gcode, [&total_layer_length, &layer_height, &z, &set_z]
|
||||
(GCodeReader &reader, const GCodeReader::GCodeLine &line) {
|
||||
if (line.cmd_is("G1")) {
|
||||
if (line.extruding(reader)) {
|
||||
total_layer_length += line.dist_XY(reader);
|
||||
} else if (line.has(Z)) {
|
||||
layer_height += line.dist_Z(reader);
|
||||
if (!set_z) {
|
||||
z = line.new_Z(reader);
|
||||
set_z = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Remove layer height from initial Z.
|
||||
z -= layer_height;
|
||||
|
||||
std::string new_gcode;
|
||||
this->_reader.parse_buffer(gcode, [&new_gcode, &z, &layer_height, &total_layer_length]
|
||||
(GCodeReader &reader, GCodeReader::GCodeLine line) {
|
||||
if (line.cmd_is("G1")) {
|
||||
if (line.has_z()) {
|
||||
// If this is the initial Z move of the layer, replace it with a
|
||||
// (redundant) move to the last Z of previous layer.
|
||||
line.set(reader, Z, z);
|
||||
new_gcode += line.raw() + '\n';
|
||||
return;
|
||||
} else {
|
||||
float dist_XY = line.dist_XY(reader);
|
||||
if (dist_XY > 0) {
|
||||
// horizontal move
|
||||
if (line.extruding(reader)) {
|
||||
z += dist_XY * layer_height / total_layer_length;
|
||||
line.set(reader, Z, z);
|
||||
new_gcode += line.raw() + '\n';
|
||||
}
|
||||
return;
|
||||
|
||||
/* Skip travel moves: the move to first perimeter point will
|
||||
cause a visible seam when loops are not aligned in XY; by skipping
|
||||
it we blend the first loop move in the XY plane (although the smoothness
|
||||
of such blend depend on how long the first segment is; maybe we should
|
||||
enforce some minimum length?). */
|
||||
}
|
||||
}
|
||||
}
|
||||
new_gcode += line.raw() + '\n';
|
||||
});
|
||||
|
||||
return new_gcode;
|
||||
}
|
||||
|
||||
}
|
||||
28
src/libslic3r/GCode/SpiralVase.hpp
Normal file
28
src/libslic3r/GCode/SpiralVase.hpp
Normal file
|
|
@ -0,0 +1,28 @@
|
|||
#ifndef slic3r_SpiralVase_hpp_
|
||||
#define slic3r_SpiralVase_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "GCodeReader.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class SpiralVase {
|
||||
public:
|
||||
bool enable;
|
||||
|
||||
SpiralVase(const PrintConfig &config)
|
||||
: enable(false), _config(&config)
|
||||
{
|
||||
this->_reader.z() = this->_config->z_offset;
|
||||
this->_reader.apply_config(*this->_config);
|
||||
};
|
||||
std::string process_layer(const std::string &gcode);
|
||||
|
||||
private:
|
||||
const PrintConfig* _config;
|
||||
GCodeReader _reader;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
629
src/libslic3r/GCode/ToolOrdering.cpp
Normal file
629
src/libslic3r/GCode/ToolOrdering.cpp
Normal file
|
|
@ -0,0 +1,629 @@
|
|||
#include "Print.hpp"
|
||||
#include "ToolOrdering.hpp"
|
||||
|
||||
// #define SLIC3R_DEBUG
|
||||
|
||||
// Make assert active if SLIC3R_DEBUG
|
||||
#ifdef SLIC3R_DEBUG
|
||||
#define DEBUG
|
||||
#define _DEBUG
|
||||
#undef NDEBUG
|
||||
#endif
|
||||
|
||||
#include <cassert>
|
||||
#include <limits>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
|
||||
// Returns true in case that extruder a comes before b (b does not have to be present). False otherwise.
|
||||
bool LayerTools::is_extruder_order(unsigned int a, unsigned int b) const
|
||||
{
|
||||
if (a==b)
|
||||
return false;
|
||||
|
||||
for (auto extruder : extruders) {
|
||||
if (extruder == a)
|
||||
return true;
|
||||
if (extruder == b)
|
||||
return false;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// For the use case when each object is printed separately
|
||||
// (print.config().complete_objects is true).
|
||||
ToolOrdering::ToolOrdering(const PrintObject &object, unsigned int first_extruder, bool prime_multi_material)
|
||||
{
|
||||
if (object.layers().empty())
|
||||
return;
|
||||
|
||||
// Initialize the print layers for just a single object.
|
||||
{
|
||||
std::vector<coordf_t> zs;
|
||||
zs.reserve(zs.size() + object.layers().size() + object.support_layers().size());
|
||||
for (auto layer : object.layers())
|
||||
zs.emplace_back(layer->print_z);
|
||||
for (auto layer : object.support_layers())
|
||||
zs.emplace_back(layer->print_z);
|
||||
this->initialize_layers(zs);
|
||||
}
|
||||
|
||||
// Collect extruders reuqired to print the layers.
|
||||
this->collect_extruders(object);
|
||||
|
||||
// Reorder the extruders to minimize tool switches.
|
||||
this->reorder_extruders(first_extruder);
|
||||
|
||||
this->fill_wipe_tower_partitions(object.print()->config(), object.layers().front()->print_z - object.layers().front()->height);
|
||||
|
||||
this->collect_extruder_statistics(prime_multi_material);
|
||||
}
|
||||
|
||||
// For the use case when all objects are printed at once.
|
||||
// (print.config().complete_objects is false).
|
||||
ToolOrdering::ToolOrdering(const Print &print, unsigned int first_extruder, bool prime_multi_material)
|
||||
{
|
||||
m_print_config_ptr = &print.config();
|
||||
|
||||
// Initialize the print layers for all objects and all layers.
|
||||
coordf_t object_bottom_z = 0.;
|
||||
{
|
||||
std::vector<coordf_t> zs;
|
||||
for (auto object : print.objects()) {
|
||||
zs.reserve(zs.size() + object->layers().size() + object->support_layers().size());
|
||||
for (auto layer : object->layers())
|
||||
zs.emplace_back(layer->print_z);
|
||||
for (auto layer : object->support_layers())
|
||||
zs.emplace_back(layer->print_z);
|
||||
if (! object->layers().empty())
|
||||
object_bottom_z = object->layers().front()->print_z - object->layers().front()->height;
|
||||
}
|
||||
this->initialize_layers(zs);
|
||||
}
|
||||
|
||||
// Collect extruders reuqired to print the layers.
|
||||
for (auto object : print.objects())
|
||||
this->collect_extruders(*object);
|
||||
|
||||
// Reorder the extruders to minimize tool switches.
|
||||
this->reorder_extruders(first_extruder);
|
||||
|
||||
this->fill_wipe_tower_partitions(print.config(), object_bottom_z);
|
||||
|
||||
this->collect_extruder_statistics(prime_multi_material);
|
||||
}
|
||||
|
||||
|
||||
LayerTools& ToolOrdering::tools_for_layer(coordf_t print_z)
|
||||
{
|
||||
auto it_layer_tools = std::lower_bound(m_layer_tools.begin(), m_layer_tools.end(), LayerTools(print_z - EPSILON));
|
||||
assert(it_layer_tools != m_layer_tools.end());
|
||||
coordf_t dist_min = std::abs(it_layer_tools->print_z - print_z);
|
||||
for (++ it_layer_tools; it_layer_tools != m_layer_tools.end(); ++it_layer_tools) {
|
||||
coordf_t d = std::abs(it_layer_tools->print_z - print_z);
|
||||
if (d >= dist_min)
|
||||
break;
|
||||
dist_min = d;
|
||||
}
|
||||
-- it_layer_tools;
|
||||
assert(dist_min < EPSILON);
|
||||
return *it_layer_tools;
|
||||
}
|
||||
|
||||
void ToolOrdering::initialize_layers(std::vector<coordf_t> &zs)
|
||||
{
|
||||
sort_remove_duplicates(zs);
|
||||
// Merge numerically very close Z values.
|
||||
for (size_t i = 0; i < zs.size();) {
|
||||
// Find the last layer with roughly the same print_z.
|
||||
size_t j = i + 1;
|
||||
coordf_t zmax = zs[i] + EPSILON;
|
||||
for (; j < zs.size() && zs[j] <= zmax; ++ j) ;
|
||||
// Assign an average print_z to the set of layers with nearly equal print_z.
|
||||
m_layer_tools.emplace_back(LayerTools(0.5 * (zs[i] + zs[j-1]), m_print_config_ptr));
|
||||
i = j;
|
||||
}
|
||||
}
|
||||
|
||||
// Collect extruders reuqired to print layers.
|
||||
void ToolOrdering::collect_extruders(const PrintObject &object)
|
||||
{
|
||||
// Collect the support extruders.
|
||||
for (auto support_layer : object.support_layers()) {
|
||||
LayerTools &layer_tools = this->tools_for_layer(support_layer->print_z);
|
||||
ExtrusionRole role = support_layer->support_fills.role();
|
||||
bool has_support = role == erMixed || role == erSupportMaterial;
|
||||
bool has_interface = role == erMixed || role == erSupportMaterialInterface;
|
||||
unsigned int extruder_support = object.config().support_material_extruder.value;
|
||||
unsigned int extruder_interface = object.config().support_material_interface_extruder.value;
|
||||
if (has_support)
|
||||
layer_tools.extruders.push_back(extruder_support);
|
||||
if (has_interface)
|
||||
layer_tools.extruders.push_back(extruder_interface);
|
||||
if (has_support || has_interface)
|
||||
layer_tools.has_support = true;
|
||||
}
|
||||
// Collect the object extruders.
|
||||
for (auto layer : object.layers()) {
|
||||
LayerTools &layer_tools = this->tools_for_layer(layer->print_z);
|
||||
// What extruders are required to print this object layer?
|
||||
for (size_t region_id = 0; region_id < object.region_volumes.size(); ++ region_id) {
|
||||
const LayerRegion *layerm = (region_id < layer->regions().size()) ? layer->regions()[region_id] : nullptr;
|
||||
if (layerm == nullptr)
|
||||
continue;
|
||||
const PrintRegion ®ion = *object.print()->regions()[region_id];
|
||||
|
||||
if (! layerm->perimeters.entities.empty()) {
|
||||
bool something_nonoverriddable = true;
|
||||
|
||||
if (m_print_config_ptr) { // in this case complete_objects is false (see ToolOrdering constructors)
|
||||
something_nonoverriddable = false;
|
||||
for (const auto& eec : layerm->perimeters.entities) // let's check if there are nonoverriddable entities
|
||||
if (!layer_tools.wiping_extrusions().is_overriddable(dynamic_cast<const ExtrusionEntityCollection&>(*eec), *m_print_config_ptr, object, region)) {
|
||||
something_nonoverriddable = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (something_nonoverriddable)
|
||||
layer_tools.extruders.push_back(region.config().perimeter_extruder.value);
|
||||
|
||||
layer_tools.has_object = true;
|
||||
}
|
||||
|
||||
|
||||
bool has_infill = false;
|
||||
bool has_solid_infill = false;
|
||||
bool something_nonoverriddable = false;
|
||||
for (const ExtrusionEntity *ee : layerm->fills.entities) {
|
||||
// fill represents infill extrusions of a single island.
|
||||
const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
|
||||
ExtrusionRole role = fill->entities.empty() ? erNone : fill->entities.front()->role();
|
||||
if (is_solid_infill(role))
|
||||
has_solid_infill = true;
|
||||
else if (role != erNone)
|
||||
has_infill = true;
|
||||
|
||||
if (m_print_config_ptr) {
|
||||
if (!something_nonoverriddable && !layer_tools.wiping_extrusions().is_overriddable(*fill, *m_print_config_ptr, object, region))
|
||||
something_nonoverriddable = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (something_nonoverriddable || !m_print_config_ptr)
|
||||
{
|
||||
if (has_solid_infill)
|
||||
layer_tools.extruders.push_back(region.config().solid_infill_extruder);
|
||||
if (has_infill)
|
||||
layer_tools.extruders.push_back(region.config().infill_extruder);
|
||||
}
|
||||
if (has_solid_infill || has_infill)
|
||||
layer_tools.has_object = true;
|
||||
}
|
||||
}
|
||||
|
||||
for (auto& layer : m_layer_tools) {
|
||||
// Sort and remove duplicates
|
||||
sort_remove_duplicates(layer.extruders);
|
||||
|
||||
// make sure that there are some tools for each object layer (e.g. tall wiping object will result in empty extruders vector)
|
||||
if (layer.extruders.empty() && layer.has_object)
|
||||
layer.extruders.push_back(0); // 0="dontcare" extruder - it will be taken care of in reorder_extruders
|
||||
}
|
||||
}
|
||||
|
||||
// Reorder extruders to minimize layer changes.
|
||||
void ToolOrdering::reorder_extruders(unsigned int last_extruder_id)
|
||||
{
|
||||
if (m_layer_tools.empty())
|
||||
return;
|
||||
|
||||
if (last_extruder_id == (unsigned int)-1) {
|
||||
// The initial print extruder has not been decided yet.
|
||||
// Initialize the last_extruder_id with the first non-zero extruder id used for the print.
|
||||
last_extruder_id = 0;
|
||||
for (size_t i = 0; i < m_layer_tools.size() && last_extruder_id == 0; ++ i) {
|
||||
const LayerTools < = m_layer_tools[i];
|
||||
for (unsigned int extruder_id : lt.extruders)
|
||||
if (extruder_id > 0) {
|
||||
last_extruder_id = extruder_id;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (last_extruder_id == 0)
|
||||
// Nothing to extrude.
|
||||
return;
|
||||
} else
|
||||
// 1 based index
|
||||
++ last_extruder_id;
|
||||
|
||||
for (LayerTools < : m_layer_tools) {
|
||||
if (lt.extruders.empty())
|
||||
continue;
|
||||
if (lt.extruders.size() == 1 && lt.extruders.front() == 0)
|
||||
lt.extruders.front() = last_extruder_id;
|
||||
else {
|
||||
if (lt.extruders.front() == 0)
|
||||
// Pop the "don't care" extruder, the "don't care" region will be merged with the next one.
|
||||
lt.extruders.erase(lt.extruders.begin());
|
||||
// Reorder the extruders to start with the last one.
|
||||
for (size_t i = 1; i < lt.extruders.size(); ++ i)
|
||||
if (lt.extruders[i] == last_extruder_id) {
|
||||
// Move the last extruder to the front.
|
||||
memmove(lt.extruders.data() + 1, lt.extruders.data(), i * sizeof(unsigned int));
|
||||
lt.extruders.front() = last_extruder_id;
|
||||
break;
|
||||
}
|
||||
}
|
||||
last_extruder_id = lt.extruders.back();
|
||||
}
|
||||
|
||||
// Reindex the extruders, so they are zero based, not 1 based.
|
||||
for (LayerTools < : m_layer_tools)
|
||||
for (unsigned int &extruder_id : lt.extruders) {
|
||||
assert(extruder_id > 0);
|
||||
-- extruder_id;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void ToolOrdering::fill_wipe_tower_partitions(const PrintConfig &config, coordf_t object_bottom_z)
|
||||
{
|
||||
if (m_layer_tools.empty())
|
||||
return;
|
||||
|
||||
// Count the minimum number of tool changes per layer.
|
||||
size_t last_extruder = size_t(-1);
|
||||
for (LayerTools < : m_layer_tools) {
|
||||
lt.wipe_tower_partitions = lt.extruders.size();
|
||||
if (! lt.extruders.empty()) {
|
||||
if (last_extruder == size_t(-1) || last_extruder == lt.extruders.front())
|
||||
// The first extruder on this layer is equal to the current one, no need to do an initial tool change.
|
||||
-- lt.wipe_tower_partitions;
|
||||
last_extruder = lt.extruders.back();
|
||||
}
|
||||
}
|
||||
|
||||
// Propagate the wipe tower partitions down to support the upper partitions by the lower partitions.
|
||||
for (int i = int(m_layer_tools.size()) - 2; i >= 0; -- i)
|
||||
m_layer_tools[i].wipe_tower_partitions = std::max(m_layer_tools[i + 1].wipe_tower_partitions, m_layer_tools[i].wipe_tower_partitions);
|
||||
|
||||
//FIXME this is a hack to get the ball rolling.
|
||||
for (LayerTools < : m_layer_tools)
|
||||
lt.has_wipe_tower = (lt.has_object && lt.wipe_tower_partitions > 0) || lt.print_z < object_bottom_z + EPSILON;
|
||||
|
||||
// Test for a raft, insert additional wipe tower layer to fill in the raft separation gap.
|
||||
double max_layer_height = std::numeric_limits<double>::max();
|
||||
for (size_t i = 0; i < config.nozzle_diameter.values.size(); ++ i) {
|
||||
double mlh = config.max_layer_height.values[i];
|
||||
if (mlh == 0.)
|
||||
mlh = 0.75 * config.nozzle_diameter.values[i];
|
||||
max_layer_height = std::min(max_layer_height, mlh);
|
||||
}
|
||||
for (size_t i = 0; i + 1 < m_layer_tools.size(); ++ i) {
|
||||
const LayerTools < = m_layer_tools[i];
|
||||
const LayerTools <_next = m_layer_tools[i + 1];
|
||||
if (lt.print_z < object_bottom_z + EPSILON && lt_next.print_z >= object_bottom_z + EPSILON) {
|
||||
// lt is the last raft layer. Find the 1st object layer.
|
||||
size_t j = i + 1;
|
||||
for (; j < m_layer_tools.size() && ! m_layer_tools[j].has_wipe_tower; ++ j);
|
||||
if (j < m_layer_tools.size()) {
|
||||
const LayerTools <_object = m_layer_tools[j];
|
||||
coordf_t gap = lt_object.print_z - lt.print_z;
|
||||
assert(gap > 0.f);
|
||||
if (gap > max_layer_height + EPSILON) {
|
||||
// Insert one additional wipe tower layer between lh.print_z and lt_object.print_z.
|
||||
LayerTools lt_new(0.5f * (lt.print_z + lt_object.print_z));
|
||||
// Find the 1st layer above lt_new.
|
||||
for (j = i + 1; j < m_layer_tools.size() && m_layer_tools[j].print_z < lt_new.print_z - EPSILON; ++ j);
|
||||
if (std::abs(m_layer_tools[j].print_z - lt_new.print_z) < EPSILON) {
|
||||
m_layer_tools[j].has_wipe_tower = true;
|
||||
} else {
|
||||
LayerTools <_extra = *m_layer_tools.insert(m_layer_tools.begin() + j, lt_new);
|
||||
LayerTools <_prev = m_layer_tools[j - 1];
|
||||
LayerTools <_next = m_layer_tools[j + 1];
|
||||
assert(! lt_prev.extruders.empty() && ! lt_next.extruders.empty());
|
||||
assert(lt_prev.extruders.back() == lt_next.extruders.front());
|
||||
lt_extra.has_wipe_tower = true;
|
||||
lt_extra.extruders.push_back(lt_next.extruders.front());
|
||||
lt_extra.wipe_tower_partitions = lt_next.wipe_tower_partitions;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate the wipe_tower_layer_height values.
|
||||
coordf_t wipe_tower_print_z_last = 0.;
|
||||
for (LayerTools < : m_layer_tools)
|
||||
if (lt.has_wipe_tower) {
|
||||
lt.wipe_tower_layer_height = lt.print_z - wipe_tower_print_z_last;
|
||||
wipe_tower_print_z_last = lt.print_z;
|
||||
}
|
||||
}
|
||||
|
||||
void ToolOrdering::collect_extruder_statistics(bool prime_multi_material)
|
||||
{
|
||||
m_first_printing_extruder = (unsigned int)-1;
|
||||
for (const auto < : m_layer_tools)
|
||||
if (! lt.extruders.empty()) {
|
||||
m_first_printing_extruder = lt.extruders.front();
|
||||
break;
|
||||
}
|
||||
|
||||
m_last_printing_extruder = (unsigned int)-1;
|
||||
for (auto lt_it = m_layer_tools.rbegin(); lt_it != m_layer_tools.rend(); ++ lt_it)
|
||||
if (! lt_it->extruders.empty()) {
|
||||
m_last_printing_extruder = lt_it->extruders.back();
|
||||
break;
|
||||
}
|
||||
|
||||
m_all_printing_extruders.clear();
|
||||
for (const auto < : m_layer_tools) {
|
||||
append(m_all_printing_extruders, lt.extruders);
|
||||
sort_remove_duplicates(m_all_printing_extruders);
|
||||
}
|
||||
|
||||
if (prime_multi_material && ! m_all_printing_extruders.empty()) {
|
||||
// Reorder m_all_printing_extruders in the sequence they will be primed, the last one will be m_first_printing_extruder.
|
||||
// Then set m_first_printing_extruder to the 1st extruder primed.
|
||||
m_all_printing_extruders.erase(
|
||||
std::remove_if(m_all_printing_extruders.begin(), m_all_printing_extruders.end(),
|
||||
[ this ](const unsigned int eid) { return eid == m_first_printing_extruder; }),
|
||||
m_all_printing_extruders.end());
|
||||
m_all_printing_extruders.emplace_back(m_first_printing_extruder);
|
||||
m_first_printing_extruder = m_all_printing_extruders.front();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// This function is called from Print::mark_wiping_extrusions and sets extruder this entity should be printed with (-1 .. as usual)
|
||||
void WipingExtrusions::set_extruder_override(const ExtrusionEntity* entity, unsigned int copy_id, int extruder, unsigned int num_of_copies)
|
||||
{
|
||||
something_overridden = true;
|
||||
|
||||
auto entity_map_it = (entity_map.insert(std::make_pair(entity, std::vector<int>()))).first; // (add and) return iterator
|
||||
auto& copies_vector = entity_map_it->second;
|
||||
if (copies_vector.size() < num_of_copies)
|
||||
copies_vector.resize(num_of_copies, -1);
|
||||
|
||||
if (copies_vector[copy_id] != -1)
|
||||
std::cout << "ERROR: Entity extruder overriden multiple times!!!\n"; // A debugging message - this must never happen.
|
||||
|
||||
copies_vector[copy_id] = extruder;
|
||||
}
|
||||
|
||||
|
||||
// Finds first non-soluble extruder on the layer
|
||||
int WipingExtrusions::first_nonsoluble_extruder_on_layer(const PrintConfig& print_config) const
|
||||
{
|
||||
const LayerTools& lt = *m_layer_tools;
|
||||
for (auto extruders_it = lt.extruders.begin(); extruders_it != lt.extruders.end(); ++extruders_it)
|
||||
if (!print_config.filament_soluble.get_at(*extruders_it))
|
||||
return (*extruders_it);
|
||||
|
||||
return (-1);
|
||||
}
|
||||
|
||||
// Finds last non-soluble extruder on the layer
|
||||
int WipingExtrusions::last_nonsoluble_extruder_on_layer(const PrintConfig& print_config) const
|
||||
{
|
||||
const LayerTools& lt = *m_layer_tools;
|
||||
for (auto extruders_it = lt.extruders.rbegin(); extruders_it != lt.extruders.rend(); ++extruders_it)
|
||||
if (!print_config.filament_soluble.get_at(*extruders_it))
|
||||
return (*extruders_it);
|
||||
|
||||
return (-1);
|
||||
}
|
||||
|
||||
|
||||
// Decides whether this entity could be overridden
|
||||
bool WipingExtrusions::is_overriddable(const ExtrusionEntityCollection& eec, const PrintConfig& print_config, const PrintObject& object, const PrintRegion& region) const
|
||||
{
|
||||
if (print_config.filament_soluble.get_at(Print::get_extruder(eec, region)))
|
||||
return false;
|
||||
|
||||
if (object.config().wipe_into_objects)
|
||||
return true;
|
||||
|
||||
if (!region.config().wipe_into_infill || eec.role() != erInternalInfill)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// Following function iterates through all extrusions on the layer, remembers those that could be used for wiping after toolchange
|
||||
// and returns volume that is left to be wiped on the wipe tower.
|
||||
float WipingExtrusions::mark_wiping_extrusions(const Print& print, unsigned int old_extruder, unsigned int new_extruder, float volume_to_wipe)
|
||||
{
|
||||
const LayerTools& lt = *m_layer_tools;
|
||||
const float min_infill_volume = 0.f; // ignore infill with smaller volume than this
|
||||
|
||||
if (print.config().filament_soluble.get_at(old_extruder) || print.config().filament_soluble.get_at(new_extruder))
|
||||
return volume_to_wipe; // Soluble filament cannot be wiped in a random infill, neither the filament after it
|
||||
|
||||
// we will sort objects so that dedicated for wiping are at the beginning:
|
||||
PrintObjectPtrs object_list = print.objects();
|
||||
std::sort(object_list.begin(), object_list.end(), [](const PrintObject* a, const PrintObject* b) { return a->config().wipe_into_objects; });
|
||||
|
||||
// We will now iterate through
|
||||
// - first the dedicated objects to mark perimeters or infills (depending on infill_first)
|
||||
// - second through the dedicated ones again to mark infills or perimeters (depending on infill_first)
|
||||
// - then all the others to mark infills (in case that !infill_first, we must also check that the perimeter is finished already
|
||||
// this is controlled by the following variable:
|
||||
bool perimeters_done = false;
|
||||
|
||||
for (int i=0 ; i<(int)object_list.size() + (perimeters_done ? 0 : 1); ++i) {
|
||||
if (!perimeters_done && (i==(int)object_list.size() || !object_list[i]->config().wipe_into_objects)) { // we passed the last dedicated object in list
|
||||
perimeters_done = true;
|
||||
i=-1; // let's go from the start again
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto& object = object_list[i];
|
||||
|
||||
// Finds this layer:
|
||||
auto this_layer_it = std::find_if(object->layers().begin(), object->layers().end(), [<](const Layer* lay) { return std::abs(lt.print_z - lay->print_z)<EPSILON; });
|
||||
if (this_layer_it == object->layers().end())
|
||||
continue;
|
||||
const Layer* this_layer = *this_layer_it;
|
||||
unsigned int num_of_copies = object->copies().size();
|
||||
|
||||
for (unsigned int copy = 0; copy < num_of_copies; ++copy) { // iterate through copies first, so that we mark neighbouring infills to minimize travel moves
|
||||
|
||||
for (size_t region_id = 0; region_id < object->region_volumes.size(); ++ region_id) {
|
||||
const auto& region = *object->print()->regions()[region_id];
|
||||
|
||||
if (!region.config().wipe_into_infill && !object->config().wipe_into_objects)
|
||||
continue;
|
||||
|
||||
|
||||
if ((!print.config().infill_first ? perimeters_done : !perimeters_done) || (!object->config().wipe_into_objects && region.config().wipe_into_infill)) {
|
||||
for (const ExtrusionEntity* ee : this_layer->regions()[region_id]->fills.entities) { // iterate through all infill Collections
|
||||
auto* fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
|
||||
|
||||
if (!is_overriddable(*fill, print.config(), *object, region))
|
||||
continue;
|
||||
|
||||
// What extruder would this normally be printed with?
|
||||
unsigned int correct_extruder = Print::get_extruder(*fill, region);
|
||||
|
||||
if (volume_to_wipe<=0)
|
||||
continue;
|
||||
|
||||
if (!object->config().wipe_into_objects && !print.config().infill_first && region.config().wipe_into_infill)
|
||||
// In this case we must check that the original extruder is used on this layer before the one we are overridding
|
||||
// (and the perimeters will be finished before the infill is printed):
|
||||
if (!lt.is_extruder_order(region.config().perimeter_extruder - 1, new_extruder))
|
||||
continue;
|
||||
|
||||
if ((!is_entity_overridden(fill, copy) && fill->total_volume() > min_infill_volume)) { // this infill will be used to wipe this extruder
|
||||
set_extruder_override(fill, copy, new_extruder, num_of_copies);
|
||||
volume_to_wipe -= fill->total_volume();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Now the same for perimeters - see comments above for explanation:
|
||||
if (object->config().wipe_into_objects && (print.config().infill_first ? perimeters_done : !perimeters_done))
|
||||
{
|
||||
for (const ExtrusionEntity* ee : this_layer->regions()[region_id]->perimeters.entities) {
|
||||
auto* fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
|
||||
if (!is_overriddable(*fill, print.config(), *object, region))
|
||||
continue;
|
||||
|
||||
if (volume_to_wipe<=0)
|
||||
continue;
|
||||
|
||||
if ((!is_entity_overridden(fill, copy) && fill->total_volume() > min_infill_volume)) {
|
||||
set_extruder_override(fill, copy, new_extruder, num_of_copies);
|
||||
volume_to_wipe -= fill->total_volume();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::max(0.f, volume_to_wipe);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Called after all toolchanges on a layer were mark_infill_overridden. There might still be overridable entities,
|
||||
// that were not actually overridden. If they are part of a dedicated object, printing them with the extruder
|
||||
// they were initially assigned to might mean violating the perimeter-infill order. We will therefore go through
|
||||
// them again and make sure we override it.
|
||||
void WipingExtrusions::ensure_perimeters_infills_order(const Print& print)
|
||||
{
|
||||
const LayerTools& lt = *m_layer_tools;
|
||||
unsigned int first_nonsoluble_extruder = first_nonsoluble_extruder_on_layer(print.config());
|
||||
unsigned int last_nonsoluble_extruder = last_nonsoluble_extruder_on_layer(print.config());
|
||||
|
||||
for (const PrintObject* object : print.objects()) {
|
||||
// Finds this layer:
|
||||
auto this_layer_it = std::find_if(object->layers().begin(), object->layers().end(), [<](const Layer* lay) { return std::abs(lt.print_z - lay->print_z)<EPSILON; });
|
||||
if (this_layer_it == object->layers().end())
|
||||
continue;
|
||||
const Layer* this_layer = *this_layer_it;
|
||||
unsigned int num_of_copies = object->copies().size();
|
||||
|
||||
for (unsigned int copy = 0; copy < num_of_copies; ++copy) { // iterate through copies first, so that we mark neighbouring infills to minimize travel moves
|
||||
for (size_t region_id = 0; region_id < object->region_volumes.size(); ++ region_id) {
|
||||
const auto& region = *object->print()->regions()[region_id];
|
||||
|
||||
if (!region.config().wipe_into_infill && !object->config().wipe_into_objects)
|
||||
continue;
|
||||
|
||||
for (const ExtrusionEntity* ee : this_layer->regions()[region_id]->fills.entities) { // iterate through all infill Collections
|
||||
auto* fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
|
||||
|
||||
if (!is_overriddable(*fill, print.config(), *object, region)
|
||||
|| is_entity_overridden(fill, copy) )
|
||||
continue;
|
||||
|
||||
// This infill could have been overridden but was not - unless we do something, it could be
|
||||
// printed before its perimeter, or not be printed at all (in case its original extruder has
|
||||
// not been added to LayerTools
|
||||
// Either way, we will now force-override it with something suitable:
|
||||
if (print.config().infill_first
|
||||
|| object->config().wipe_into_objects // in this case the perimeter is overridden, so we can override by the last one safely
|
||||
|| lt.is_extruder_order(region.config().perimeter_extruder - 1, last_nonsoluble_extruder // !infill_first, but perimeter is already printed when last extruder prints
|
||||
|| std::find(lt.extruders.begin(), lt.extruders.end(), region.config().infill_extruder - 1) == lt.extruders.end()) // we have to force override - this could violate infill_first (FIXME)
|
||||
)
|
||||
set_extruder_override(fill, copy, (print.config().infill_first ? first_nonsoluble_extruder : last_nonsoluble_extruder), num_of_copies);
|
||||
else {
|
||||
// In this case we can (and should) leave it to be printed normally.
|
||||
// Force overriding would mean it gets printed before its perimeter.
|
||||
}
|
||||
}
|
||||
|
||||
// Now the same for perimeters - see comments above for explanation:
|
||||
for (const ExtrusionEntity* ee : this_layer->regions()[region_id]->perimeters.entities) { // iterate through all perimeter Collections
|
||||
auto* fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
|
||||
if (!is_overriddable(*fill, print.config(), *object, region)
|
||||
|| is_entity_overridden(fill, copy) )
|
||||
continue;
|
||||
|
||||
set_extruder_override(fill, copy, (print.config().infill_first ? last_nonsoluble_extruder : first_nonsoluble_extruder), num_of_copies);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// Following function is called from process_layer and returns pointer to vector with information about which extruders should be used for given copy of this entity.
|
||||
// It first makes sure the pointer is valid (creates the vector if it does not exist) and contains a record for each copy
|
||||
// It also modifies the vector in place and changes all -1 to correct_extruder_id (at the time the overrides were created, correct extruders were not known,
|
||||
// so -1 was used as "print as usual".
|
||||
// The resulting vector has to keep track of which extrusions are the ones that were overridden and which were not. In the extruder is used as overridden,
|
||||
// its number is saved as it is (zero-based index). Usual extrusions are saved as -number-1 (unfortunately there is no negative zero).
|
||||
const std::vector<int>* WipingExtrusions::get_extruder_overrides(const ExtrusionEntity* entity, int correct_extruder_id, int num_of_copies)
|
||||
{
|
||||
auto entity_map_it = entity_map.find(entity);
|
||||
if (entity_map_it == entity_map.end())
|
||||
entity_map_it = (entity_map.insert(std::make_pair(entity, std::vector<int>()))).first;
|
||||
|
||||
// Now the entity_map_it should be valid, let's make sure the vector is long enough:
|
||||
entity_map_it->second.resize(num_of_copies, -1);
|
||||
|
||||
// Each -1 now means "print as usual" - we will replace it with actual extruder id (shifted it so we don't lose that information):
|
||||
std::replace(entity_map_it->second.begin(), entity_map_it->second.end(), -1, -correct_extruder_id-1);
|
||||
|
||||
return &(entity_map_it->second);
|
||||
}
|
||||
|
||||
|
||||
} // namespace Slic3r
|
||||
162
src/libslic3r/GCode/ToolOrdering.hpp
Normal file
162
src/libslic3r/GCode/ToolOrdering.hpp
Normal file
|
|
@ -0,0 +1,162 @@
|
|||
// Ordering of the tools to minimize tool switches.
|
||||
|
||||
#ifndef slic3r_ToolOrdering_hpp_
|
||||
#define slic3r_ToolOrdering_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Print;
|
||||
class PrintObject;
|
||||
class LayerTools;
|
||||
|
||||
|
||||
|
||||
// Object of this class holds information about whether an extrusion is printed immediately
|
||||
// after a toolchange (as part of infill/perimeter wiping) or not. One extrusion can be a part
|
||||
// of several copies - this has to be taken into account.
|
||||
class WipingExtrusions
|
||||
{
|
||||
public:
|
||||
bool is_anything_overridden() const { // if there are no overrides, all the agenda can be skipped - this function can tell us if that's the case
|
||||
return something_overridden;
|
||||
}
|
||||
|
||||
// This is called from GCode::process_layer - see implementation for further comments:
|
||||
const std::vector<int>* get_extruder_overrides(const ExtrusionEntity* entity, int correct_extruder_id, int num_of_copies);
|
||||
|
||||
// This function goes through all infill entities, decides which ones will be used for wiping and
|
||||
// marks them by the extruder id. Returns volume that remains to be wiped on the wipe tower:
|
||||
float mark_wiping_extrusions(const Print& print, unsigned int old_extruder, unsigned int new_extruder, float volume_to_wipe);
|
||||
|
||||
void ensure_perimeters_infills_order(const Print& print);
|
||||
|
||||
bool is_overriddable(const ExtrusionEntityCollection& ee, const PrintConfig& print_config, const PrintObject& object, const PrintRegion& region) const;
|
||||
|
||||
void set_layer_tools_ptr(const LayerTools* lt) { m_layer_tools = lt; }
|
||||
|
||||
private:
|
||||
int first_nonsoluble_extruder_on_layer(const PrintConfig& print_config) const;
|
||||
int last_nonsoluble_extruder_on_layer(const PrintConfig& print_config) const;
|
||||
|
||||
// This function is called from mark_wiping_extrusions and sets extruder that it should be printed with (-1 .. as usual)
|
||||
void set_extruder_override(const ExtrusionEntity* entity, unsigned int copy_id, int extruder, unsigned int num_of_copies);
|
||||
|
||||
// Returns true in case that entity is not printed with its usual extruder for a given copy:
|
||||
bool is_entity_overridden(const ExtrusionEntity* entity, int copy_id) const {
|
||||
return (entity_map.find(entity) == entity_map.end() ? false : entity_map.at(entity).at(copy_id) != -1);
|
||||
}
|
||||
|
||||
std::map<const ExtrusionEntity*, std::vector<int>> entity_map; // to keep track of who prints what
|
||||
bool something_overridden = false;
|
||||
const LayerTools* m_layer_tools; // so we know which LayerTools object this belongs to
|
||||
};
|
||||
|
||||
|
||||
|
||||
class LayerTools
|
||||
{
|
||||
public:
|
||||
LayerTools(const coordf_t z, const PrintConfig* print_config_ptr = nullptr) :
|
||||
print_z(z),
|
||||
has_object(false),
|
||||
has_support(false),
|
||||
has_wipe_tower(false),
|
||||
wipe_tower_partitions(0),
|
||||
wipe_tower_layer_height(0.) {}
|
||||
|
||||
// Changing these operators to epsilon version can make a problem in cases where support and object layers get close to each other.
|
||||
// In case someone tries to do it, make sure you know what you're doing and test it properly (slice multiple objects at once with supports).
|
||||
bool operator< (const LayerTools &rhs) const { return print_z < rhs.print_z; }
|
||||
bool operator==(const LayerTools &rhs) const { return print_z == rhs.print_z; }
|
||||
|
||||
bool is_extruder_order(unsigned int a, unsigned int b) const;
|
||||
|
||||
coordf_t print_z;
|
||||
bool has_object;
|
||||
bool has_support;
|
||||
// Zero based extruder IDs, ordered to minimize tool switches.
|
||||
std::vector<unsigned int> extruders;
|
||||
// Will there be anything extruded on this layer for the wipe tower?
|
||||
// Due to the support layers possibly interleaving the object layers,
|
||||
// wipe tower will be disabled for some support only layers.
|
||||
bool has_wipe_tower;
|
||||
// Number of wipe tower partitions to support the required number of tool switches
|
||||
// and to support the wipe tower partitions above this one.
|
||||
size_t wipe_tower_partitions;
|
||||
coordf_t wipe_tower_layer_height;
|
||||
|
||||
WipingExtrusions& wiping_extrusions() {
|
||||
m_wiping_extrusions.set_layer_tools_ptr(this);
|
||||
return m_wiping_extrusions;
|
||||
}
|
||||
|
||||
private:
|
||||
// This object holds list of extrusion that will be used for extruder wiping
|
||||
WipingExtrusions m_wiping_extrusions;
|
||||
};
|
||||
|
||||
|
||||
|
||||
class ToolOrdering
|
||||
{
|
||||
public:
|
||||
ToolOrdering() {}
|
||||
|
||||
// For the use case when each object is printed separately
|
||||
// (print.config.complete_objects is true).
|
||||
ToolOrdering(const PrintObject &object, unsigned int first_extruder = (unsigned int)-1, bool prime_multi_material = false);
|
||||
|
||||
// For the use case when all objects are printed at once.
|
||||
// (print.config.complete_objects is false).
|
||||
ToolOrdering(const Print &print, unsigned int first_extruder = (unsigned int)-1, bool prime_multi_material = false);
|
||||
|
||||
void clear() { m_layer_tools.clear(); }
|
||||
|
||||
// Get the first extruder printing, including the extruder priming areas, returns -1 if there is no layer printed.
|
||||
unsigned int first_extruder() const { return m_first_printing_extruder; }
|
||||
|
||||
// Get the first extruder printing the layer_tools, returns -1 if there is no layer printed.
|
||||
unsigned int last_extruder() const { return m_last_printing_extruder; }
|
||||
|
||||
// For a multi-material print, the printing extruders are ordered in the order they shall be primed.
|
||||
const std::vector<unsigned int>& all_extruders() const { return m_all_printing_extruders; }
|
||||
|
||||
// Find LayerTools with the closest print_z.
|
||||
LayerTools& tools_for_layer(coordf_t print_z);
|
||||
const LayerTools& tools_for_layer(coordf_t print_z) const
|
||||
{ return *const_cast<const LayerTools*>(&const_cast<const ToolOrdering*>(this)->tools_for_layer(print_z)); }
|
||||
|
||||
const LayerTools& front() const { return m_layer_tools.front(); }
|
||||
const LayerTools& back() const { return m_layer_tools.back(); }
|
||||
std::vector<LayerTools>::const_iterator begin() const { return m_layer_tools.begin(); }
|
||||
std::vector<LayerTools>::const_iterator end() const { return m_layer_tools.end(); }
|
||||
bool empty() const { return m_layer_tools.empty(); }
|
||||
std::vector<LayerTools>& layer_tools() { return m_layer_tools; }
|
||||
bool has_wipe_tower() const { return ! m_layer_tools.empty() && m_first_printing_extruder != (unsigned int)-1 && m_layer_tools.front().wipe_tower_partitions > 0; }
|
||||
|
||||
private:
|
||||
void initialize_layers(std::vector<coordf_t> &zs);
|
||||
void collect_extruders(const PrintObject &object);
|
||||
void reorder_extruders(unsigned int last_extruder_id);
|
||||
void fill_wipe_tower_partitions(const PrintConfig &config, coordf_t object_bottom_z);
|
||||
void collect_extruder_statistics(bool prime_multi_material);
|
||||
|
||||
std::vector<LayerTools> m_layer_tools;
|
||||
// First printing extruder, including the multi-material priming sequence.
|
||||
unsigned int m_first_printing_extruder = (unsigned int)-1;
|
||||
// Final printing extruder.
|
||||
unsigned int m_last_printing_extruder = (unsigned int)-1;
|
||||
// All extruders, which extrude some material over m_layer_tools.
|
||||
std::vector<unsigned int> m_all_printing_extruders;
|
||||
|
||||
|
||||
const PrintConfig* m_print_config_ptr = nullptr;
|
||||
};
|
||||
|
||||
|
||||
|
||||
} // namespace SLic3r
|
||||
|
||||
#endif /* slic3r_ToolOrdering_hpp_ */
|
||||
168
src/libslic3r/GCode/WipeTower.hpp
Normal file
168
src/libslic3r/GCode/WipeTower.hpp
Normal file
|
|
@ -0,0 +1,168 @@
|
|||
#ifndef slic3r_WipeTower_hpp_
|
||||
#define slic3r_WipeTower_hpp_
|
||||
|
||||
#include <math.h>
|
||||
#include <utility>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace Slic3r
|
||||
{
|
||||
|
||||
// A pure virtual WipeTower definition.
|
||||
class WipeTower
|
||||
{
|
||||
public:
|
||||
// Internal point class, to make the wipe tower independent from other slic3r modules.
|
||||
// This is important for Prusa Research as we want to build the wipe tower post-processor independently from slic3r.
|
||||
struct xy
|
||||
{
|
||||
xy(float x = 0.f, float y = 0.f) : x(x), y(y) {}
|
||||
xy(const xy& pos,float xp,float yp) : x(pos.x+xp), y(pos.y+yp) {}
|
||||
xy operator+(const xy &rhs) const { xy out(*this); out.x += rhs.x; out.y += rhs.y; return out; }
|
||||
xy operator-(const xy &rhs) const { xy out(*this); out.x -= rhs.x; out.y -= rhs.y; return out; }
|
||||
xy& operator+=(const xy &rhs) { x += rhs.x; y += rhs.y; return *this; }
|
||||
xy& operator-=(const xy &rhs) { x -= rhs.x; y -= rhs.y; return *this; }
|
||||
bool operator==(const xy &rhs) const { return x == rhs.x && y == rhs.y; }
|
||||
bool operator!=(const xy &rhs) const { return x != rhs.x || y != rhs.y; }
|
||||
|
||||
// Rotate the point around center of the wipe tower about given angle (in degrees)
|
||||
xy rotate(float width, float depth, float angle) const {
|
||||
xy out(0,0);
|
||||
float temp_x = x - width / 2.f;
|
||||
float temp_y = y - depth / 2.f;
|
||||
angle *= float(M_PI/180.);
|
||||
out.x += temp_x * cos(angle) - temp_y * sin(angle) + width / 2.f;
|
||||
out.y += temp_x * sin(angle) + temp_y * cos(angle) + depth / 2.f;
|
||||
return out;
|
||||
}
|
||||
|
||||
// Rotate the point around origin about given angle in degrees
|
||||
void rotate(float angle) {
|
||||
float temp_x = x * cos(angle) - y * sin(angle);
|
||||
y = x * sin(angle) + y * cos(angle);
|
||||
x = temp_x;
|
||||
}
|
||||
|
||||
void translate(const xy& vect) {
|
||||
x += vect.x;
|
||||
y += vect.y;
|
||||
}
|
||||
|
||||
float x;
|
||||
float y;
|
||||
};
|
||||
|
||||
WipeTower() {}
|
||||
virtual ~WipeTower() {}
|
||||
|
||||
// Return the wipe tower position.
|
||||
virtual const xy& position() const = 0;
|
||||
|
||||
// Return the wipe tower width.
|
||||
virtual float width() const = 0;
|
||||
|
||||
// The wipe tower is finished, there should be no more tool changes or wipe tower prints.
|
||||
virtual bool finished() const = 0;
|
||||
|
||||
// Switch to a next layer.
|
||||
virtual void set_layer(
|
||||
// Print height of this layer.
|
||||
float print_z,
|
||||
// Layer height, used to calculate extrusion the rate.
|
||||
float layer_height,
|
||||
// Maximum number of tool changes on this layer or the layers below.
|
||||
size_t max_tool_changes,
|
||||
// Is this the first layer of the print? In that case print the brim first.
|
||||
bool is_first_layer,
|
||||
// Is this the last layer of the wipe tower?
|
||||
bool is_last_layer) = 0;
|
||||
|
||||
enum Purpose {
|
||||
PURPOSE_MOVE_TO_TOWER,
|
||||
PURPOSE_EXTRUDE,
|
||||
PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE,
|
||||
};
|
||||
|
||||
// Extrusion path of the wipe tower, for 3D preview of the generated tool paths.
|
||||
struct Extrusion
|
||||
{
|
||||
Extrusion(const xy &pos, float width, unsigned int tool) : pos(pos), width(width), tool(tool) {}
|
||||
// End position of this extrusion.
|
||||
xy pos;
|
||||
// Width of a squished extrusion, corrected for the roundings of the squished extrusions.
|
||||
// This is left zero if it is a travel move.
|
||||
float width;
|
||||
// Current extruder index.
|
||||
unsigned int tool;
|
||||
};
|
||||
|
||||
struct ToolChangeResult
|
||||
{
|
||||
// Print heigh of this tool change.
|
||||
float print_z;
|
||||
float layer_height;
|
||||
// G-code section to be directly included into the output G-code.
|
||||
std::string gcode;
|
||||
// For path preview.
|
||||
std::vector<Extrusion> extrusions;
|
||||
// Initial position, at which the wipe tower starts its action.
|
||||
// At this position the extruder is loaded and there is no Z-hop applied.
|
||||
xy start_pos;
|
||||
// Last point, at which the normal G-code generator of Slic3r shall continue.
|
||||
// At this position the extruder is loaded and there is no Z-hop applied.
|
||||
xy end_pos;
|
||||
// Time elapsed over this tool change.
|
||||
// This is useful not only for the print time estimation, but also for the control of layer cooling.
|
||||
float elapsed_time;
|
||||
|
||||
// Is this a priming extrusion? (If so, the wipe tower rotation & translation will not be applied later)
|
||||
bool priming;
|
||||
|
||||
// Sum the total length of the extrusion.
|
||||
float total_extrusion_length_in_plane() {
|
||||
float e_length = 0.f;
|
||||
for (size_t i = 1; i < this->extrusions.size(); ++ i) {
|
||||
const Extrusion &e = this->extrusions[i];
|
||||
if (e.width > 0) {
|
||||
xy v = e.pos - (&e - 1)->pos;
|
||||
e_length += sqrt(v.x*v.x+v.y*v.y);
|
||||
}
|
||||
}
|
||||
return e_length;
|
||||
}
|
||||
};
|
||||
|
||||
// Returns gcode to prime the nozzles at the front edge of the print bed.
|
||||
virtual ToolChangeResult prime(
|
||||
// print_z of the first layer.
|
||||
float first_layer_height,
|
||||
// Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object.
|
||||
const std::vector<unsigned int> &tools,
|
||||
// If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower.
|
||||
// If false, the last priming are will be large enough to wipe the last extruder sufficiently.
|
||||
bool last_wipe_inside_wipe_tower) = 0;
|
||||
|
||||
// Returns gcode for toolchange and the end position.
|
||||
// if new_tool == -1, just unload the current filament over the wipe tower.
|
||||
virtual ToolChangeResult tool_change(unsigned int new_tool, bool last_in_layer) = 0;
|
||||
|
||||
// Close the current wipe tower layer with a perimeter and possibly fill the unfilled space with a zig-zag.
|
||||
// Call this method only if layer_finished() is false.
|
||||
virtual ToolChangeResult finish_layer() = 0;
|
||||
|
||||
// Is the current layer finished? A layer is finished if either the wipe tower is finished, or
|
||||
// the wipe tower has been completely covered by the tool change extrusions,
|
||||
// or the rest of the tower has been filled by a sparse infill with the finish_layer() method.
|
||||
virtual bool layer_finished() const = 0;
|
||||
|
||||
// Returns used filament length per extruder:
|
||||
virtual std::vector<float> get_used_filament() const = 0;
|
||||
|
||||
// Returns total number of toolchanges:
|
||||
virtual int get_number_of_toolchanges() const = 0;
|
||||
};
|
||||
|
||||
}; // namespace Slic3r
|
||||
|
||||
#endif /* slic3r_WipeTower_hpp_ */
|
||||
1258
src/libslic3r/GCode/WipeTowerPrusaMM.cpp
Normal file
1258
src/libslic3r/GCode/WipeTowerPrusaMM.cpp
Normal file
File diff suppressed because it is too large
Load diff
374
src/libslic3r/GCode/WipeTowerPrusaMM.hpp
Normal file
374
src/libslic3r/GCode/WipeTowerPrusaMM.hpp
Normal file
|
|
@ -0,0 +1,374 @@
|
|||
#ifndef WipeTowerPrusaMM_hpp_
|
||||
#define WipeTowerPrusaMM_hpp_
|
||||
|
||||
#include <cmath>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
#include <utility>
|
||||
#include <algorithm>
|
||||
|
||||
#include "WipeTower.hpp"
|
||||
|
||||
|
||||
namespace Slic3r
|
||||
{
|
||||
|
||||
namespace PrusaMultiMaterial {
|
||||
class Writer;
|
||||
};
|
||||
|
||||
|
||||
|
||||
class WipeTowerPrusaMM : public WipeTower
|
||||
{
|
||||
public:
|
||||
enum material_type
|
||||
{
|
||||
INVALID = -1,
|
||||
PLA = 0, // E:210C B:55C
|
||||
ABS = 1, // E:255C B:100C
|
||||
PET = 2, // E:240C B:90C
|
||||
HIPS = 3, // E:220C B:100C
|
||||
FLEX = 4, // E:245C B:80C
|
||||
SCAFF = 5, // E:215C B:55C
|
||||
EDGE = 6, // E:240C B:80C
|
||||
NGEN = 7, // E:230C B:80C
|
||||
PVA = 8 // E:210C B:80C
|
||||
};
|
||||
|
||||
// Parse material name into material_type.
|
||||
static material_type parse_material(const char *name);
|
||||
|
||||
// x -- x coordinates of wipe tower in mm ( left bottom corner )
|
||||
// y -- y coordinates of wipe tower in mm ( left bottom corner )
|
||||
// width -- width of wipe tower in mm ( default 60 mm - leave as it is )
|
||||
// wipe_area -- space available for one toolchange in mm
|
||||
WipeTowerPrusaMM(float x, float y, float width, float rotation_angle, float cooling_tube_retraction,
|
||||
float cooling_tube_length, float parking_pos_retraction, float extra_loading_move, float bridging,
|
||||
const std::vector<std::vector<float>>& wiping_matrix, unsigned int initial_tool) :
|
||||
m_wipe_tower_pos(x, y),
|
||||
m_wipe_tower_width(width),
|
||||
m_wipe_tower_rotation_angle(rotation_angle),
|
||||
m_y_shift(0.f),
|
||||
m_z_pos(0.f),
|
||||
m_is_first_layer(false),
|
||||
m_cooling_tube_retraction(cooling_tube_retraction),
|
||||
m_cooling_tube_length(cooling_tube_length),
|
||||
m_parking_pos_retraction(parking_pos_retraction),
|
||||
m_extra_loading_move(extra_loading_move),
|
||||
m_bridging(bridging),
|
||||
m_current_tool(initial_tool),
|
||||
wipe_volumes(wiping_matrix)
|
||||
{}
|
||||
|
||||
virtual ~WipeTowerPrusaMM() {}
|
||||
|
||||
|
||||
// Set the extruder properties.
|
||||
void set_extruder(size_t idx, material_type material, int temp, int first_layer_temp, float loading_speed, float loading_speed_start,
|
||||
float unloading_speed, float unloading_speed_start, float delay, int cooling_moves,
|
||||
float cooling_initial_speed, float cooling_final_speed, std::string ramming_parameters, float nozzle_diameter)
|
||||
{
|
||||
//while (m_filpar.size() < idx+1) // makes sure the required element is in the vector
|
||||
m_filpar.push_back(FilamentParameters());
|
||||
|
||||
m_filpar[idx].material = material;
|
||||
m_filpar[idx].temperature = temp;
|
||||
m_filpar[idx].first_layer_temperature = first_layer_temp;
|
||||
m_filpar[idx].loading_speed = loading_speed;
|
||||
m_filpar[idx].loading_speed_start = loading_speed_start;
|
||||
m_filpar[idx].unloading_speed = unloading_speed;
|
||||
m_filpar[idx].unloading_speed_start = unloading_speed_start;
|
||||
m_filpar[idx].delay = delay;
|
||||
m_filpar[idx].cooling_moves = cooling_moves;
|
||||
m_filpar[idx].cooling_initial_speed = cooling_initial_speed;
|
||||
m_filpar[idx].cooling_final_speed = cooling_final_speed;
|
||||
m_filpar[idx].nozzle_diameter = nozzle_diameter; // to be used in future with (non-single) multiextruder MM
|
||||
|
||||
m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio; // all extruders are now assumed to have the same diameter
|
||||
|
||||
std::stringstream stream{ramming_parameters};
|
||||
float speed = 0.f;
|
||||
stream >> m_filpar[idx].ramming_line_width_multiplicator >> m_filpar[idx].ramming_step_multiplicator;
|
||||
m_filpar[idx].ramming_line_width_multiplicator /= 100;
|
||||
m_filpar[idx].ramming_step_multiplicator /= 100;
|
||||
while (stream >> speed)
|
||||
m_filpar[idx].ramming_speed.push_back(speed);
|
||||
|
||||
m_used_filament_length.resize(std::max(m_used_filament_length.size(), idx + 1)); // makes sure that the vector is big enough so we don't have to check later
|
||||
}
|
||||
|
||||
|
||||
// Appends into internal structure m_plan containing info about the future wipe tower
|
||||
// to be used before building begins. The entries must be added ordered in z.
|
||||
void plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, bool brim, float wipe_volume = 0.f);
|
||||
|
||||
// Iterates through prepared m_plan, generates ToolChangeResults and appends them to "result"
|
||||
void generate(std::vector<std::vector<WipeTower::ToolChangeResult>> &result);
|
||||
|
||||
float get_depth() const { return m_wipe_tower_depth; }
|
||||
|
||||
|
||||
|
||||
// Switch to a next layer.
|
||||
virtual void set_layer(
|
||||
// Print height of this layer.
|
||||
float print_z,
|
||||
// Layer height, used to calculate extrusion the rate.
|
||||
float layer_height,
|
||||
// Maximum number of tool changes on this layer or the layers below.
|
||||
size_t max_tool_changes,
|
||||
// Is this the first layer of the print? In that case print the brim first.
|
||||
bool is_first_layer,
|
||||
// Is this the last layer of the waste tower?
|
||||
bool is_last_layer)
|
||||
{
|
||||
m_z_pos = print_z;
|
||||
m_layer_height = layer_height;
|
||||
m_is_first_layer = is_first_layer;
|
||||
m_print_brim = is_first_layer;
|
||||
m_depth_traversed = 0.f;
|
||||
m_current_shape = (! is_first_layer && m_current_shape == SHAPE_NORMAL) ? SHAPE_REVERSED : SHAPE_NORMAL;
|
||||
if (is_first_layer) {
|
||||
this->m_num_layer_changes = 0;
|
||||
this->m_num_tool_changes = 0;
|
||||
}
|
||||
else
|
||||
++ m_num_layer_changes;
|
||||
|
||||
// Calculate extrusion flow from desired line width, nozzle diameter, filament diameter and layer_height:
|
||||
m_extrusion_flow = extrusion_flow(layer_height);
|
||||
|
||||
// Advance m_layer_info iterator, making sure we got it right
|
||||
while (!m_plan.empty() && m_layer_info->z < print_z - WT_EPSILON && m_layer_info+1 != m_plan.end())
|
||||
++m_layer_info;
|
||||
}
|
||||
|
||||
// Return the wipe tower position.
|
||||
virtual const xy& position() const { return m_wipe_tower_pos; }
|
||||
// Return the wipe tower width.
|
||||
virtual float width() const { return m_wipe_tower_width; }
|
||||
// The wipe tower is finished, there should be no more tool changes or wipe tower prints.
|
||||
virtual bool finished() const { return m_max_color_changes == 0; }
|
||||
|
||||
// Returns gcode to prime the nozzles at the front edge of the print bed.
|
||||
virtual ToolChangeResult prime(
|
||||
// print_z of the first layer.
|
||||
float first_layer_height,
|
||||
// Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object.
|
||||
const std::vector<unsigned int> &tools,
|
||||
// If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower.
|
||||
// If false, the last priming are will be large enough to wipe the last extruder sufficiently.
|
||||
bool last_wipe_inside_wipe_tower);
|
||||
|
||||
// Returns gcode for a toolchange and a final print head position.
|
||||
// On the first layer, extrude a brim around the future wipe tower first.
|
||||
virtual ToolChangeResult tool_change(unsigned int new_tool, bool last_in_layer);
|
||||
|
||||
// Fill the unfilled space with a sparse infill.
|
||||
// Call this method only if layer_finished() is false.
|
||||
virtual ToolChangeResult finish_layer();
|
||||
|
||||
// Is the current layer finished?
|
||||
virtual bool layer_finished() const {
|
||||
return ( (m_is_first_layer ? m_wipe_tower_depth - m_perimeter_width : m_layer_info->depth) - WT_EPSILON < m_depth_traversed);
|
||||
}
|
||||
|
||||
virtual std::vector<float> get_used_filament() const override { return m_used_filament_length; }
|
||||
virtual int get_number_of_toolchanges() const override { return m_num_tool_changes; }
|
||||
|
||||
|
||||
private:
|
||||
WipeTowerPrusaMM();
|
||||
|
||||
enum wipe_shape // A fill-in direction
|
||||
{
|
||||
SHAPE_NORMAL = 1,
|
||||
SHAPE_REVERSED = -1
|
||||
};
|
||||
|
||||
|
||||
const bool m_peters_wipe_tower = false; // sparse wipe tower inspired by Peter's post processor - not finished yet
|
||||
const float Filament_Area = M_PI * 1.75f * 1.75f / 4.f; // filament area in mm^2
|
||||
const float Width_To_Nozzle_Ratio = 1.25f; // desired line width (oval) in multiples of nozzle diameter - may not be actually neccessary to adjust
|
||||
const float WT_EPSILON = 1e-3f;
|
||||
|
||||
|
||||
xy m_wipe_tower_pos; // Left front corner of the wipe tower in mm.
|
||||
float m_wipe_tower_width; // Width of the wipe tower.
|
||||
float m_wipe_tower_depth = 0.f; // Depth of the wipe tower
|
||||
float m_wipe_tower_rotation_angle = 0.f; // Wipe tower rotation angle in degrees (with respect to x axis)
|
||||
float m_internal_rotation = 0.f;
|
||||
float m_y_shift = 0.f; // y shift passed to writer
|
||||
float m_z_pos = 0.f; // Current Z position.
|
||||
float m_layer_height = 0.f; // Current layer height.
|
||||
size_t m_max_color_changes = 0; // Maximum number of color changes per layer.
|
||||
bool m_is_first_layer = false;// Is this the 1st layer of the print? If so, print the brim around the waste tower.
|
||||
int m_old_temperature = -1; // To keep track of what was the last temp that we set (so we don't issue the command when not neccessary)
|
||||
|
||||
// G-code generator parameters.
|
||||
float m_cooling_tube_retraction = 0.f;
|
||||
float m_cooling_tube_length = 0.f;
|
||||
float m_parking_pos_retraction = 0.f;
|
||||
float m_extra_loading_move = 0.f;
|
||||
float m_bridging = 0.f;
|
||||
bool m_adhesion = true;
|
||||
|
||||
float m_perimeter_width = 0.4 * Width_To_Nozzle_Ratio; // Width of an extrusion line, also a perimeter spacing for 100% infill.
|
||||
float m_extrusion_flow = 0.038; //0.029f;// Extrusion flow is derived from m_perimeter_width, layer height and filament diameter.
|
||||
|
||||
|
||||
struct FilamentParameters {
|
||||
material_type material = PLA;
|
||||
int temperature = 0;
|
||||
int first_layer_temperature = 0;
|
||||
float loading_speed = 0.f;
|
||||
float loading_speed_start = 0.f;
|
||||
float unloading_speed = 0.f;
|
||||
float unloading_speed_start = 0.f;
|
||||
float delay = 0.f ;
|
||||
int cooling_moves = 0;
|
||||
float cooling_initial_speed = 0.f;
|
||||
float cooling_final_speed = 0.f;
|
||||
float ramming_line_width_multiplicator = 0.f;
|
||||
float ramming_step_multiplicator = 0.f;
|
||||
std::vector<float> ramming_speed;
|
||||
float nozzle_diameter;
|
||||
};
|
||||
|
||||
// Extruder specific parameters.
|
||||
std::vector<FilamentParameters> m_filpar;
|
||||
|
||||
|
||||
// State of the wipe tower generator.
|
||||
unsigned int m_num_layer_changes = 0; // Layer change counter for the output statistics.
|
||||
unsigned int m_num_tool_changes = 0; // Tool change change counter for the output statistics.
|
||||
///unsigned int m_idx_tool_change_in_layer = 0; // Layer change counter in this layer. Counting up to m_max_color_changes.
|
||||
bool m_print_brim = true;
|
||||
// A fill-in direction (positive Y, negative Y) alternates with each layer.
|
||||
wipe_shape m_current_shape = SHAPE_NORMAL;
|
||||
unsigned int m_current_tool = 0;
|
||||
const std::vector<std::vector<float>> wipe_volumes;
|
||||
|
||||
float m_depth_traversed = 0.f; // Current y position at the wipe tower.
|
||||
bool m_left_to_right = true;
|
||||
float m_extra_spacing = 1.f;
|
||||
|
||||
// Calculates extrusion flow needed to produce required line width for given layer height
|
||||
float extrusion_flow(float layer_height = -1.f) const // negative layer_height - return current m_extrusion_flow
|
||||
{
|
||||
if ( layer_height < 0 )
|
||||
return m_extrusion_flow;
|
||||
return layer_height * ( m_perimeter_width - layer_height * (1-M_PI/4.f)) / Filament_Area;
|
||||
}
|
||||
|
||||
// Calculates length of extrusion line to extrude given volume
|
||||
float volume_to_length(float volume, float line_width, float layer_height) const {
|
||||
return std::max(0., volume / (layer_height * (line_width - layer_height * (1. - M_PI / 4.))));
|
||||
}
|
||||
|
||||
// Calculates depth for all layers and propagates them downwards
|
||||
void plan_tower();
|
||||
|
||||
// Goes through m_plan and recalculates depths and width of the WT to make it exactly square - experimental
|
||||
void make_wipe_tower_square();
|
||||
|
||||
// Goes through m_plan, calculates border and finish_layer extrusions and subtracts them from last wipe
|
||||
void save_on_last_wipe();
|
||||
|
||||
|
||||
struct box_coordinates
|
||||
{
|
||||
box_coordinates(float left, float bottom, float width, float height) :
|
||||
ld(left , bottom ),
|
||||
lu(left , bottom + height),
|
||||
rd(left + width, bottom ),
|
||||
ru(left + width, bottom + height) {}
|
||||
box_coordinates(const xy &pos, float width, float height) : box_coordinates(pos.x, pos.y, width, height) {}
|
||||
void translate(const xy &shift) {
|
||||
ld += shift; lu += shift;
|
||||
rd += shift; ru += shift;
|
||||
}
|
||||
void translate(const float dx, const float dy) { translate(xy(dx, dy)); }
|
||||
void expand(const float offset) {
|
||||
ld += xy(- offset, - offset);
|
||||
lu += xy(- offset, offset);
|
||||
rd += xy( offset, - offset);
|
||||
ru += xy( offset, offset);
|
||||
}
|
||||
void expand(const float offset_x, const float offset_y) {
|
||||
ld += xy(- offset_x, - offset_y);
|
||||
lu += xy(- offset_x, offset_y);
|
||||
rd += xy( offset_x, - offset_y);
|
||||
ru += xy( offset_x, offset_y);
|
||||
}
|
||||
xy ld; // left down
|
||||
xy lu; // left upper
|
||||
xy rd; // right lower
|
||||
xy ru; // right upper
|
||||
};
|
||||
|
||||
|
||||
// to store information about tool changes for a given layer
|
||||
struct WipeTowerInfo{
|
||||
struct ToolChange {
|
||||
unsigned int old_tool;
|
||||
unsigned int new_tool;
|
||||
float required_depth;
|
||||
float ramming_depth;
|
||||
float first_wipe_line;
|
||||
float wipe_volume;
|
||||
ToolChange(unsigned int old, unsigned int newtool, float depth=0.f, float ramming_depth=0.f, float fwl=0.f, float wv=0.f)
|
||||
: old_tool{old}, new_tool{newtool}, required_depth{depth}, ramming_depth{ramming_depth}, first_wipe_line{fwl}, wipe_volume{wv} {}
|
||||
};
|
||||
float z; // z position of the layer
|
||||
float height; // layer height
|
||||
float depth; // depth of the layer based on all layers above
|
||||
float extra_spacing;
|
||||
float toolchanges_depth() const { float sum = 0.f; for (const auto &a : tool_changes) sum += a.required_depth; return sum; }
|
||||
|
||||
std::vector<ToolChange> tool_changes;
|
||||
|
||||
WipeTowerInfo(float z_par, float layer_height_par)
|
||||
: z{z_par}, height{layer_height_par}, depth{0}, extra_spacing{1.f} {}
|
||||
};
|
||||
|
||||
std::vector<WipeTowerInfo> m_plan; // Stores information about all layers and toolchanges for the future wipe tower (filled by plan_toolchange(...))
|
||||
std::vector<WipeTowerInfo>::iterator m_layer_info = m_plan.end();
|
||||
|
||||
// Stores information about used filament length per extruder:
|
||||
std::vector<float> m_used_filament_length;
|
||||
|
||||
|
||||
// Returns gcode for wipe tower brim
|
||||
// sideOnly -- set to false -- experimental, draw brim on sides of wipe tower
|
||||
// offset -- set to 0 -- experimental, offset to replace brim in front / rear of wipe tower
|
||||
ToolChangeResult toolchange_Brim(bool sideOnly = false, float y_offset = 0.f);
|
||||
|
||||
void toolchange_Unload(
|
||||
PrusaMultiMaterial::Writer &writer,
|
||||
const box_coordinates &cleaning_box,
|
||||
const material_type current_material,
|
||||
const int new_temperature);
|
||||
|
||||
void toolchange_Change(
|
||||
PrusaMultiMaterial::Writer &writer,
|
||||
const unsigned int new_tool,
|
||||
material_type new_material);
|
||||
|
||||
void toolchange_Load(
|
||||
PrusaMultiMaterial::Writer &writer,
|
||||
const box_coordinates &cleaning_box);
|
||||
|
||||
void toolchange_Wipe(
|
||||
PrusaMultiMaterial::Writer &writer,
|
||||
const box_coordinates &cleaning_box,
|
||||
float wipe_volume);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
}; // namespace Slic3r
|
||||
|
||||
#endif /* WipeTowerPrusaMM_hpp_ */
|
||||
199
src/libslic3r/GCodeReader.cpp
Normal file
199
src/libslic3r/GCodeReader.cpp
Normal file
|
|
@ -0,0 +1,199 @@
|
|||
#include "GCodeReader.hpp"
|
||||
#include <boost/algorithm/string/classification.hpp>
|
||||
#include <boost/algorithm/string/split.hpp>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
#include <Shiny/Shiny.h>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
void GCodeReader::apply_config(const GCodeConfig &config)
|
||||
{
|
||||
m_config = config;
|
||||
m_extrusion_axis = m_config.get_extrusion_axis()[0];
|
||||
}
|
||||
|
||||
void GCodeReader::apply_config(const DynamicPrintConfig &config)
|
||||
{
|
||||
m_config.apply(config, true);
|
||||
m_extrusion_axis = m_config.get_extrusion_axis()[0];
|
||||
}
|
||||
|
||||
const char* GCodeReader::parse_line_internal(const char *ptr, GCodeLine &gline, std::pair<const char*, const char*> &command)
|
||||
{
|
||||
PROFILE_FUNC();
|
||||
|
||||
// command and args
|
||||
const char *c = ptr;
|
||||
{
|
||||
PROFILE_BLOCK(command_and_args);
|
||||
// Skip the whitespaces.
|
||||
command.first = skip_whitespaces(c);
|
||||
// Skip the command.
|
||||
c = command.second = skip_word(command.first);
|
||||
// Up to the end of line or comment.
|
||||
while (! is_end_of_gcode_line(*c)) {
|
||||
// Skip whitespaces.
|
||||
c = skip_whitespaces(c);
|
||||
if (is_end_of_gcode_line(*c))
|
||||
break;
|
||||
// Check the name of the axis.
|
||||
Axis axis = NUM_AXES;
|
||||
switch (*c) {
|
||||
case 'X': axis = X; break;
|
||||
case 'Y': axis = Y; break;
|
||||
case 'Z': axis = Z; break;
|
||||
case 'F': axis = F; break;
|
||||
default:
|
||||
if (*c == m_extrusion_axis)
|
||||
axis = E;
|
||||
break;
|
||||
}
|
||||
if (axis != NUM_AXES) {
|
||||
// Try to parse the numeric value.
|
||||
char *pend = nullptr;
|
||||
double v = strtod(++ c, &pend);
|
||||
if (pend != nullptr && is_end_of_word(*pend)) {
|
||||
// The axis value has been parsed correctly.
|
||||
gline.m_axis[int(axis)] = float(v);
|
||||
gline.m_mask |= 1 << int(axis);
|
||||
c = pend;
|
||||
} else
|
||||
// Skip the rest of the word.
|
||||
c = skip_word(c);
|
||||
} else
|
||||
// Skip the rest of the word.
|
||||
c = skip_word(c);
|
||||
}
|
||||
}
|
||||
|
||||
if (gline.has(E) && m_config.use_relative_e_distances)
|
||||
m_position[E] = 0;
|
||||
|
||||
// Skip the rest of the line.
|
||||
for (; ! is_end_of_line(*c); ++ c);
|
||||
|
||||
// Copy the raw string including the comment, without the trailing newlines.
|
||||
if (c > ptr) {
|
||||
PROFILE_BLOCK(copy_raw_string);
|
||||
gline.m_raw.assign(ptr, c);
|
||||
}
|
||||
|
||||
// Skip the trailing newlines.
|
||||
if (*c == '\r')
|
||||
++ c;
|
||||
if (*c == '\n')
|
||||
++ c;
|
||||
|
||||
if (m_verbose)
|
||||
std::cout << gline.m_raw << std::endl;
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
void GCodeReader::update_coordinates(GCodeLine &gline, std::pair<const char*, const char*> &command)
|
||||
{
|
||||
PROFILE_FUNC();
|
||||
if (*command.first == 'G') {
|
||||
int cmd_len = int(command.second - command.first);
|
||||
if ((cmd_len == 2 && (command.first[1] == '0' || command.first[1] == '1')) ||
|
||||
(cmd_len == 3 && command.first[1] == '9' && command.first[2] == '2')) {
|
||||
for (size_t i = 0; i < NUM_AXES; ++ i)
|
||||
if (gline.has(Axis(i)))
|
||||
m_position[i] = gline.value(Axis(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void GCodeReader::parse_file(const std::string &file, callback_t callback)
|
||||
{
|
||||
std::ifstream f(file);
|
||||
std::string line;
|
||||
while (std::getline(f, line))
|
||||
this->parse_line(line, callback);
|
||||
}
|
||||
|
||||
bool GCodeReader::GCodeLine::has(char axis) const
|
||||
{
|
||||
const char *c = m_raw.c_str();
|
||||
// Skip the whitespaces.
|
||||
c = skip_whitespaces(c);
|
||||
// Skip the command.
|
||||
c = skip_word(c);
|
||||
// Up to the end of line or comment.
|
||||
while (! is_end_of_gcode_line(*c)) {
|
||||
// Skip whitespaces.
|
||||
c = skip_whitespaces(c);
|
||||
if (is_end_of_gcode_line(*c))
|
||||
break;
|
||||
// Check the name of the axis.
|
||||
if (*c == axis)
|
||||
return true;
|
||||
// Skip the rest of the word.
|
||||
c = skip_word(c);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool GCodeReader::GCodeLine::has_value(char axis, float &value) const
|
||||
{
|
||||
const char *c = m_raw.c_str();
|
||||
// Skip the whitespaces.
|
||||
c = skip_whitespaces(c);
|
||||
// Skip the command.
|
||||
c = skip_word(c);
|
||||
// Up to the end of line or comment.
|
||||
while (! is_end_of_gcode_line(*c)) {
|
||||
// Skip whitespaces.
|
||||
c = skip_whitespaces(c);
|
||||
if (is_end_of_gcode_line(*c))
|
||||
break;
|
||||
// Check the name of the axis.
|
||||
if (*c == axis) {
|
||||
// Try to parse the numeric value.
|
||||
char *pend = nullptr;
|
||||
double v = strtod(++ c, &pend);
|
||||
if (pend != nullptr && is_end_of_word(*pend)) {
|
||||
// The axis value has been parsed correctly.
|
||||
value = float(v);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
// Skip the rest of the word.
|
||||
c = skip_word(c);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void GCodeReader::GCodeLine::set(const GCodeReader &reader, const Axis axis, const float new_value, const int decimal_digits)
|
||||
{
|
||||
std::ostringstream ss;
|
||||
ss << std::fixed << std::setprecision(decimal_digits) << new_value;
|
||||
|
||||
char match[3] = " X";
|
||||
if (int(axis) < 3)
|
||||
match[1] += int(axis);
|
||||
else if (axis == F)
|
||||
match[1] = 'F';
|
||||
else {
|
||||
assert(axis == E);
|
||||
match[1] = reader.extrusion_axis();
|
||||
}
|
||||
|
||||
if (this->has(axis)) {
|
||||
size_t pos = m_raw.find(match)+2;
|
||||
size_t end = m_raw.find(' ', pos+1);
|
||||
m_raw = m_raw.replace(pos, end-pos, ss.str());
|
||||
} else {
|
||||
size_t pos = m_raw.find(' ');
|
||||
if (pos == std::string::npos)
|
||||
m_raw += std::string(match) + ss.str();
|
||||
else
|
||||
m_raw = m_raw.replace(pos, 0, std::string(match) + ss.str());
|
||||
}
|
||||
m_axis[axis] = new_value;
|
||||
m_mask |= 1 << int(axis);
|
||||
}
|
||||
|
||||
}
|
||||
140
src/libslic3r/GCodeReader.hpp
Normal file
140
src/libslic3r/GCodeReader.hpp
Normal file
|
|
@ -0,0 +1,140 @@
|
|||
#ifndef slic3r_GCodeReader_hpp_
|
||||
#define slic3r_GCodeReader_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <functional>
|
||||
#include <string>
|
||||
#include "PrintConfig.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class GCodeReader {
|
||||
public:
|
||||
class GCodeLine {
|
||||
public:
|
||||
GCodeLine() { reset(); }
|
||||
void reset() { m_mask = 0; memset(m_axis, 0, sizeof(m_axis)); m_raw.clear(); }
|
||||
|
||||
const std::string& raw() const { return m_raw; }
|
||||
const std::string cmd() const {
|
||||
const char *cmd = GCodeReader::skip_whitespaces(m_raw.c_str());
|
||||
return std::string(cmd, GCodeReader::skip_word(cmd));
|
||||
}
|
||||
const std::string comment() const
|
||||
{ size_t pos = m_raw.find(';'); return (pos == std::string::npos) ? "" : m_raw.substr(pos + 1); }
|
||||
|
||||
bool has(Axis axis) const { return (m_mask & (1 << int(axis))) != 0; }
|
||||
float value(Axis axis) const { return m_axis[axis]; }
|
||||
bool has(char axis) const;
|
||||
bool has_value(char axis, float &value) const;
|
||||
float new_Z(const GCodeReader &reader) const { return this->has(Z) ? this->z() : reader.z(); }
|
||||
float new_E(const GCodeReader &reader) const { return this->has(E) ? this->e() : reader.e(); }
|
||||
float new_F(const GCodeReader &reader) const { return this->has(F) ? this->f() : reader.f(); }
|
||||
float dist_X(const GCodeReader &reader) const { return this->has(X) ? (this->x() - reader.x()) : 0; }
|
||||
float dist_Y(const GCodeReader &reader) const { return this->has(Y) ? (this->y() - reader.y()) : 0; }
|
||||
float dist_Z(const GCodeReader &reader) const { return this->has(Z) ? (this->z() - reader.z()) : 0; }
|
||||
float dist_E(const GCodeReader &reader) const { return this->has(E) ? (this->e() - reader.e()) : 0; }
|
||||
float dist_XY(const GCodeReader &reader) const {
|
||||
float x = this->has(X) ? (this->x() - reader.x()) : 0;
|
||||
float y = this->has(Y) ? (this->y() - reader.y()) : 0;
|
||||
return sqrt(x*x + y*y);
|
||||
}
|
||||
bool cmd_is(const char *cmd_test) const {
|
||||
const char *cmd = GCodeReader::skip_whitespaces(m_raw.c_str());
|
||||
int len = strlen(cmd_test);
|
||||
return strncmp(cmd, cmd_test, len) == 0 && GCodeReader::is_end_of_word(cmd[len]);
|
||||
}
|
||||
bool extruding(const GCodeReader &reader) const { return this->cmd_is("G1") && this->dist_E(reader) > 0; }
|
||||
bool retracting(const GCodeReader &reader) const { return this->cmd_is("G1") && this->dist_E(reader) < 0; }
|
||||
bool travel() const { return this->cmd_is("G1") && ! this->has(E); }
|
||||
void set(const GCodeReader &reader, const Axis axis, const float new_value, const int decimal_digits = 3);
|
||||
|
||||
bool has_x() const { return this->has(X); }
|
||||
bool has_y() const { return this->has(Y); }
|
||||
bool has_z() const { return this->has(Z); }
|
||||
bool has_e() const { return this->has(E); }
|
||||
bool has_f() const { return this->has(F); }
|
||||
float x() const { return m_axis[X]; }
|
||||
float y() const { return m_axis[Y]; }
|
||||
float z() const { return m_axis[Z]; }
|
||||
float e() const { return m_axis[E]; }
|
||||
float f() const { return m_axis[F]; }
|
||||
|
||||
private:
|
||||
std::string m_raw;
|
||||
float m_axis[NUM_AXES];
|
||||
uint32_t m_mask;
|
||||
friend class GCodeReader;
|
||||
};
|
||||
|
||||
typedef std::function<void(GCodeReader&, const GCodeLine&)> callback_t;
|
||||
|
||||
GCodeReader() : m_verbose(false), m_extrusion_axis('E') { memset(m_position, 0, sizeof(m_position)); }
|
||||
void apply_config(const GCodeConfig &config);
|
||||
void apply_config(const DynamicPrintConfig &config);
|
||||
|
||||
template<typename Callback>
|
||||
void parse_buffer(const std::string &buffer, Callback callback)
|
||||
{
|
||||
const char *ptr = buffer.c_str();
|
||||
GCodeLine gline;
|
||||
while (*ptr != 0) {
|
||||
gline.reset();
|
||||
ptr = this->parse_line(ptr, gline, callback);
|
||||
}
|
||||
}
|
||||
|
||||
void parse_buffer(const std::string &buffer)
|
||||
{ this->parse_buffer(buffer, [](GCodeReader&, const GCodeReader::GCodeLine&){}); }
|
||||
|
||||
template<typename Callback>
|
||||
const char* parse_line(const char *ptr, GCodeLine &gline, Callback &callback)
|
||||
{
|
||||
std::pair<const char*, const char*> cmd;
|
||||
const char *end = parse_line_internal(ptr, gline, cmd);
|
||||
callback(*this, gline);
|
||||
update_coordinates(gline, cmd);
|
||||
return end;
|
||||
}
|
||||
|
||||
template<typename Callback>
|
||||
void parse_line(const std::string &line, Callback callback)
|
||||
{ GCodeLine gline; this->parse_line(line.c_str(), gline, callback); }
|
||||
|
||||
void parse_file(const std::string &file, callback_t callback);
|
||||
|
||||
float& x() { return m_position[X]; }
|
||||
float x() const { return m_position[X]; }
|
||||
float& y() { return m_position[Y]; }
|
||||
float y() const { return m_position[Y]; }
|
||||
float& z() { return m_position[Z]; }
|
||||
float z() const { return m_position[Z]; }
|
||||
float& e() { return m_position[E]; }
|
||||
float e() const { return m_position[E]; }
|
||||
float& f() { return m_position[F]; }
|
||||
float f() const { return m_position[F]; }
|
||||
|
||||
char extrusion_axis() const { return m_extrusion_axis; }
|
||||
|
||||
private:
|
||||
const char* parse_line_internal(const char *ptr, GCodeLine &gline, std::pair<const char*, const char*> &command);
|
||||
void update_coordinates(GCodeLine &gline, std::pair<const char*, const char*> &command);
|
||||
|
||||
static bool is_whitespace(char c) { return c == ' ' || c == '\t'; }
|
||||
static bool is_end_of_line(char c) { return c == '\r' || c == '\n' || c == 0; }
|
||||
static bool is_end_of_gcode_line(char c) { return c == ';' || is_end_of_line(c); }
|
||||
static bool is_end_of_word(char c) { return is_whitespace(c) || is_end_of_gcode_line(c); }
|
||||
static const char* skip_whitespaces(const char *c) { for (; is_whitespace(*c); ++ c); return c; }
|
||||
static const char* skip_word(const char *c) { for (; ! is_end_of_word(*c); ++ c); return c; }
|
||||
|
||||
GCodeConfig m_config;
|
||||
char m_extrusion_axis;
|
||||
float m_position[NUM_AXES];
|
||||
bool m_verbose;
|
||||
};
|
||||
|
||||
} /* namespace Slic3r */
|
||||
|
||||
#endif /* slic3r_GCodeReader_hpp_ */
|
||||
580
src/libslic3r/GCodeSender.cpp
Normal file
580
src/libslic3r/GCodeSender.cpp
Normal file
|
|
@ -0,0 +1,580 @@
|
|||
#include "GCodeSender.hpp"
|
||||
#include <iostream>
|
||||
#include <istream>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <boost/algorithm/string/predicate.hpp>
|
||||
#include <boost/algorithm/string/trim.hpp>
|
||||
#include <boost/date_time/posix_time/posix_time.hpp>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
|
||||
#if defined(__APPLE__) || defined(__OpenBSD__)
|
||||
#include <termios.h>
|
||||
#endif
|
||||
#ifdef __APPLE__
|
||||
#include <sys/ioctl.h>
|
||||
#include <IOKit/serial/ioss.h>
|
||||
#endif
|
||||
#ifdef __linux__
|
||||
#include <sys/ioctl.h>
|
||||
#include <fcntl.h>
|
||||
#include "/usr/include/asm-generic/ioctls.h"
|
||||
|
||||
/* The following definitions are kindly borrowed from:
|
||||
/usr/include/asm-generic/termbits.h
|
||||
Unfortunately we cannot just include that one because
|
||||
it would redefine the "struct termios" already defined
|
||||
the <termios.h> already included by Boost.ASIO. */
|
||||
#define K_NCCS 19
|
||||
struct termios2 {
|
||||
tcflag_t c_iflag;
|
||||
tcflag_t c_oflag;
|
||||
tcflag_t c_cflag;
|
||||
tcflag_t c_lflag;
|
||||
cc_t c_line;
|
||||
cc_t c_cc[K_NCCS];
|
||||
speed_t c_ispeed;
|
||||
speed_t c_ospeed;
|
||||
};
|
||||
#define BOTHER CBAUDEX
|
||||
|
||||
#endif
|
||||
|
||||
//#define DEBUG_SERIAL
|
||||
#ifdef DEBUG_SERIAL
|
||||
#include <cstdlib>
|
||||
#include <fstream>
|
||||
std::fstream fs;
|
||||
#endif
|
||||
|
||||
#define KEEP_SENT 20
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
GCodeSender::GCodeSender()
|
||||
: io(), serial(io), can_send(false), sent(0), open(false), error(false),
|
||||
connected(false), queue_paused(false)
|
||||
{
|
||||
#ifdef DEBUG_SERIAL
|
||||
std::srand(std::time(nullptr));
|
||||
#endif
|
||||
}
|
||||
|
||||
GCodeSender::~GCodeSender()
|
||||
{
|
||||
this->disconnect();
|
||||
}
|
||||
|
||||
bool
|
||||
GCodeSender::connect(std::string devname, unsigned int baud_rate)
|
||||
{
|
||||
this->disconnect();
|
||||
|
||||
this->set_error_status(false);
|
||||
try {
|
||||
this->serial.open(devname);
|
||||
|
||||
this->serial.set_option(boost::asio::serial_port_base::parity(boost::asio::serial_port_base::parity::odd));
|
||||
this->serial.set_option(boost::asio::serial_port_base::character_size(boost::asio::serial_port_base::character_size(8)));
|
||||
this->serial.set_option(boost::asio::serial_port_base::flow_control(boost::asio::serial_port_base::flow_control::none));
|
||||
this->serial.set_option(boost::asio::serial_port_base::stop_bits(boost::asio::serial_port_base::stop_bits::one));
|
||||
this->set_baud_rate(baud_rate);
|
||||
|
||||
this->serial.close();
|
||||
this->serial.open(devname);
|
||||
this->serial.set_option(boost::asio::serial_port_base::parity(boost::asio::serial_port_base::parity::none));
|
||||
|
||||
// set baud rate again because set_option overwrote it
|
||||
this->set_baud_rate(baud_rate);
|
||||
this->open = true;
|
||||
this->reset();
|
||||
} catch (boost::system::system_error &) {
|
||||
this->set_error_status(true);
|
||||
return false;
|
||||
}
|
||||
|
||||
// a reset firmware expect line numbers to start again from 1
|
||||
this->sent = 0;
|
||||
this->last_sent.clear();
|
||||
|
||||
/* Initialize debugger */
|
||||
#ifdef DEBUG_SERIAL
|
||||
fs.open("serial.txt", std::fstream::out | std::fstream::trunc);
|
||||
#endif
|
||||
|
||||
// this gives some work to the io_service before it is started
|
||||
// (post() runs the supplied function in its thread)
|
||||
this->io.post(boost::bind(&GCodeSender::do_read, this));
|
||||
|
||||
// start reading in the background thread
|
||||
boost::thread t(boost::bind(&boost::asio::io_service::run, &this->io));
|
||||
this->background_thread.swap(t);
|
||||
|
||||
// always send a M105 to check for connection because firmware might be silent on connect
|
||||
//FIXME Vojtech: This is being sent too early, leading to line number synchronization issues,
|
||||
// from which the GCodeSender never recovers.
|
||||
// this->send("M105", true);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::set_baud_rate(unsigned int baud_rate)
|
||||
{
|
||||
try {
|
||||
// This does not support speeds > 115200
|
||||
this->serial.set_option(boost::asio::serial_port_base::baud_rate(baud_rate));
|
||||
} catch (boost::system::system_error &) {
|
||||
boost::asio::serial_port::native_handle_type handle = this->serial.native_handle();
|
||||
|
||||
#if __APPLE__
|
||||
termios ios;
|
||||
::tcgetattr(handle, &ios);
|
||||
::cfsetspeed(&ios, baud_rate);
|
||||
speed_t newSpeed = baud_rate;
|
||||
ioctl(handle, IOSSIOSPEED, &newSpeed);
|
||||
::tcsetattr(handle, TCSANOW, &ios);
|
||||
#elif __linux
|
||||
termios2 ios;
|
||||
if (ioctl(handle, TCGETS2, &ios))
|
||||
printf("Error in TCGETS2: %s\n", strerror(errno));
|
||||
ios.c_ispeed = ios.c_ospeed = baud_rate;
|
||||
ios.c_cflag &= ~CBAUD;
|
||||
ios.c_cflag |= BOTHER | CLOCAL | CREAD;
|
||||
ios.c_cc[VMIN] = 1; // Minimum of characters to read, prevents eof errors when 0 bytes are read
|
||||
ios.c_cc[VTIME] = 1;
|
||||
if (ioctl(handle, TCSETS2, &ios))
|
||||
printf("Error in TCSETS2: %s\n", strerror(errno));
|
||||
|
||||
#elif __OpenBSD__
|
||||
struct termios ios;
|
||||
::tcgetattr(handle, &ios);
|
||||
::cfsetspeed(&ios, baud_rate);
|
||||
if (::tcsetattr(handle, TCSAFLUSH, &ios) != 0)
|
||||
printf("Failed to set baud rate: %s\n", strerror(errno));
|
||||
#else
|
||||
//throw invalid_argument ("OS does not currently support custom bauds");
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::disconnect()
|
||||
{
|
||||
if (!this->open) return;
|
||||
this->open = false;
|
||||
this->connected = false;
|
||||
this->io.post(boost::bind(&GCodeSender::do_close, this));
|
||||
this->background_thread.join();
|
||||
this->io.reset();
|
||||
/*
|
||||
if (this->error_status()) {
|
||||
throw(boost::system::system_error(boost::system::error_code(),
|
||||
"Error while closing the device"));
|
||||
}
|
||||
*/
|
||||
|
||||
#ifdef DEBUG_SERIAL
|
||||
fs << "DISCONNECTED" << std::endl << std::flush;
|
||||
fs.close();
|
||||
#endif
|
||||
}
|
||||
|
||||
bool
|
||||
GCodeSender::is_connected() const
|
||||
{
|
||||
return this->connected;
|
||||
}
|
||||
|
||||
bool
|
||||
GCodeSender::wait_connected(unsigned int timeout) const
|
||||
{
|
||||
using namespace boost::posix_time;
|
||||
ptime t0 = second_clock::local_time() + seconds(timeout);
|
||||
while (!this->connected) {
|
||||
if (second_clock::local_time() > t0) return false;
|
||||
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
size_t
|
||||
GCodeSender::queue_size() const
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->queue_mutex);
|
||||
return this->queue.size();
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::pause_queue()
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->queue_mutex);
|
||||
this->queue_paused = true;
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::resume_queue()
|
||||
{
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->queue_mutex);
|
||||
this->queue_paused = false;
|
||||
}
|
||||
this->send();
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::purge_queue(bool priority)
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->queue_mutex);
|
||||
if (priority) {
|
||||
// clear priority queue
|
||||
std::list<std::string> empty;
|
||||
std::swap(this->priqueue, empty);
|
||||
} else {
|
||||
// clear queue
|
||||
std::queue<std::string> empty;
|
||||
std::swap(this->queue, empty);
|
||||
this->queue_paused = false;
|
||||
}
|
||||
}
|
||||
|
||||
// purge log and return its contents
|
||||
std::vector<std::string>
|
||||
GCodeSender::purge_log()
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->log_mutex);
|
||||
std::vector<std::string> retval;
|
||||
retval.reserve(this->log.size());
|
||||
while (!this->log.empty()) {
|
||||
retval.push_back(this->log.front());
|
||||
this->log.pop();
|
||||
}
|
||||
return retval;
|
||||
}
|
||||
|
||||
std::string
|
||||
GCodeSender::getT() const
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->log_mutex);
|
||||
return this->T;
|
||||
}
|
||||
|
||||
std::string
|
||||
GCodeSender::getB() const
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->log_mutex);
|
||||
return this->B;
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::do_close()
|
||||
{
|
||||
this->set_error_status(false);
|
||||
boost::system::error_code ec;
|
||||
this->serial.cancel(ec);
|
||||
if (ec) this->set_error_status(true);
|
||||
this->serial.close(ec);
|
||||
if (ec) this->set_error_status(true);
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::set_error_status(bool e)
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->error_mutex);
|
||||
this->error = e;
|
||||
}
|
||||
|
||||
bool
|
||||
GCodeSender::error_status() const
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->error_mutex);
|
||||
return this->error;
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::do_read()
|
||||
{
|
||||
// read one line
|
||||
boost::asio::async_read_until(
|
||||
this->serial,
|
||||
this->read_buffer,
|
||||
'\n',
|
||||
boost::bind(
|
||||
&GCodeSender::on_read,
|
||||
this,
|
||||
boost::asio::placeholders::error,
|
||||
boost::asio::placeholders::bytes_transferred
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::on_read(const boost::system::error_code& error,
|
||||
size_t bytes_transferred)
|
||||
{
|
||||
this->set_error_status(false);
|
||||
if (error) {
|
||||
#ifdef __APPLE__
|
||||
if (error.value() == 45) {
|
||||
// OS X bug: http://osdir.com/ml/lib.boost.asio.user/2008-08/msg00004.html
|
||||
this->do_read();
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
// printf("ERROR: [%d] %s\n", error.value(), error.message().c_str());
|
||||
// error can be true even because the serial port was closed.
|
||||
// In this case it is not a real error, so ignore.
|
||||
if (this->open) {
|
||||
this->do_close();
|
||||
this->set_error_status(true);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
std::istream is(&this->read_buffer);
|
||||
std::string line;
|
||||
std::getline(is, line);
|
||||
if (!line.empty()) {
|
||||
#ifdef DEBUG_SERIAL
|
||||
fs << "<< " << line << std::endl << std::flush;
|
||||
#endif
|
||||
|
||||
// note that line might contain \r at its end
|
||||
// parse incoming line
|
||||
if (!this->connected
|
||||
&& (boost::starts_with(line, "start")
|
||||
|| boost::starts_with(line, "Grbl ")
|
||||
|| boost::starts_with(line, "ok")
|
||||
|| boost::contains(line, "T:"))) {
|
||||
this->connected = true;
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->queue_mutex);
|
||||
this->can_send = true;
|
||||
}
|
||||
this->send();
|
||||
} else if (boost::starts_with(line, "ok")) {
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->queue_mutex);
|
||||
this->can_send = true;
|
||||
}
|
||||
this->send();
|
||||
} else if (boost::istarts_with(line, "resend") // Marlin uses "Resend: "
|
||||
|| boost::istarts_with(line, "rs")) {
|
||||
// extract the first number from line
|
||||
boost::algorithm::trim_left_if(line, !boost::algorithm::is_digit());
|
||||
size_t toresend = boost::lexical_cast<size_t>(line.substr(0, line.find_first_not_of("0123456789")));
|
||||
|
||||
#ifdef DEBUG_SERIAL
|
||||
fs << "!! line num out of sync: toresend = " << toresend << ", sent = " << sent << ", last_sent.size = " << last_sent.size() << std::endl;
|
||||
#endif
|
||||
|
||||
if (toresend > this->sent - this->last_sent.size() && toresend <= this->sent) {
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->queue_mutex);
|
||||
|
||||
const auto lines_to_resend = this->sent - toresend + 1;
|
||||
#ifdef DEBUG_SERIAL
|
||||
fs << "!! resending " << lines_to_resend << " lines" << std::endl;
|
||||
#endif
|
||||
// move the unsent lines to priqueue
|
||||
this->priqueue.insert(
|
||||
this->priqueue.begin(), // insert at the beginning
|
||||
this->last_sent.begin() + this->last_sent.size() - lines_to_resend,
|
||||
this->last_sent.end()
|
||||
);
|
||||
|
||||
// we can empty last_sent because it's not useful anymore
|
||||
this->last_sent.clear();
|
||||
|
||||
// start resending with the requested line number
|
||||
this->sent = toresend - 1;
|
||||
this->can_send = true;
|
||||
}
|
||||
this->send();
|
||||
} else {
|
||||
printf("Cannot resend " PRINTF_ZU " (oldest we have is " PRINTF_ZU ")\n", toresend, this->sent - this->last_sent.size());
|
||||
}
|
||||
} else if (boost::starts_with(line, "wait")) {
|
||||
// ignore
|
||||
} else {
|
||||
// push any other line into the log
|
||||
boost::lock_guard<boost::mutex> l(this->log_mutex);
|
||||
this->log.push(line);
|
||||
}
|
||||
|
||||
// parse temperature info
|
||||
{
|
||||
size_t pos = line.find("T:");
|
||||
if (pos != std::string::npos && line.size() > pos + 2) {
|
||||
// we got temperature info
|
||||
boost::lock_guard<boost::mutex> l(this->log_mutex);
|
||||
this->T = line.substr(pos+2, line.find_first_not_of("0123456789.", pos+2) - (pos+2));
|
||||
|
||||
pos = line.find("B:");
|
||||
if (pos != std::string::npos && line.size() > pos + 2) {
|
||||
// we got bed temperature info
|
||||
this->B = line.substr(pos+2, line.find_first_not_of("0123456789.", pos+2) - (pos+2));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
this->do_read();
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::send(const std::vector<std::string> &lines, bool priority)
|
||||
{
|
||||
// append lines to queue
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->queue_mutex);
|
||||
for (std::vector<std::string>::const_iterator line = lines.begin(); line != lines.end(); ++line) {
|
||||
if (priority) {
|
||||
this->priqueue.push_back(*line);
|
||||
} else {
|
||||
this->queue.push(*line);
|
||||
}
|
||||
}
|
||||
}
|
||||
this->send();
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::send(const std::string &line, bool priority)
|
||||
{
|
||||
// append line to queue
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->queue_mutex);
|
||||
if (priority) {
|
||||
this->priqueue.push_back(line);
|
||||
} else {
|
||||
this->queue.push(line);
|
||||
}
|
||||
}
|
||||
this->send();
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::send()
|
||||
{
|
||||
this->io.post(boost::bind(&GCodeSender::do_send, this));
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::do_send()
|
||||
{
|
||||
boost::lock_guard<boost::mutex> l(this->queue_mutex);
|
||||
|
||||
// printer is not connected or we're still waiting for the previous ack
|
||||
if (!this->can_send) return;
|
||||
|
||||
std::string line;
|
||||
while (!this->priqueue.empty() || (!this->queue.empty() && !this->queue_paused)) {
|
||||
if (!this->priqueue.empty()) {
|
||||
line = this->priqueue.front();
|
||||
this->priqueue.pop_front();
|
||||
} else {
|
||||
line = this->queue.front();
|
||||
this->queue.pop();
|
||||
}
|
||||
|
||||
// strip comments
|
||||
size_t comment_pos = line.find_first_of(';');
|
||||
if (comment_pos != std::string::npos)
|
||||
line.erase(comment_pos, std::string::npos);
|
||||
boost::algorithm::trim(line);
|
||||
|
||||
// if line is not empty, send it
|
||||
if (!line.empty()) break;
|
||||
// if line is empty, process next item in queue
|
||||
}
|
||||
if (line.empty()) return;
|
||||
|
||||
// compute full line
|
||||
++ this->sent;
|
||||
#ifndef DEBUG_SERIAL
|
||||
const auto line_num = this->sent;
|
||||
#else
|
||||
// In DEBUG_SERIAL mode, test line re-synchronization by sending bad line number 1/4 of the time
|
||||
const auto line_num = std::rand() < RAND_MAX/4 ? 0 : this->sent;
|
||||
#endif
|
||||
std::string full_line = "N" + boost::lexical_cast<std::string>(line_num) + " " + line;
|
||||
|
||||
// calculate checksum
|
||||
int cs = 0;
|
||||
for (std::string::const_iterator it = full_line.begin(); it != full_line.end(); ++it)
|
||||
cs = cs ^ *it;
|
||||
|
||||
// write line to device
|
||||
full_line += "*";
|
||||
full_line += boost::lexical_cast<std::string>(cs);
|
||||
full_line += "\n";
|
||||
|
||||
#ifdef DEBUG_SERIAL
|
||||
fs << ">> " << full_line << std::flush;
|
||||
#endif
|
||||
|
||||
this->last_sent.push_back(line);
|
||||
this->can_send = false;
|
||||
|
||||
while (this->last_sent.size() > KEEP_SENT) {
|
||||
this->last_sent.pop_front();
|
||||
}
|
||||
|
||||
// we can't supply boost::asio::buffer(full_line) to async_write() because full_line is on the
|
||||
// stack and the buffer would lose its underlying storage causing memory corruption
|
||||
std::ostream os(&this->write_buffer);
|
||||
os << full_line;
|
||||
boost::asio::async_write(this->serial, this->write_buffer, boost::bind(&GCodeSender::on_write, this, boost::asio::placeholders::error,
|
||||
boost::asio::placeholders::bytes_transferred));
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::on_write(const boost::system::error_code& error,
|
||||
size_t bytes_transferred)
|
||||
{
|
||||
this->set_error_status(false);
|
||||
if (error) {
|
||||
if (this->open) {
|
||||
this->do_close();
|
||||
this->set_error_status(true);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
this->do_send();
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::set_DTR(bool on)
|
||||
{
|
||||
#if defined(_WIN32) && !defined(__SYMBIAN32__)
|
||||
boost::asio::serial_port_service::native_handle_type handle = this->serial.native_handle();
|
||||
if (on)
|
||||
EscapeCommFunction(handle, SETDTR);
|
||||
else
|
||||
EscapeCommFunction(handle, CLRDTR);
|
||||
#else
|
||||
int fd = this->serial.native_handle();
|
||||
int status;
|
||||
ioctl(fd, TIOCMGET, &status);
|
||||
if (on)
|
||||
status |= TIOCM_DTR;
|
||||
else
|
||||
status &= ~TIOCM_DTR;
|
||||
ioctl(fd, TIOCMSET, &status);
|
||||
#endif
|
||||
}
|
||||
|
||||
void
|
||||
GCodeSender::reset()
|
||||
{
|
||||
set_DTR(false);
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(200));
|
||||
set_DTR(true);
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(200));
|
||||
set_DTR(false);
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(500));
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
73
src/libslic3r/GCodeSender.hpp
Normal file
73
src/libslic3r/GCodeSender.hpp
Normal file
|
|
@ -0,0 +1,73 @@
|
|||
#ifndef slic3r_GCodeSender_hpp_
|
||||
#define slic3r_GCodeSender_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include <queue>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <boost/asio.hpp>
|
||||
#include <boost/bind.hpp>
|
||||
#include <boost/thread.hpp>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
namespace asio = boost::asio;
|
||||
|
||||
class GCodeSender : private boost::noncopyable {
|
||||
public:
|
||||
GCodeSender();
|
||||
~GCodeSender();
|
||||
bool connect(std::string devname, unsigned int baud_rate);
|
||||
void send(const std::vector<std::string> &lines, bool priority = false);
|
||||
void send(const std::string &s, bool priority = false);
|
||||
void disconnect();
|
||||
bool error_status() const;
|
||||
bool is_connected() const;
|
||||
bool wait_connected(unsigned int timeout = 3) const;
|
||||
size_t queue_size() const;
|
||||
void pause_queue();
|
||||
void resume_queue();
|
||||
void purge_queue(bool priority = false);
|
||||
std::vector<std::string> purge_log();
|
||||
std::string getT() const;
|
||||
std::string getB() const;
|
||||
void set_DTR(bool on);
|
||||
void reset();
|
||||
|
||||
private:
|
||||
asio::io_service io;
|
||||
asio::serial_port serial;
|
||||
boost::thread background_thread;
|
||||
boost::asio::streambuf read_buffer, write_buffer;
|
||||
bool open; // whether the serial socket is connected
|
||||
bool connected; // whether the printer is online
|
||||
bool error;
|
||||
mutable boost::mutex error_mutex;
|
||||
|
||||
// this mutex guards queue, priqueue, can_send, queue_paused, sent, last_sent
|
||||
mutable boost::mutex queue_mutex;
|
||||
std::queue<std::string> queue;
|
||||
std::list<std::string> priqueue;
|
||||
bool can_send;
|
||||
bool queue_paused;
|
||||
size_t sent;
|
||||
std::deque<std::string> last_sent;
|
||||
|
||||
// this mutex guards log, T, B
|
||||
mutable boost::mutex log_mutex;
|
||||
std::queue<std::string> log;
|
||||
std::string T, B;
|
||||
|
||||
void set_baud_rate(unsigned int baud_rate);
|
||||
void set_error_status(bool e);
|
||||
void do_send();
|
||||
void on_write(const boost::system::error_code& error, size_t bytes_transferred);
|
||||
void do_close();
|
||||
void do_read();
|
||||
void on_read(const boost::system::error_code& error, size_t bytes_transferred);
|
||||
void send();
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif /* slic3r_GCodeSender_hpp_ */
|
||||
1505
src/libslic3r/GCodeTimeEstimator.cpp
Normal file
1505
src/libslic3r/GCodeTimeEstimator.cpp
Normal file
File diff suppressed because it is too large
Load diff
436
src/libslic3r/GCodeTimeEstimator.hpp
Normal file
436
src/libslic3r/GCodeTimeEstimator.hpp
Normal file
|
|
@ -0,0 +1,436 @@
|
|||
#ifndef slic3r_GCodeTimeEstimator_hpp_
|
||||
#define slic3r_GCodeTimeEstimator_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "PrintConfig.hpp"
|
||||
#include "GCodeReader.hpp"
|
||||
|
||||
#define ENABLE_MOVE_STATS 0
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
//
|
||||
// Some of the algorithms used by class GCodeTimeEstimator were inpired by
|
||||
// Cura Engine's class TimeEstimateCalculator
|
||||
// https://github.com/Ultimaker/CuraEngine/blob/master/src/timeEstimate.h
|
||||
//
|
||||
class GCodeTimeEstimator
|
||||
{
|
||||
public:
|
||||
static const std::string Normal_First_M73_Output_Placeholder_Tag;
|
||||
static const std::string Silent_First_M73_Output_Placeholder_Tag;
|
||||
|
||||
enum EMode : unsigned char
|
||||
{
|
||||
Normal,
|
||||
Silent
|
||||
};
|
||||
|
||||
enum EUnits : unsigned char
|
||||
{
|
||||
Millimeters,
|
||||
Inches
|
||||
};
|
||||
|
||||
enum EAxis : unsigned char
|
||||
{
|
||||
X,
|
||||
Y,
|
||||
Z,
|
||||
E,
|
||||
Num_Axis
|
||||
};
|
||||
|
||||
enum EPositioningType : unsigned char
|
||||
{
|
||||
Absolute,
|
||||
Relative
|
||||
};
|
||||
|
||||
private:
|
||||
struct Axis
|
||||
{
|
||||
float position; // mm
|
||||
float max_feedrate; // mm/s
|
||||
float max_acceleration; // mm/s^2
|
||||
float max_jerk; // mm/s
|
||||
};
|
||||
|
||||
struct Feedrates
|
||||
{
|
||||
float feedrate; // mm/s
|
||||
float axis_feedrate[Num_Axis]; // mm/s
|
||||
float abs_axis_feedrate[Num_Axis]; // mm/s
|
||||
float safe_feedrate; // mm/s
|
||||
|
||||
void reset();
|
||||
};
|
||||
|
||||
struct State
|
||||
{
|
||||
GCodeFlavor dialect;
|
||||
EUnits units;
|
||||
EPositioningType global_positioning_type;
|
||||
EPositioningType e_local_positioning_type;
|
||||
Axis axis[Num_Axis];
|
||||
float feedrate; // mm/s
|
||||
float acceleration; // mm/s^2
|
||||
// hard limit for the acceleration, to which the firmware will clamp.
|
||||
float max_acceleration; // mm/s^2
|
||||
float retract_acceleration; // mm/s^2
|
||||
float additional_time; // s
|
||||
float minimum_feedrate; // mm/s
|
||||
float minimum_travel_feedrate; // mm/s
|
||||
float extrude_factor_override_percentage;
|
||||
// Additional load / unload times for a filament exchange sequence.
|
||||
std::vector<float> filament_load_times;
|
||||
std::vector<float> filament_unload_times;
|
||||
unsigned int g1_line_id;
|
||||
// extruder_id is currently used to correctly calculate filament load / unload times
|
||||
// into the total print time. This is currently only really used by the MK3 MMU2:
|
||||
// Extruder id (-1) means no filament is loaded yet, all the filaments are parked in the MK3 MMU2 unit.
|
||||
static const unsigned int extruder_id_unloaded = (unsigned int)-1;
|
||||
unsigned int extruder_id;
|
||||
};
|
||||
|
||||
public:
|
||||
struct Block
|
||||
{
|
||||
#if ENABLE_MOVE_STATS
|
||||
enum EMoveType : unsigned char
|
||||
{
|
||||
Noop,
|
||||
Retract,
|
||||
Unretract,
|
||||
Tool_change,
|
||||
Move,
|
||||
Extrude,
|
||||
Num_Types
|
||||
};
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
|
||||
struct FeedrateProfile
|
||||
{
|
||||
float entry; // mm/s
|
||||
float cruise; // mm/s
|
||||
float exit; // mm/s
|
||||
};
|
||||
|
||||
struct Trapezoid
|
||||
{
|
||||
float distance; // mm
|
||||
float accelerate_until; // mm
|
||||
float decelerate_after; // mm
|
||||
FeedrateProfile feedrate;
|
||||
|
||||
float acceleration_time(float acceleration) const;
|
||||
float cruise_time() const;
|
||||
float deceleration_time(float acceleration) const;
|
||||
float cruise_distance() const;
|
||||
|
||||
// This function gives the time needed to accelerate from an initial speed to reach a final distance.
|
||||
static float acceleration_time_from_distance(float initial_feedrate, float distance, float acceleration);
|
||||
|
||||
// This function gives the final speed while accelerating at the given constant acceleration from the given initial speed along the given distance.
|
||||
static float speed_from_distance(float initial_feedrate, float distance, float acceleration);
|
||||
};
|
||||
|
||||
struct Flags
|
||||
{
|
||||
bool recalculate;
|
||||
bool nominal_length;
|
||||
};
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
EMoveType move_type;
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
Flags flags;
|
||||
|
||||
float delta_pos[Num_Axis]; // mm
|
||||
float acceleration; // mm/s^2
|
||||
float max_entry_speed; // mm/s
|
||||
float safe_feedrate; // mm/s
|
||||
|
||||
FeedrateProfile feedrate;
|
||||
Trapezoid trapezoid;
|
||||
float elapsed_time;
|
||||
|
||||
Block();
|
||||
|
||||
// Returns the length of the move covered by this block, in mm
|
||||
float move_length() const;
|
||||
|
||||
// Returns true if this block is a retract/unretract move only
|
||||
float is_extruder_only_move() const;
|
||||
|
||||
// Returns true if this block is a move with no extrusion
|
||||
float is_travel_move() const;
|
||||
|
||||
// Returns the time spent accelerating toward cruise speed, in seconds
|
||||
float acceleration_time() const;
|
||||
|
||||
// Returns the time spent at cruise speed, in seconds
|
||||
float cruise_time() const;
|
||||
|
||||
// Returns the time spent decelerating from cruise speed, in seconds
|
||||
float deceleration_time() const;
|
||||
|
||||
// Returns the distance covered at cruise speed, in mm
|
||||
float cruise_distance() const;
|
||||
|
||||
// Calculates this block's trapezoid
|
||||
void calculate_trapezoid();
|
||||
|
||||
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
||||
// acceleration within the allotted distance.
|
||||
static float max_allowable_speed(float acceleration, float target_velocity, float distance);
|
||||
|
||||
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the given acceleration:
|
||||
static float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration);
|
||||
|
||||
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
||||
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
||||
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
||||
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
||||
static float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance);
|
||||
};
|
||||
|
||||
typedef std::vector<Block> BlocksList;
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
struct MoveStats
|
||||
{
|
||||
unsigned int count;
|
||||
float time;
|
||||
|
||||
MoveStats();
|
||||
};
|
||||
|
||||
typedef std::map<Block::EMoveType, MoveStats> MovesStatsMap;
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
|
||||
typedef std::map<unsigned int, unsigned int> G1LineIdToBlockIdMap;
|
||||
|
||||
private:
|
||||
EMode _mode;
|
||||
GCodeReader _parser;
|
||||
State _state;
|
||||
Feedrates _curr;
|
||||
Feedrates _prev;
|
||||
BlocksList _blocks;
|
||||
// Map between g1 line id and blocks id, used to speed up export of remaining times
|
||||
G1LineIdToBlockIdMap _g1_line_ids;
|
||||
// Index of the last block already st_synchronized
|
||||
int _last_st_synchronized_block_id;
|
||||
float _time; // s
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
MovesStatsMap _moves_stats;
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
|
||||
public:
|
||||
explicit GCodeTimeEstimator(EMode mode);
|
||||
|
||||
// Adds the given gcode line
|
||||
void add_gcode_line(const std::string& gcode_line);
|
||||
|
||||
void add_gcode_block(const char *ptr);
|
||||
void add_gcode_block(const std::string &str) { this->add_gcode_block(str.c_str()); }
|
||||
|
||||
// Calculates the time estimate from the gcode lines added using add_gcode_line() or add_gcode_block()
|
||||
// start_from_beginning:
|
||||
// if set to true all blocks will be used to calculate the time estimate,
|
||||
// if set to false only the blocks not yet processed will be used and the calculated time will be added to the current calculated time
|
||||
void calculate_time(bool start_from_beginning);
|
||||
|
||||
// Calculates the time estimate from the given gcode in string format
|
||||
void calculate_time_from_text(const std::string& gcode);
|
||||
|
||||
// Calculates the time estimate from the gcode contained in the file with the given filename
|
||||
void calculate_time_from_file(const std::string& file);
|
||||
|
||||
// Calculates the time estimate from the gcode contained in given list of gcode lines
|
||||
void calculate_time_from_lines(const std::vector<std::string>& gcode_lines);
|
||||
|
||||
// Process the gcode contained in the file with the given filename,
|
||||
// placing in it new lines (M73) containing the remaining time, at the given interval in seconds
|
||||
// and saving the result back in the same file
|
||||
// This time estimator should have been already used to calculate the time estimate for the gcode
|
||||
// contained in the given file before to call this method
|
||||
bool post_process_remaining_times(const std::string& filename, float interval_sec);
|
||||
|
||||
// Set current position on the given axis with the given value
|
||||
void set_axis_position(EAxis axis, float position);
|
||||
|
||||
void set_axis_max_feedrate(EAxis axis, float feedrate_mm_sec);
|
||||
void set_axis_max_acceleration(EAxis axis, float acceleration);
|
||||
void set_axis_max_jerk(EAxis axis, float jerk);
|
||||
|
||||
// Returns current position on the given axis
|
||||
float get_axis_position(EAxis axis) const;
|
||||
|
||||
float get_axis_max_feedrate(EAxis axis) const;
|
||||
float get_axis_max_acceleration(EAxis axis) const;
|
||||
float get_axis_max_jerk(EAxis axis) const;
|
||||
|
||||
void set_feedrate(float feedrate_mm_sec);
|
||||
float get_feedrate() const;
|
||||
|
||||
void set_acceleration(float acceleration_mm_sec2);
|
||||
float get_acceleration() const;
|
||||
|
||||
// Maximum acceleration for the machine. The firmware simulator will clamp the M204 Sxxx to this maximum.
|
||||
void set_max_acceleration(float acceleration_mm_sec2);
|
||||
float get_max_acceleration() const;
|
||||
|
||||
void set_retract_acceleration(float acceleration_mm_sec2);
|
||||
float get_retract_acceleration() const;
|
||||
|
||||
void set_minimum_feedrate(float feedrate_mm_sec);
|
||||
float get_minimum_feedrate() const;
|
||||
|
||||
void set_minimum_travel_feedrate(float feedrate_mm_sec);
|
||||
float get_minimum_travel_feedrate() const;
|
||||
|
||||
void set_filament_load_times(const std::vector<double> &filament_load_times);
|
||||
void set_filament_unload_times(const std::vector<double> &filament_unload_times);
|
||||
float get_filament_load_time(unsigned int id_extruder);
|
||||
float get_filament_unload_time(unsigned int id_extruder);
|
||||
|
||||
void set_extrude_factor_override_percentage(float percentage);
|
||||
float get_extrude_factor_override_percentage() const;
|
||||
|
||||
void set_dialect(GCodeFlavor dialect);
|
||||
GCodeFlavor get_dialect() const;
|
||||
|
||||
void set_units(EUnits units);
|
||||
EUnits get_units() const;
|
||||
|
||||
void set_global_positioning_type(EPositioningType type);
|
||||
EPositioningType get_global_positioning_type() const;
|
||||
|
||||
void set_e_local_positioning_type(EPositioningType type);
|
||||
EPositioningType get_e_local_positioning_type() const;
|
||||
|
||||
int get_g1_line_id() const;
|
||||
void increment_g1_line_id();
|
||||
void reset_g1_line_id();
|
||||
|
||||
void set_extruder_id(unsigned int id);
|
||||
unsigned int get_extruder_id() const;
|
||||
void reset_extruder_id();
|
||||
|
||||
void add_additional_time(float timeSec);
|
||||
void set_additional_time(float timeSec);
|
||||
float get_additional_time() const;
|
||||
|
||||
void set_default();
|
||||
|
||||
// Call this method before to start adding lines using add_gcode_line() when reusing an instance of GCodeTimeEstimator
|
||||
void reset();
|
||||
|
||||
// Returns the estimated time, in seconds
|
||||
float get_time() const;
|
||||
|
||||
// Returns the estimated time, in format DDd HHh MMm SSs
|
||||
std::string get_time_dhms() const;
|
||||
|
||||
// Returns the estimated time, in minutes (integer)
|
||||
std::string get_time_minutes() const;
|
||||
|
||||
private:
|
||||
void _reset();
|
||||
void _reset_time();
|
||||
void _reset_blocks();
|
||||
|
||||
// Calculates the time estimate
|
||||
void _calculate_time();
|
||||
|
||||
// Processes the given gcode line
|
||||
void _process_gcode_line(GCodeReader&, const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Move
|
||||
void _processG1(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Dwell
|
||||
void _processG4(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set Units to Inches
|
||||
void _processG20(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set Units to Millimeters
|
||||
void _processG21(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Move to Origin (Home)
|
||||
void _processG28(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set to Absolute Positioning
|
||||
void _processG90(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set to Relative Positioning
|
||||
void _processG91(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set Position
|
||||
void _processG92(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Sleep or Conditional stop
|
||||
void _processM1(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set extruder to absolute mode
|
||||
void _processM82(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set extruder to relative mode
|
||||
void _processM83(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set Extruder Temperature and Wait
|
||||
void _processM109(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set max printing acceleration
|
||||
void _processM201(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set maximum feedrate
|
||||
void _processM203(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set default acceleration
|
||||
void _processM204(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Advanced settings
|
||||
void _processM205(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set extrude factor override percentage
|
||||
void _processM221(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set allowable instantaneous speed change
|
||||
void _processM566(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Unload the current filament into the MK3 MMU2 unit at the end of print.
|
||||
void _processM702(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Processes T line (Select Tool)
|
||||
void _processT(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Simulates firmware st_synchronize() call
|
||||
void _simulate_st_synchronize();
|
||||
|
||||
void _forward_pass();
|
||||
void _reverse_pass();
|
||||
|
||||
void _planner_forward_pass_kernel(Block& prev, Block& curr);
|
||||
void _planner_reverse_pass_kernel(Block& curr, Block& next);
|
||||
|
||||
void _recalculate_trapezoids();
|
||||
|
||||
// Returns the given time is seconds in format DDd HHh MMm SSs
|
||||
static std::string _get_time_dhms(float time_in_secs);
|
||||
|
||||
// Returns the given, in minutes (integer)
|
||||
static std::string _get_time_minutes(float time_in_secs);
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
void _log_moves_stats() const;
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
};
|
||||
|
||||
} /* namespace Slic3r */
|
||||
|
||||
#endif /* slic3r_GCodeTimeEstimator_hpp_ */
|
||||
509
src/libslic3r/GCodeWriter.cpp
Normal file
509
src/libslic3r/GCodeWriter.cpp
Normal file
|
|
@ -0,0 +1,509 @@
|
|||
#include "GCodeWriter.hpp"
|
||||
#include <algorithm>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
#include <assert.h>
|
||||
|
||||
#define FLAVOR_IS(val) this->config.gcode_flavor == val
|
||||
#define FLAVOR_IS_NOT(val) this->config.gcode_flavor != val
|
||||
#define COMMENT(comment) if (this->config.gcode_comments && !comment.empty()) gcode << " ; " << comment;
|
||||
#define PRECISION(val, precision) std::fixed << std::setprecision(precision) << val
|
||||
#define XYZF_NUM(val) PRECISION(val, 3)
|
||||
#define E_NUM(val) PRECISION(val, 5)
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
void GCodeWriter::apply_print_config(const PrintConfig &print_config)
|
||||
{
|
||||
this->config.apply(print_config, true);
|
||||
m_extrusion_axis = this->config.get_extrusion_axis();
|
||||
m_single_extruder_multi_material = print_config.single_extruder_multi_material.value;
|
||||
m_max_acceleration = (print_config.gcode_flavor.value == gcfMarlin) ?
|
||||
print_config.machine_max_acceleration_extruding.values.front() : 0;
|
||||
}
|
||||
|
||||
void GCodeWriter::set_extruders(const std::vector<unsigned int> &extruder_ids)
|
||||
{
|
||||
m_extruders.clear();
|
||||
m_extruders.reserve(extruder_ids.size());
|
||||
for (unsigned int extruder_id : extruder_ids)
|
||||
m_extruders.emplace_back(Extruder(extruder_id, &this->config));
|
||||
|
||||
/* we enable support for multiple extruder if any extruder greater than 0 is used
|
||||
(even if prints only uses that one) since we need to output Tx commands
|
||||
first extruder has index 0 */
|
||||
this->multiple_extruders = (*std::max_element(extruder_ids.begin(), extruder_ids.end())) > 0;
|
||||
}
|
||||
|
||||
std::string GCodeWriter::preamble()
|
||||
{
|
||||
std::ostringstream gcode;
|
||||
|
||||
if (FLAVOR_IS_NOT(gcfMakerWare)) {
|
||||
gcode << "G21 ; set units to millimeters\n";
|
||||
gcode << "G90 ; use absolute coordinates\n";
|
||||
}
|
||||
if (FLAVOR_IS(gcfRepRap) || FLAVOR_IS(gcfMarlin) || FLAVOR_IS(gcfTeacup) || FLAVOR_IS(gcfRepetier) || FLAVOR_IS(gcfSmoothie)) {
|
||||
if (this->config.use_relative_e_distances) {
|
||||
gcode << "M83 ; use relative distances for extrusion\n";
|
||||
} else {
|
||||
gcode << "M82 ; use absolute distances for extrusion\n";
|
||||
}
|
||||
gcode << this->reset_e(true);
|
||||
}
|
||||
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::postamble() const
|
||||
{
|
||||
std::ostringstream gcode;
|
||||
if (FLAVOR_IS(gcfMachinekit))
|
||||
gcode << "M2 ; end of program\n";
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::set_temperature(unsigned int temperature, bool wait, int tool) const
|
||||
{
|
||||
if (wait && (FLAVOR_IS(gcfMakerWare) || FLAVOR_IS(gcfSailfish)))
|
||||
return "";
|
||||
|
||||
std::string code, comment;
|
||||
if (wait && FLAVOR_IS_NOT(gcfTeacup)) {
|
||||
code = "M109";
|
||||
comment = "set temperature and wait for it to be reached";
|
||||
} else {
|
||||
code = "M104";
|
||||
comment = "set temperature";
|
||||
}
|
||||
|
||||
std::ostringstream gcode;
|
||||
gcode << code << " ";
|
||||
if (FLAVOR_IS(gcfMach3) || FLAVOR_IS(gcfMachinekit)) {
|
||||
gcode << "P";
|
||||
} else {
|
||||
gcode << "S";
|
||||
}
|
||||
gcode << temperature;
|
||||
if (tool != -1 &&
|
||||
( (this->multiple_extruders && ! m_single_extruder_multi_material) ||
|
||||
FLAVOR_IS(gcfMakerWare) || FLAVOR_IS(gcfSailfish)) ) {
|
||||
gcode << " T" << tool;
|
||||
}
|
||||
gcode << " ; " << comment << "\n";
|
||||
|
||||
if (FLAVOR_IS(gcfTeacup) && wait)
|
||||
gcode << "M116 ; wait for temperature to be reached\n";
|
||||
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::set_bed_temperature(unsigned int temperature, bool wait)
|
||||
{
|
||||
if (temperature == m_last_bed_temperature && (! wait || m_last_bed_temperature_reached))
|
||||
return std::string();
|
||||
|
||||
m_last_bed_temperature = temperature;
|
||||
m_last_bed_temperature_reached = wait;
|
||||
|
||||
std::string code, comment;
|
||||
if (wait && FLAVOR_IS_NOT(gcfTeacup)) {
|
||||
if (FLAVOR_IS(gcfMakerWare) || FLAVOR_IS(gcfSailfish)) {
|
||||
code = "M109";
|
||||
} else {
|
||||
code = "M190";
|
||||
}
|
||||
comment = "set bed temperature and wait for it to be reached";
|
||||
} else {
|
||||
code = "M140";
|
||||
comment = "set bed temperature";
|
||||
}
|
||||
|
||||
std::ostringstream gcode;
|
||||
gcode << code << " ";
|
||||
if (FLAVOR_IS(gcfMach3) || FLAVOR_IS(gcfMachinekit)) {
|
||||
gcode << "P";
|
||||
} else {
|
||||
gcode << "S";
|
||||
}
|
||||
gcode << temperature << " ; " << comment << "\n";
|
||||
|
||||
if (FLAVOR_IS(gcfTeacup) && wait)
|
||||
gcode << "M116 ; wait for bed temperature to be reached\n";
|
||||
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::set_fan(unsigned int speed, bool dont_save)
|
||||
{
|
||||
std::ostringstream gcode;
|
||||
if (m_last_fan_speed != speed || dont_save) {
|
||||
if (!dont_save) m_last_fan_speed = speed;
|
||||
|
||||
if (speed == 0) {
|
||||
if (FLAVOR_IS(gcfTeacup)) {
|
||||
gcode << "M106 S0";
|
||||
} else if (FLAVOR_IS(gcfMakerWare) || FLAVOR_IS(gcfSailfish)) {
|
||||
gcode << "M127";
|
||||
} else {
|
||||
gcode << "M107";
|
||||
}
|
||||
if (this->config.gcode_comments) gcode << " ; disable fan";
|
||||
gcode << "\n";
|
||||
} else {
|
||||
if (FLAVOR_IS(gcfMakerWare) || FLAVOR_IS(gcfSailfish)) {
|
||||
gcode << "M126";
|
||||
} else {
|
||||
gcode << "M106 ";
|
||||
if (FLAVOR_IS(gcfMach3) || FLAVOR_IS(gcfMachinekit)) {
|
||||
gcode << "P";
|
||||
} else {
|
||||
gcode << "S";
|
||||
}
|
||||
gcode << (255.0 * speed / 100.0);
|
||||
}
|
||||
if (this->config.gcode_comments) gcode << " ; enable fan";
|
||||
gcode << "\n";
|
||||
}
|
||||
}
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::set_acceleration(unsigned int acceleration)
|
||||
{
|
||||
// Clamp the acceleration to the allowed maximum.
|
||||
if (m_max_acceleration > 0 && acceleration > m_max_acceleration)
|
||||
acceleration = m_max_acceleration;
|
||||
|
||||
if (acceleration == 0 || acceleration == m_last_acceleration)
|
||||
return std::string();
|
||||
|
||||
m_last_acceleration = acceleration;
|
||||
|
||||
std::ostringstream gcode;
|
||||
if (FLAVOR_IS(gcfRepetier)) {
|
||||
// M201: Set max printing acceleration
|
||||
gcode << "M201 X" << acceleration << " Y" << acceleration;
|
||||
if (this->config.gcode_comments) gcode << " ; adjust acceleration";
|
||||
gcode << "\n";
|
||||
// M202: Set max travel acceleration
|
||||
gcode << "M202 X" << acceleration << " Y" << acceleration;
|
||||
} else {
|
||||
// M204: Set default acceleration
|
||||
gcode << "M204 S" << acceleration;
|
||||
}
|
||||
if (this->config.gcode_comments) gcode << " ; adjust acceleration";
|
||||
gcode << "\n";
|
||||
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::reset_e(bool force)
|
||||
{
|
||||
if (FLAVOR_IS(gcfMach3)
|
||||
|| FLAVOR_IS(gcfMakerWare)
|
||||
|| FLAVOR_IS(gcfSailfish))
|
||||
return "";
|
||||
|
||||
if (m_extruder != nullptr) {
|
||||
if (m_extruder->E() == 0. && ! force)
|
||||
return "";
|
||||
m_extruder->reset_E();
|
||||
}
|
||||
|
||||
if (! m_extrusion_axis.empty() && ! this->config.use_relative_e_distances) {
|
||||
std::ostringstream gcode;
|
||||
gcode << "G92 " << m_extrusion_axis << "0";
|
||||
if (this->config.gcode_comments) gcode << " ; reset extrusion distance";
|
||||
gcode << "\n";
|
||||
return gcode.str();
|
||||
} else {
|
||||
return "";
|
||||
}
|
||||
}
|
||||
|
||||
std::string GCodeWriter::update_progress(unsigned int num, unsigned int tot, bool allow_100) const
|
||||
{
|
||||
if (FLAVOR_IS_NOT(gcfMakerWare) && FLAVOR_IS_NOT(gcfSailfish))
|
||||
return "";
|
||||
|
||||
unsigned int percent = (unsigned int)floor(100.0 * num / tot + 0.5);
|
||||
if (!allow_100) percent = std::min(percent, (unsigned int)99);
|
||||
|
||||
std::ostringstream gcode;
|
||||
gcode << "M73 P" << percent;
|
||||
if (this->config.gcode_comments) gcode << " ; update progress";
|
||||
gcode << "\n";
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::toolchange_prefix() const
|
||||
{
|
||||
return FLAVOR_IS(gcfMakerWare) ? "M135 T" :
|
||||
FLAVOR_IS(gcfSailfish) ? "M108 T" : "T";
|
||||
}
|
||||
|
||||
std::string GCodeWriter::toolchange(unsigned int extruder_id)
|
||||
{
|
||||
// set the new extruder
|
||||
auto it_extruder = std::lower_bound(m_extruders.begin(), m_extruders.end(), Extruder::key(extruder_id));
|
||||
assert(it_extruder != m_extruders.end());
|
||||
m_extruder = const_cast<Extruder*>(&*it_extruder);
|
||||
|
||||
// return the toolchange command
|
||||
// if we are running a single-extruder setup, just set the extruder and return nothing
|
||||
std::ostringstream gcode;
|
||||
if (this->multiple_extruders) {
|
||||
gcode << this->toolchange_prefix() << extruder_id;
|
||||
if (this->config.gcode_comments)
|
||||
gcode << " ; change extruder";
|
||||
gcode << "\n";
|
||||
gcode << this->reset_e(true);
|
||||
}
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::set_speed(double F, const std::string &comment, const std::string &cooling_marker) const
|
||||
{
|
||||
assert(F > 0.);
|
||||
assert(F < 100000.);
|
||||
std::ostringstream gcode;
|
||||
gcode << "G1 F" << F;
|
||||
COMMENT(comment);
|
||||
gcode << cooling_marker;
|
||||
gcode << "\n";
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::travel_to_xy(const Vec2d &point, const std::string &comment)
|
||||
{
|
||||
m_pos(0) = point(0);
|
||||
m_pos(1) = point(1);
|
||||
|
||||
std::ostringstream gcode;
|
||||
gcode << "G1 X" << XYZF_NUM(point(0))
|
||||
<< " Y" << XYZF_NUM(point(1))
|
||||
<< " F" << XYZF_NUM(this->config.travel_speed.value * 60.0);
|
||||
COMMENT(comment);
|
||||
gcode << "\n";
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::travel_to_xyz(const Vec3d &point, const std::string &comment)
|
||||
{
|
||||
/* If target Z is lower than current Z but higher than nominal Z we
|
||||
don't perform the Z move but we only move in the XY plane and
|
||||
adjust the nominal Z by reducing the lift amount that will be
|
||||
used for unlift. */
|
||||
if (!this->will_move_z(point(2))) {
|
||||
double nominal_z = m_pos(2) - m_lifted;
|
||||
m_lifted = m_lifted - (point(2) - nominal_z);
|
||||
return this->travel_to_xy(to_2d(point));
|
||||
}
|
||||
|
||||
/* In all the other cases, we perform an actual XYZ move and cancel
|
||||
the lift. */
|
||||
m_lifted = 0;
|
||||
m_pos = point;
|
||||
|
||||
std::ostringstream gcode;
|
||||
gcode << "G1 X" << XYZF_NUM(point(0))
|
||||
<< " Y" << XYZF_NUM(point(1))
|
||||
<< " Z" << XYZF_NUM(point(2))
|
||||
<< " F" << XYZF_NUM(this->config.travel_speed.value * 60.0);
|
||||
COMMENT(comment);
|
||||
gcode << "\n";
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::travel_to_z(double z, const std::string &comment)
|
||||
{
|
||||
/* If target Z is lower than current Z but higher than nominal Z
|
||||
we don't perform the move but we only adjust the nominal Z by
|
||||
reducing the lift amount that will be used for unlift. */
|
||||
if (!this->will_move_z(z)) {
|
||||
double nominal_z = m_pos(2) - m_lifted;
|
||||
m_lifted = m_lifted - (z - nominal_z);
|
||||
return "";
|
||||
}
|
||||
|
||||
/* In all the other cases, we perform an actual Z move and cancel
|
||||
the lift. */
|
||||
m_lifted = 0;
|
||||
return this->_travel_to_z(z, comment);
|
||||
}
|
||||
|
||||
std::string GCodeWriter::_travel_to_z(double z, const std::string &comment)
|
||||
{
|
||||
m_pos(2) = z;
|
||||
|
||||
std::ostringstream gcode;
|
||||
gcode << "G1 Z" << XYZF_NUM(z)
|
||||
<< " F" << XYZF_NUM(this->config.travel_speed.value * 60.0);
|
||||
COMMENT(comment);
|
||||
gcode << "\n";
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
bool GCodeWriter::will_move_z(double z) const
|
||||
{
|
||||
/* If target Z is lower than current Z but higher than nominal Z
|
||||
we don't perform an actual Z move. */
|
||||
if (m_lifted > 0) {
|
||||
double nominal_z = m_pos(2) - m_lifted;
|
||||
if (z >= nominal_z && z <= m_pos(2))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
std::string GCodeWriter::extrude_to_xy(const Vec2d &point, double dE, const std::string &comment)
|
||||
{
|
||||
m_pos(0) = point(0);
|
||||
m_pos(1) = point(1);
|
||||
m_extruder->extrude(dE);
|
||||
|
||||
std::ostringstream gcode;
|
||||
gcode << "G1 X" << XYZF_NUM(point(0))
|
||||
<< " Y" << XYZF_NUM(point(1))
|
||||
<< " " << m_extrusion_axis << E_NUM(m_extruder->E());
|
||||
COMMENT(comment);
|
||||
gcode << "\n";
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::extrude_to_xyz(const Vec3d &point, double dE, const std::string &comment)
|
||||
{
|
||||
m_pos = point;
|
||||
m_lifted = 0;
|
||||
m_extruder->extrude(dE);
|
||||
|
||||
std::ostringstream gcode;
|
||||
gcode << "G1 X" << XYZF_NUM(point(0))
|
||||
<< " Y" << XYZF_NUM(point(1))
|
||||
<< " Z" << XYZF_NUM(point(2))
|
||||
<< " " << m_extrusion_axis << E_NUM(m_extruder->E());
|
||||
COMMENT(comment);
|
||||
gcode << "\n";
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::retract(bool before_wipe)
|
||||
{
|
||||
double factor = before_wipe ? m_extruder->retract_before_wipe() : 1.;
|
||||
assert(factor >= 0. && factor <= 1. + EPSILON);
|
||||
return this->_retract(
|
||||
factor * m_extruder->retract_length(),
|
||||
factor * m_extruder->retract_restart_extra(),
|
||||
"retract"
|
||||
);
|
||||
}
|
||||
|
||||
std::string GCodeWriter::retract_for_toolchange(bool before_wipe)
|
||||
{
|
||||
double factor = before_wipe ? m_extruder->retract_before_wipe() : 1.;
|
||||
assert(factor >= 0. && factor <= 1. + EPSILON);
|
||||
return this->_retract(
|
||||
factor * m_extruder->retract_length_toolchange(),
|
||||
factor * m_extruder->retract_restart_extra_toolchange(),
|
||||
"retract for toolchange"
|
||||
);
|
||||
}
|
||||
|
||||
std::string GCodeWriter::_retract(double length, double restart_extra, const std::string &comment)
|
||||
{
|
||||
std::ostringstream gcode;
|
||||
|
||||
/* If firmware retraction is enabled, we use a fake value of 1
|
||||
since we ignore the actual configured retract_length which
|
||||
might be 0, in which case the retraction logic gets skipped. */
|
||||
if (this->config.use_firmware_retraction) length = 1;
|
||||
|
||||
// If we use volumetric E values we turn lengths into volumes */
|
||||
if (this->config.use_volumetric_e) {
|
||||
double d = m_extruder->filament_diameter();
|
||||
double area = d * d * PI/4;
|
||||
length = length * area;
|
||||
restart_extra = restart_extra * area;
|
||||
}
|
||||
|
||||
double dE = m_extruder->retract(length, restart_extra);
|
||||
if (dE != 0) {
|
||||
if (this->config.use_firmware_retraction) {
|
||||
if (FLAVOR_IS(gcfMachinekit))
|
||||
gcode << "G22 ; retract\n";
|
||||
else
|
||||
gcode << "G10 ; retract\n";
|
||||
} else {
|
||||
gcode << "G1 " << m_extrusion_axis << E_NUM(m_extruder->E())
|
||||
<< " F" << float(m_extruder->retract_speed() * 60.);
|
||||
COMMENT(comment);
|
||||
gcode << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
if (FLAVOR_IS(gcfMakerWare))
|
||||
gcode << "M103 ; extruder off\n";
|
||||
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::unretract()
|
||||
{
|
||||
std::ostringstream gcode;
|
||||
|
||||
if (FLAVOR_IS(gcfMakerWare))
|
||||
gcode << "M101 ; extruder on\n";
|
||||
|
||||
double dE = m_extruder->unretract();
|
||||
if (dE != 0) {
|
||||
if (this->config.use_firmware_retraction) {
|
||||
if (FLAVOR_IS(gcfMachinekit))
|
||||
gcode << "G23 ; unretract\n";
|
||||
else
|
||||
gcode << "G11 ; unretract\n";
|
||||
gcode << this->reset_e();
|
||||
} else {
|
||||
// use G1 instead of G0 because G0 will blend the restart with the previous travel move
|
||||
gcode << "G1 " << m_extrusion_axis << E_NUM(m_extruder->E())
|
||||
<< " F" << float(m_extruder->deretract_speed() * 60.);
|
||||
if (this->config.gcode_comments) gcode << " ; unretract";
|
||||
gcode << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
return gcode.str();
|
||||
}
|
||||
|
||||
/* If this method is called more than once before calling unlift(),
|
||||
it will not perform subsequent lifts, even if Z was raised manually
|
||||
(i.e. with travel_to_z()) and thus _lifted was reduced. */
|
||||
std::string GCodeWriter::lift()
|
||||
{
|
||||
// check whether the above/below conditions are met
|
||||
double target_lift = 0;
|
||||
{
|
||||
double above = this->config.retract_lift_above.get_at(m_extruder->id());
|
||||
double below = this->config.retract_lift_below.get_at(m_extruder->id());
|
||||
if (m_pos(2) >= above && (below == 0 || m_pos(2) <= below))
|
||||
target_lift = this->config.retract_lift.get_at(m_extruder->id());
|
||||
}
|
||||
if (m_lifted == 0 && target_lift > 0) {
|
||||
m_lifted = target_lift;
|
||||
return this->_travel_to_z(m_pos(2) + target_lift, "lift Z");
|
||||
}
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string GCodeWriter::unlift()
|
||||
{
|
||||
std::string gcode;
|
||||
if (m_lifted > 0) {
|
||||
gcode += this->_travel_to_z(m_pos(2) - m_lifted, "restore layer Z");
|
||||
m_lifted = 0;
|
||||
}
|
||||
return gcode;
|
||||
}
|
||||
|
||||
}
|
||||
92
src/libslic3r/GCodeWriter.hpp
Normal file
92
src/libslic3r/GCodeWriter.hpp
Normal file
|
|
@ -0,0 +1,92 @@
|
|||
#ifndef slic3r_GCodeWriter_hpp_
|
||||
#define slic3r_GCodeWriter_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include <string>
|
||||
#include "Extruder.hpp"
|
||||
#include "Point.hpp"
|
||||
#include "PrintConfig.hpp"
|
||||
#include "GCode/CoolingBuffer.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class GCodeWriter {
|
||||
public:
|
||||
GCodeConfig config;
|
||||
bool multiple_extruders;
|
||||
|
||||
GCodeWriter() :
|
||||
multiple_extruders(false), m_extrusion_axis("E"), m_extruder(nullptr),
|
||||
m_single_extruder_multi_material(false),
|
||||
m_last_acceleration(0), m_max_acceleration(0), m_last_fan_speed(0),
|
||||
m_last_bed_temperature(0), m_last_bed_temperature_reached(true),
|
||||
m_lifted(0)
|
||||
{}
|
||||
Extruder* extruder() { return m_extruder; }
|
||||
const Extruder* extruder() const { return m_extruder; }
|
||||
|
||||
std::string extrusion_axis() const { return m_extrusion_axis; }
|
||||
void apply_print_config(const PrintConfig &print_config);
|
||||
// Extruders are expected to be sorted in an increasing order.
|
||||
void set_extruders(const std::vector<unsigned int> &extruder_ids);
|
||||
const std::vector<Extruder>& extruders() const { return m_extruders; }
|
||||
std::vector<unsigned int> extruder_ids() const {
|
||||
std::vector<unsigned int> out;
|
||||
out.reserve(m_extruders.size());
|
||||
for (const Extruder &e : m_extruders)
|
||||
out.push_back(e.id());
|
||||
return out;
|
||||
}
|
||||
std::string preamble();
|
||||
std::string postamble() const;
|
||||
std::string set_temperature(unsigned int temperature, bool wait = false, int tool = -1) const;
|
||||
std::string set_bed_temperature(unsigned int temperature, bool wait = false);
|
||||
std::string set_fan(unsigned int speed, bool dont_save = false);
|
||||
std::string set_acceleration(unsigned int acceleration);
|
||||
std::string reset_e(bool force = false);
|
||||
std::string update_progress(unsigned int num, unsigned int tot, bool allow_100 = false) const;
|
||||
// return false if this extruder was already selected
|
||||
bool need_toolchange(unsigned int extruder_id) const
|
||||
{ return m_extruder == nullptr || m_extruder->id() != extruder_id; }
|
||||
std::string set_extruder(unsigned int extruder_id)
|
||||
{ return this->need_toolchange(extruder_id) ? this->toolchange(extruder_id) : ""; }
|
||||
// Prefix of the toolchange G-code line, to be used by the CoolingBuffer to separate sections of the G-code
|
||||
// printed with the same extruder.
|
||||
std::string toolchange_prefix() const;
|
||||
std::string toolchange(unsigned int extruder_id);
|
||||
std::string set_speed(double F, const std::string &comment = std::string(), const std::string &cooling_marker = std::string()) const;
|
||||
std::string travel_to_xy(const Vec2d &point, const std::string &comment = std::string());
|
||||
std::string travel_to_xyz(const Vec3d &point, const std::string &comment = std::string());
|
||||
std::string travel_to_z(double z, const std::string &comment = std::string());
|
||||
bool will_move_z(double z) const;
|
||||
std::string extrude_to_xy(const Vec2d &point, double dE, const std::string &comment = std::string());
|
||||
std::string extrude_to_xyz(const Vec3d &point, double dE, const std::string &comment = std::string());
|
||||
std::string retract(bool before_wipe = false);
|
||||
std::string retract_for_toolchange(bool before_wipe = false);
|
||||
std::string unretract();
|
||||
std::string lift();
|
||||
std::string unlift();
|
||||
Vec3d get_position() const { return m_pos; }
|
||||
|
||||
private:
|
||||
std::vector<Extruder> m_extruders;
|
||||
std::string m_extrusion_axis;
|
||||
bool m_single_extruder_multi_material;
|
||||
Extruder* m_extruder;
|
||||
unsigned int m_last_acceleration;
|
||||
// Limit for setting the acceleration, to respect the machine limits set for the Marlin firmware.
|
||||
// If set to zero, the limit is not in action.
|
||||
unsigned int m_max_acceleration;
|
||||
unsigned int m_last_fan_speed;
|
||||
unsigned int m_last_bed_temperature;
|
||||
bool m_last_bed_temperature_reached;
|
||||
double m_lifted;
|
||||
Vec3d m_pos = Vec3d::Zero();
|
||||
|
||||
std::string _travel_to_z(double z, const std::string &comment);
|
||||
std::string _retract(double length, double restart_extra, const std::string &comment);
|
||||
};
|
||||
|
||||
} /* namespace Slic3r */
|
||||
|
||||
#endif /* slic3r_GCodeWriter_hpp_ */
|
||||
1388
src/libslic3r/Geometry.cpp
Normal file
1388
src/libslic3r/Geometry.cpp
Normal file
File diff suppressed because it is too large
Load diff
263
src/libslic3r/Geometry.hpp
Normal file
263
src/libslic3r/Geometry.hpp
Normal file
|
|
@ -0,0 +1,263 @@
|
|||
#ifndef slic3r_Geometry_hpp_
|
||||
#define slic3r_Geometry_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "BoundingBox.hpp"
|
||||
#include "ExPolygon.hpp"
|
||||
#include "Polygon.hpp"
|
||||
#include "Polyline.hpp"
|
||||
|
||||
#include "boost/polygon/voronoi.hpp"
|
||||
using boost::polygon::voronoi_builder;
|
||||
using boost::polygon::voronoi_diagram;
|
||||
|
||||
namespace Slic3r { namespace Geometry {
|
||||
|
||||
// Generic result of an orientation predicate.
|
||||
enum Orientation
|
||||
{
|
||||
ORIENTATION_CCW = 1,
|
||||
ORIENTATION_CW = -1,
|
||||
ORIENTATION_COLINEAR = 0
|
||||
};
|
||||
|
||||
// Return orientation of the three points (clockwise, counter-clockwise, colinear)
|
||||
// The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries.
|
||||
// which means, the coord_t types must not have some of the topmost bits utilized.
|
||||
// As the points are limited to 30 bits + signum,
|
||||
// the temporaries u, v, w are limited to 61 bits + signum,
|
||||
// and d is limited to 63 bits + signum and we are good.
|
||||
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
|
||||
{
|
||||
// BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
|
||||
int64_t u = int64_t(b(0)) * int64_t(c(1)) - int64_t(b(1)) * int64_t(c(0));
|
||||
int64_t v = int64_t(a(0)) * int64_t(c(1)) - int64_t(a(1)) * int64_t(c(0));
|
||||
int64_t w = int64_t(a(0)) * int64_t(b(1)) - int64_t(a(1)) * int64_t(b(0));
|
||||
int64_t d = u - v + w;
|
||||
return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW);
|
||||
}
|
||||
|
||||
// Return orientation of the polygon by checking orientation of the left bottom corner of the polygon
|
||||
// using exact arithmetics. The input polygon must not contain duplicate points
|
||||
// (or at least the left bottom corner point must not have duplicates).
|
||||
static inline bool is_ccw(const Polygon &poly)
|
||||
{
|
||||
// The polygon shall be at least a triangle.
|
||||
assert(poly.points.size() >= 3);
|
||||
if (poly.points.size() < 3)
|
||||
return true;
|
||||
|
||||
// 1) Find the lowest lexicographical point.
|
||||
unsigned int imin = 0;
|
||||
for (unsigned int i = 1; i < poly.points.size(); ++ i) {
|
||||
const Point &pmin = poly.points[imin];
|
||||
const Point &p = poly.points[i];
|
||||
if (p(0) < pmin(0) || (p(0) == pmin(0) && p(1) < pmin(1)))
|
||||
imin = i;
|
||||
}
|
||||
|
||||
// 2) Detect the orientation of the corner imin.
|
||||
size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1;
|
||||
size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1);
|
||||
Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
|
||||
// The lowest bottom point must not be collinear if the polygon does not contain duplicate points
|
||||
// or overlapping segments.
|
||||
assert(o != ORIENTATION_COLINEAR);
|
||||
return o == ORIENTATION_CCW;
|
||||
}
|
||||
|
||||
inline bool ray_ray_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
|
||||
{
|
||||
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
||||
if (std::abs(denom) < EPSILON)
|
||||
return false;
|
||||
double t = (v2(0) * (p1(1) - p2(1)) - v2(1) * (p1(0) - p2(0))) / denom;
|
||||
res(0) = p1(0) + t * v1(0);
|
||||
res(1) = p1(1) + t * v1(1);
|
||||
return true;
|
||||
}
|
||||
|
||||
inline bool segment_segment_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
|
||||
{
|
||||
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
||||
if (std::abs(denom) < EPSILON)
|
||||
// Lines are collinear.
|
||||
return false;
|
||||
double s12_x = p1(0) - p2(0);
|
||||
double s12_y = p1(1) - p2(1);
|
||||
double s_numer = v1(0) * s12_y - v1(1) * s12_x;
|
||||
bool denom_is_positive = false;
|
||||
if (denom < 0.) {
|
||||
denom_is_positive = true;
|
||||
denom = - denom;
|
||||
s_numer = - s_numer;
|
||||
}
|
||||
if (s_numer < 0.)
|
||||
// Intersection outside of the 1st segment.
|
||||
return false;
|
||||
double t_numer = v2(0) * s12_y - v2(1) * s12_x;
|
||||
if (! denom_is_positive)
|
||||
t_numer = - t_numer;
|
||||
if (t_numer < 0. || s_numer > denom || t_numer > denom)
|
||||
// Intersection outside of the 1st or 2nd segment.
|
||||
return false;
|
||||
// Intersection inside both of the segments.
|
||||
double t = t_numer / denom;
|
||||
res(0) = p1(0) + t * v1(0);
|
||||
res(1) = p1(1) + t * v1(1);
|
||||
return true;
|
||||
}
|
||||
|
||||
Pointf3s convex_hull(Pointf3s points);
|
||||
Polygon convex_hull(Points points);
|
||||
Polygon convex_hull(const Polygons &polygons);
|
||||
|
||||
void chained_path(const Points &points, std::vector<Points::size_type> &retval, Point start_near);
|
||||
void chained_path(const Points &points, std::vector<Points::size_type> &retval);
|
||||
template<class T> void chained_path_items(Points &points, T &items, T &retval);
|
||||
bool directions_parallel(double angle1, double angle2, double max_diff = 0);
|
||||
template<class T> bool contains(const std::vector<T> &vector, const Point &point);
|
||||
template<typename T> T rad2deg(T angle) { return T(180.0) * angle / T(PI); }
|
||||
double rad2deg_dir(double angle);
|
||||
template<typename T> T deg2rad(T angle) { return T(PI) * angle / T(180.0); }
|
||||
template<typename T> T angle_to_0_2PI(T angle)
|
||||
{
|
||||
static const T TWO_PI = T(2) * T(PI);
|
||||
while (angle < T(0))
|
||||
{
|
||||
angle += TWO_PI;
|
||||
}
|
||||
while (TWO_PI < angle)
|
||||
{
|
||||
angle -= TWO_PI;
|
||||
}
|
||||
|
||||
return angle;
|
||||
}
|
||||
void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval);
|
||||
|
||||
double linint(double value, double oldmin, double oldmax, double newmin, double newmax);
|
||||
bool arrange(
|
||||
// input
|
||||
size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box,
|
||||
// output
|
||||
Pointfs &positions);
|
||||
|
||||
class MedialAxis {
|
||||
public:
|
||||
Lines lines;
|
||||
const ExPolygon* expolygon;
|
||||
double max_width;
|
||||
double min_width;
|
||||
MedialAxis(double _max_width, double _min_width, const ExPolygon* _expolygon = NULL)
|
||||
: expolygon(_expolygon), max_width(_max_width), min_width(_min_width) {};
|
||||
void build(ThickPolylines* polylines);
|
||||
void build(Polylines* polylines);
|
||||
|
||||
private:
|
||||
class VD : public voronoi_diagram<double> {
|
||||
public:
|
||||
typedef double coord_type;
|
||||
typedef boost::polygon::point_data<coordinate_type> point_type;
|
||||
typedef boost::polygon::segment_data<coordinate_type> segment_type;
|
||||
typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
|
||||
};
|
||||
VD vd;
|
||||
std::set<const VD::edge_type*> edges, valid_edges;
|
||||
std::map<const VD::edge_type*, std::pair<coordf_t,coordf_t> > thickness;
|
||||
void process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline);
|
||||
bool validate_edge(const VD::edge_type* edge);
|
||||
const Line& retrieve_segment(const VD::cell_type* cell) const;
|
||||
const Point& retrieve_endpoint(const VD::cell_type* cell) const;
|
||||
};
|
||||
|
||||
// Sets the given transform by assembling the given transformations in the following order:
|
||||
// 1) mirror
|
||||
// 2) scale
|
||||
// 3) rotate X
|
||||
// 4) rotate Y
|
||||
// 5) rotate Z
|
||||
// 6) translate
|
||||
void assemble_transform(Transform3d& transform, const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones());
|
||||
|
||||
// Returns the transform obtained by assembling the given transformations in the following order:
|
||||
// 1) mirror
|
||||
// 2) scale
|
||||
// 3) rotate X
|
||||
// 4) rotate Y
|
||||
// 5) rotate Z
|
||||
// 6) translate
|
||||
Transform3d assemble_transform(const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones());
|
||||
|
||||
// Returns the euler angles extracted from the given rotation matrix
|
||||
// Warning -> The matrix should not contain any scale or shear !!!
|
||||
Vec3d extract_euler_angles(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>& rotation_matrix);
|
||||
|
||||
// Returns the euler angles extracted from the given affine transform
|
||||
// Warning -> The transform should not contain any shear !!!
|
||||
Vec3d extract_euler_angles(const Transform3d& transform);
|
||||
|
||||
#if ENABLE_MODELVOLUME_TRANSFORM
|
||||
class Transformation
|
||||
{
|
||||
struct Flags
|
||||
{
|
||||
bool dont_translate;
|
||||
bool dont_rotate;
|
||||
bool dont_scale;
|
||||
bool dont_mirror;
|
||||
|
||||
Flags();
|
||||
|
||||
bool needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const;
|
||||
void set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror);
|
||||
};
|
||||
|
||||
Vec3d m_offset; // In unscaled coordinates
|
||||
Vec3d m_rotation; // Rotation around the three axes, in radians around mesh center point
|
||||
Vec3d m_scaling_factor; // Scaling factors along the three axes
|
||||
Vec3d m_mirror; // Mirroring along the three axes
|
||||
|
||||
mutable Transform3d m_matrix;
|
||||
mutable Flags m_flags;
|
||||
mutable bool m_dirty;
|
||||
|
||||
public:
|
||||
Transformation();
|
||||
explicit Transformation(const Transform3d& transform);
|
||||
|
||||
const Vec3d& get_offset() const { return m_offset; }
|
||||
double get_offset(Axis axis) const { return m_offset(axis); }
|
||||
|
||||
void set_offset(const Vec3d& offset);
|
||||
void set_offset(Axis axis, double offset);
|
||||
|
||||
const Vec3d& get_rotation() const { return m_rotation; }
|
||||
double get_rotation(Axis axis) const { return m_rotation(axis); }
|
||||
|
||||
void set_rotation(const Vec3d& rotation);
|
||||
void set_rotation(Axis axis, double rotation);
|
||||
|
||||
Vec3d get_scaling_factor() const { return m_scaling_factor; }
|
||||
double get_scaling_factor(Axis axis) const { return m_scaling_factor(axis); }
|
||||
|
||||
void set_scaling_factor(const Vec3d& scaling_factor);
|
||||
void set_scaling_factor(Axis axis, double scaling_factor);
|
||||
|
||||
const Vec3d& get_mirror() const { return m_mirror; }
|
||||
double get_mirror(Axis axis) const { return m_mirror(axis); }
|
||||
|
||||
void set_mirror(const Vec3d& mirror);
|
||||
void set_mirror(Axis axis, double mirror);
|
||||
|
||||
void set_from_transform(const Transform3d& transform);
|
||||
|
||||
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const;
|
||||
|
||||
Transformation operator * (const Transformation& other) const;
|
||||
};
|
||||
#endif // ENABLE_MODELVOLUME_TRANSFORM
|
||||
|
||||
} }
|
||||
|
||||
#endif
|
||||
18
src/libslic3r/I18N.hpp
Normal file
18
src/libslic3r/I18N.hpp
Normal file
|
|
@ -0,0 +1,18 @@
|
|||
#ifndef slic3r_I18N_hpp_
|
||||
#define slic3r_I18N_hpp_
|
||||
|
||||
#include <string>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
namespace I18N {
|
||||
typedef std::string (*translate_fn_type)(const char*);
|
||||
extern translate_fn_type translate_fn;
|
||||
inline void set_translate_callback(translate_fn_type fn) { translate_fn = fn; }
|
||||
inline std::string translate(const std::string &s) { return (translate_fn == nullptr) ? s : (*translate_fn)(s.c_str()); }
|
||||
inline std::string translate(const char *ptr) { return (translate_fn == nullptr) ? std::string(ptr) : (*translate_fn)(ptr); }
|
||||
} // namespace I18N
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif /* slic3r_I18N_hpp_ */
|
||||
290
src/libslic3r/Int128.hpp
Normal file
290
src/libslic3r/Int128.hpp
Normal file
|
|
@ -0,0 +1,290 @@
|
|||
// This is an excerpt of from the Clipper library by Angus Johnson, see the license below,
|
||||
// implementing a 64 x 64 -> 128bit multiply, and 128bit addition, subtraction and compare
|
||||
// operations, to be used with exact geometric predicates.
|
||||
// The code has been extended by Vojtech Bubnik to use 128 bit intrinsic types
|
||||
// and/or 64x64->128 intrinsic functions where possible.
|
||||
|
||||
/*******************************************************************************
|
||||
* *
|
||||
* Author : Angus Johnson *
|
||||
* Version : 6.2.9 *
|
||||
* Date : 16 February 2015 *
|
||||
* Website : http://www.angusj.com *
|
||||
* Copyright : Angus Johnson 2010-2015 *
|
||||
* *
|
||||
* License: *
|
||||
* Use, modification & distribution is subject to Boost Software License Ver 1. *
|
||||
* http://www.boost.org/LICENSE_1_0.txt *
|
||||
* *
|
||||
* Attributions: *
|
||||
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
|
||||
* "A generic solution to polygon clipping" *
|
||||
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
|
||||
* http://portal.acm.org/citation.cfm?id=129906 *
|
||||
* *
|
||||
* Computer graphics and geometric modeling: implementation and algorithms *
|
||||
* By Max K. Agoston *
|
||||
* Springer; 1 edition (January 4, 2005) *
|
||||
* http://books.google.com/books?q=vatti+clipping+agoston *
|
||||
* *
|
||||
* See also: *
|
||||
* "Polygon Offsetting by Computing Winding Numbers" *
|
||||
* Paper no. DETC2005-85513 pp. 565-575 *
|
||||
* ASME 2005 International Design Engineering Technical Conferences *
|
||||
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
|
||||
* September 24-28, 2005 , Long Beach, California, USA *
|
||||
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
|
||||
* *
|
||||
*******************************************************************************/
|
||||
|
||||
// #define SLIC3R_DEBUG
|
||||
|
||||
// Make assert active if SLIC3R_DEBUG
|
||||
#ifdef SLIC3R_DEBUG
|
||||
#undef NDEBUG
|
||||
#define DEBUG
|
||||
#define _DEBUG
|
||||
#undef assert
|
||||
#endif
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#if ! defined(_MSC_VER) && defined(__SIZEOF_INT128__)
|
||||
#define HAS_INTRINSIC_128_TYPE
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Int128 class (enables safe math on signed 64bit integers)
|
||||
// eg Int128 val1((int64_t)9223372036854775807); //ie 2^63 -1
|
||||
// Int128 val2((int64_t)9223372036854775807);
|
||||
// Int128 val3 = val1 * val2;
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
class Int128
|
||||
{
|
||||
|
||||
#ifdef HAS_INTRINSIC_128_TYPE
|
||||
|
||||
/******************************************** Using the intrinsic 128bit x 128bit multiply ************************************************/
|
||||
|
||||
public:
|
||||
__int128 value;
|
||||
|
||||
Int128(int64_t lo = 0) : value(lo) {}
|
||||
Int128(const Int128 &v) : value(v.value) {}
|
||||
|
||||
Int128& operator=(const int64_t &rhs) { value = rhs; return *this; }
|
||||
|
||||
uint64_t lo() const { return uint64_t(value); }
|
||||
int64_t hi() const { return int64_t(value >> 64); }
|
||||
int sign() const { return (value > 0) - (value < 0); }
|
||||
|
||||
bool operator==(const Int128 &rhs) const { return value == rhs.value; }
|
||||
bool operator!=(const Int128 &rhs) const { return value != rhs.value; }
|
||||
bool operator> (const Int128 &rhs) const { return value > rhs.value; }
|
||||
bool operator< (const Int128 &rhs) const { return value < rhs.value; }
|
||||
bool operator>=(const Int128 &rhs) const { return value >= rhs.value; }
|
||||
bool operator<=(const Int128 &rhs) const { return value <= rhs.value; }
|
||||
|
||||
Int128& operator+=(const Int128 &rhs) { value += rhs.value; return *this; }
|
||||
Int128 operator+ (const Int128 &rhs) const { return Int128(value + rhs.value); }
|
||||
Int128& operator-=(const Int128 &rhs) { value -= rhs.value; return *this; }
|
||||
Int128 operator -(const Int128 &rhs) const { return Int128(value - rhs.value); }
|
||||
Int128 operator -() const { return Int128(- value); }
|
||||
|
||||
operator double() const { return double(value); }
|
||||
|
||||
static inline Int128 multiply(int64_t lhs, int64_t rhs) { return Int128(__int128(lhs) * __int128(rhs)); }
|
||||
|
||||
// Evaluate signum of a 2x2 determinant.
|
||||
static int sign_determinant_2x2(int64_t a11, int64_t a12, int64_t a21, int64_t a22)
|
||||
{
|
||||
__int128 det = __int128(a11) * __int128(a22) - __int128(a12) * __int128(a21);
|
||||
return (det > 0) - (det < 0);
|
||||
}
|
||||
|
||||
// Compare two rational numbers.
|
||||
static int compare_rationals(int64_t p1, int64_t q1, int64_t p2, int64_t q2)
|
||||
{
|
||||
int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1;
|
||||
__int128 det = __int128(p1) * __int128(q2) - __int128(p2) * __int128(q1);
|
||||
return ((det > 0) - (det < 0)) * invert;
|
||||
}
|
||||
|
||||
#else /* HAS_INTRINSIC_128_TYPE */
|
||||
|
||||
/******************************************** Splitting the 128bit number into two 64bit words *********************************************/
|
||||
|
||||
Int128(int64_t lo = 0) : m_lo((uint64_t)lo), m_hi((lo < 0) ? -1 : 0) {}
|
||||
Int128(const Int128 &val) : m_lo(val.m_lo), m_hi(val.m_hi) {}
|
||||
Int128(const int64_t& hi, const uint64_t& lo) : m_lo(lo), m_hi(hi) {}
|
||||
|
||||
Int128& operator = (const int64_t &val)
|
||||
{
|
||||
m_lo = (uint64_t)val;
|
||||
m_hi = (val < 0) ? -1 : 0;
|
||||
return *this;
|
||||
}
|
||||
|
||||
uint64_t lo() const { return m_lo; }
|
||||
int64_t hi() const { return m_hi; }
|
||||
int sign() const { return (m_hi == 0) ? (m_lo > 0) : (m_hi > 0) - (m_hi < 0); }
|
||||
|
||||
bool operator == (const Int128 &val) const { return m_hi == val.m_hi && m_lo == val.m_lo; }
|
||||
bool operator != (const Int128 &val) const { return ! (*this == val); }
|
||||
bool operator > (const Int128 &val) const { return (m_hi == val.m_hi) ? m_lo > val.m_lo : m_hi > val.m_hi; }
|
||||
bool operator < (const Int128 &val) const { return (m_hi == val.m_hi) ? m_lo < val.m_lo : m_hi < val.m_hi; }
|
||||
bool operator >= (const Int128 &val) const { return ! (*this < val); }
|
||||
bool operator <= (const Int128 &val) const { return ! (*this > val); }
|
||||
|
||||
Int128& operator += (const Int128 &rhs)
|
||||
{
|
||||
m_hi += rhs.m_hi;
|
||||
m_lo += rhs.m_lo;
|
||||
if (m_lo < rhs.m_lo) m_hi++;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Int128 operator + (const Int128 &rhs) const
|
||||
{
|
||||
Int128 result(*this);
|
||||
result+= rhs;
|
||||
return result;
|
||||
}
|
||||
|
||||
Int128& operator -= (const Int128 &rhs)
|
||||
{
|
||||
*this += -rhs;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Int128 operator - (const Int128 &rhs) const
|
||||
{
|
||||
Int128 result(*this);
|
||||
result -= rhs;
|
||||
return result;
|
||||
}
|
||||
|
||||
Int128 operator-() const { return (m_lo == 0) ? Int128(-m_hi, 0) : Int128(~m_hi, ~m_lo + 1); }
|
||||
|
||||
operator double() const
|
||||
{
|
||||
const double shift64 = 18446744073709551616.0; //2^64
|
||||
return (m_hi < 0) ?
|
||||
((m_lo == 0) ?
|
||||
(double)m_hi * shift64 :
|
||||
-(double)(~m_lo + ~m_hi * shift64)) :
|
||||
(double)(m_lo + m_hi * shift64);
|
||||
}
|
||||
|
||||
static inline Int128 multiply(int64_t lhs, int64_t rhs)
|
||||
{
|
||||
#if defined(_MSC_VER) && defined(_WIN64)
|
||||
// On Visual Studio 64bit, use the _mul128() intrinsic function.
|
||||
Int128 result;
|
||||
result.m_lo = (uint64_t)_mul128(lhs, rhs, &result.m_hi);
|
||||
return result;
|
||||
#else
|
||||
// This branch should only be executed in case there is neither __int16 type nor _mul128 intrinsic
|
||||
// function available. This is mostly on 32bit operating systems.
|
||||
// Use a pure C implementation of _mul128().
|
||||
|
||||
int negate = (lhs < 0) != (rhs < 0);
|
||||
|
||||
if (lhs < 0)
|
||||
lhs = -lhs;
|
||||
uint64_t int1Hi = uint64_t(lhs) >> 32;
|
||||
uint64_t int1Lo = uint64_t(lhs & 0xFFFFFFFF);
|
||||
|
||||
if (rhs < 0)
|
||||
rhs = -rhs;
|
||||
uint64_t int2Hi = uint64_t(rhs) >> 32;
|
||||
uint64_t int2Lo = uint64_t(rhs & 0xFFFFFFFF);
|
||||
|
||||
//because the high (sign) bits in both int1Hi & int2Hi have been zeroed,
|
||||
//there's no risk of 64 bit overflow in the following assignment
|
||||
//(ie: $7FFFFFFF*$FFFFFFFF + $7FFFFFFF*$FFFFFFFF < 64bits)
|
||||
uint64_t a = int1Hi * int2Hi;
|
||||
uint64_t b = int1Lo * int2Lo;
|
||||
//Result = A shl 64 + C shl 32 + B ...
|
||||
uint64_t c = int1Hi * int2Lo + int1Lo * int2Hi;
|
||||
|
||||
Int128 tmp;
|
||||
tmp.m_hi = int64_t(a + (c >> 32));
|
||||
tmp.m_lo = int64_t(c << 32);
|
||||
tmp.m_lo += int64_t(b);
|
||||
if (tmp.m_lo < b)
|
||||
++ tmp.m_hi;
|
||||
if (negate)
|
||||
tmp = - tmp;
|
||||
return tmp;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Evaluate signum of a 2x2 determinant.
|
||||
static int sign_determinant_2x2(int64_t a11, int64_t a12, int64_t a21, int64_t a22)
|
||||
{
|
||||
return (Int128::multiply(a11, a22) - Int128::multiply(a12, a21)).sign();
|
||||
}
|
||||
|
||||
// Compare two rational numbers.
|
||||
static int compare_rationals(int64_t p1, int64_t q1, int64_t p2, int64_t q2)
|
||||
{
|
||||
int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1;
|
||||
Int128 det = Int128::multiply(p1, q2) - Int128::multiply(p2, q1);
|
||||
return det.sign() * invert;
|
||||
}
|
||||
|
||||
private:
|
||||
uint64_t m_lo;
|
||||
int64_t m_hi;
|
||||
|
||||
|
||||
#endif /* HAS_INTRINSIC_128_TYPE */
|
||||
|
||||
|
||||
/******************************************** Common methods ************************************************/
|
||||
|
||||
public:
|
||||
|
||||
// Evaluate signum of a 2x2 determinant, use a numeric filter to avoid 128 bit multiply if possible.
|
||||
static int sign_determinant_2x2_filtered(int64_t a11, int64_t a12, int64_t a21, int64_t a22)
|
||||
{
|
||||
// First try to calculate the determinant over the upper 31 bits.
|
||||
// Round p1, p2, q1, q2 to 31 bits.
|
||||
int64_t a11s = (a11 + (1 << 31)) >> 32;
|
||||
int64_t a12s = (a12 + (1 << 31)) >> 32;
|
||||
int64_t a21s = (a21 + (1 << 31)) >> 32;
|
||||
int64_t a22s = (a22 + (1 << 31)) >> 32;
|
||||
// Result fits 63 bits, it is an approximate of the determinant divided by 2^64.
|
||||
int64_t det = a11s * a22s - a12s * a21s;
|
||||
// Maximum absolute of the remainder of the exact determinant, divided by 2^64.
|
||||
int64_t err = ((std::abs(a11s) + std::abs(a12s) + std::abs(a21s) + std::abs(a22s)) << 1) + 1;
|
||||
assert(std::abs(det) <= err || ((det > 0) ? 1 : -1) == sign_determinant_2x2(a11, a12, a21, a22));
|
||||
return (std::abs(det) > err) ?
|
||||
((det > 0) ? 1 : -1) :
|
||||
sign_determinant_2x2(a11, a12, a21, a22);
|
||||
}
|
||||
|
||||
// Compare two rational numbers, use a numeric filter to avoid 128 bit multiply if possible.
|
||||
static int compare_rationals_filtered(int64_t p1, int64_t q1, int64_t p2, int64_t q2)
|
||||
{
|
||||
// First try to calculate the determinant over the upper 31 bits.
|
||||
// Round p1, p2, q1, q2 to 31 bits.
|
||||
int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1;
|
||||
int64_t q1s = (q1 + (1 << 31)) >> 32;
|
||||
int64_t q2s = (q2 + (1 << 31)) >> 32;
|
||||
if (q1s != 0 && q2s != 0) {
|
||||
int64_t p1s = (p1 + (1 << 31)) >> 32;
|
||||
int64_t p2s = (p2 + (1 << 31)) >> 32;
|
||||
// Result fits 63 bits, it is an approximate of the determinant divided by 2^64.
|
||||
int64_t det = p1s * q2s - p2s * q1s;
|
||||
// Maximum absolute of the remainder of the exact determinant, divided by 2^64.
|
||||
int64_t err = ((std::abs(p1s) + std::abs(q1s) + std::abs(p2s) + std::abs(q2s)) << 1) + 1;
|
||||
assert(std::abs(det) <= err || ((det > 0) ? 1 : -1) * invert == compare_rationals(p1, q1, p2, q2));
|
||||
if (std::abs(det) > err)
|
||||
return ((det > 0) ? 1 : -1) * invert;
|
||||
}
|
||||
return sign_determinant_2x2(p1, q1, p2, q2) * invert;
|
||||
}
|
||||
};
|
||||
213
src/libslic3r/Layer.cpp
Normal file
213
src/libslic3r/Layer.cpp
Normal file
|
|
@ -0,0 +1,213 @@
|
|||
#include "Layer.hpp"
|
||||
#include "ClipperUtils.hpp"
|
||||
#include "Geometry.hpp"
|
||||
#include "Print.hpp"
|
||||
#include "Fill/Fill.hpp"
|
||||
#include "SVG.hpp"
|
||||
|
||||
#include <boost/log/trivial.hpp>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
Layer::~Layer()
|
||||
{
|
||||
this->lower_layer = this->upper_layer = nullptr;
|
||||
for (LayerRegion *region : m_regions)
|
||||
delete region;
|
||||
m_regions.clear();
|
||||
}
|
||||
|
||||
LayerRegion* Layer::add_region(PrintRegion* print_region)
|
||||
{
|
||||
m_regions.emplace_back(new LayerRegion(this, print_region));
|
||||
return m_regions.back();
|
||||
}
|
||||
|
||||
// merge all regions' slices to get islands
|
||||
void Layer::make_slices()
|
||||
{
|
||||
ExPolygons slices;
|
||||
if (m_regions.size() == 1) {
|
||||
// optimization: if we only have one region, take its slices
|
||||
slices = m_regions.front()->slices;
|
||||
} else {
|
||||
Polygons slices_p;
|
||||
for (LayerRegion *layerm : m_regions)
|
||||
polygons_append(slices_p, to_polygons(layerm->slices));
|
||||
slices = union_ex(slices_p);
|
||||
}
|
||||
|
||||
this->slices.expolygons.clear();
|
||||
this->slices.expolygons.reserve(slices.size());
|
||||
|
||||
// prepare ordering points
|
||||
Points ordering_points;
|
||||
ordering_points.reserve(slices.size());
|
||||
for (const ExPolygon &ex : slices)
|
||||
ordering_points.push_back(ex.contour.first_point());
|
||||
|
||||
// sort slices
|
||||
std::vector<Points::size_type> order;
|
||||
Slic3r::Geometry::chained_path(ordering_points, order);
|
||||
|
||||
// populate slices vector
|
||||
for (size_t i : order)
|
||||
this->slices.expolygons.push_back(std::move(slices[i]));
|
||||
}
|
||||
|
||||
void Layer::merge_slices()
|
||||
{
|
||||
if (m_regions.size() == 1) {
|
||||
// Optimization, also more robust. Don't merge classified pieces of layerm->slices,
|
||||
// but use the non-split islands of a layer. For a single region print, these shall be equal.
|
||||
m_regions.front()->slices.set(this->slices.expolygons, stInternal);
|
||||
} else {
|
||||
for (LayerRegion *layerm : m_regions)
|
||||
// without safety offset, artifacts are generated (GH #2494)
|
||||
layerm->slices.set(union_ex(to_polygons(std::move(layerm->slices.surfaces)), true), stInternal);
|
||||
}
|
||||
}
|
||||
|
||||
// Here the perimeters are created cummulatively for all layer regions sharing the same parameters influencing the perimeters.
|
||||
// The perimeter paths and the thin fills (ExtrusionEntityCollection) are assigned to the first compatible layer region.
|
||||
// The resulting fill surface is split back among the originating regions.
|
||||
void Layer::make_perimeters()
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(trace) << "Generating perimeters for layer " << this->id();
|
||||
|
||||
// keep track of regions whose perimeters we have already generated
|
||||
std::set<size_t> done;
|
||||
|
||||
for (LayerRegionPtrs::iterator layerm = m_regions.begin(); layerm != m_regions.end(); ++ layerm) {
|
||||
size_t region_id = layerm - m_regions.begin();
|
||||
if (done.find(region_id) != done.end()) continue;
|
||||
BOOST_LOG_TRIVIAL(trace) << "Generating perimeters for layer " << this->id() << ", region " << region_id;
|
||||
done.insert(region_id);
|
||||
const PrintRegionConfig &config = (*layerm)->region()->config();
|
||||
|
||||
// find compatible regions
|
||||
LayerRegionPtrs layerms;
|
||||
layerms.push_back(*layerm);
|
||||
for (LayerRegionPtrs::const_iterator it = layerm + 1; it != m_regions.end(); ++it) {
|
||||
LayerRegion* other_layerm = *it;
|
||||
const PrintRegionConfig &other_config = other_layerm->region()->config();
|
||||
|
||||
if (config.perimeter_extruder == other_config.perimeter_extruder
|
||||
&& config.perimeters == other_config.perimeters
|
||||
&& config.perimeter_speed == other_config.perimeter_speed
|
||||
&& config.external_perimeter_speed == other_config.external_perimeter_speed
|
||||
&& config.gap_fill_speed == other_config.gap_fill_speed
|
||||
&& config.overhangs == other_config.overhangs
|
||||
&& config.serialize("perimeter_extrusion_width").compare(other_config.serialize("perimeter_extrusion_width")) == 0
|
||||
&& config.thin_walls == other_config.thin_walls
|
||||
&& config.external_perimeters_first == other_config.external_perimeters_first) {
|
||||
layerms.push_back(other_layerm);
|
||||
done.insert(it - m_regions.begin());
|
||||
}
|
||||
}
|
||||
|
||||
if (layerms.size() == 1) { // optimization
|
||||
(*layerm)->fill_surfaces.surfaces.clear();
|
||||
(*layerm)->make_perimeters((*layerm)->slices, &(*layerm)->fill_surfaces);
|
||||
(*layerm)->fill_expolygons = to_expolygons((*layerm)->fill_surfaces.surfaces);
|
||||
} else {
|
||||
SurfaceCollection new_slices;
|
||||
{
|
||||
// group slices (surfaces) according to number of extra perimeters
|
||||
std::map<unsigned short,Surfaces> slices; // extra_perimeters => [ surface, surface... ]
|
||||
for (LayerRegionPtrs::iterator l = layerms.begin(); l != layerms.end(); ++l) {
|
||||
for (Surfaces::iterator s = (*l)->slices.surfaces.begin(); s != (*l)->slices.surfaces.end(); ++s) {
|
||||
slices[s->extra_perimeters].push_back(*s);
|
||||
}
|
||||
}
|
||||
// merge the surfaces assigned to each group
|
||||
for (std::map<unsigned short,Surfaces>::const_iterator it = slices.begin(); it != slices.end(); ++it)
|
||||
new_slices.append(union_ex(it->second, true), it->second.front());
|
||||
}
|
||||
|
||||
// make perimeters
|
||||
SurfaceCollection fill_surfaces;
|
||||
(*layerm)->make_perimeters(new_slices, &fill_surfaces);
|
||||
|
||||
// assign fill_surfaces to each layer
|
||||
if (!fill_surfaces.surfaces.empty()) {
|
||||
for (LayerRegionPtrs::iterator l = layerms.begin(); l != layerms.end(); ++l) {
|
||||
// Separate the fill surfaces.
|
||||
ExPolygons expp = intersection_ex(to_polygons(fill_surfaces), (*l)->slices);
|
||||
(*l)->fill_expolygons = expp;
|
||||
(*l)->fill_surfaces.set(std::move(expp), fill_surfaces.surfaces.front());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
BOOST_LOG_TRIVIAL(trace) << "Generating perimeters for layer " << this->id() << " - Done";
|
||||
}
|
||||
|
||||
void Layer::make_fills()
|
||||
{
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf("Making fills for layer " PRINTF_ZU "\n", this->id());
|
||||
#endif
|
||||
for (LayerRegion *layerm : m_regions) {
|
||||
layerm->fills.clear();
|
||||
make_fill(*layerm, layerm->fills);
|
||||
#ifndef NDEBUG
|
||||
for (size_t i = 0; i < layerm->fills.entities.size(); ++ i)
|
||||
assert(dynamic_cast<ExtrusionEntityCollection*>(layerm->fills.entities[i]) != NULL);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void Layer::export_region_slices_to_svg(const char *path) const
|
||||
{
|
||||
BoundingBox bbox;
|
||||
for (const auto *region : m_regions)
|
||||
for (const auto &surface : region->slices.surfaces)
|
||||
bbox.merge(get_extents(surface.expolygon));
|
||||
Point legend_size = export_surface_type_legend_to_svg_box_size();
|
||||
Point legend_pos(bbox.min(0), bbox.max(1));
|
||||
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
|
||||
|
||||
SVG svg(path, bbox);
|
||||
const float transparency = 0.5f;
|
||||
for (const auto *region : m_regions)
|
||||
for (const auto &surface : region->slices.surfaces)
|
||||
svg.draw(surface.expolygon, surface_type_to_color_name(surface.surface_type), transparency);
|
||||
export_surface_type_legend_to_svg(svg, legend_pos);
|
||||
svg.Close();
|
||||
}
|
||||
|
||||
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
|
||||
void Layer::export_region_slices_to_svg_debug(const char *name) const
|
||||
{
|
||||
static size_t idx = 0;
|
||||
this->export_region_slices_to_svg(debug_out_path("Layer-slices-%s-%d.svg", name, idx ++).c_str());
|
||||
}
|
||||
|
||||
void Layer::export_region_fill_surfaces_to_svg(const char *path) const
|
||||
{
|
||||
BoundingBox bbox;
|
||||
for (const auto *region : m_regions)
|
||||
for (const auto &surface : region->slices.surfaces)
|
||||
bbox.merge(get_extents(surface.expolygon));
|
||||
Point legend_size = export_surface_type_legend_to_svg_box_size();
|
||||
Point legend_pos(bbox.min(0), bbox.max(1));
|
||||
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
|
||||
|
||||
SVG svg(path, bbox);
|
||||
const float transparency = 0.5f;
|
||||
for (const auto *region : m_regions)
|
||||
for (const auto &surface : region->slices.surfaces)
|
||||
svg.draw(surface.expolygon, surface_type_to_color_name(surface.surface_type), transparency);
|
||||
export_surface_type_legend_to_svg(svg, legend_pos);
|
||||
svg.Close();
|
||||
}
|
||||
|
||||
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
|
||||
void Layer::export_region_fill_surfaces_to_svg_debug(const char *name) const
|
||||
{
|
||||
static size_t idx = 0;
|
||||
this->export_region_fill_surfaces_to_svg(debug_out_path("Layer-fill_surfaces-%s-%d.svg", name, idx ++).c_str());
|
||||
}
|
||||
|
||||
}
|
||||
179
src/libslic3r/Layer.hpp
Normal file
179
src/libslic3r/Layer.hpp
Normal file
|
|
@ -0,0 +1,179 @@
|
|||
#ifndef slic3r_Layer_hpp_
|
||||
#define slic3r_Layer_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "Flow.hpp"
|
||||
#include "SurfaceCollection.hpp"
|
||||
#include "ExtrusionEntityCollection.hpp"
|
||||
#include "ExPolygonCollection.hpp"
|
||||
#include "PolylineCollection.hpp"
|
||||
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Layer;
|
||||
class PrintRegion;
|
||||
class PrintObject;
|
||||
|
||||
class LayerRegion
|
||||
{
|
||||
public:
|
||||
Layer* layer() { return m_layer; }
|
||||
const Layer* layer() const { return m_layer; }
|
||||
PrintRegion* region() { return m_region; }
|
||||
const PrintRegion* region() const { return m_region; }
|
||||
|
||||
// collection of surfaces generated by slicing the original geometry
|
||||
// divided by type top/bottom/internal
|
||||
SurfaceCollection slices;
|
||||
|
||||
// collection of extrusion paths/loops filling gaps
|
||||
// These fills are generated by the perimeter generator.
|
||||
// They are not printed on their own, but they are copied to this->fills during infill generation.
|
||||
ExtrusionEntityCollection thin_fills;
|
||||
|
||||
// Unspecified fill polygons, used for overhang detection ("ensure vertical wall thickness feature")
|
||||
// and for re-starting of infills.
|
||||
ExPolygons fill_expolygons;
|
||||
// collection of surfaces for infill generation
|
||||
SurfaceCollection fill_surfaces;
|
||||
|
||||
// Collection of perimeter surfaces. This is a cached result of diff(slices, fill_surfaces).
|
||||
// While not necessary, the memory consumption is meager and it speeds up calculation.
|
||||
// The perimeter_surfaces keep the IDs of the slices (top/bottom/)
|
||||
SurfaceCollection perimeter_surfaces;
|
||||
|
||||
// collection of expolygons representing the bridged areas (thus not
|
||||
// needing support material)
|
||||
Polygons bridged;
|
||||
|
||||
// collection of polylines representing the unsupported bridge edges
|
||||
PolylineCollection unsupported_bridge_edges;
|
||||
|
||||
// ordered collection of extrusion paths/loops to build all perimeters
|
||||
// (this collection contains only ExtrusionEntityCollection objects)
|
||||
ExtrusionEntityCollection perimeters;
|
||||
|
||||
// ordered collection of extrusion paths to fill surfaces
|
||||
// (this collection contains only ExtrusionEntityCollection objects)
|
||||
ExtrusionEntityCollection fills;
|
||||
|
||||
Flow flow(FlowRole role, bool bridge = false, double width = -1) const;
|
||||
void slices_to_fill_surfaces_clipped();
|
||||
void prepare_fill_surfaces();
|
||||
void make_perimeters(const SurfaceCollection &slices, SurfaceCollection* fill_surfaces);
|
||||
void process_external_surfaces(const Layer* lower_layer);
|
||||
double infill_area_threshold() const;
|
||||
|
||||
void export_region_slices_to_svg(const char *path) const;
|
||||
void export_region_fill_surfaces_to_svg(const char *path) const;
|
||||
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
|
||||
void export_region_slices_to_svg_debug(const char *name) const;
|
||||
void export_region_fill_surfaces_to_svg_debug(const char *name) const;
|
||||
|
||||
// Is there any valid extrusion assigned to this LayerRegion?
|
||||
bool has_extrusions() const { return ! this->perimeters.entities.empty() || ! this->fills.entities.empty(); }
|
||||
|
||||
protected:
|
||||
friend class Layer;
|
||||
|
||||
LayerRegion(Layer *layer, PrintRegion *region) : m_layer(layer), m_region(region) {}
|
||||
~LayerRegion() {}
|
||||
|
||||
private:
|
||||
Layer *m_layer;
|
||||
PrintRegion *m_region;
|
||||
};
|
||||
|
||||
|
||||
typedef std::vector<LayerRegion*> LayerRegionPtrs;
|
||||
|
||||
class Layer
|
||||
{
|
||||
public:
|
||||
size_t id() const { return m_id; }
|
||||
void set_id(size_t id) { m_id = id; }
|
||||
PrintObject* object() { return m_object; }
|
||||
const PrintObject* object() const { return m_object; }
|
||||
|
||||
Layer *upper_layer;
|
||||
Layer *lower_layer;
|
||||
bool slicing_errors;
|
||||
coordf_t slice_z; // Z used for slicing in unscaled coordinates
|
||||
coordf_t print_z; // Z used for printing in unscaled coordinates
|
||||
coordf_t height; // layer height in unscaled coordinates
|
||||
|
||||
// collection of expolygons generated by slicing the original geometry;
|
||||
// also known as 'islands' (all regions and surface types are merged here)
|
||||
// The slices are chained by the shortest traverse distance and this traversal
|
||||
// order will be recovered by the G-code generator.
|
||||
ExPolygonCollection slices;
|
||||
|
||||
size_t region_count() const { return m_regions.size(); }
|
||||
const LayerRegion* get_region(int idx) const { return m_regions.at(idx); }
|
||||
LayerRegion* get_region(int idx) { return m_regions[idx]; }
|
||||
LayerRegion* add_region(PrintRegion* print_region);
|
||||
const LayerRegionPtrs& regions() const { return m_regions; }
|
||||
|
||||
void make_slices();
|
||||
void merge_slices();
|
||||
template <class T> bool any_internal_region_slice_contains(const T &item) const {
|
||||
for (const LayerRegion *layerm : m_regions) if (layerm->slices.any_internal_contains(item)) return true;
|
||||
return false;
|
||||
}
|
||||
template <class T> bool any_bottom_region_slice_contains(const T &item) const {
|
||||
for (const LayerRegion *layerm : m_regions) if (layerm->slices.any_bottom_contains(item)) return true;
|
||||
return false;
|
||||
}
|
||||
void make_perimeters();
|
||||
void make_fills();
|
||||
|
||||
void export_region_slices_to_svg(const char *path) const;
|
||||
void export_region_fill_surfaces_to_svg(const char *path) const;
|
||||
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
|
||||
void export_region_slices_to_svg_debug(const char *name) const;
|
||||
void export_region_fill_surfaces_to_svg_debug(const char *name) const;
|
||||
|
||||
// Is there any valid extrusion assigned to this LayerRegion?
|
||||
virtual bool has_extrusions() const { for (auto layerm : m_regions) if (layerm->has_extrusions()) return true; return false; }
|
||||
|
||||
protected:
|
||||
friend class PrintObject;
|
||||
|
||||
Layer(size_t id, PrintObject *object, coordf_t height, coordf_t print_z, coordf_t slice_z) :
|
||||
upper_layer(nullptr), lower_layer(nullptr), slicing_errors(false),
|
||||
slice_z(slice_z), print_z(print_z), height(height),
|
||||
m_id(id), m_object(object) {}
|
||||
virtual ~Layer();
|
||||
|
||||
private:
|
||||
// sequential number of layer, 0-based
|
||||
size_t m_id;
|
||||
PrintObject *m_object;
|
||||
LayerRegionPtrs m_regions;
|
||||
};
|
||||
|
||||
class SupportLayer : public Layer
|
||||
{
|
||||
public:
|
||||
// Polygons covered by the supports: base, interface and contact areas.
|
||||
ExPolygonCollection support_islands;
|
||||
// Extrusion paths for the support base and for the support interface and contacts.
|
||||
ExtrusionEntityCollection support_fills;
|
||||
|
||||
// Is there any valid extrusion assigned to this LayerRegion?
|
||||
virtual bool has_extrusions() const { return ! support_fills.empty(); }
|
||||
|
||||
protected:
|
||||
friend class PrintObject;
|
||||
|
||||
// The constructor has been made public to be able to insert additional support layers for the skirt or a wipe tower
|
||||
// between the raft and the object first layer.
|
||||
SupportLayer(size_t id, PrintObject *object, coordf_t height, coordf_t print_z, coordf_t slice_z) :
|
||||
Layer(id, object, height, print_z, slice_z) {}
|
||||
virtual ~SupportLayer() {}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
443
src/libslic3r/LayerRegion.cpp
Normal file
443
src/libslic3r/LayerRegion.cpp
Normal file
|
|
@ -0,0 +1,443 @@
|
|||
#include "Layer.hpp"
|
||||
#include "BridgeDetector.hpp"
|
||||
#include "ClipperUtils.hpp"
|
||||
#include "Geometry.hpp"
|
||||
#include "PerimeterGenerator.hpp"
|
||||
#include "Print.hpp"
|
||||
#include "Surface.hpp"
|
||||
#include "BoundingBox.hpp"
|
||||
#include "SVG.hpp"
|
||||
|
||||
#include <string>
|
||||
#include <map>
|
||||
|
||||
#include <boost/log/trivial.hpp>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
Flow LayerRegion::flow(FlowRole role, bool bridge, double width) const
|
||||
{
|
||||
return m_region->flow(
|
||||
role,
|
||||
m_layer->height,
|
||||
bridge,
|
||||
m_layer->id() == 0,
|
||||
width,
|
||||
*m_layer->object()
|
||||
);
|
||||
}
|
||||
|
||||
// Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
|
||||
void LayerRegion::slices_to_fill_surfaces_clipped()
|
||||
{
|
||||
// Note: this method should be idempotent, but fill_surfaces gets modified
|
||||
// in place. However we're now only using its boundaries (which are invariant)
|
||||
// so we're safe. This guarantees idempotence of prepare_infill() also in case
|
||||
// that combine_infill() turns some fill_surface into VOID surfaces.
|
||||
// Polygons fill_boundaries = to_polygons(std::move(this->fill_surfaces));
|
||||
Polygons fill_boundaries = to_polygons(this->fill_expolygons);
|
||||
// Collect polygons per surface type.
|
||||
std::vector<Polygons> polygons_by_surface;
|
||||
polygons_by_surface.assign(size_t(stCount), Polygons());
|
||||
for (Surface &surface : this->slices.surfaces)
|
||||
polygons_append(polygons_by_surface[(size_t)surface.surface_type], surface.expolygon);
|
||||
// Trim surfaces by the fill_boundaries.
|
||||
this->fill_surfaces.surfaces.clear();
|
||||
for (size_t surface_type = 0; surface_type < size_t(stCount); ++ surface_type) {
|
||||
const Polygons &polygons = polygons_by_surface[surface_type];
|
||||
if (! polygons.empty())
|
||||
this->fill_surfaces.append(intersection_ex(polygons, fill_boundaries), SurfaceType(surface_type));
|
||||
}
|
||||
}
|
||||
|
||||
void LayerRegion::make_perimeters(const SurfaceCollection &slices, SurfaceCollection* fill_surfaces)
|
||||
{
|
||||
this->perimeters.clear();
|
||||
this->thin_fills.clear();
|
||||
|
||||
PerimeterGenerator g(
|
||||
// input:
|
||||
&slices,
|
||||
this->layer()->height,
|
||||
this->flow(frPerimeter),
|
||||
&this->region()->config(),
|
||||
&this->layer()->object()->config(),
|
||||
&this->layer()->object()->print()->config(),
|
||||
|
||||
// output:
|
||||
&this->perimeters,
|
||||
&this->thin_fills,
|
||||
fill_surfaces
|
||||
);
|
||||
|
||||
if (this->layer()->lower_layer != NULL)
|
||||
// Cummulative sum of polygons over all the regions.
|
||||
g.lower_slices = &this->layer()->lower_layer->slices;
|
||||
|
||||
g.layer_id = this->layer()->id();
|
||||
g.ext_perimeter_flow = this->flow(frExternalPerimeter);
|
||||
g.overhang_flow = this->region()->flow(frPerimeter, -1, true, false, -1, *this->layer()->object());
|
||||
g.solid_infill_flow = this->flow(frSolidInfill);
|
||||
|
||||
g.process();
|
||||
}
|
||||
|
||||
//#define EXTERNAL_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 3.
|
||||
//#define EXTERNAL_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 1.5
|
||||
#define EXTERNAL_SURFACES_OFFSET_PARAMETERS ClipperLib::jtSquare, 0.
|
||||
|
||||
void LayerRegion::process_external_surfaces(const Layer* lower_layer)
|
||||
{
|
||||
const Surfaces &surfaces = this->fill_surfaces.surfaces;
|
||||
const double margin = scale_(EXTERNAL_INFILL_MARGIN);
|
||||
|
||||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||||
export_region_fill_surfaces_to_svg_debug("3_process_external_surfaces-initial");
|
||||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||||
|
||||
// 1) Collect bottom and bridge surfaces, each of them grown by a fixed 3mm offset
|
||||
// for better anchoring.
|
||||
// Bottom surfaces, grown.
|
||||
Surfaces bottom;
|
||||
// Bridge surfaces, initialy not grown.
|
||||
Surfaces bridges;
|
||||
// Top surfaces, grown.
|
||||
Surfaces top;
|
||||
// Internal surfaces, not grown.
|
||||
Surfaces internal;
|
||||
// Areas, where an infill of various types (top, bottom, bottom bride, sparse, void) could be placed.
|
||||
//FIXME if non zero infill, then fill_boundaries could be cheaply initialized from layerm->fill_expolygons.
|
||||
Polygons fill_boundaries;
|
||||
|
||||
// Collect top surfaces and internal surfaces.
|
||||
// Collect fill_boundaries: If we're slicing with no infill, we can't extend external surfaces over non-existent infill.
|
||||
// This loop destroys the surfaces (aliasing this->fill_surfaces.surfaces) by moving into top/internal/fill_boundaries!
|
||||
{
|
||||
// bottom_polygons are used to trim inflated top surfaces.
|
||||
fill_boundaries.reserve(number_polygons(surfaces));
|
||||
bool has_infill = this->region()->config().fill_density.value > 0.;
|
||||
for (const Surface &surface : this->fill_surfaces.surfaces) {
|
||||
if (surface.surface_type == stTop) {
|
||||
// Collect the top surfaces, inflate them and trim them by the bottom surfaces.
|
||||
// This gives the priority to bottom surfaces.
|
||||
surfaces_append(top, offset_ex(surface.expolygon, float(margin), EXTERNAL_SURFACES_OFFSET_PARAMETERS), surface);
|
||||
} else if (surface.surface_type == stBottom || (surface.surface_type == stBottomBridge && lower_layer == NULL)) {
|
||||
// Grown by 3mm.
|
||||
surfaces_append(bottom, offset_ex(surface.expolygon, float(margin), EXTERNAL_SURFACES_OFFSET_PARAMETERS), surface);
|
||||
} else if (surface.surface_type == stBottomBridge) {
|
||||
if (! surface.empty())
|
||||
bridges.push_back(surface);
|
||||
}
|
||||
bool internal_surface = surface.surface_type != stTop && ! surface.is_bottom();
|
||||
if (has_infill || surface.surface_type != stInternal) {
|
||||
if (internal_surface)
|
||||
// Make a copy as the following line uses the move semantics.
|
||||
internal.push_back(surface);
|
||||
polygons_append(fill_boundaries, std::move(surface.expolygon));
|
||||
} else if (internal_surface)
|
||||
internal.push_back(std::move(surface));
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
{
|
||||
static int iRun = 0;
|
||||
bridges.export_to_svg(debug_out_path("bridges-before-grouping-%d.svg", iRun ++), true);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (bridges.empty())
|
||||
{
|
||||
fill_boundaries = union_(fill_boundaries, true);
|
||||
} else
|
||||
{
|
||||
// 1) Calculate the inflated bridge regions, each constrained to its island.
|
||||
ExPolygons fill_boundaries_ex = union_ex(fill_boundaries, true);
|
||||
std::vector<Polygons> bridges_grown;
|
||||
std::vector<BoundingBox> bridge_bboxes;
|
||||
|
||||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||||
{
|
||||
static int iRun = 0;
|
||||
SVG svg(debug_out_path("3_process_external_surfaces-fill_regions-%d.svg", iRun ++).c_str(), get_extents(fill_boundaries_ex));
|
||||
svg.draw(fill_boundaries_ex);
|
||||
svg.draw_outline(fill_boundaries_ex, "black", "blue", scale_(0.05));
|
||||
svg.Close();
|
||||
}
|
||||
|
||||
// export_region_fill_surfaces_to_svg_debug("3_process_external_surfaces-initial");
|
||||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||||
|
||||
{
|
||||
// Bridge expolygons, grown, to be tested for intersection with other bridge regions.
|
||||
std::vector<BoundingBox> fill_boundaries_ex_bboxes = get_extents_vector(fill_boundaries_ex);
|
||||
bridges_grown.reserve(bridges.size());
|
||||
bridge_bboxes.reserve(bridges.size());
|
||||
for (size_t i = 0; i < bridges.size(); ++ i) {
|
||||
// Find the island of this bridge.
|
||||
const Point pt = bridges[i].expolygon.contour.points.front();
|
||||
int idx_island = -1;
|
||||
for (int j = 0; j < int(fill_boundaries_ex.size()); ++ j)
|
||||
if (fill_boundaries_ex_bboxes[j].contains(pt) &&
|
||||
fill_boundaries_ex[j].contains(pt)) {
|
||||
idx_island = j;
|
||||
break;
|
||||
}
|
||||
// Grown by 3mm.
|
||||
Polygons polys = offset(to_polygons(bridges[i].expolygon), float(margin), EXTERNAL_SURFACES_OFFSET_PARAMETERS);
|
||||
if (idx_island == -1) {
|
||||
printf("Bridge did not fall into the source region!\r\n");
|
||||
} else {
|
||||
// Found an island, to which this bridge region belongs. Trim it,
|
||||
polys = intersection(polys, to_polygons(fill_boundaries_ex[idx_island]));
|
||||
}
|
||||
bridge_bboxes.push_back(get_extents(polys));
|
||||
bridges_grown.push_back(std::move(polys));
|
||||
}
|
||||
}
|
||||
|
||||
// 2) Group the bridge surfaces by overlaps.
|
||||
std::vector<size_t> bridge_group(bridges.size(), (size_t)-1);
|
||||
size_t n_groups = 0;
|
||||
for (size_t i = 0; i < bridges.size(); ++ i) {
|
||||
// A grup id for this bridge.
|
||||
size_t group_id = (bridge_group[i] == -1) ? (n_groups ++) : bridge_group[i];
|
||||
bridge_group[i] = group_id;
|
||||
// For all possibly overlaping bridges:
|
||||
for (size_t j = i + 1; j < bridges.size(); ++ j) {
|
||||
if (! bridge_bboxes[i].overlap(bridge_bboxes[j]))
|
||||
continue;
|
||||
if (intersection(bridges_grown[i], bridges_grown[j], false).empty())
|
||||
continue;
|
||||
// The two bridge regions intersect. Give them the same group id.
|
||||
if (bridge_group[j] != -1) {
|
||||
// The j'th bridge has been merged with some other bridge before.
|
||||
size_t group_id_new = bridge_group[j];
|
||||
for (size_t k = 0; k < j; ++ k)
|
||||
if (bridge_group[k] == group_id)
|
||||
bridge_group[k] = group_id_new;
|
||||
group_id = group_id_new;
|
||||
}
|
||||
bridge_group[j] = group_id;
|
||||
}
|
||||
}
|
||||
|
||||
// 3) Merge the groups with the same group id, detect bridges.
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(trace) << "Processing external surface, detecting bridges. layer" << this->layer()->print_z << ", bridge groups: " << n_groups;
|
||||
for (size_t group_id = 0; group_id < n_groups; ++ group_id) {
|
||||
size_t n_bridges_merged = 0;
|
||||
size_t idx_last = (size_t)-1;
|
||||
for (size_t i = 0; i < bridges.size(); ++ i) {
|
||||
if (bridge_group[i] == group_id) {
|
||||
++ n_bridges_merged;
|
||||
idx_last = i;
|
||||
}
|
||||
}
|
||||
if (n_bridges_merged == 0)
|
||||
// This group has no regions assigned as these were moved into another group.
|
||||
continue;
|
||||
// Collect the initial ungrown regions and the grown polygons.
|
||||
ExPolygons initial;
|
||||
Polygons grown;
|
||||
for (size_t i = 0; i < bridges.size(); ++ i) {
|
||||
if (bridge_group[i] != group_id)
|
||||
continue;
|
||||
initial.push_back(std::move(bridges[i].expolygon));
|
||||
polygons_append(grown, bridges_grown[i]);
|
||||
}
|
||||
// detect bridge direction before merging grown surfaces otherwise adjacent bridges
|
||||
// would get merged into a single one while they need different directions
|
||||
// also, supply the original expolygon instead of the grown one, because in case
|
||||
// of very thin (but still working) anchors, the grown expolygon would go beyond them
|
||||
BridgeDetector bd(
|
||||
initial,
|
||||
lower_layer->slices,
|
||||
this->flow(frInfill, true).scaled_width()
|
||||
);
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf("Processing bridge at layer " PRINTF_ZU ":\n", this->layer()->id());
|
||||
#endif
|
||||
if (bd.detect_angle(Geometry::deg2rad(this->region()->config().bridge_angle.value))) {
|
||||
bridges[idx_last].bridge_angle = bd.angle;
|
||||
if (this->layer()->object()->config().support_material) {
|
||||
polygons_append(this->bridged, bd.coverage());
|
||||
this->unsupported_bridge_edges.append(bd.unsupported_edges());
|
||||
}
|
||||
}
|
||||
// without safety offset, artifacts are generated (GH #2494)
|
||||
surfaces_append(bottom, union_ex(grown, true), bridges[idx_last]);
|
||||
}
|
||||
|
||||
fill_boundaries = std::move(to_polygons(fill_boundaries_ex));
|
||||
BOOST_LOG_TRIVIAL(trace) << "Processing external surface, detecting bridges - done";
|
||||
}
|
||||
|
||||
#if 0
|
||||
{
|
||||
static int iRun = 0;
|
||||
bridges.export_to_svg(debug_out_path("bridges-after-grouping-%d.svg", iRun ++), true);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
Surfaces new_surfaces;
|
||||
{
|
||||
// Merge top and bottom in a single collection.
|
||||
surfaces_append(top, std::move(bottom));
|
||||
// Intersect the grown surfaces with the actual fill boundaries.
|
||||
Polygons bottom_polygons = to_polygons(bottom);
|
||||
for (size_t i = 0; i < top.size(); ++ i) {
|
||||
Surface &s1 = top[i];
|
||||
if (s1.empty())
|
||||
continue;
|
||||
Polygons polys;
|
||||
polygons_append(polys, std::move(s1));
|
||||
for (size_t j = i + 1; j < top.size(); ++ j) {
|
||||
Surface &s2 = top[j];
|
||||
if (! s2.empty() && surfaces_could_merge(s1, s2)) {
|
||||
polygons_append(polys, std::move(s2));
|
||||
s2.clear();
|
||||
}
|
||||
}
|
||||
if (s1.surface_type == stTop)
|
||||
// Trim the top surfaces by the bottom surfaces. This gives the priority to the bottom surfaces.
|
||||
polys = diff(polys, bottom_polygons);
|
||||
surfaces_append(
|
||||
new_surfaces,
|
||||
// Don't use a safety offset as fill_boundaries were already united using the safety offset.
|
||||
std::move(intersection_ex(polys, fill_boundaries, false)),
|
||||
s1);
|
||||
}
|
||||
}
|
||||
|
||||
// Subtract the new top surfaces from the other non-top surfaces and re-add them.
|
||||
Polygons new_polygons = to_polygons(new_surfaces);
|
||||
for (size_t i = 0; i < internal.size(); ++ i) {
|
||||
Surface &s1 = internal[i];
|
||||
if (s1.empty())
|
||||
continue;
|
||||
Polygons polys;
|
||||
polygons_append(polys, std::move(s1));
|
||||
for (size_t j = i + 1; j < internal.size(); ++ j) {
|
||||
Surface &s2 = internal[j];
|
||||
if (! s2.empty() && surfaces_could_merge(s1, s2)) {
|
||||
polygons_append(polys, std::move(s2));
|
||||
s2.clear();
|
||||
}
|
||||
}
|
||||
ExPolygons new_expolys = diff_ex(polys, new_polygons);
|
||||
polygons_append(new_polygons, to_polygons(new_expolys));
|
||||
surfaces_append(new_surfaces, std::move(new_expolys), s1);
|
||||
}
|
||||
|
||||
this->fill_surfaces.surfaces = std::move(new_surfaces);
|
||||
|
||||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||||
export_region_fill_surfaces_to_svg_debug("3_process_external_surfaces-final");
|
||||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||||
}
|
||||
|
||||
void LayerRegion::prepare_fill_surfaces()
|
||||
{
|
||||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||||
export_region_slices_to_svg_debug("2_prepare_fill_surfaces-initial");
|
||||
export_region_fill_surfaces_to_svg_debug("2_prepare_fill_surfaces-initial");
|
||||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||||
|
||||
/* Note: in order to make the psPrepareInfill step idempotent, we should never
|
||||
alter fill_surfaces boundaries on which our idempotency relies since that's
|
||||
the only meaningful information returned by psPerimeters. */
|
||||
|
||||
// if no solid layers are requested, turn top/bottom surfaces to internal
|
||||
if (this->region()->config().top_solid_layers == 0) {
|
||||
for (Surfaces::iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface)
|
||||
if (surface->surface_type == stTop)
|
||||
surface->surface_type = (this->layer()->object()->config().infill_only_where_needed) ?
|
||||
stInternalVoid : stInternal;
|
||||
}
|
||||
if (this->region()->config().bottom_solid_layers == 0) {
|
||||
for (Surfaces::iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface) {
|
||||
if (surface->surface_type == stBottom || surface->surface_type == stBottomBridge)
|
||||
surface->surface_type = stInternal;
|
||||
}
|
||||
}
|
||||
|
||||
// turn too small internal regions into solid regions according to the user setting
|
||||
if (this->region()->config().fill_density.value > 0) {
|
||||
// scaling an area requires two calls!
|
||||
double min_area = scale_(scale_(this->region()->config().solid_infill_below_area.value));
|
||||
for (Surfaces::iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface) {
|
||||
if (surface->surface_type == stInternal && surface->area() <= min_area)
|
||||
surface->surface_type = stInternalSolid;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
||||
export_region_slices_to_svg_debug("2_prepare_fill_surfaces-final");
|
||||
export_region_fill_surfaces_to_svg_debug("2_prepare_fill_surfaces-final");
|
||||
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
||||
}
|
||||
|
||||
double LayerRegion::infill_area_threshold() const
|
||||
{
|
||||
double ss = this->flow(frSolidInfill).scaled_spacing();
|
||||
return ss*ss;
|
||||
}
|
||||
|
||||
void LayerRegion::export_region_slices_to_svg(const char *path) const
|
||||
{
|
||||
BoundingBox bbox;
|
||||
for (Surfaces::const_iterator surface = this->slices.surfaces.begin(); surface != this->slices.surfaces.end(); ++surface)
|
||||
bbox.merge(get_extents(surface->expolygon));
|
||||
Point legend_size = export_surface_type_legend_to_svg_box_size();
|
||||
Point legend_pos(bbox.min(0), bbox.max(1));
|
||||
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
|
||||
|
||||
SVG svg(path, bbox);
|
||||
const float transparency = 0.5f;
|
||||
for (Surfaces::const_iterator surface = this->slices.surfaces.begin(); surface != this->slices.surfaces.end(); ++surface)
|
||||
svg.draw(surface->expolygon, surface_type_to_color_name(surface->surface_type), transparency);
|
||||
for (Surfaces::const_iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface)
|
||||
svg.draw(surface->expolygon.lines(), surface_type_to_color_name(surface->surface_type));
|
||||
export_surface_type_legend_to_svg(svg, legend_pos);
|
||||
svg.Close();
|
||||
}
|
||||
|
||||
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
|
||||
void LayerRegion::export_region_slices_to_svg_debug(const char *name) const
|
||||
{
|
||||
static std::map<std::string, size_t> idx_map;
|
||||
size_t &idx = idx_map[name];
|
||||
this->export_region_slices_to_svg(debug_out_path("LayerRegion-slices-%s-%d.svg", name, idx ++).c_str());
|
||||
}
|
||||
|
||||
void LayerRegion::export_region_fill_surfaces_to_svg(const char *path) const
|
||||
{
|
||||
BoundingBox bbox;
|
||||
for (Surfaces::const_iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface)
|
||||
bbox.merge(get_extents(surface->expolygon));
|
||||
Point legend_size = export_surface_type_legend_to_svg_box_size();
|
||||
Point legend_pos(bbox.min(0), bbox.max(1));
|
||||
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
|
||||
|
||||
SVG svg(path, bbox);
|
||||
const float transparency = 0.5f;
|
||||
for (const Surface &surface : this->fill_surfaces.surfaces) {
|
||||
svg.draw(surface.expolygon, surface_type_to_color_name(surface.surface_type), transparency);
|
||||
svg.draw_outline(surface.expolygon, "black", "blue", scale_(0.05));
|
||||
}
|
||||
export_surface_type_legend_to_svg(svg, legend_pos);
|
||||
svg.Close();
|
||||
}
|
||||
|
||||
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
|
||||
void LayerRegion::export_region_fill_surfaces_to_svg_debug(const char *name) const
|
||||
{
|
||||
static std::map<std::string, size_t> idx_map;
|
||||
size_t &idx = idx_map[name];
|
||||
this->export_region_fill_surfaces_to_svg(debug_out_path("LayerRegion-fill_surfaces-%s-%d.svg", name, idx ++).c_str());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
119
src/libslic3r/Line.cpp
Normal file
119
src/libslic3r/Line.cpp
Normal file
|
|
@ -0,0 +1,119 @@
|
|||
#include "Geometry.hpp"
|
||||
#include "Line.hpp"
|
||||
#include "Polyline.hpp"
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <sstream>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
Linef3 transform(const Linef3& line, const Transform3d& t)
|
||||
{
|
||||
typedef Eigen::Matrix<double, 3, 2> LineInMatrixForm;
|
||||
|
||||
LineInMatrixForm world_line;
|
||||
::memcpy((void*)world_line.col(0).data(), (const void*)line.a.data(), 3 * sizeof(double));
|
||||
::memcpy((void*)world_line.col(1).data(), (const void*)line.b.data(), 3 * sizeof(double));
|
||||
|
||||
LineInMatrixForm local_line = t * world_line.colwise().homogeneous();
|
||||
return Linef3(Vec3d(local_line(0, 0), local_line(1, 0), local_line(2, 0)), Vec3d(local_line(0, 1), local_line(1, 1), local_line(2, 1)));
|
||||
}
|
||||
|
||||
bool Line::intersection_infinite(const Line &other, Point* point) const
|
||||
{
|
||||
Vec2d a1 = this->a.cast<double>();
|
||||
Vec2d a2 = other.a.cast<double>();
|
||||
Vec2d v12 = (other.a - this->a).cast<double>();
|
||||
Vec2d v1 = (this->b - this->a).cast<double>();
|
||||
Vec2d v2 = (other.b - other.a).cast<double>();
|
||||
double denom = cross2(v1, v2);
|
||||
if (std::fabs(denom) < EPSILON)
|
||||
return false;
|
||||
double t1 = cross2(v12, v2) / denom;
|
||||
*point = (a1 + t1 * v1).cast<coord_t>();
|
||||
return true;
|
||||
}
|
||||
|
||||
/* distance to the closest point of line */
|
||||
double Line::distance_to(const Point &point) const
|
||||
{
|
||||
const Line &line = *this;
|
||||
const Vec2d v = (line.b - line.a).cast<double>();
|
||||
const Vec2d va = (point - line.a).cast<double>();
|
||||
const double l2 = v.squaredNorm(); // avoid a sqrt
|
||||
if (l2 == 0.0)
|
||||
// line.a == line.b case
|
||||
return va.norm();
|
||||
// Consider the line extending the segment, parameterized as line.a + t (line.b - line.a).
|
||||
// We find projection of this point onto the line.
|
||||
// It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2
|
||||
const double t = va.dot(v) / l2;
|
||||
if (t < 0.0) return va.norm(); // beyond the 'a' end of the segment
|
||||
else if (t > 1.0) return (point - line.b).cast<double>().norm(); // beyond the 'b' end of the segment
|
||||
return (t * v - va).norm();
|
||||
}
|
||||
|
||||
double Line::perp_distance_to(const Point &point) const
|
||||
{
|
||||
const Line &line = *this;
|
||||
const Vec2d v = (line.b - line.a).cast<double>();
|
||||
const Vec2d va = (point - line.a).cast<double>();
|
||||
if (line.a == line.b)
|
||||
return va.norm();
|
||||
return std::abs(cross2(v, va)) / v.norm();
|
||||
}
|
||||
|
||||
double Line::orientation() const
|
||||
{
|
||||
double angle = this->atan2_();
|
||||
if (angle < 0) angle = 2*PI + angle;
|
||||
return angle;
|
||||
}
|
||||
|
||||
double Line::direction() const
|
||||
{
|
||||
double atan2 = this->atan2_();
|
||||
return (fabs(atan2 - PI) < EPSILON) ? 0
|
||||
: (atan2 < 0) ? (atan2 + PI)
|
||||
: atan2;
|
||||
}
|
||||
|
||||
bool Line::parallel_to(double angle) const
|
||||
{
|
||||
return Slic3r::Geometry::directions_parallel(this->direction(), angle);
|
||||
}
|
||||
|
||||
bool Line::intersection(const Line &l2, Point *intersection) const
|
||||
{
|
||||
const Line &l1 = *this;
|
||||
const Vec2d v1 = (l1.b - l1.a).cast<double>();
|
||||
const Vec2d v2 = (l2.b - l2.a).cast<double>();
|
||||
const Vec2d v12 = (l1.a - l2.a).cast<double>();
|
||||
double denom = cross2(v1, v2);
|
||||
double nume_a = cross2(v2, v12);
|
||||
double nume_b = cross2(v1, v12);
|
||||
if (fabs(denom) < EPSILON)
|
||||
#if 0
|
||||
// Lines are collinear. Return true if they are coincident (overlappign).
|
||||
return ! (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON);
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
double t1 = nume_a / denom;
|
||||
double t2 = nume_b / denom;
|
||||
if (t1 >= 0 && t1 <= 1.0f && t2 >= 0 && t2 <= 1.0f) {
|
||||
// Get the intersection point.
|
||||
(*intersection) = (l1.a.cast<double>() + t1 * v1).cast<coord_t>();
|
||||
return true;
|
||||
}
|
||||
return false; // not intersecting
|
||||
}
|
||||
|
||||
Vec3d Linef3::intersect_plane(double z) const
|
||||
{
|
||||
auto v = (this->b - this->a).cast<double>();
|
||||
double t = (z - this->a(2)) / v(2);
|
||||
return Vec3d(this->a(0) + v(0) * t, this->a(1) + v(1) * t, z);
|
||||
}
|
||||
|
||||
}
|
||||
119
src/libslic3r/Line.hpp
Normal file
119
src/libslic3r/Line.hpp
Normal file
|
|
@ -0,0 +1,119 @@
|
|||
#ifndef slic3r_Line_hpp_
|
||||
#define slic3r_Line_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "Point.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Line;
|
||||
class Line3;
|
||||
class Linef3;
|
||||
class Polyline;
|
||||
class ThickLine;
|
||||
typedef std::vector<Line> Lines;
|
||||
typedef std::vector<Line3> Lines3;
|
||||
typedef std::vector<ThickLine> ThickLines;
|
||||
|
||||
Linef3 transform(const Linef3& line, const Transform3d& t);
|
||||
|
||||
class Line
|
||||
{
|
||||
public:
|
||||
Line() {}
|
||||
Line(const Point& _a, const Point& _b) : a(_a), b(_b) {}
|
||||
explicit operator Lines() const { Lines lines; lines.emplace_back(*this); return lines; }
|
||||
void scale(double factor) { this->a *= factor; this->b *= factor; }
|
||||
void translate(double x, double y) { Vector v(x, y); this->a += v; this->b += v; }
|
||||
void rotate(double angle, const Point ¢er) { this->a.rotate(angle, center); this->b.rotate(angle, center); }
|
||||
void reverse() { std::swap(this->a, this->b); }
|
||||
double length() const { return (b - a).cast<double>().norm(); }
|
||||
Point midpoint() const { return (this->a + this->b) / 2; }
|
||||
bool intersection_infinite(const Line &other, Point* point) const;
|
||||
bool operator==(const Line &rhs) const { return this->a == rhs.a && this->b == rhs.b; }
|
||||
double distance_to(const Point &point) const;
|
||||
double perp_distance_to(const Point &point) const;
|
||||
bool parallel_to(double angle) const;
|
||||
bool parallel_to(const Line &line) const { return this->parallel_to(line.direction()); }
|
||||
double atan2_() const { return atan2(this->b(1) - this->a(1), this->b(0) - this->a(0)); }
|
||||
double orientation() const;
|
||||
double direction() const;
|
||||
Vector vector() const { return this->b - this->a; }
|
||||
Vector normal() const { return Vector((this->b(1) - this->a(1)), -(this->b(0) - this->a(0))); }
|
||||
bool intersection(const Line& line, Point* intersection) const;
|
||||
double ccw(const Point& point) const { return point.ccw(*this); }
|
||||
|
||||
Point a;
|
||||
Point b;
|
||||
};
|
||||
|
||||
class ThickLine : public Line
|
||||
{
|
||||
public:
|
||||
ThickLine() : a_width(0), b_width(0) {}
|
||||
ThickLine(const Point& a, const Point& b) : Line(a, b), a_width(0), b_width(0) {}
|
||||
ThickLine(const Point& a, const Point& b, double wa, double wb) : Line(a, b), a_width(wa), b_width(wb) {}
|
||||
|
||||
double a_width, b_width;
|
||||
};
|
||||
|
||||
class Line3
|
||||
{
|
||||
public:
|
||||
Line3() : a(Vec3crd::Zero()), b(Vec3crd::Zero()) {}
|
||||
Line3(const Vec3crd& _a, const Vec3crd& _b) : a(_a), b(_b) {}
|
||||
|
||||
double length() const { return (this->a - this->b).cast<double>().norm(); }
|
||||
Vec3crd vector() const { return this->b - this->a; }
|
||||
|
||||
Vec3crd a;
|
||||
Vec3crd b;
|
||||
};
|
||||
|
||||
class Linef
|
||||
{
|
||||
public:
|
||||
Linef() : a(Vec2d::Zero()), b(Vec2d::Zero()) {}
|
||||
Linef(const Vec2d& _a, const Vec2d& _b) : a(_a), b(_b) {}
|
||||
|
||||
Vec2d a;
|
||||
Vec2d b;
|
||||
};
|
||||
|
||||
class Linef3
|
||||
{
|
||||
public:
|
||||
Linef3() : a(Vec3d::Zero()), b(Vec3d::Zero()) {}
|
||||
Linef3(const Vec3d& _a, const Vec3d& _b) : a(_a), b(_b) {}
|
||||
|
||||
Vec3d intersect_plane(double z) const;
|
||||
void scale(double factor) { this->a *= factor; this->b *= factor; }
|
||||
Vec3d vector() const { return this->b - this->a; }
|
||||
Vec3d unit_vector() const { return (length() == 0.0) ? Vec3d::Zero() : vector().normalized(); }
|
||||
double length() const { return vector().norm(); }
|
||||
|
||||
Vec3d a;
|
||||
Vec3d b;
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
// start Boost
|
||||
#include <boost/polygon/polygon.hpp>
|
||||
namespace boost { namespace polygon {
|
||||
template <>
|
||||
struct geometry_concept<Slic3r::Line> { typedef segment_concept type; };
|
||||
|
||||
template <>
|
||||
struct segment_traits<Slic3r::Line> {
|
||||
typedef coord_t coordinate_type;
|
||||
typedef Slic3r::Point point_type;
|
||||
|
||||
static inline point_type get(const Slic3r::Line& line, direction_1d dir) {
|
||||
return dir.to_int() ? line.b : line.a;
|
||||
}
|
||||
};
|
||||
} }
|
||||
// end Boost
|
||||
|
||||
#endif
|
||||
1516
src/libslic3r/Model.cpp
Normal file
1516
src/libslic3r/Model.cpp
Normal file
File diff suppressed because it is too large
Load diff
657
src/libslic3r/Model.hpp
Normal file
657
src/libslic3r/Model.hpp
Normal file
|
|
@ -0,0 +1,657 @@
|
|||
#ifndef slic3r_Model_hpp_
|
||||
#define slic3r_Model_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "PrintConfig.hpp"
|
||||
#include "Layer.hpp"
|
||||
#include "Point.hpp"
|
||||
#include "TriangleMesh.hpp"
|
||||
#include "Slicing.hpp"
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#if ENABLE_MODELVOLUME_TRANSFORM
|
||||
#include "Geometry.hpp"
|
||||
#endif // ENABLE_MODELVOLUME_TRANSFORM
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Model;
|
||||
class ModelInstance;
|
||||
class ModelMaterial;
|
||||
class ModelObject;
|
||||
class ModelVolume;
|
||||
class Print;
|
||||
|
||||
typedef std::string t_model_material_id;
|
||||
typedef std::string t_model_material_attribute;
|
||||
typedef std::map<t_model_material_attribute, std::string> t_model_material_attributes;
|
||||
|
||||
typedef std::map<t_model_material_id, ModelMaterial*> ModelMaterialMap;
|
||||
typedef std::vector<ModelObject*> ModelObjectPtrs;
|
||||
typedef std::vector<ModelVolume*> ModelVolumePtrs;
|
||||
typedef std::vector<ModelInstance*> ModelInstancePtrs;
|
||||
|
||||
// Unique identifier of a Model, ModelObject, ModelVolume, ModelInstance or ModelMaterial.
|
||||
// Used to synchronize the front end (UI) with the back end (BackgroundSlicingProcess / Print / PrintObject)
|
||||
// Valid IDs are strictly positive (non zero).
|
||||
// It is declared as an object, as some compilers (notably msvcc) consider a typedef size_t equivalent to size_t
|
||||
// for parameter overload.
|
||||
struct ModelID
|
||||
{
|
||||
ModelID(size_t id) : id(id) {}
|
||||
|
||||
bool operator==(const ModelID &rhs) const { return this->id == rhs.id; }
|
||||
bool operator!=(const ModelID &rhs) const { return this->id != rhs.id; }
|
||||
bool operator< (const ModelID &rhs) const { return this->id < rhs.id; }
|
||||
bool operator> (const ModelID &rhs) const { return this->id > rhs.id; }
|
||||
bool operator<=(const ModelID &rhs) const { return this->id <= rhs.id; }
|
||||
bool operator>=(const ModelID &rhs) const { return this->id >= rhs.id; }
|
||||
|
||||
size_t id;
|
||||
};
|
||||
|
||||
// Base for Model, ModelObject, ModelVolume, ModelInstance or ModelMaterial to provide a unique ID
|
||||
// to synchronize the front end (UI) with the back end (BackgroundSlicingProcess / Print / PrintObject).
|
||||
// Achtung! The s_last_id counter is not thread safe, so it is expected, that the ModelBase derived instances
|
||||
// are only instantiated from the main thread.
|
||||
class ModelBase
|
||||
{
|
||||
public:
|
||||
ModelID id() const { return m_id; }
|
||||
|
||||
protected:
|
||||
// Constructors to be only called by derived classes.
|
||||
// Default constructor to assign a unique ID.
|
||||
ModelBase() : m_id(generate_new_id()) {}
|
||||
// Constructor with ignored int parameter to assign an invalid ID, to be replaced
|
||||
// by an existing ID copied from elsewhere.
|
||||
ModelBase(int) : m_id(ModelID(0)) {}
|
||||
|
||||
// Use with caution!
|
||||
void set_new_unique_id() { m_id = generate_new_id(); }
|
||||
void set_invalid_id() { m_id = 0; }
|
||||
// Use with caution!
|
||||
void copy_id(const ModelBase &rhs) { m_id = rhs.id(); }
|
||||
|
||||
// Override this method if a ModelBase derived class owns other ModelBase derived instances.
|
||||
void assign_new_unique_ids_recursive() { this->set_new_unique_id(); }
|
||||
|
||||
private:
|
||||
ModelID m_id;
|
||||
|
||||
static inline ModelID generate_new_id() { return ModelID(++ s_last_id); }
|
||||
static size_t s_last_id;
|
||||
};
|
||||
|
||||
#define MODELBASE_DERIVED_COPY_MOVE_CLONE(TYPE) \
|
||||
/* Copy a model, copy the IDs. The Print::apply() will call the TYPE::copy() method */ \
|
||||
/* to make a private copy for background processing. */ \
|
||||
static TYPE* new_copy(const TYPE &rhs) { return new TYPE(rhs); } \
|
||||
static TYPE* new_copy(TYPE &&rhs) { return new TYPE(std::move(rhs)); } \
|
||||
static TYPE make_copy(const TYPE &rhs) { return TYPE(rhs); } \
|
||||
static TYPE make_copy(TYPE &&rhs) { return TYPE(std::move(rhs)); } \
|
||||
TYPE& assign_copy(const TYPE &rhs); \
|
||||
TYPE& assign_copy(TYPE &&rhs); \
|
||||
/* Copy a TYPE, generate new IDs. The front end will use this call. */ \
|
||||
static TYPE* new_clone(const TYPE &rhs) { \
|
||||
/* Default constructor assigning an invalid ID. */ \
|
||||
auto obj = new TYPE(-1); \
|
||||
obj->assign_clone(rhs); \
|
||||
return obj; \
|
||||
} \
|
||||
TYPE make_clone(const TYPE &rhs) { \
|
||||
/* Default constructor assigning an invalid ID. */ \
|
||||
TYPE obj(-1); \
|
||||
obj.assign_clone(rhs); \
|
||||
return obj; \
|
||||
} \
|
||||
TYPE& assign_clone(const TYPE &rhs) { \
|
||||
this->assign_copy(rhs); \
|
||||
this->assign_new_unique_ids_recursive(); \
|
||||
return *this; \
|
||||
}
|
||||
|
||||
#define MODELBASE_DERIVED_PRIVATE_COPY_MOVE(TYPE) \
|
||||
private: \
|
||||
/* Private constructor with an unused int parameter will create a TYPE instance with an invalid ID. */ \
|
||||
explicit TYPE(int) : ModelBase(-1) {}; \
|
||||
void assign_new_unique_ids_recursive();
|
||||
|
||||
// Material, which may be shared across multiple ModelObjects of a single Model.
|
||||
class ModelMaterial : public ModelBase
|
||||
{
|
||||
public:
|
||||
// Attributes are defined by the AMF file format, but they don't seem to be used by Slic3r for any purpose.
|
||||
t_model_material_attributes attributes;
|
||||
// Dynamic configuration storage for the object specific configuration values, overriding the global configuration.
|
||||
DynamicPrintConfig config;
|
||||
|
||||
Model* get_model() const { return m_model; }
|
||||
void apply(const t_model_material_attributes &attributes)
|
||||
{ this->attributes.insert(attributes.begin(), attributes.end()); }
|
||||
|
||||
protected:
|
||||
friend class Model;
|
||||
// Constructor, which assigns a new unique ID.
|
||||
ModelMaterial(Model *model) : m_model(model) {}
|
||||
// Copy constructor copies the ID and m_model!
|
||||
ModelMaterial(const ModelMaterial &rhs) = default;
|
||||
void set_model(Model *model) { m_model = model; }
|
||||
|
||||
private:
|
||||
// Parent, owning this material.
|
||||
Model *m_model;
|
||||
|
||||
ModelMaterial() = delete;
|
||||
ModelMaterial(ModelMaterial &&rhs) = delete;
|
||||
ModelMaterial& operator=(const ModelMaterial &rhs) = delete;
|
||||
ModelMaterial& operator=(ModelMaterial &&rhs) = delete;
|
||||
};
|
||||
|
||||
// A printable object, possibly having multiple print volumes (each with its own set of parameters and materials),
|
||||
// and possibly having multiple modifier volumes, each modifier volume with its set of parameters and materials.
|
||||
// Each ModelObject may be instantiated mutliple times, each instance having different placement on the print bed,
|
||||
// different rotation and different uniform scaling.
|
||||
class ModelObject : public ModelBase
|
||||
{
|
||||
friend class Model;
|
||||
public:
|
||||
std::string name;
|
||||
std::string input_file; // XXX: consider fs::path
|
||||
// Instances of this ModelObject. Each instance defines a shift on the print bed, rotation around the Z axis and a uniform scaling.
|
||||
// Instances are owned by this ModelObject.
|
||||
ModelInstancePtrs instances;
|
||||
// Printable and modifier volumes, each with its material ID and a set of override parameters.
|
||||
// ModelVolumes are owned by this ModelObject.
|
||||
ModelVolumePtrs volumes;
|
||||
// Configuration parameters specific to a single ModelObject, overriding the global Slic3r settings.
|
||||
DynamicPrintConfig config;
|
||||
// Variation of a layer thickness for spans of Z coordinates.
|
||||
t_layer_height_ranges layer_height_ranges;
|
||||
// Profile of increasing z to a layer height, to be linearly interpolated when calculating the layers.
|
||||
// The pairs of <z, layer_height> are packed into a 1D array to simplify handling by the Perl XS.
|
||||
std::vector<coordf_t> layer_height_profile;
|
||||
// layer_height_profile is initialized when the layer editing mode is entered.
|
||||
// Only if the user really modified the layer height, layer_height_profile_valid is set
|
||||
// and used subsequently by the PrintObject.
|
||||
bool layer_height_profile_valid;
|
||||
|
||||
// This vector holds position of selected support points for SLA. The data are
|
||||
// saved in mesh coordinates to allow using them for several instances.
|
||||
std::vector<Vec3f> sla_support_points;
|
||||
|
||||
/* This vector accumulates the total translation applied to the object by the
|
||||
center_around_origin() method. Callers might want to apply the same translation
|
||||
to new volumes before adding them to this object in order to preserve alignment
|
||||
when user expects that. */
|
||||
Vec3d origin_translation;
|
||||
|
||||
Model* get_model() { return m_model; };
|
||||
const Model* get_model() const { return m_model; };
|
||||
|
||||
ModelVolume* add_volume(const TriangleMesh &mesh);
|
||||
ModelVolume* add_volume(TriangleMesh &&mesh);
|
||||
ModelVolume* add_volume(const ModelVolume &volume);
|
||||
ModelVolume* add_volume(const ModelVolume &volume, TriangleMesh &&mesh);
|
||||
void delete_volume(size_t idx);
|
||||
void clear_volumes();
|
||||
bool is_multiparts() const { return volumes.size() > 1; }
|
||||
|
||||
ModelInstance* add_instance();
|
||||
ModelInstance* add_instance(const ModelInstance &instance);
|
||||
ModelInstance* add_instance(const Vec3d &offset, const Vec3d &scaling_factor, const Vec3d &rotation);
|
||||
void delete_instance(size_t idx);
|
||||
void delete_last_instance();
|
||||
void clear_instances();
|
||||
|
||||
// Returns the bounding box of the transformed instances.
|
||||
// This bounding box is approximate and not snug.
|
||||
// This bounding box is being cached.
|
||||
const BoundingBoxf3& bounding_box() const;
|
||||
void invalidate_bounding_box() { m_bounding_box_valid = false; }
|
||||
|
||||
// A mesh containing all transformed instances of this object.
|
||||
TriangleMesh mesh() const;
|
||||
// Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
|
||||
// Currently used by ModelObject::mesh() and to calculate the 2D envelope for 2D platter.
|
||||
TriangleMesh raw_mesh() const;
|
||||
// A transformed snug bounding box around the non-modifier object volumes, without the translation applied.
|
||||
// This bounding box is only used for the actual slicing.
|
||||
BoundingBoxf3 raw_bounding_box() const;
|
||||
// A snug bounding box around the transformed non-modifier object volumes.
|
||||
BoundingBoxf3 instance_bounding_box(size_t instance_idx, bool dont_translate = false) const;
|
||||
void center_around_origin();
|
||||
void ensure_on_bed();
|
||||
void translate_instances(const Vec3d& vector);
|
||||
void translate_instance(size_t instance_idx, const Vec3d& vector);
|
||||
void translate(const Vec3d &vector) { this->translate(vector(0), vector(1), vector(2)); }
|
||||
void translate(double x, double y, double z);
|
||||
void scale(const Vec3d &versor);
|
||||
void scale(const double s) { this->scale(Vec3d(s, s, s)); }
|
||||
void scale(double x, double y, double z) { this->scale(Vec3d(x, y, z)); }
|
||||
void rotate(double angle, Axis axis);
|
||||
void rotate(double angle, const Vec3d& axis);
|
||||
void mirror(Axis axis);
|
||||
size_t materials_count() const;
|
||||
size_t facets_count() const;
|
||||
bool needed_repair() const;
|
||||
ModelObjectPtrs cut(size_t instance, coordf_t z);
|
||||
void split(ModelObjectPtrs* new_objects);
|
||||
void repair();
|
||||
|
||||
double get_min_z() const;
|
||||
double get_instance_min_z(size_t instance_idx) const;
|
||||
|
||||
// Called by Print::validate() from the UI thread.
|
||||
unsigned int check_instances_print_volume_state(const BoundingBoxf3& print_volume);
|
||||
|
||||
// Print object statistics to console.
|
||||
void print_info() const;
|
||||
|
||||
protected:
|
||||
friend class Print;
|
||||
// Called by Print::apply() to set the model pointer after making a copy.
|
||||
void set_model(Model *model) { m_model = model; }
|
||||
|
||||
private:
|
||||
ModelObject(Model *model) : layer_height_profile_valid(false), m_model(model), origin_translation(Vec3d::Zero()), m_bounding_box_valid(false) {}
|
||||
~ModelObject();
|
||||
|
||||
/* To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision" */
|
||||
/* (Omits copy and move(since C++11) constructors, resulting in zero - copy pass - by - value semantics). */
|
||||
ModelObject(const ModelObject &rhs) : ModelBase(-1), m_model(rhs.m_model) { this->assign_copy(rhs); }
|
||||
explicit ModelObject(ModelObject &&rhs) : ModelBase(-1) { this->assign_copy(std::move(rhs)); }
|
||||
ModelObject& operator=(const ModelObject &rhs) { this->assign_copy(rhs); m_model = rhs.m_model; return *this; }
|
||||
ModelObject& operator=(ModelObject &&rhs) { this->assign_copy(std::move(rhs)); m_model = rhs.m_model; return *this; }
|
||||
|
||||
MODELBASE_DERIVED_COPY_MOVE_CLONE(ModelObject)
|
||||
MODELBASE_DERIVED_PRIVATE_COPY_MOVE(ModelObject)
|
||||
|
||||
// Parent object, owning this ModelObject. Set to nullptr here, so the macros above will have it initialized.
|
||||
Model *m_model = nullptr;
|
||||
|
||||
// Bounding box, cached.
|
||||
mutable BoundingBoxf3 m_bounding_box;
|
||||
mutable bool m_bounding_box_valid;
|
||||
};
|
||||
|
||||
// An object STL, or a modifier volume, over which a different set of parameters shall be applied.
|
||||
// ModelVolume instances are owned by a ModelObject.
|
||||
class ModelVolume : public ModelBase
|
||||
{
|
||||
public:
|
||||
std::string name;
|
||||
// The triangular model.
|
||||
TriangleMesh mesh;
|
||||
// Configuration parameters specific to an object model geometry or a modifier volume,
|
||||
// overriding the global Slic3r settings and the ModelObject settings.
|
||||
DynamicPrintConfig config;
|
||||
|
||||
enum Type {
|
||||
MODEL_TYPE_INVALID = -1,
|
||||
MODEL_PART = 0,
|
||||
PARAMETER_MODIFIER,
|
||||
SUPPORT_ENFORCER,
|
||||
SUPPORT_BLOCKER,
|
||||
};
|
||||
|
||||
// A parent object owning this modifier volume.
|
||||
ModelObject* get_object() const { return this->object; };
|
||||
Type type() const { return m_type; }
|
||||
void set_type(const Type t) { m_type = t; }
|
||||
bool is_model_part() const { return m_type == MODEL_PART; }
|
||||
bool is_modifier() const { return m_type == PARAMETER_MODIFIER; }
|
||||
bool is_support_enforcer() const { return m_type == SUPPORT_ENFORCER; }
|
||||
bool is_support_blocker() const { return m_type == SUPPORT_BLOCKER; }
|
||||
bool is_support_modifier() const { return m_type == SUPPORT_BLOCKER || m_type == SUPPORT_ENFORCER; }
|
||||
t_model_material_id material_id() const { return m_material_id; }
|
||||
void set_material_id(t_model_material_id material_id);
|
||||
ModelMaterial* material() const;
|
||||
void set_material(t_model_material_id material_id, const ModelMaterial &material);
|
||||
// Split this volume, append the result to the object owning this volume.
|
||||
// Return the number of volumes created from this one.
|
||||
// This is useful to assign different materials to different volumes of an object.
|
||||
size_t split(unsigned int max_extruders);
|
||||
void translate(double x, double y, double z) { translate(Vec3d(x, y, z)); }
|
||||
void translate(const Vec3d& displacement);
|
||||
void scale(const Vec3d& scaling_factors);
|
||||
void scale(double x, double y, double z) { scale(Vec3d(x, y, z)); }
|
||||
void scale(double s) { scale(Vec3d(s, s, s)); }
|
||||
void rotate(double angle, Axis axis);
|
||||
void rotate(double angle, const Vec3d& axis);
|
||||
void mirror(Axis axis);
|
||||
|
||||
#if ENABLE_MODELVOLUME_TRANSFORM
|
||||
// translates the mesh and the convex hull so that the origin of their vertices is in the center of this volume's bounding box
|
||||
void center_geometry();
|
||||
#endif // ENABLE_MODELVOLUME_TRANSFORM
|
||||
|
||||
void calculate_convex_hull();
|
||||
const TriangleMesh& get_convex_hull() const;
|
||||
|
||||
// Helpers for loading / storing into AMF / 3MF files.
|
||||
static Type type_from_string(const std::string &s);
|
||||
static std::string type_to_string(const Type t);
|
||||
|
||||
#if ENABLE_MODELVOLUME_TRANSFORM
|
||||
const Geometry::Transformation& get_transformation() const { return m_transformation; }
|
||||
void set_transformation(const Geometry::Transformation& transformation) { m_transformation = transformation; }
|
||||
|
||||
const Vec3d& get_offset() const { return m_transformation.get_offset(); }
|
||||
double get_offset(Axis axis) const { return m_transformation.get_offset(axis); }
|
||||
|
||||
void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); }
|
||||
void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); }
|
||||
|
||||
const Vec3d& get_rotation() const { return m_transformation.get_rotation(); }
|
||||
double get_rotation(Axis axis) const { return m_transformation.get_rotation(axis); }
|
||||
|
||||
void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); }
|
||||
void set_rotation(Axis axis, double rotation) { m_transformation.set_rotation(axis, rotation); }
|
||||
|
||||
Vec3d get_scaling_factor() const { return m_transformation.get_scaling_factor(); }
|
||||
double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); }
|
||||
|
||||
void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); }
|
||||
void set_scaling_factor(Axis axis, double scaling_factor) { m_transformation.set_scaling_factor(axis, scaling_factor); }
|
||||
|
||||
const Vec3d& get_mirror() const { return m_transformation.get_mirror(); }
|
||||
double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); }
|
||||
|
||||
void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); }
|
||||
void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); }
|
||||
|
||||
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const { return m_transformation.get_matrix(dont_translate, dont_rotate, dont_scale, dont_mirror); }
|
||||
#endif // ENABLE_MODELVOLUME_TRANSFORM
|
||||
|
||||
protected:
|
||||
friend class Print;
|
||||
friend class ModelObject;
|
||||
|
||||
explicit ModelVolume(const ModelVolume &rhs) = default;
|
||||
void set_model_object(ModelObject *model_object) { object = model_object; }
|
||||
|
||||
private:
|
||||
// Parent object owning this ModelVolume.
|
||||
ModelObject* object;
|
||||
// Is it an object to be printed, or a modifier volume?
|
||||
Type m_type;
|
||||
t_model_material_id m_material_id;
|
||||
// The convex hull of this model's mesh.
|
||||
TriangleMesh m_convex_hull;
|
||||
#if ENABLE_MODELVOLUME_TRANSFORM
|
||||
Geometry::Transformation m_transformation;
|
||||
#endif // ENABLE_MODELVOLUME_TRANSFORM
|
||||
|
||||
ModelVolume(ModelObject *object, const TriangleMesh &mesh) : mesh(mesh), m_type(MODEL_PART), object(object)
|
||||
{
|
||||
if (mesh.stl.stats.number_of_facets > 1)
|
||||
calculate_convex_hull();
|
||||
}
|
||||
ModelVolume(ModelObject *object, TriangleMesh &&mesh, TriangleMesh &&convex_hull) :
|
||||
mesh(std::move(mesh)), m_convex_hull(std::move(convex_hull)), m_type(MODEL_PART), object(object) {}
|
||||
|
||||
#if ENABLE_MODELVOLUME_TRANSFORM
|
||||
// Copying an existing volume, therefore this volume will get a copy of the ID assigned.
|
||||
ModelVolume(ModelObject *object, const ModelVolume &other) :
|
||||
ModelBase(other), // copy the ID
|
||||
name(other.name), mesh(other.mesh), m_convex_hull(other.m_convex_hull), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation)
|
||||
{
|
||||
this->set_material_id(other.material_id());
|
||||
}
|
||||
// Providing a new mesh, therefore this volume will get a new unique ID assigned.
|
||||
ModelVolume(ModelObject *object, const ModelVolume &other, const TriangleMesh &&mesh) :
|
||||
name(other.name), mesh(std::move(mesh)), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation)
|
||||
{
|
||||
this->set_material_id(other.material_id());
|
||||
if (mesh.stl.stats.number_of_facets > 1)
|
||||
calculate_convex_hull();
|
||||
}
|
||||
#else
|
||||
// Copying an existing volume, therefore this volume will get a copy of the ID assigned.
|
||||
ModelVolume(ModelObject *object, const ModelVolume &other) :
|
||||
ModelBase(other), // copy the ID
|
||||
name(other.name), mesh(other.mesh), m_convex_hull(other.m_convex_hull), config(other.config), m_type(other.m_type), object(object)
|
||||
{
|
||||
if (! other.material_id().empty())
|
||||
this->set_material_id(other.material_id());
|
||||
}
|
||||
// Providing a new mesh, therefore this volume will get a new unique ID assigned.
|
||||
ModelVolume(ModelObject *object, const ModelVolume &other, TriangleMesh &&mesh) :
|
||||
name(other.name), mesh(std::move(mesh)), config(other.config), m_type(other.m_type), object(object)
|
||||
{
|
||||
if (! other.material_id().empty())
|
||||
this->set_material_id(other.material_id());
|
||||
if (mesh.stl.stats.number_of_facets > 1)
|
||||
calculate_convex_hull();
|
||||
}
|
||||
#endif // ENABLE_MODELVOLUME_TRANSFORM
|
||||
|
||||
ModelVolume& operator=(ModelVolume &rhs) = delete;
|
||||
};
|
||||
|
||||
// A single instance of a ModelObject.
|
||||
// Knows the affine transformation of an object.
|
||||
class ModelInstance : public ModelBase
|
||||
{
|
||||
public:
|
||||
enum EPrintVolumeState : unsigned char
|
||||
{
|
||||
PVS_Inside,
|
||||
PVS_Partly_Outside,
|
||||
PVS_Fully_Outside,
|
||||
Num_BedStates
|
||||
};
|
||||
|
||||
private:
|
||||
#if ENABLE_MODELVOLUME_TRANSFORM
|
||||
Geometry::Transformation m_transformation;
|
||||
#else
|
||||
Vec3d m_offset; // in unscaled coordinates
|
||||
Vec3d m_rotation; // Rotation around the three axes, in radians around mesh center point
|
||||
Vec3d m_scaling_factor; // Scaling factors along the three axes
|
||||
Vec3d m_mirror; // Mirroring along the three axes
|
||||
#endif // ENABLE_MODELVOLUME_TRANSFORM
|
||||
|
||||
public:
|
||||
// flag showing the position of this instance with respect to the print volume (set by Print::validate() using ModelObject::check_instances_print_volume_state())
|
||||
EPrintVolumeState print_volume_state;
|
||||
|
||||
ModelObject* get_object() const { return this->object; }
|
||||
|
||||
#if ENABLE_MODELVOLUME_TRANSFORM
|
||||
const Geometry::Transformation& get_transformation() const { return m_transformation; }
|
||||
void set_transformation(const Geometry::Transformation& transformation) { m_transformation = transformation; }
|
||||
|
||||
const Vec3d& get_offset() const { return m_transformation.get_offset(); }
|
||||
double get_offset(Axis axis) const { return m_transformation.get_offset(axis); }
|
||||
|
||||
void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); }
|
||||
void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); }
|
||||
|
||||
const Vec3d& get_rotation() const { return m_transformation.get_rotation(); }
|
||||
double get_rotation(Axis axis) const { return m_transformation.get_rotation(axis); }
|
||||
|
||||
void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); }
|
||||
void set_rotation(Axis axis, double rotation) { m_transformation.set_rotation(axis, rotation); }
|
||||
|
||||
Vec3d get_scaling_factor() const { return m_transformation.get_scaling_factor(); }
|
||||
double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); }
|
||||
|
||||
void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); }
|
||||
void set_scaling_factor(Axis axis, double scaling_factor) { m_transformation.set_scaling_factor(axis, scaling_factor); }
|
||||
|
||||
const Vec3d& get_mirror() const { return m_transformation.get_mirror(); }
|
||||
double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); }
|
||||
|
||||
void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); }
|
||||
void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); }
|
||||
#else
|
||||
const Vec3d& get_offset() const { return m_offset; }
|
||||
double get_offset(Axis axis) const { return m_offset(axis); }
|
||||
|
||||
void set_offset(const Vec3d& offset) { m_offset = offset; }
|
||||
void set_offset(Axis axis, double offset) { m_offset(axis) = offset; }
|
||||
|
||||
const Vec3d& get_rotation() const { return m_rotation; }
|
||||
double get_rotation(Axis axis) const { return m_rotation(axis); }
|
||||
|
||||
void set_rotation(const Vec3d& rotation);
|
||||
void set_rotation(Axis axis, double rotation);
|
||||
|
||||
Vec3d get_scaling_factor() const { return m_scaling_factor; }
|
||||
double get_scaling_factor(Axis axis) const { return m_scaling_factor(axis); }
|
||||
|
||||
void set_scaling_factor(const Vec3d& scaling_factor);
|
||||
void set_scaling_factor(Axis axis, double scaling_factor);
|
||||
|
||||
const Vec3d& get_mirror() const { return m_mirror; }
|
||||
double get_mirror(Axis axis) const { return m_mirror(axis); }
|
||||
|
||||
void set_mirror(const Vec3d& mirror);
|
||||
void set_mirror(Axis axis, double mirror);
|
||||
#endif // ENABLE_MODELVOLUME_TRANSFORM
|
||||
|
||||
// To be called on an external mesh
|
||||
void transform_mesh(TriangleMesh* mesh, bool dont_translate = false) const;
|
||||
// Calculate a bounding box of a transformed mesh. To be called on an external mesh.
|
||||
BoundingBoxf3 transform_mesh_bounding_box(const TriangleMesh& mesh, bool dont_translate = false) const;
|
||||
// Transform an external bounding box.
|
||||
BoundingBoxf3 transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate = false) const;
|
||||
// Transform an external vector.
|
||||
Vec3d transform_vector(const Vec3d& v, bool dont_translate = false) const;
|
||||
// To be called on an external polygon. It does not translate the polygon, only rotates and scales.
|
||||
void transform_polygon(Polygon* polygon) const;
|
||||
|
||||
#if ENABLE_MODELVOLUME_TRANSFORM
|
||||
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const { return m_transformation.get_matrix(dont_translate, dont_rotate, dont_scale, dont_mirror); }
|
||||
#else
|
||||
Transform3d get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const;
|
||||
#endif // ENABLE_MODELVOLUME_TRANSFORM
|
||||
|
||||
bool is_printable() const { return print_volume_state == PVS_Inside; }
|
||||
|
||||
protected:
|
||||
friend class Print;
|
||||
friend class ModelObject;
|
||||
|
||||
explicit ModelInstance(const ModelInstance &rhs) = default;
|
||||
void set_model_object(ModelObject *model_object) { object = model_object; }
|
||||
|
||||
private:
|
||||
// Parent object, owning this instance.
|
||||
ModelObject* object;
|
||||
|
||||
#if ENABLE_MODELVOLUME_TRANSFORM
|
||||
// Constructor, which assigns a new unique ID.
|
||||
explicit ModelInstance(ModelObject *object) : object(object), print_volume_state(PVS_Inside) {}
|
||||
// Constructor, which assigns a new unique ID.
|
||||
explicit ModelInstance(ModelObject *object, const ModelInstance &other) :
|
||||
m_transformation(other.m_transformation), object(object), print_volume_state(PVS_Inside) {}
|
||||
#else
|
||||
explicit ModelInstance(ModelObject *object) : m_offset(Vec3d::Zero()), m_rotation(Vec3d::Zero()), m_scaling_factor(Vec3d::Ones()), m_mirror(Vec3d::Ones()), object(object), print_volume_state(PVS_Inside) {}
|
||||
explicit ModelInstance(ModelObject *object, const ModelInstance &other) :
|
||||
m_offset(other.m_offset), m_rotation(other.m_rotation), m_scaling_factor(other.m_scaling_factor), m_mirror(other.m_mirror), object(object), print_volume_state(PVS_Inside) {}
|
||||
#endif // ENABLE_MODELVOLUME_TRANSFORM
|
||||
|
||||
ModelInstance() = delete;
|
||||
explicit ModelInstance(ModelInstance &&rhs) = delete;
|
||||
ModelInstance& operator=(const ModelInstance &rhs) = delete;
|
||||
ModelInstance& operator=(ModelInstance &&rhs) = delete;
|
||||
};
|
||||
|
||||
// The print bed content.
|
||||
// Description of a triangular model with multiple materials, multiple instances with various affine transformations
|
||||
// and with multiple modifier meshes.
|
||||
// A model groups multiple objects, each object having possibly multiple instances,
|
||||
// all objects may share mutliple materials.
|
||||
class Model : public ModelBase
|
||||
{
|
||||
static unsigned int s_auto_extruder_id;
|
||||
|
||||
public:
|
||||
// Materials are owned by a model and referenced by objects through t_model_material_id.
|
||||
// Single material may be shared by multiple models.
|
||||
ModelMaterialMap materials;
|
||||
// Objects are owned by a model. Each model may have multiple instances, each instance having its own transformation (shift, scale, rotation).
|
||||
ModelObjectPtrs objects;
|
||||
|
||||
// Default constructor assigns a new ID to the model.
|
||||
Model() {}
|
||||
~Model() { this->clear_objects(); this->clear_materials(); }
|
||||
|
||||
/* To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision" */
|
||||
/* (Omits copy and move(since C++11) constructors, resulting in zero - copy pass - by - value semantics). */
|
||||
Model(const Model &rhs) : ModelBase(-1) { this->assign_copy(rhs); }
|
||||
explicit Model(Model &&rhs) : ModelBase(-1) { this->assign_copy(std::move(rhs)); }
|
||||
Model& operator=(const Model &rhs) { this->assign_copy(rhs); return *this; }
|
||||
Model& operator=(Model &&rhs) { this->assign_copy(std::move(rhs)); return *this; }
|
||||
|
||||
MODELBASE_DERIVED_COPY_MOVE_CLONE(Model)
|
||||
|
||||
static Model read_from_file(const std::string &input_file, DynamicPrintConfig *config = nullptr, bool add_default_instances = true);
|
||||
static Model read_from_archive(const std::string &input_file, DynamicPrintConfig *config, bool add_default_instances = true);
|
||||
|
||||
/// Repair the ModelObjects of the current Model.
|
||||
/// This function calls repair function on each TriangleMesh of each model object volume
|
||||
void repair();
|
||||
|
||||
// Add a new ModelObject to this Model, generate a new ID for this ModelObject.
|
||||
ModelObject* add_object();
|
||||
ModelObject* add_object(const char *name, const char *path, const TriangleMesh &mesh);
|
||||
ModelObject* add_object(const char *name, const char *path, TriangleMesh &&mesh);
|
||||
ModelObject* add_object(const ModelObject &other);
|
||||
void delete_object(size_t idx);
|
||||
bool delete_object(ModelID id);
|
||||
bool delete_object(ModelObject* object);
|
||||
void clear_objects();
|
||||
|
||||
ModelMaterial* add_material(t_model_material_id material_id);
|
||||
ModelMaterial* add_material(t_model_material_id material_id, const ModelMaterial &other);
|
||||
ModelMaterial* get_material(t_model_material_id material_id) {
|
||||
ModelMaterialMap::iterator i = this->materials.find(material_id);
|
||||
return (i == this->materials.end()) ? nullptr : i->second;
|
||||
}
|
||||
|
||||
void delete_material(t_model_material_id material_id);
|
||||
void clear_materials();
|
||||
bool add_default_instances();
|
||||
// Returns approximate axis aligned bounding box of this model
|
||||
BoundingBoxf3 bounding_box() const;
|
||||
// Set the print_volume_state of PrintObject::instances,
|
||||
// return total number of printable objects.
|
||||
unsigned int update_print_volume_state(const BoundingBoxf3 &print_volume);
|
||||
// Returns true if any ModelObject was modified.
|
||||
bool center_instances_around_point(const Vec2d &point);
|
||||
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
|
||||
TriangleMesh mesh() const;
|
||||
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL);
|
||||
// Croaks if the duplicated objects do not fit the print bed.
|
||||
void duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
|
||||
void duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
|
||||
void duplicate_objects_grid(size_t x, size_t y, coordf_t dist);
|
||||
|
||||
bool looks_like_multipart_object() const;
|
||||
void convert_multipart_object(unsigned int max_extruders);
|
||||
|
||||
// Ensures that the min z of the model is not negative
|
||||
void adjust_min_z();
|
||||
|
||||
void print_info() const { for (const ModelObject *o : this->objects) o->print_info(); }
|
||||
|
||||
static unsigned int get_auto_extruder_id(unsigned int max_extruders);
|
||||
static std::string get_auto_extruder_id_as_string(unsigned int max_extruders);
|
||||
static void reset_auto_extruder_id();
|
||||
|
||||
private:
|
||||
MODELBASE_DERIVED_PRIVATE_COPY_MOVE(Model)
|
||||
};
|
||||
|
||||
#undef MODELBASE_DERIVED_COPY_MOVE_CLONE
|
||||
#undef MODELBASE_DERIVED_PRIVATE_COPY_MOVE
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
763
src/libslic3r/ModelArrange.cpp
Normal file
763
src/libslic3r/ModelArrange.cpp
Normal file
|
|
@ -0,0 +1,763 @@
|
|||
#include "ModelArrange.hpp"
|
||||
#include "Model.hpp"
|
||||
#include "SVG.hpp"
|
||||
|
||||
#include <libnest2d.h>
|
||||
|
||||
#include <numeric>
|
||||
#include <ClipperUtils.hpp>
|
||||
|
||||
#include <boost/geometry/index/rtree.hpp>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
namespace arr {
|
||||
|
||||
using namespace libnest2d;
|
||||
|
||||
std::string toString(const Model& model, bool holes = true) {
|
||||
std::stringstream ss;
|
||||
|
||||
ss << "{\n";
|
||||
|
||||
for(auto objptr : model.objects) {
|
||||
if(!objptr) continue;
|
||||
|
||||
auto rmesh = objptr->raw_mesh();
|
||||
|
||||
for(auto objinst : objptr->instances) {
|
||||
if(!objinst) continue;
|
||||
|
||||
Slic3r::TriangleMesh tmpmesh = rmesh;
|
||||
// CHECK_ME -> Is the following correct ?
|
||||
tmpmesh.scale(objinst->get_scaling_factor());
|
||||
objinst->transform_mesh(&tmpmesh);
|
||||
ExPolygons expolys = tmpmesh.horizontal_projection();
|
||||
for(auto& expoly_complex : expolys) {
|
||||
|
||||
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
|
||||
if(tmp.empty()) continue;
|
||||
auto expoly = tmp.front();
|
||||
expoly.contour.make_clockwise();
|
||||
for(auto& h : expoly.holes) h.make_counter_clockwise();
|
||||
|
||||
ss << "\t{\n";
|
||||
ss << "\t\t{\n";
|
||||
|
||||
for(auto v : expoly.contour.points) ss << "\t\t\t{"
|
||||
<< v(0) << ", "
|
||||
<< v(1) << "},\n";
|
||||
{
|
||||
auto v = expoly.contour.points.front();
|
||||
ss << "\t\t\t{" << v(0) << ", " << v(1) << "},\n";
|
||||
}
|
||||
ss << "\t\t},\n";
|
||||
|
||||
// Holes:
|
||||
ss << "\t\t{\n";
|
||||
if(holes) for(auto h : expoly.holes) {
|
||||
ss << "\t\t\t{\n";
|
||||
for(auto v : h.points) ss << "\t\t\t\t{"
|
||||
<< v(0) << ", "
|
||||
<< v(1) << "},\n";
|
||||
{
|
||||
auto v = h.points.front();
|
||||
ss << "\t\t\t\t{" << v(0) << ", " << v(1) << "},\n";
|
||||
}
|
||||
ss << "\t\t\t},\n";
|
||||
}
|
||||
ss << "\t\t},\n";
|
||||
|
||||
ss << "\t},\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ss << "}\n";
|
||||
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
void toSVG(SVG& svg, const Model& model) {
|
||||
for(auto objptr : model.objects) {
|
||||
if(!objptr) continue;
|
||||
|
||||
auto rmesh = objptr->raw_mesh();
|
||||
|
||||
for(auto objinst : objptr->instances) {
|
||||
if(!objinst) continue;
|
||||
|
||||
Slic3r::TriangleMesh tmpmesh = rmesh;
|
||||
tmpmesh.scale(objinst->get_scaling_factor());
|
||||
objinst->transform_mesh(&tmpmesh);
|
||||
ExPolygons expolys = tmpmesh.horizontal_projection();
|
||||
svg.draw(expolys);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
namespace bgi = boost::geometry::index;
|
||||
|
||||
using SpatElement = std::pair<Box, unsigned>;
|
||||
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
|
||||
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
|
||||
template<class TBin>
|
||||
using TPacker = typename placers::_NofitPolyPlacer<PolygonImpl, TBin>;
|
||||
|
||||
const double BIG_ITEM_TRESHOLD = 0.02;
|
||||
|
||||
Box boundingBox(const Box& pilebb, const Box& ibb ) {
|
||||
auto& pminc = pilebb.minCorner();
|
||||
auto& pmaxc = pilebb.maxCorner();
|
||||
auto& iminc = ibb.minCorner();
|
||||
auto& imaxc = ibb.maxCorner();
|
||||
PointImpl minc, maxc;
|
||||
|
||||
setX(minc, std::min(getX(pminc), getX(iminc)));
|
||||
setY(minc, std::min(getY(pminc), getY(iminc)));
|
||||
|
||||
setX(maxc, std::max(getX(pmaxc), getX(imaxc)));
|
||||
setY(maxc, std::max(getY(pmaxc), getY(imaxc)));
|
||||
return Box(minc, maxc);
|
||||
}
|
||||
|
||||
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
|
||||
objfunc(const PointImpl& bincenter,
|
||||
const shapelike::Shapes<PolygonImpl>& merged_pile,
|
||||
const Box& pilebb,
|
||||
const ItemGroup& items,
|
||||
const Item &item,
|
||||
double bin_area,
|
||||
double norm, // A norming factor for physical dimensions
|
||||
// a spatial index to quickly get neighbors of the candidate item
|
||||
const SpatIndex& spatindex,
|
||||
const SpatIndex& smalls_spatindex,
|
||||
const ItemGroup& remaining
|
||||
)
|
||||
{
|
||||
using Coord = TCoord<PointImpl>;
|
||||
|
||||
static const double ROUNDNESS_RATIO = 0.5;
|
||||
static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;
|
||||
|
||||
// We will treat big items (compared to the print bed) differently
|
||||
auto isBig = [bin_area](double a) {
|
||||
return a/bin_area > BIG_ITEM_TRESHOLD ;
|
||||
};
|
||||
|
||||
// Candidate item bounding box
|
||||
auto ibb = sl::boundingBox(item.transformedShape());
|
||||
|
||||
// Calculate the full bounding box of the pile with the candidate item
|
||||
auto fullbb = boundingBox(pilebb, ibb);
|
||||
|
||||
// The bounding box of the big items (they will accumulate in the center
|
||||
// of the pile
|
||||
Box bigbb;
|
||||
if(spatindex.empty()) bigbb = fullbb;
|
||||
else {
|
||||
auto boostbb = spatindex.bounds();
|
||||
boost::geometry::convert(boostbb, bigbb);
|
||||
}
|
||||
|
||||
// Will hold the resulting score
|
||||
double score = 0;
|
||||
|
||||
if(isBig(item.area()) || spatindex.empty()) {
|
||||
// This branch is for the bigger items..
|
||||
|
||||
auto minc = ibb.minCorner(); // bottom left corner
|
||||
auto maxc = ibb.maxCorner(); // top right corner
|
||||
|
||||
// top left and bottom right corners
|
||||
auto top_left = PointImpl{getX(minc), getY(maxc)};
|
||||
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
||||
|
||||
// Now the distance of the gravity center will be calculated to the
|
||||
// five anchor points and the smallest will be chosen.
|
||||
std::array<double, 5> dists;
|
||||
auto cc = fullbb.center(); // The gravity center
|
||||
dists[0] = pl::distance(minc, cc);
|
||||
dists[1] = pl::distance(maxc, cc);
|
||||
dists[2] = pl::distance(ibb.center(), cc);
|
||||
dists[3] = pl::distance(top_left, cc);
|
||||
dists[4] = pl::distance(bottom_right, cc);
|
||||
|
||||
// The smalles distance from the arranged pile center:
|
||||
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
|
||||
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
|
||||
dist = 0.8*dist + 0.2*bindist;
|
||||
|
||||
// Density is the pack density: how big is the arranged pile
|
||||
double density = 0;
|
||||
|
||||
if(remaining.empty()) {
|
||||
|
||||
auto mp = merged_pile;
|
||||
mp.emplace_back(item.transformedShape());
|
||||
auto chull = sl::convexHull(mp);
|
||||
|
||||
placers::EdgeCache<PolygonImpl> ec(chull);
|
||||
|
||||
double circ = ec.circumference() / norm;
|
||||
double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm;
|
||||
score = 0.5*circ + 0.5*bcirc;
|
||||
|
||||
} else {
|
||||
// Prepare a variable for the alignment score.
|
||||
// This will indicate: how well is the candidate item aligned with
|
||||
// its neighbors. We will check the alignment with all neighbors and
|
||||
// return the score for the best alignment. So it is enough for the
|
||||
// candidate to be aligned with only one item.
|
||||
auto alignment_score = 1.0;
|
||||
|
||||
density = std::sqrt((fullbb.width() / norm )*
|
||||
(fullbb.height() / norm));
|
||||
auto querybb = item.boundingBox();
|
||||
|
||||
// Query the spatial index for the neighbors
|
||||
std::vector<SpatElement> result;
|
||||
result.reserve(spatindex.size());
|
||||
if(isBig(item.area())) {
|
||||
spatindex.query(bgi::intersects(querybb),
|
||||
std::back_inserter(result));
|
||||
} else {
|
||||
smalls_spatindex.query(bgi::intersects(querybb),
|
||||
std::back_inserter(result));
|
||||
}
|
||||
|
||||
for(auto& e : result) { // now get the score for the best alignment
|
||||
auto idx = e.second;
|
||||
Item& p = items[idx];
|
||||
auto parea = p.area();
|
||||
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
|
||||
auto bb = boundingBox(p.boundingBox(), ibb);
|
||||
auto bbarea = bb.area();
|
||||
auto ascore = 1.0 - (item.area() + parea)/bbarea;
|
||||
|
||||
if(ascore < alignment_score) alignment_score = ascore;
|
||||
}
|
||||
}
|
||||
|
||||
// The final mix of the score is the balance between the distance
|
||||
// from the full pile center, the pack density and the
|
||||
// alignment with the neighbors
|
||||
if(result.empty())
|
||||
score = 0.5 * dist + 0.5 * density;
|
||||
else
|
||||
score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score;
|
||||
}
|
||||
} else {
|
||||
// Here there are the small items that should be placed around the
|
||||
// already processed bigger items.
|
||||
// No need to play around with the anchor points, the center will be
|
||||
// just fine for small items
|
||||
score = pl::distance(ibb.center(), bigbb.center()) / norm;
|
||||
}
|
||||
|
||||
return std::make_tuple(score, fullbb);
|
||||
}
|
||||
|
||||
template<class PConf>
|
||||
void fillConfig(PConf& pcfg) {
|
||||
|
||||
// Align the arranged pile into the center of the bin
|
||||
pcfg.alignment = PConf::Alignment::CENTER;
|
||||
|
||||
// Start placing the items from the center of the print bed
|
||||
pcfg.starting_point = PConf::Alignment::CENTER;
|
||||
|
||||
// TODO cannot use rotations until multiple objects of same geometry can
|
||||
// handle different rotations
|
||||
// arranger.useMinimumBoundigBoxRotation();
|
||||
pcfg.rotations = { 0.0 };
|
||||
|
||||
// The accuracy of optimization.
|
||||
// Goes from 0.0 to 1.0 and scales performance as well
|
||||
pcfg.accuracy = 0.65f;
|
||||
|
||||
pcfg.parallel = true;
|
||||
}
|
||||
|
||||
template<class TBin>
|
||||
class AutoArranger {};
|
||||
|
||||
template<class TBin>
|
||||
class _ArrBase {
|
||||
protected:
|
||||
|
||||
using Placer = TPacker<TBin>;
|
||||
using Selector = FirstFitSelection;
|
||||
using Packer = Nester<Placer, Selector>;
|
||||
using PConfig = typename Packer::PlacementConfig;
|
||||
using Distance = TCoord<PointImpl>;
|
||||
using Pile = sl::Shapes<PolygonImpl>;
|
||||
|
||||
Packer m_pck;
|
||||
PConfig m_pconf; // Placement configuration
|
||||
double m_bin_area;
|
||||
SpatIndex m_rtree;
|
||||
SpatIndex m_smallsrtree;
|
||||
double m_norm;
|
||||
Pile m_merged_pile;
|
||||
Box m_pilebb;
|
||||
ItemGroup m_remaining;
|
||||
ItemGroup m_items;
|
||||
public:
|
||||
|
||||
_ArrBase(const TBin& bin, Distance dist,
|
||||
std::function<void(unsigned)> progressind,
|
||||
std::function<bool(void)> stopcond):
|
||||
m_pck(bin, dist), m_bin_area(sl::area(bin)),
|
||||
m_norm(std::sqrt(sl::area(bin)))
|
||||
{
|
||||
fillConfig(m_pconf);
|
||||
|
||||
m_pconf.before_packing =
|
||||
[this](const Pile& merged_pile, // merged pile
|
||||
const ItemGroup& items, // packed items
|
||||
const ItemGroup& remaining) // future items to be packed
|
||||
{
|
||||
m_items = items;
|
||||
m_merged_pile = merged_pile;
|
||||
m_remaining = remaining;
|
||||
|
||||
m_pilebb = sl::boundingBox(merged_pile);
|
||||
|
||||
m_rtree.clear();
|
||||
m_smallsrtree.clear();
|
||||
|
||||
// We will treat big items (compared to the print bed) differently
|
||||
auto isBig = [this](double a) {
|
||||
return a/m_bin_area > BIG_ITEM_TRESHOLD ;
|
||||
};
|
||||
|
||||
for(unsigned idx = 0; idx < items.size(); ++idx) {
|
||||
Item& itm = items[idx];
|
||||
if(isBig(itm.area())) m_rtree.insert({itm.boundingBox(), idx});
|
||||
m_smallsrtree.insert({itm.boundingBox(), idx});
|
||||
}
|
||||
};
|
||||
|
||||
m_pck.progressIndicator(progressind);
|
||||
m_pck.stopCondition(stopcond);
|
||||
}
|
||||
|
||||
template<class...Args> inline IndexedPackGroup operator()(Args&&...args) {
|
||||
m_rtree.clear();
|
||||
return m_pck.executeIndexed(std::forward<Args>(args)...);
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
class AutoArranger<Box>: public _ArrBase<Box> {
|
||||
public:
|
||||
|
||||
AutoArranger(const Box& bin, Distance dist,
|
||||
std::function<void(unsigned)> progressind,
|
||||
std::function<bool(void)> stopcond):
|
||||
_ArrBase<Box>(bin, dist, progressind, stopcond)
|
||||
{
|
||||
|
||||
m_pconf.object_function = [this, bin] (const Item &item) {
|
||||
|
||||
auto result = objfunc(bin.center(),
|
||||
m_merged_pile,
|
||||
m_pilebb,
|
||||
m_items,
|
||||
item,
|
||||
m_bin_area,
|
||||
m_norm,
|
||||
m_rtree,
|
||||
m_smallsrtree,
|
||||
m_remaining);
|
||||
|
||||
double score = std::get<0>(result);
|
||||
auto& fullbb = std::get<1>(result);
|
||||
|
||||
double miss = Placer::overfit(fullbb, bin);
|
||||
miss = miss > 0? miss : 0;
|
||||
score += miss*miss;
|
||||
|
||||
return score;
|
||||
};
|
||||
|
||||
m_pck.configure(m_pconf);
|
||||
}
|
||||
};
|
||||
|
||||
using lnCircle = libnest2d::_Circle<libnest2d::PointImpl>;
|
||||
|
||||
inline lnCircle to_lnCircle(const Circle& circ) {
|
||||
return lnCircle({circ.center()(0), circ.center()(1)}, circ.radius());
|
||||
}
|
||||
|
||||
template<>
|
||||
class AutoArranger<lnCircle>: public _ArrBase<lnCircle> {
|
||||
public:
|
||||
|
||||
AutoArranger(const lnCircle& bin, Distance dist,
|
||||
std::function<void(unsigned)> progressind,
|
||||
std::function<bool(void)> stopcond):
|
||||
_ArrBase<lnCircle>(bin, dist, progressind, stopcond) {
|
||||
|
||||
m_pconf.object_function = [this, &bin] (const Item &item) {
|
||||
|
||||
auto result = objfunc(bin.center(),
|
||||
m_merged_pile,
|
||||
m_pilebb,
|
||||
m_items,
|
||||
item,
|
||||
m_bin_area,
|
||||
m_norm,
|
||||
m_rtree,
|
||||
m_smallsrtree,
|
||||
m_remaining);
|
||||
|
||||
double score = std::get<0>(result);
|
||||
|
||||
auto isBig = [this](const Item& itm) {
|
||||
return itm.area()/m_bin_area > BIG_ITEM_TRESHOLD ;
|
||||
};
|
||||
|
||||
if(isBig(item)) {
|
||||
auto mp = m_merged_pile;
|
||||
mp.push_back(item.transformedShape());
|
||||
auto chull = sl::convexHull(mp);
|
||||
double miss = Placer::overfit(chull, bin);
|
||||
if(miss < 0) miss = 0;
|
||||
score += miss*miss;
|
||||
}
|
||||
|
||||
return score;
|
||||
};
|
||||
|
||||
m_pck.configure(m_pconf);
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
|
||||
public:
|
||||
AutoArranger(const PolygonImpl& bin, Distance dist,
|
||||
std::function<void(unsigned)> progressind,
|
||||
std::function<bool(void)> stopcond):
|
||||
_ArrBase<PolygonImpl>(bin, dist, progressind, stopcond)
|
||||
{
|
||||
m_pconf.object_function = [this, &bin] (const Item &item) {
|
||||
|
||||
auto binbb = sl::boundingBox(bin);
|
||||
auto result = objfunc(binbb.center(),
|
||||
m_merged_pile,
|
||||
m_pilebb,
|
||||
m_items,
|
||||
item,
|
||||
m_bin_area,
|
||||
m_norm,
|
||||
m_rtree,
|
||||
m_smallsrtree,
|
||||
m_remaining);
|
||||
double score = std::get<0>(result);
|
||||
|
||||
return score;
|
||||
};
|
||||
|
||||
m_pck.configure(m_pconf);
|
||||
}
|
||||
};
|
||||
|
||||
template<> // Specialization with no bin
|
||||
class AutoArranger<bool>: public _ArrBase<Box> {
|
||||
public:
|
||||
|
||||
AutoArranger(Distance dist, std::function<void(unsigned)> progressind,
|
||||
std::function<bool(void)> stopcond):
|
||||
_ArrBase<Box>(Box(0, 0), dist, progressind, stopcond)
|
||||
{
|
||||
this->m_pconf.object_function = [this] (const Item &item) {
|
||||
|
||||
auto result = objfunc({0, 0},
|
||||
m_merged_pile,
|
||||
m_pilebb,
|
||||
m_items,
|
||||
item,
|
||||
0,
|
||||
m_norm,
|
||||
m_rtree,
|
||||
m_smallsrtree,
|
||||
m_remaining);
|
||||
return std::get<0>(result);
|
||||
};
|
||||
|
||||
this->m_pck.configure(m_pconf);
|
||||
}
|
||||
};
|
||||
|
||||
// A container which stores a pointer to the 3D object and its projected
|
||||
// 2D shape from top view.
|
||||
using ShapeData2D =
|
||||
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
|
||||
|
||||
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
|
||||
ShapeData2D ret;
|
||||
|
||||
auto s = std::accumulate(model.objects.begin(), model.objects.end(), size_t(0),
|
||||
[](size_t s, ModelObject* o){
|
||||
return s + o->instances.size();
|
||||
});
|
||||
|
||||
ret.reserve(s);
|
||||
|
||||
for(auto objptr : model.objects) {
|
||||
if(objptr) {
|
||||
|
||||
auto rmesh = objptr->raw_mesh();
|
||||
|
||||
for(auto objinst : objptr->instances) {
|
||||
if(objinst) {
|
||||
Slic3r::TriangleMesh tmpmesh = rmesh;
|
||||
ClipperLib::PolygonImpl pn;
|
||||
|
||||
// CHECK_ME -> is the following correct ?
|
||||
tmpmesh.scale(objinst->get_scaling_factor());
|
||||
|
||||
// TODO export the exact 2D projection
|
||||
auto p = tmpmesh.convex_hull();
|
||||
|
||||
p.make_clockwise();
|
||||
p.append(p.first_point());
|
||||
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
|
||||
|
||||
// Efficient conversion to item.
|
||||
Item item(std::move(pn));
|
||||
|
||||
// Invalid geometries would throw exceptions when arranging
|
||||
if(item.vertexCount() > 3) {
|
||||
// CHECK_ME -> is the following correct or it should take in account all three rotations ?
|
||||
item.rotation(objinst->get_rotation(Z));
|
||||
item.translation({
|
||||
ClipperLib::cInt(objinst->get_offset(X)/SCALING_FACTOR),
|
||||
ClipperLib::cInt(objinst->get_offset(Y)/SCALING_FACTOR)
|
||||
});
|
||||
ret.emplace_back(objinst, item);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void applyResult(
|
||||
IndexedPackGroup::value_type& group,
|
||||
Coord batch_offset,
|
||||
ShapeData2D& shapemap)
|
||||
{
|
||||
for(auto& r : group) {
|
||||
auto idx = r.first; // get the original item index
|
||||
Item& item = r.second; // get the item itself
|
||||
|
||||
// Get the model instance from the shapemap using the index
|
||||
ModelInstance *inst_ptr = shapemap[idx].first;
|
||||
|
||||
// Get the transformation data from the item object and scale it
|
||||
// appropriately
|
||||
auto off = item.translation();
|
||||
Radians rot = item.rotation();
|
||||
Vec3d foff(off.X*SCALING_FACTOR + batch_offset,
|
||||
off.Y*SCALING_FACTOR,
|
||||
inst_ptr->get_offset()(2));
|
||||
|
||||
// write the transformation data into the model instance
|
||||
inst_ptr->set_rotation(Z, rot);
|
||||
inst_ptr->set_offset(foff);
|
||||
}
|
||||
}
|
||||
|
||||
BedShapeHint bedShape(const Polyline &bed) {
|
||||
BedShapeHint ret;
|
||||
|
||||
auto x = [](const Point& p) { return p(0); };
|
||||
auto y = [](const Point& p) { return p(1); };
|
||||
|
||||
auto width = [x](const BoundingBox& box) {
|
||||
return x(box.max) - x(box.min);
|
||||
};
|
||||
|
||||
auto height = [y](const BoundingBox& box) {
|
||||
return y(box.max) - y(box.min);
|
||||
};
|
||||
|
||||
auto area = [&width, &height](const BoundingBox& box) {
|
||||
double w = width(box);
|
||||
double h = height(box);
|
||||
return w*h;
|
||||
};
|
||||
|
||||
auto poly_area = [](Polyline p) {
|
||||
Polygon pp; pp.points.reserve(p.points.size() + 1);
|
||||
pp.points = std::move(p.points);
|
||||
pp.points.emplace_back(pp.points.front());
|
||||
return std::abs(pp.area());
|
||||
};
|
||||
|
||||
auto distance_to = [x, y](const Point& p1, const Point& p2) {
|
||||
double dx = x(p2) - x(p1);
|
||||
double dy = y(p2) - y(p1);
|
||||
return std::sqrt(dx*dx + dy*dy);
|
||||
};
|
||||
|
||||
auto bb = bed.bounding_box();
|
||||
|
||||
auto isCircle = [bb, distance_to](const Polyline& polygon) {
|
||||
auto center = bb.center();
|
||||
std::vector<double> vertex_distances;
|
||||
double avg_dist = 0;
|
||||
for (auto pt: polygon.points)
|
||||
{
|
||||
double distance = distance_to(center, pt);
|
||||
vertex_distances.push_back(distance);
|
||||
avg_dist += distance;
|
||||
}
|
||||
|
||||
avg_dist /= vertex_distances.size();
|
||||
|
||||
Circle ret(center, avg_dist);
|
||||
for (auto el: vertex_distances)
|
||||
{
|
||||
if (abs(el - avg_dist) > 10 * SCALED_EPSILON)
|
||||
ret = Circle();
|
||||
break;
|
||||
}
|
||||
|
||||
return ret;
|
||||
};
|
||||
|
||||
auto parea = poly_area(bed);
|
||||
|
||||
if( (1.0 - parea/area(bb)) < 1e-3 ) {
|
||||
ret.type = BedShapeType::BOX;
|
||||
ret.shape.box = bb;
|
||||
}
|
||||
else if(auto c = isCircle(bed)) {
|
||||
ret.type = BedShapeType::CIRCLE;
|
||||
ret.shape.circ = c;
|
||||
} else {
|
||||
ret.type = BedShapeType::IRREGULAR;
|
||||
ret.shape.polygon = bed;
|
||||
}
|
||||
|
||||
// Determine the bed shape by hand
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool arrange(Model &model,
|
||||
coord_t min_obj_distance,
|
||||
const Polyline &bed,
|
||||
BedShapeHint bedhint,
|
||||
bool first_bin_only,
|
||||
std::function<void (unsigned)> progressind,
|
||||
std::function<bool ()> stopcondition)
|
||||
{
|
||||
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
|
||||
|
||||
bool ret = true;
|
||||
|
||||
// Get the 2D projected shapes with their 3D model instance pointers
|
||||
auto shapemap = arr::projectModelFromTop(model);
|
||||
|
||||
// Copy the references for the shapes only as the arranger expects a
|
||||
// sequence of objects convertible to Item or ClipperPolygon
|
||||
std::vector<std::reference_wrapper<Item>> shapes;
|
||||
shapes.reserve(shapemap.size());
|
||||
std::for_each(shapemap.begin(), shapemap.end(),
|
||||
[&shapes] (ShapeData2D::value_type& it)
|
||||
{
|
||||
shapes.push_back(std::ref(it.second));
|
||||
});
|
||||
|
||||
IndexedPackGroup result;
|
||||
|
||||
// If there is no hint about the shape, we will try to guess
|
||||
if(bedhint.type == BedShapeType::WHO_KNOWS) bedhint = bedShape(bed);
|
||||
|
||||
BoundingBox bbb(bed);
|
||||
|
||||
auto& cfn = stopcondition;
|
||||
|
||||
auto binbb = Box({
|
||||
static_cast<libnest2d::Coord>(bbb.min(0)),
|
||||
static_cast<libnest2d::Coord>(bbb.min(1))
|
||||
},
|
||||
{
|
||||
static_cast<libnest2d::Coord>(bbb.max(0)),
|
||||
static_cast<libnest2d::Coord>(bbb.max(1))
|
||||
});
|
||||
|
||||
switch(bedhint.type) {
|
||||
case BedShapeType::BOX: {
|
||||
|
||||
// Create the arranger for the box shaped bed
|
||||
AutoArranger<Box> arrange(binbb, min_obj_distance, progressind, cfn);
|
||||
|
||||
// Arrange and return the items with their respective indices within the
|
||||
// input sequence.
|
||||
result = arrange(shapes.begin(), shapes.end());
|
||||
break;
|
||||
}
|
||||
case BedShapeType::CIRCLE: {
|
||||
|
||||
auto c = bedhint.shape.circ;
|
||||
auto cc = to_lnCircle(c);
|
||||
|
||||
AutoArranger<lnCircle> arrange(cc, min_obj_distance, progressind, cfn);
|
||||
result = arrange(shapes.begin(), shapes.end());
|
||||
break;
|
||||
}
|
||||
case BedShapeType::IRREGULAR:
|
||||
case BedShapeType::WHO_KNOWS: {
|
||||
|
||||
using P = libnest2d::PolygonImpl;
|
||||
|
||||
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
|
||||
P irrbed = sl::create<PolygonImpl>(std::move(ctour));
|
||||
|
||||
AutoArranger<P> arrange(irrbed, min_obj_distance, progressind, cfn);
|
||||
|
||||
// Arrange and return the items with their respective indices within the
|
||||
// input sequence.
|
||||
result = arrange(shapes.begin(), shapes.end());
|
||||
break;
|
||||
}
|
||||
};
|
||||
|
||||
if(result.empty() || stopcondition()) return false;
|
||||
|
||||
if(first_bin_only) {
|
||||
applyResult(result.front(), 0, shapemap);
|
||||
} else {
|
||||
|
||||
const auto STRIDE_PADDING = 1.2;
|
||||
|
||||
Coord stride = static_cast<Coord>(STRIDE_PADDING*
|
||||
binbb.width()*SCALING_FACTOR);
|
||||
Coord batch_offset = 0;
|
||||
|
||||
for(auto& group : result) {
|
||||
applyResult(group, batch_offset, shapemap);
|
||||
|
||||
// Only the first pack group can be placed onto the print bed. The
|
||||
// other objects which could not fit will be placed next to the
|
||||
// print bed
|
||||
batch_offset += stride;
|
||||
}
|
||||
}
|
||||
|
||||
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
|
||||
|
||||
return ret && result.size() == 1;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
82
src/libslic3r/ModelArrange.hpp
Normal file
82
src/libslic3r/ModelArrange.hpp
Normal file
|
|
@ -0,0 +1,82 @@
|
|||
#ifndef MODELARRANGE_HPP
|
||||
#define MODELARRANGE_HPP
|
||||
|
||||
#include "Model.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Model;
|
||||
|
||||
namespace arr {
|
||||
|
||||
class Circle {
|
||||
Point center_;
|
||||
double radius_;
|
||||
public:
|
||||
|
||||
inline Circle(): center_(0, 0), radius_(std::nan("")) {}
|
||||
inline Circle(const Point& c, double r): center_(c), radius_(r) {}
|
||||
|
||||
inline double radius() const { return radius_; }
|
||||
inline const Point& center() const { return center_; }
|
||||
inline operator bool() { return !std::isnan(radius_); }
|
||||
// inline operator lnCircle() {
|
||||
// return lnCircle({center_(0), center_(1)}, radius_);
|
||||
// }
|
||||
};
|
||||
|
||||
enum class BedShapeType {
|
||||
BOX,
|
||||
CIRCLE,
|
||||
IRREGULAR,
|
||||
WHO_KNOWS
|
||||
};
|
||||
|
||||
struct BedShapeHint {
|
||||
BedShapeType type;
|
||||
/*union*/ struct { // I know but who cares...
|
||||
Circle circ;
|
||||
BoundingBox box;
|
||||
Polyline polygon;
|
||||
} shape;
|
||||
};
|
||||
|
||||
BedShapeHint bedShape(const Polyline& bed);
|
||||
|
||||
/**
|
||||
* \brief Arranges the model objects on the screen.
|
||||
*
|
||||
* The arrangement considers multiple bins (aka. print beds) for placing all
|
||||
* the items provided in the model argument. If the items don't fit on one
|
||||
* print bed, the remaining will be placed onto newly created print beds.
|
||||
* The first_bin_only parameter, if set to true, disables this behavior and
|
||||
* makes sure that only one print bed is filled and the remaining items will be
|
||||
* untouched. When set to false, the items which could not fit onto the
|
||||
* print bed will be placed next to the print bed so the user should see a
|
||||
* pile of items on the print bed and some other piles outside the print
|
||||
* area that can be dragged later onto the print bed as a group.
|
||||
*
|
||||
* \param model The model object with the 3D content.
|
||||
* \param dist The minimum distance which is allowed for any pair of items
|
||||
* on the print bed in any direction.
|
||||
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
|
||||
* for bin packing.
|
||||
* \param first_bin_only This parameter controls whether to place the
|
||||
* remaining items which do not fit onto the print area next to the print
|
||||
* bed or leave them untouched (let the user arrange them by hand or remove
|
||||
* them).
|
||||
* \param progressind Progress indicator callback called when an object gets
|
||||
* packed. The unsigned argument is the number of items remaining to pack.
|
||||
* \param stopcondition A predicate returning true if abort is needed.
|
||||
*/
|
||||
bool arrange(Model &model, coord_t min_obj_distance,
|
||||
const Slic3r::Polyline& bed,
|
||||
BedShapeHint bedhint,
|
||||
bool first_bin_only,
|
||||
std::function<void(unsigned)> progressind,
|
||||
std::function<bool(void)> stopcondition);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
#endif // MODELARRANGE_HPP
|
||||
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue