Working curve approximation of the concave hull with clipper offset.

This commit is contained in:
tamasmeszaros 2018-08-16 17:47:05 +02:00
parent fbe415f88e
commit f297da0d01
8 changed files with 243 additions and 694 deletions

View file

@ -3,63 +3,32 @@
#include "SLABasePool.hpp"
#include "ExPolygon.hpp"
#include "TriangleMesh.hpp"
#include "libnest2d/clipper_backend/clipper_backend.hpp"
#include <numeric>
#include "ClipperUtils.hpp"
#include "boost/log/trivial.hpp"
#include "ConcaveHull.hpp"
using BoostPolygon = libnest2d::PolygonImpl;
using BoostPolygons = std::vector<libnest2d::PolygonImpl>;
//#include "SVG.hpp"
namespace Slic3r { namespace sla {
namespace {
using coord_t = Point::coord_type;
inline coord_t mm(double v) { return coord_t(v/SCALING_FACTOR); }
void reverse(Polygon& p) {
std::reverse(p.points.begin(), p.points.end());
}
inline BoostPolygon convert(const ExPolygon& exp) {
auto&& ctour = Slic3rMultiPoint_to_ClipperPath(exp.contour);
auto&& holes = Slic3rMultiPoints_to_ClipperPaths(exp.holes);
return {ctour, holes};
}
inline BoostPolygons convert(const ExPolygons& exps) {
BoostPolygons ret;
ret.reserve(exps.size());
std::for_each(exps.begin(), exps.end(), [&ret](const ExPolygon p) {
ret.emplace_back(convert(p));
});
return ret;
}
inline ExPolygon convert(const BoostPolygon& p) {
ExPolygon ret;
auto&& ctour = ClipperPath_to_Slic3rPolygon(p.Contour);
ctour.points.pop_back();
auto&& holes = ClipperPaths_to_Slic3rPolygons(p.Holes);
for(auto&& h : holes) h.points.pop_back();
ret.contour = ctour;
ret.holes = holes;
return ret;
}
inline coord_t x(const Point& p) { return p.x; }
inline coord_t y(const Point& p) { return p.y; }
struct Contour3D {
Pointf3s points;
std::vector<Point3> indices;
void merge(const Contour3D& ctour) {
void merge(const Contour3D& ctr) {
auto s3 = coord_t(points.size());
auto s = coord_t(indices.size());
points.insert(points.end(), ctour.points.begin(), ctour.points.end());
indices.insert(indices.end(), ctour.indices.begin(), ctour.indices.end());
points.insert(points.end(), ctr.points.begin(), ctr.points.end());
indices.insert(indices.end(), ctr.indices.begin(), ctr.indices.end());
for(auto n = s; n < indices.size(); n++) {
auto& idx = indices[n]; idx.x += s3; idx.y += s3; idx.z += s3;
@ -79,7 +48,7 @@ inline Contour3D convert(const Polygons& triangles, coord_t z, bool dir) {
if(dir) indices.emplace_back(a, b, c);
else indices.emplace_back(c, b, a);
for(auto& p : tr.points) {
points.emplace_back(Pointf3::new_unscale(p.x, p.y, z));
points.emplace_back(Pointf3::new_unscale(x(p), y(p), z));
}
}
@ -90,26 +59,26 @@ inline Contour3D roofs(const ExPolygon& poly, coord_t z_distance) {
Polygons triangles;
poly.triangulate_pp(&triangles);
auto lower = convert(triangles, 0, true);
auto upper = convert(triangles, z_distance, false);
auto lower = convert(triangles, 0, false);
auto upper = convert(triangles, z_distance, true);
lower.merge(upper);
return lower;
}
inline Contour3D inner_bed(const ExPolygon& poly, coord_t depth) {
Polygons triangles;
poly.triangulate_pp(&triangles);
poly.triangulate_p2t(&triangles);
auto bottom = convert(triangles, -depth, false);
auto lines = poly.lines();
// Generate outer walls
auto fp = [](const Point& p, Point::coord_type z) {
return Pointf3::new_unscale(p.x, p.y, z);
return Pointf3::new_unscale(x(p), y(p), z);
};
for(auto& l : lines) {
auto s = bottom.points.size();
auto s = coord_t(bottom.points.size());
bottom.points.emplace_back(fp(l.a, -depth));
bottom.points.emplace_back(fp(l.b, -depth));
@ -131,94 +100,182 @@ inline TriangleMesh mesh(Contour3D&& ctour) {
return {std::move(ctour.points), std::move(ctour.indices)};
}
inline void offset(BoostPolygon& sh, Point::coord_type distance) {
inline void offset(ExPolygon& sh, coord_t distance) {
using ClipperLib::ClipperOffset;
using ClipperLib::jtRound;
using ClipperLib::etClosedPolygon;
using ClipperLib::Paths;
using namespace libnest2d;
using ClipperLib::Path;
auto&& ctour = Slic3rMultiPoint_to_ClipperPath(sh.contour);
auto&& holes = Slic3rMultiPoints_to_ClipperPaths(sh.holes);
// If the input is not at least a triangle, we can not do this algorithm
if(sh.Contour.size() <= 3 ||
std::any_of(sh.Holes.begin(), sh.Holes.end(),
[](const PathImpl& p) { return p.size() <= 3; })
) throw GeometryException(GeomErr::OFFSET);
if(ctour.size() < 3 ||
std::any_of(holes.begin(), holes.end(),
[](const Path& p) { return p.size() < 3; })
) {
BOOST_LOG_TRIVIAL(error) << "Invalid geometry for offsetting!";
return;
}
ClipperOffset offs;
offs.ArcTolerance = 0.05*mm(1);
Paths result;
offs.AddPath(sh.Contour, jtRound, etClosedPolygon);
offs.AddPaths(sh.Holes, jtRound, etClosedPolygon);
offs.AddPath(ctour, jtRound, etClosedPolygon);
offs.AddPaths(holes, jtRound, etClosedPolygon);
offs.Execute(result, static_cast<double>(distance));
// Offsetting reverts the orientation and also removes the last vertex
// so boost will not have a closed polygon.
bool found_the_contour = false;
sh.holes.clear();
for(auto& r : result) {
if(ClipperLib::Orientation(r)) {
// We don't like if the offsetting generates more than one contour
// but throwing would be an overkill. Instead, we should warn the
// caller about the inability to create correct geometries
if(!found_the_contour) {
sh.Contour = r;
ClipperLib::ReversePath(sh.Contour);
sh.Contour.push_back(sh.Contour.front());
auto rr = ClipperPath_to_Slic3rPolygon(r);
sh.contour.points.swap(rr.points);
found_the_contour = true;
} else {
dout() << "Warning: offsetting result is invalid!";
/* TODO warning */
BOOST_LOG_TRIVIAL(warning)
<< "Warning: offsetting result is invalid!";
}
} else {
// TODO If there are multiple contours we can't be sure which hole
// belongs to the first contour. (But in this case the situation is
// bad enough to let it go...)
sh.Holes.push_back(r);
ClipperLib::ReversePath(sh.Holes.back());
sh.Holes.back().push_back(sh.Holes.back().front());
sh.holes.emplace_back(ClipperPath_to_Slic3rPolygon(r));
}
}
}
inline ExPolygons unify(const ExPolygons& shapes) {
ExPolygons retv;
inline ExPolygon concave_hull(const ExPolygons& polys) {
concavehull::PointVector pv;
size_t s = 0;
bool closed = true;
bool valid = true;
for(auto& ep : polys) s += ep.contour.points.size();
pv.reserve(s);
ClipperLib::Clipper clipper;
std::cout << polys.size() << std::endl;
for(auto& path : shapes) {
auto clipperpath = Slic3rMultiPoint_to_ClipperPath(path.contour);
valid &= clipper.AddPath(clipperpath, ClipperLib::ptSubject, closed);
// for(const ExPolygon& ep : polys) {
auto& ep = polys.front();
for(auto& v : ep.contour.points)
pv.emplace_back(Pointf::new_unscale(v.x, v.y));
std::reverse(pv.begin(), pv.end());
// auto frontpoint = ep.contour.points.front();
// pv.emplace_back(Pointf::new_unscale(frontpoint));
// }
auto result = concavehull::ConcaveHull(pv, 3, true);
if(result.empty()) std::cout << "Empty concave hull!!!" << std::endl;
std::cout << "result size " << result.size() << std::endl;
ExPolygon ret;
ret.contour.points.reserve(result.size() + 1);
std::reverse(result.begin(), result.end());
for(auto& p : result) {
std::cout << p.x << " " << p.y << std::endl;
ret.contour.points.emplace_back(Point::new_scale(p.x, p.y));
auto clipperholes = Slic3rMultiPoints_to_ClipperPaths(path.holes);
for(auto& hole : clipperholes) {
valid &= clipper.AddPath(hole, ClipperLib::ptSubject, closed);
}
}
reverse(ret.contour);
if(!valid) BOOST_LOG_TRIVIAL(warning) << "Unification of invalid shapes!";
// ret.contour.points.emplace_back(ret.contour.points.front());
ClipperLib::PolyTree result;
clipper.Execute(ClipperLib::ctUnion, result, ClipperLib::pftNonZero);
retv.reserve(static_cast<size_t>(result.Total()));
// Now we will recursively traverse the polygon tree and serialize it
// into an ExPolygon with holes. The polygon tree has the clipper-ish
// PolyTree structure which alternates its nodes as contours and holes
// A "declaration" of function for traversing leafs which are holes
std::function<void(ClipperLib::PolyNode*, ExPolygon&)> processHole;
// Process polygon which calls processHoles which than calls processPoly
// again until no leafs are left.
auto processPoly = [&retv, &processHole](ClipperLib::PolyNode *pptr) {
ExPolygon poly;
poly.contour.points = ClipperPath_to_Slic3rPolygon(pptr->Contour);
for(auto h : pptr->Childs) { processHole(h, poly); }
retv.push_back(poly);
};
// Body of the processHole function
processHole = [&processPoly](ClipperLib::PolyNode *pptr, ExPolygon& poly)
{
poly.holes.emplace_back();
poly.holes.back().points = ClipperPath_to_Slic3rPolygon(pptr->Contour);
for(auto c : pptr->Childs) processPoly(c);
};
// Wrapper for traversing.
auto traverse = [&processPoly] (ClipperLib::PolyNode *node)
{
for(auto ch : node->Childs) {
processPoly(ch);
}
};
// Here is the actual traverse
traverse(&result);
return retv;
}
inline Point centroid(Points& pp) {
Polygon p;
p.points.swap(pp);
Point c = p.centroid();
pp.swap(p.points);
return c;
}
inline Point centroid(const ExPolygon& poly) {
return poly.contour.centroid();
}
inline ExPolygon concave_hull(const ExPolygons& polys) {
if(polys.empty()) return ExPolygon();
ExPolygons punion = unify(polys);
ExPolygon ret;
if(punion.size() == 1) return punion.front();
// We get the centroids of all the islands in the 2D slice
Points centroids; centroids.reserve(punion.size());
std::transform(punion.begin(), punion.end(), std::back_inserter(centroids),
[](const ExPolygon& poly) { return centroid(poly); });
// Centroid of the centroids of islands. This is where the additional
// connector sticks are routed.
Point cc = centroid(centroids);
punion.reserve(punion.size() + centroids.size());
std::transform(centroids.begin(), centroids.end(),
std::back_inserter(punion),
[cc](const Point& c) {
double dx = x(c) - x(cc), dy = y(c) - y(cc);
double l = std::sqrt(dx * dx + dy * dy);
double nx = dx / l, ny = dy / l;
ExPolygon r;
auto& ctour = r.contour.points;
ctour.reserve(3);
ctour.emplace_back(cc);
Point d(coord_t(mm(1)*nx), coord_t(mm(1)*ny));
ctour.emplace_back(c + Point( -y(d), x(d) ));
ctour.emplace_back(c + Point( y(d), -x(d) ));
offset(r, mm(1));
return r;
});
punion = unify(punion);
if(punion.size() != 1)
BOOST_LOG_TRIVIAL(error) << "Cannot generate correct SLA base pool!";
if(!punion.empty()) ret = punion.front();
return ret;
}
@ -237,81 +294,54 @@ void ground_layer(const TriangleMesh &mesh, ExPolygons &output, float h)
output = tmp.front();
}
void create_base_pool(const ExPolygons &ground_layer, TriangleMesh& out)
void create_base_pool(const ExPolygons &ground_layer, TriangleMesh& out,
double min_wall_thickness_mm,
double min_wall_height_mm)
{
using libnest2d::PolygonImpl;
using boost::geometry::convex_hull;
using boost::geometry::is_valid;
static const Point::coord_type INNER_OFFSET_DIST = 2000000;
static const Point::coord_type OFFSET_DIST = 5000000;
static const Point::coord_type HEIGHT = 10000000;
// 1: Offset the ground layer
auto concaveh = ground_layer.front(); //concave_hull(ground_layer);
auto concaveh = concave_hull(ground_layer);
if(concaveh.contour.points.empty()) return;
concaveh.holes.clear();
// BoostPolygon chull_boost;
// convex_hull(convert(ground_layer), chull_boost);
// auto concaveh = convert(chull_boost);
BoundingBox bb(concaveh);
coord_t w = bb.max.x - bb.min.x;
coord_t h = bb.max.y - bb.min.y;
// auto pool = roofs(concaveh, HEIGHT);
auto wall_thickness = coord_t(std::pow((w+h)*0.1, 0.8));
// // Generate outer walls
// auto fp = [](const Point& p, Point::coord_type z) {
// return Pointf3::new_unscale(p.x, p.y, z);
// };
const coord_t WALL_THICKNESS = mm(min_wall_thickness_mm) + wall_thickness;
const coord_t WALL_DISTANCE = coord_t(0.3*WALL_THICKNESS);
const coord_t HEIGHT = mm(min_wall_height_mm);
// auto lines = concaveh.lines();
// std::cout << "lines: " << lines.size() << std::endl;
// for(auto& l : lines) {
// auto s = pool.points.size();
// pool.points.emplace_back(fp(l.a, 0));
// pool.points.emplace_back(fp(l.b, 0));
// pool.points.emplace_back(fp(l.a, HEIGHT));
// pool.points.emplace_back(fp(l.b, HEIGHT));
// pool.indices.emplace_back(s, s + 3, s + 1);
// pool.indices.emplace_back(s, s + 2, s + 3);
// }
// out = mesh(pool);
BoostPolygon chull_boost = convert(concaveh);
// convex_hull(convert(ground_layer), chull_boost);
offset(chull_boost, INNER_OFFSET_DIST);
auto chull_outer_boost = chull_boost;
offset(chull_outer_boost, OFFSET_DIST);
// Convert back to Slic3r format
ExPolygon chull_inner = convert(chull_boost);
ExPolygon chull_outer = convert(chull_outer_boost);
auto outer_base = concaveh;
offset(outer_base, WALL_THICKNESS+WALL_DISTANCE);
auto inner_base = outer_base;
offset(inner_base, -WALL_THICKNESS);
inner_base.holes.clear(); outer_base.holes.clear();
ExPolygon top_poly;
top_poly.contour = chull_outer.contour;
top_poly.holes.emplace_back(chull_inner.contour);
reverse(top_poly.holes.back());
top_poly.contour = outer_base.contour;
top_poly.holes.emplace_back(inner_base.contour);
auto& tph = top_poly.holes.back().points;
std::reverse(tph.begin(), tph.end());
Contour3D pool;
Polygons top_triangles, bottom_triangles;
top_poly.triangulate_pp(&top_triangles);
chull_outer.triangulate_pp(&bottom_triangles);
top_poly.triangulate_p2t(&top_triangles);
outer_base.triangulate_p2t(&bottom_triangles);
auto top_plate = convert(top_triangles, 0, false);
auto bottom_plate = convert(bottom_triangles, -HEIGHT, true);
auto innerbed = inner_bed(chull_inner, HEIGHT/2);
auto innerbed = inner_bed(inner_base, HEIGHT/2);
// Generate outer walls
auto fp = [](const Point& p, Point::coord_type z) {
return Pointf3::new_unscale(p.x, p.y, z);
auto fp = [](const Point& p, coord_t z) {
return Pointf3::new_unscale(x(p), y(p), z);
};
auto lines = chull_outer.lines();
auto lines = outer_base.lines();
for(auto& l : lines) {
auto s = pool.points.size();
auto s = coord_t(pool.points.size());
pool.points.emplace_back(fp(l.a, -HEIGHT));
pool.points.emplace_back(fp(l.b, -HEIGHT));