Merge branch 'master' of https://github.com/prusa3d/Slic3r into scene_manipulators

This commit is contained in:
Enrico Turri 2018-07-17 08:28:26 +02:00
commit f17d67871a
82 changed files with 16656 additions and 184 deletions

View file

@ -49,6 +49,8 @@ if(NOT DEFINED CMAKE_PREFIX_PATH)
endif()
endif()
enable_testing ()
# WIN10SDK_PATH is used to point CMake to the WIN10 SDK installation directory.
# We pick it from environment if it is not defined in another way
if(WIN32)
@ -79,7 +81,6 @@ else ()
set(PERL_PROVE "${PERL_BIN_PATH}/prove")
endif ()
enable_testing ()
add_test (NAME xs COMMAND "${PERL_EXECUTABLE}" ${PERL_PROVE} -I ${PROJECT_SOURCE_DIR}/local-lib/lib/perl5 WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/xs)
add_test (NAME integration COMMAND "${PERL_EXECUTABLE}" ${PERL_PROVE} WORKING_DIRECTORY ${PROJECT_SOURCE_DIR})

View file

@ -19,6 +19,7 @@ use Wx::Locale gettext => 'L';
our $qs_last_input_file;
our $qs_last_output_file;
our $last_config;
our $appController;
# Events to be sent from a C++ Tab implementation:
# 1) To inform about a change of a configuration value.
@ -31,6 +32,9 @@ sub new {
my $self = $class->SUPER::new(undef, -1, $Slic3r::FORK_NAME . ' - ' . $Slic3r::VERSION, wxDefaultPosition, wxDefaultSize, wxDEFAULT_FRAME_STYLE);
Slic3r::GUI::set_main_frame($self);
$appController = Slic3r::AppController->new();
if ($^O eq 'MSWin32') {
# Load the icon either from the exe, or from the ico file.
my $iconfile = Slic3r::decode_path($FindBin::Bin) . '\slic3r.exe';
@ -58,10 +62,21 @@ sub new {
eval { Wx::ToolTip::SetAutoPop(32767) };
# initialize status bar
$self->{statusbar} = Slic3r::GUI::ProgressStatusBar->new($self, -1);
$self->{statusbar} = Slic3r::GUI::ProgressStatusBar->new($self, Wx::NewId);
$self->{statusbar}->SetStatusText(L("Version ").$Slic3r::VERSION.L(" - Remember to check for updates at http://github.com/prusa3d/slic3r/releases"));
$self->SetStatusBar($self->{statusbar});
# Make the global status bar and its progress indicator available in C++
$appController->set_global_progress_indicator(
$self->{statusbar}->{prog}->GetId(),
$self->{statusbar}->GetId(),
);
$appController->set_model($self->{plater}->{model});
$appController->set_print($self->{plater}->{print});
$self->{plater}->{appController} = $appController;
$self->{loaded} = 1;
# initialize layout

View file

@ -45,6 +45,7 @@ use constant FILAMENT_CHOOSERS_SPACING => 0;
use constant PROCESS_DELAY => 0.5 * 1000; # milliseconds
my $PreventListEvents = 0;
our $appController;
sub new {
my ($class, $parent) = @_;
@ -1188,13 +1189,17 @@ sub arrange {
$self->pause_background_process;
my $bb = Slic3r::Geometry::BoundingBoxf->new_from_points($self->{config}->bed_shape);
my $success = $self->{model}->arrange_objects(wxTheApp->{preset_bundle}->full_config->min_object_distance, $bb);
# my $bb = Slic3r::Geometry::BoundingBoxf->new_from_points($self->{config}->bed_shape);
# my $success = $self->{model}->arrange_objects(wxTheApp->{preset_bundle}->full_config->min_object_distance, $bb);
# Update is not implemented in C++ so we cannot call this for now
$self->{appController}->arrange_model;
# ignore arrange failures on purpose: user has visual feedback and we don't need to warn him
# when parts don't fit in print bed
# Force auto center of the aligned grid of of objects on the print bed.
$self->update(1);
$self->update(0);
}
sub split_object {

View file

@ -22,6 +22,7 @@ xs/src/slic3r/GUI/UpdateDialogs.cpp
xs/src/slic3r/GUI/WipeTowerDialog.cpp
xs/src/slic3r/Utils/OctoPrint.cpp
xs/src/slic3r/Utils/PresetUpdater.cpp
xs/src/libslic3r/Print.cpp
xs/src/libslic3r/PrintConfig.cpp
xs/src/libslic3r/GCode/PreviewData.cpp
lib/Slic3r/GUI.pm

View file

@ -258,6 +258,11 @@ add_library(libslic3r_gui STATIC
${LIBDIR}/slic3r/Utils/PresetUpdater.hpp
${LIBDIR}/slic3r/Utils/Time.cpp
${LIBDIR}/slic3r/Utils/Time.hpp
${LIBDIR}/slic3r/IProgressIndicator.hpp
${LIBDIR}/slic3r/AppController.hpp
${LIBDIR}/slic3r/AppController.cpp
${LIBDIR}/slic3r/AppControllerWx.cpp
${LIBDIR}/slic3r/Strings.hpp
)
add_library(admesh STATIC
@ -405,6 +410,7 @@ set(XS_XSP_FILES
${XSP_DIR}/TriangleMesh.xsp
${XSP_DIR}/Utils_OctoPrint.xsp
${XSP_DIR}/Utils_PresetUpdater.xsp
${XSP_DIR}/AppController.xsp
${XSP_DIR}/XS.xsp
)
foreach (file ${XS_XSP_FILES})
@ -713,6 +719,19 @@ add_custom_target(pot
COMMENT "Generate pot file from strings in the source tree"
)
# ##############################################################################
# Adding libnest2d project for bin packing...
# ##############################################################################
set(LIBNEST2D_UNITTESTS ON CACHE BOOL "Force generating unittests for libnest2d")
add_subdirectory(${LIBDIR}/libnest2d)
target_include_directories(libslic3r PUBLIC BEFORE ${LIBNEST2D_INCLUDES})
message(STATUS "Libnest2D Libraries: ${LIBNEST2D_LIBRARIES}")
target_link_libraries(libslic3r ${LIBNEST2D_LIBRARIES})
# ##############################################################################
# Installation
install(TARGETS XS DESTINATION ${PERL_VENDORARCH}/auto/Slic3r/XS)
install(FILES lib/Slic3r/XS.pm DESTINATION ${PERL_VENDORLIB}/Slic3r)

58
xs/src/benchmark.h Normal file
View file

@ -0,0 +1,58 @@
/*
* Copyright (C) Tamás Mészáros
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef INCLUDE_BENCHMARK_H_
#define INCLUDE_BENCHMARK_H_
#include <chrono>
#include <ratio>
/**
* A class for doing benchmarks.
*/
class Benchmark {
typedef std::chrono::high_resolution_clock Clock;
typedef Clock::duration Duration;
typedef Clock::time_point TimePoint;
TimePoint t1, t2;
Duration d;
inline double to_sec(Duration d) {
return d.count() * double(Duration::period::num) / Duration::period::den;
}
public:
/**
* Measure time from the moment of this call.
*/
void start() { t1 = Clock::now(); }
/**
* Measure time to the moment of this call.
*/
void stop() { t2 = Clock::now(); }
/**
* Get the time elapsed between a start() end a stop() call.
* @return Returns the elapsed time in seconds.
*/
double getElapsedSec() { d = t2 - t1; return to_sec(d); }
};
#endif /* INCLUDE_BENCHMARK_H_ */

View file

@ -0,0 +1,121 @@
cmake_minimum_required(VERSION 2.8)
project(Libnest2D)
enable_testing()
if(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX)
# Update if necessary
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wno-long-long ")
endif()
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED)
# Add our own cmake module path.
list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake_modules/)
option(LIBNEST2D_UNITTESTS "If enabled, googletest framework will be downloaded
and the provided unit tests will be included in the build." OFF)
option(LIBNEST2D_BUILD_EXAMPLES "If enabled, examples will be built." OFF)
set(LIBNEST2D_GEOMETRIES_BACKEND "clipper" CACHE STRING
"Build libnest2d with geometry classes implemented by the chosen backend.")
set(LIBNEST2D_OPTIMIZER_BACKEND "nlopt" CACHE STRING
"Build libnest2d with optimization features implemented by the chosen backend.")
set(LIBNEST2D_SRCFILES
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/libnest2d.hpp # Templates only
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d.h # Exports ready made types using template arguments
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/geometry_traits.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/common.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/optimizer.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/placers/placer_boilerplate.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/placers/bottomleftplacer.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/placers/nfpplacer.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/geometry_traits_nfp.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/selections/selection_boilerplate.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/selections/filler.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/selections/firstfit.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/selections/djd_heuristic.hpp
)
set(LIBNEST2D_LIBRARIES "")
set(LIBNEST2D_HEADERS ${CMAKE_CURRENT_SOURCE_DIR})
if(LIBNEST2D_GEOMETRIES_BACKEND STREQUAL "clipper")
# Clipper backend is not enough on its own, it still needs some functions
# from Boost geometry
if(NOT Boost_INCLUDE_DIRS_FOUND)
find_package(Boost 1.58 REQUIRED)
# TODO automatic download of boost geometry headers
endif()
add_subdirectory(libnest2d/clipper_backend)
include_directories(BEFORE ${CLIPPER_INCLUDE_DIRS})
include_directories(${Boost_INCLUDE_DIRS})
list(APPEND LIBNEST2D_SRCFILES ${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/clipper_backend/clipper_backend.cpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/clipper_backend/clipper_backend.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/boost_alg.hpp)
list(APPEND LIBNEST2D_LIBRARIES ${CLIPPER_LIBRARIES})
list(APPEND LIBNEST2D_HEADERS ${CLIPPER_INCLUDE_DIRS}
${Boost_INCLUDE_DIRS_FOUND})
endif()
if(LIBNEST2D_OPTIMIZER_BACKEND STREQUAL "nlopt")
find_package(NLopt 1.4)
if(NOT NLopt_FOUND)
message(STATUS "NLopt not found so downloading "
"and automatic build is performed...")
include(DownloadNLopt)
endif()
find_package(Threads REQUIRED)
list(APPEND LIBNEST2D_SRCFILES ${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/optimizers/simplex.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/optimizers/subplex.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/optimizers/genetic.hpp
${CMAKE_CURRENT_SOURCE_DIR}/libnest2d/optimizers/nlopt_boilerplate.hpp)
list(APPEND LIBNEST2D_LIBRARIES ${NLopt_LIBS}
# Threads::Threads
)
list(APPEND LIBNEST2D_HEADERS ${NLopt_INCLUDE_DIR})
endif()
# Currently we are outsourcing the non-convex NFP implementation from
# libnfporb and it needs libgmp to work
#find_package(GMP)
#if(GMP_FOUND)
# list(APPEND LIBNEST2D_LIBRARIES ${GMP_LIBRARIES})
# list(APPEND LIBNEST2D_HEADERS ${GMP_INCLUDE_DIR})
# add_definitions(-DLIBNFP_USE_RATIONAL)
#endif()
if(LIBNEST2D_UNITTESTS)
add_subdirectory(tests)
endif()
if(LIBNEST2D_BUILD_EXAMPLES)
add_executable(example examples/main.cpp
# tools/libnfpglue.hpp
# tools/libnfpglue.cpp
tools/svgtools.hpp
tests/printer_parts.cpp
tests/printer_parts.h
${LIBNEST2D_SRCFILES})
target_link_libraries(example ${LIBNEST2D_LIBRARIES})
target_include_directories(example PUBLIC ${LIBNEST2D_HEADERS})
endif()
get_directory_property(hasParent PARENT_DIRECTORY)
if(hasParent)
set(LIBNEST2D_INCLUDES ${LIBNEST2D_HEADERS} PARENT_SCOPE)
set(LIBNEST2D_LIBRARIES ${LIBNEST2D_LIBRARIES} PARENT_SCOPE)
endif()

View file

@ -0,0 +1,661 @@
GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<http://www.gnu.org/licenses/>.

View file

@ -0,0 +1,33 @@
# Introduction
Libnest2D is a library and framework for the 2D bin packaging problem.
Inspired from the [SVGNest](svgnest.com) Javascript library the project is
built from scratch in C++11. The library is written with a policy that it should
be usable out of the box with a very simple interface but has to be customizable
to the very core as well. The algorithms are defined in a header only fashion
with templated geometry types. These geometries can have custom or already
existing implementation to avoid copying or having unnecessary dependencies.
A default backend is provided if the user of the library just wants to use it
out of the box without additional integration. The default backend is reasonably
fast and robust, being built on top of boost geometry and the
[polyclipping](http://www.angusj.com/delphi/clipper.php) library. Usage of
this default backend implies the dependency on these packages as well as the
compilation of the backend itself (The default backend is not yet header only).
This software is currently under construction and lacks a throughout
documentation and some essential algorithms as well. At this stage it works well
for rectangles and convex closed polygons without considering holes and
concavities.
Holes and non-convex polygons will be usable in the near future as well.
# References
- [SVGNest](https://github.com/Jack000/SVGnest)
- [An effective heuristic for the two-dimensional irregular
bin packing problem](http://www.cs.stir.ac.uk/~goc/papers/EffectiveHueristic2DAOR2013.pdf)
- [Complete and robust no-fit polygon generation for the irregular stock cutting problem](https://www.sciencedirect.com/science/article/abs/pii/S0377221706001639)
- [Applying Meta-Heuristic Algorithms to the Nesting
Problem Utilising the No Fit Polygon](http://www.graham-kendall.com/papers/k2001.pdf)
- [A comprehensive and robust procedure for obtaining the nofit polygon
using Minkowski sums](https://www.sciencedirect.com/science/article/pii/S0305054806000669)

View file

@ -0,0 +1,31 @@
include(DownloadProject)
if (CMAKE_VERSION VERSION_LESS 3.2)
set(UPDATE_DISCONNECTED_IF_AVAILABLE "")
else()
set(UPDATE_DISCONNECTED_IF_AVAILABLE "UPDATE_DISCONNECTED 1")
endif()
# set(NLopt_DIR ${CMAKE_BINARY_DIR}/nlopt)
include(DownloadProject)
download_project( PROJ nlopt
GIT_REPOSITORY https://github.com/stevengj/nlopt.git
GIT_TAG 1fcbcbf2fe8e34234e016cc43a6c41d3e8453e1f #master #nlopt-2.4.2
# CMAKE_CACHE_ARGS -DBUILD_SHARED_LIBS:BOOL=OFF -DCMAKE_BUILD_TYPE:STRING=${CMAKE_BUILD_TYPE} -DCMAKE_INSTALL_PREFIX=${NLopt_DIR}
${UPDATE_DISCONNECTED_IF_AVAILABLE}
)
set(SHARED_LIBS_STATE BUILD_SHARED_LIBS)
set(BUILD_SHARED_LIBS OFF CACHE BOOL "" FORCE)
set(NLOPT_PYTHON OFF CACHE BOOL "" FORCE)
set(NLOPT_OCTAVE OFF CACHE BOOL "" FORCE)
set(NLOPT_MATLAB OFF CACHE BOOL "" FORCE)
set(NLOPT_GUILE OFF CACHE BOOL "" FORCE)
set(NLOPT_SWIG OFF CACHE BOOL "" FORCE)
set(NLOPT_LINK_PYTHON OFF CACHE BOOL "" FORCE)
add_subdirectory(${nlopt_SOURCE_DIR} ${nlopt_BINARY_DIR})
set(NLopt_LIBS nlopt)
set(NLopt_INCLUDE_DIR ${nlopt_BINARY_DIR})
set(SHARED_LIBS_STATE ${SHARED_STATE})

View file

@ -0,0 +1,17 @@
# Distributed under the OSI-approved MIT License. See accompanying
# file LICENSE or https://github.com/Crascit/DownloadProject for details.
cmake_minimum_required(VERSION 2.8.2)
project(${DL_ARGS_PROJ}-download NONE)
include(ExternalProject)
ExternalProject_Add(${DL_ARGS_PROJ}-download
${DL_ARGS_UNPARSED_ARGUMENTS}
SOURCE_DIR "${DL_ARGS_SOURCE_DIR}"
BINARY_DIR "${DL_ARGS_BINARY_DIR}"
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
TEST_COMMAND ""
)

View file

@ -0,0 +1,182 @@
# Distributed under the OSI-approved MIT License. See accompanying
# file LICENSE or https://github.com/Crascit/DownloadProject for details.
#
# MODULE: DownloadProject
#
# PROVIDES:
# download_project( PROJ projectName
# [PREFIX prefixDir]
# [DOWNLOAD_DIR downloadDir]
# [SOURCE_DIR srcDir]
# [BINARY_DIR binDir]
# [QUIET]
# ...
# )
#
# Provides the ability to download and unpack a tarball, zip file, git repository,
# etc. at configure time (i.e. when the cmake command is run). How the downloaded
# and unpacked contents are used is up to the caller, but the motivating case is
# to download source code which can then be included directly in the build with
# add_subdirectory() after the call to download_project(). Source and build
# directories are set up with this in mind.
#
# The PROJ argument is required. The projectName value will be used to construct
# the following variables upon exit (obviously replace projectName with its actual
# value):
#
# projectName_SOURCE_DIR
# projectName_BINARY_DIR
#
# The SOURCE_DIR and BINARY_DIR arguments are optional and would not typically
# need to be provided. They can be specified if you want the downloaded source
# and build directories to be located in a specific place. The contents of
# projectName_SOURCE_DIR and projectName_BINARY_DIR will be populated with the
# locations used whether you provide SOURCE_DIR/BINARY_DIR or not.
#
# The DOWNLOAD_DIR argument does not normally need to be set. It controls the
# location of the temporary CMake build used to perform the download.
#
# The PREFIX argument can be provided to change the base location of the default
# values of DOWNLOAD_DIR, SOURCE_DIR and BINARY_DIR. If all of those three arguments
# are provided, then PREFIX will have no effect. The default value for PREFIX is
# CMAKE_BINARY_DIR.
#
# The QUIET option can be given if you do not want to show the output associated
# with downloading the specified project.
#
# In addition to the above, any other options are passed through unmodified to
# ExternalProject_Add() to perform the actual download, patch and update steps.
# The following ExternalProject_Add() options are explicitly prohibited (they
# are reserved for use by the download_project() command):
#
# CONFIGURE_COMMAND
# BUILD_COMMAND
# INSTALL_COMMAND
# TEST_COMMAND
#
# Only those ExternalProject_Add() arguments which relate to downloading, patching
# and updating of the project sources are intended to be used. Also note that at
# least one set of download-related arguments are required.
#
# If using CMake 3.2 or later, the UPDATE_DISCONNECTED option can be used to
# prevent a check at the remote end for changes every time CMake is run
# after the first successful download. See the documentation of the ExternalProject
# module for more information. It is likely you will want to use this option if it
# is available to you. Note, however, that the ExternalProject implementation contains
# bugs which result in incorrect handling of the UPDATE_DISCONNECTED option when
# using the URL download method or when specifying a SOURCE_DIR with no download
# method. Fixes for these have been created, the last of which is scheduled for
# inclusion in CMake 3.8.0. Details can be found here:
#
# https://gitlab.kitware.com/cmake/cmake/commit/bdca68388bd57f8302d3c1d83d691034b7ffa70c
# https://gitlab.kitware.com/cmake/cmake/issues/16428
#
# If you experience build errors related to the update step, consider avoiding
# the use of UPDATE_DISCONNECTED.
#
# EXAMPLE USAGE:
#
# include(DownloadProject)
# download_project(PROJ googletest
# GIT_REPOSITORY https://github.com/google/googletest.git
# GIT_TAG master
# UPDATE_DISCONNECTED 1
# QUIET
# )
#
# add_subdirectory(${googletest_SOURCE_DIR} ${googletest_BINARY_DIR})
#
#========================================================================================
set(_DownloadProjectDir "${CMAKE_CURRENT_LIST_DIR}")
include(CMakeParseArguments)
function(download_project)
set(options QUIET)
set(oneValueArgs
PROJ
PREFIX
DOWNLOAD_DIR
SOURCE_DIR
BINARY_DIR
# Prevent the following from being passed through
CONFIGURE_COMMAND
BUILD_COMMAND
INSTALL_COMMAND
TEST_COMMAND
)
set(multiValueArgs "")
cmake_parse_arguments(DL_ARGS "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
# Hide output if requested
if (DL_ARGS_QUIET)
set(OUTPUT_QUIET "OUTPUT_QUIET")
else()
unset(OUTPUT_QUIET)
message(STATUS "Downloading/updating ${DL_ARGS_PROJ}")
endif()
# Set up where we will put our temporary CMakeLists.txt file and also
# the base point below which the default source and binary dirs will be.
# The prefix must always be an absolute path.
if (NOT DL_ARGS_PREFIX)
set(DL_ARGS_PREFIX "${CMAKE_BINARY_DIR}")
else()
get_filename_component(DL_ARGS_PREFIX "${DL_ARGS_PREFIX}" ABSOLUTE
BASE_DIR "${CMAKE_CURRENT_BINARY_DIR}")
endif()
if (NOT DL_ARGS_DOWNLOAD_DIR)
set(DL_ARGS_DOWNLOAD_DIR "${DL_ARGS_PREFIX}/${DL_ARGS_PROJ}-download")
endif()
# Ensure the caller can know where to find the source and build directories
if (NOT DL_ARGS_SOURCE_DIR)
set(DL_ARGS_SOURCE_DIR "${DL_ARGS_PREFIX}/${DL_ARGS_PROJ}-src")
endif()
if (NOT DL_ARGS_BINARY_DIR)
set(DL_ARGS_BINARY_DIR "${DL_ARGS_PREFIX}/${DL_ARGS_PROJ}-build")
endif()
set(${DL_ARGS_PROJ}_SOURCE_DIR "${DL_ARGS_SOURCE_DIR}" PARENT_SCOPE)
set(${DL_ARGS_PROJ}_BINARY_DIR "${DL_ARGS_BINARY_DIR}" PARENT_SCOPE)
# The way that CLion manages multiple configurations, it causes a copy of
# the CMakeCache.txt to be copied across due to it not expecting there to
# be a project within a project. This causes the hard-coded paths in the
# cache to be copied and builds to fail. To mitigate this, we simply
# remove the cache if it exists before we configure the new project. It
# is safe to do so because it will be re-generated. Since this is only
# executed at the configure step, it should not cause additional builds or
# downloads.
file(REMOVE "${DL_ARGS_DOWNLOAD_DIR}/CMakeCache.txt")
# Create and build a separate CMake project to carry out the download.
# If we've already previously done these steps, they will not cause
# anything to be updated, so extra rebuilds of the project won't occur.
# Make sure to pass through CMAKE_MAKE_PROGRAM in case the main project
# has this set to something not findable on the PATH.
configure_file("${_DownloadProjectDir}/DownloadProject.CMakeLists.cmake.in"
"${DL_ARGS_DOWNLOAD_DIR}/CMakeLists.txt")
execute_process(COMMAND ${CMAKE_COMMAND} -G "${CMAKE_GENERATOR}"
-D "CMAKE_MAKE_PROGRAM:FILE=${CMAKE_MAKE_PROGRAM}"
.
RESULT_VARIABLE result
${OUTPUT_QUIET}
WORKING_DIRECTORY "${DL_ARGS_DOWNLOAD_DIR}"
)
if(result)
message(FATAL_ERROR "CMake step for ${DL_ARGS_PROJ} failed: ${result}")
endif()
execute_process(COMMAND ${CMAKE_COMMAND} --build .
RESULT_VARIABLE result
${OUTPUT_QUIET}
WORKING_DIRECTORY "${DL_ARGS_DOWNLOAD_DIR}"
)
if(result)
message(FATAL_ERROR "Build step for ${DL_ARGS_PROJ} failed: ${result}")
endif()
endfunction()

View file

@ -0,0 +1,50 @@
# Find Clipper library (http://www.angusj.com/delphi/clipper.php).
# The following variables are set
#
# CLIPPER_FOUND
# CLIPPER_INCLUDE_DIRS
# CLIPPER_LIBRARIES
#
# It searches the environment variable $CLIPPER_PATH automatically.
FIND_PATH(CLIPPER_INCLUDE_DIRS clipper.hpp
$ENV{CLIPPER_PATH}
$ENV{CLIPPER_PATH}/cpp/
$ENV{CLIPPER_PATH}/include/
$ENV{CLIPPER_PATH}/include/polyclipping/
${PROJECT_SOURCE_DIR}/python/pymesh/third_party/include/
${PROJECT_SOURCE_DIR}/python/pymesh/third_party/include/polyclipping/
${CMAKE_PREFIX_PATH}/include/polyclipping
${CMAKE_PREFIX_PATH}/include/
/opt/local/include/
/opt/local/include/polyclipping/
/usr/local/include/
/usr/local/include/polyclipping/
/usr/include
/usr/include/polyclipping/)
FIND_LIBRARY(CLIPPER_LIBRARIES polyclipping
$ENV{CLIPPER_PATH}
$ENV{CLIPPER_PATH}/cpp/
$ENV{CLIPPER_PATH}/cpp/build/
$ENV{CLIPPER_PATH}/lib/
$ENV{CLIPPER_PATH}/lib/polyclipping/
${PROJECT_SOURCE_DIR}/python/pymesh/third_party/lib/
${PROJECT_SOURCE_DIR}/python/pymesh/third_party/lib/polyclipping/
${CMAKE_PREFIX_PATH}/lib/
${CMAKE_PREFIX_PATH}/lib/polyclipping/
/opt/local/lib/
/opt/local/lib/polyclipping/
/usr/local/lib/
/usr/local/lib/polyclipping/
/usr/lib/polyclipping)
include(FindPackageHandleStandardArgs)
FIND_PACKAGE_HANDLE_STANDARD_ARGS(Clipper
"Clipper library cannot be found. Consider set CLIPPER_PATH environment variable"
CLIPPER_INCLUDE_DIRS
CLIPPER_LIBRARIES)
MARK_AS_ADVANCED(
CLIPPER_INCLUDE_DIRS
CLIPPER_LIBRARIES)

View file

@ -0,0 +1,35 @@
# Try to find the GMP libraries:
# GMP_FOUND - System has GMP lib
# GMP_INCLUDE_DIR - The GMP include directory
# GMP_LIBRARIES - Libraries needed to use GMP
if (GMP_INCLUDE_DIR AND GMP_LIBRARIES)
# Force search at every time, in case configuration changes
unset(GMP_INCLUDE_DIR CACHE)
unset(GMP_LIBRARIES CACHE)
endif (GMP_INCLUDE_DIR AND GMP_LIBRARIES)
find_path(GMP_INCLUDE_DIR NAMES gmp.h)
if(WIN32)
find_library(GMP_LIBRARIES NAMES libgmp.a gmp gmp.lib mpir mpir.lib)
else(WIN32)
if(STBIN)
message(STATUS "STBIN: ${STBIN}")
find_library(GMP_LIBRARIES NAMES libgmp.a gmp)
else(STBIN)
find_library(GMP_LIBRARIES NAMES libgmp.so gmp)
endif(STBIN)
endif(WIN32)
if(GMP_INCLUDE_DIR AND GMP_LIBRARIES)
set(GMP_FOUND TRUE)
endif(GMP_INCLUDE_DIR AND GMP_LIBRARIES)
if(GMP_FOUND)
message(STATUS "Configured GMP: ${GMP_LIBRARIES}")
else(GMP_FOUND)
message(STATUS "Could NOT find GMP")
endif(GMP_FOUND)
mark_as_advanced(GMP_INCLUDE_DIR GMP_LIBRARIES)

View file

@ -0,0 +1,125 @@
#///////////////////////////////////////////////////////////////////////////
#//-------------------------------------------------------------------------
#//
#// Description:
#// cmake module for finding NLopt installation
#// NLopt installation location is defined by environment variable $NLOPT
#//
#// following variables are defined:
#// NLopt_DIR - NLopt installation directory
#// NLopt_INCLUDE_DIR - NLopt header directory
#// NLopt_LIBRARY_DIR - NLopt library directory
#// NLopt_LIBS - NLopt library files
#//
#// Example usage:
#// find_package(NLopt 1.4 REQUIRED)
#//
#//
#//-------------------------------------------------------------------------
set(NLopt_FOUND FALSE)
set(NLopt_ERROR_REASON "")
set(NLopt_DEFINITIONS "")
set(NLopt_LIBS)
set(NLopt_DIR $ENV{NLOPT})
if(NOT NLopt_DIR)
set(NLopt_FOUND TRUE)
set(_NLopt_LIB_NAMES "nlopt")
find_library(NLopt_LIBS
NAMES ${_NLopt_LIB_NAMES})
if(NOT NLopt_LIBS)
set(NLopt_FOUND FALSE)
set(NLopt_ERROR_REASON "${NLopt_ERROR_REASON} Cannot find NLopt library '${_NLopt_LIB_NAMES}'.")
else()
get_filename_component(NLopt_DIR ${NLopt_LIBS} PATH)
endif()
unset(_NLopt_LIB_NAMES)
set(_NLopt_HEADER_FILE_NAME "nlopt.hpp")
find_file(_NLopt_HEADER_FILE
NAMES ${_NLopt_HEADER_FILE_NAME})
if(NOT _NLopt_HEADER_FILE)
set(NLopt_FOUND FALSE)
set(NLopt_ERROR_REASON "${NLopt_ERROR_REASON} Cannot find NLopt header file '${_NLopt_HEADER_FILE_NAME}'.")
endif()
unset(_NLopt_HEADER_FILE_NAME)
unset(_NLopt_HEADER_FILE)
if(NOT NLopt_FOUND)
set(NLopt_ERROR_REASON "${NLopt_ERROR_REASON} NLopt not found in system directories (and environment variable NLOPT is not set).")
else()
get_filename_component(NLopt_INCLUDE_DIR ${_NLopt_HEADER_FILE} DIRECTORY )
endif()
else()
set(NLopt_FOUND TRUE)
set(NLopt_INCLUDE_DIR "${NLopt_DIR}/include")
if(NOT EXISTS "${NLopt_INCLUDE_DIR}")
set(NLopt_FOUND FALSE)
set(NLopt_ERROR_REASON "${NLopt_ERROR_REASON} Directory '${NLopt_INCLUDE_DIR}' does not exist.")
endif()
set(NLopt_LIBRARY_DIR "${NLopt_DIR}/lib")
if(NOT EXISTS "${NLopt_LIBRARY_DIR}")
set(NLopt_FOUND FALSE)
set(NLopt_ERROR_REASON "${NLopt_ERROR_REASON} Directory '${NLopt_LIBRARY_DIR}' does not exist.")
endif()
set(_NLopt_LIB_NAMES "nlopt_cxx")
find_library(NLopt_LIBS
NAMES ${_NLopt_LIB_NAMES}
PATHS ${NLopt_LIBRARY_DIR}
NO_DEFAULT_PATH)
if(NOT NLopt_LIBS)
set(NLopt_FOUND FALSE)
set(NLopt_ERROR_REASON "${NLopt_ERROR_REASON} Cannot find NLopt library '${_NLopt_LIB_NAMES}' in '${NLopt_LIBRARY_DIR}'.")
endif()
unset(_NLopt_LIB_NAMES)
set(_NLopt_HEADER_FILE_NAME "nlopt.hpp")
find_file(_NLopt_HEADER_FILE
NAMES ${_NLopt_HEADER_FILE_NAME}
PATHS ${NLopt_INCLUDE_DIR}
NO_DEFAULT_PATH)
if(NOT _NLopt_HEADER_FILE)
set(NLopt_FOUND FALSE)
set(NLopt_ERROR_REASON "${NLopt_ERROR_REASON} Cannot find NLopt header file '${_NLopt_HEADER_FILE_NAME}' in '${NLopt_INCLUDE_DIR}'.")
endif()
unset(_NLopt_HEADER_FILE_NAME)
unset(_NLopt_HEADER_FILE)
endif()
# make variables changeable
mark_as_advanced(
NLopt_INCLUDE_DIR
NLopt_LIBRARY_DIR
NLopt_LIBS
NLopt_DEFINITIONS
)
# report result
if(NLopt_FOUND)
message(STATUS "Found NLopt in '${NLopt_DIR}'.")
message(STATUS "Using NLopt include directory '${NLopt_INCLUDE_DIR}'.")
message(STATUS "Using NLopt library '${NLopt_LIBS}'.")
else()
if(NLopt_FIND_REQUIRED)
message(FATAL_ERROR "Unable to find requested NLopt installation:${NLopt_ERROR_REASON}")
else()
if(NOT NLopt_FIND_QUIETLY)
message(STATUS "NLopt was not found:${NLopt_ERROR_REASON}")
endif()
endif()
endif()

View file

@ -0,0 +1,649 @@
#include <iostream>
#include <string>
#include <fstream>
//#define DEBUG_EXPORT_NFP
#include <libnest2d.h>
#include "tests/printer_parts.h"
#include "tools/benchmark.h"
#include "tools/svgtools.hpp"
//#include "tools/libnfpglue.hpp"
using namespace libnest2d;
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
std::vector<Item>& _parts(std::vector<Item>& ret, const TestData& data)
{
if(ret.empty()) {
ret.reserve(data.size());
for(auto& inp : data)
ret.emplace_back(inp);
}
return ret;
}
std::vector<Item>& prusaParts() {
static std::vector<Item> ret;
return _parts(ret, PRINTER_PART_POLYGONS);
}
std::vector<Item>& stegoParts() {
static std::vector<Item> ret;
return _parts(ret, STEGOSAUR_POLYGONS);
}
std::vector<Item>& prusaExParts() {
static std::vector<Item> ret;
if(ret.empty()) {
ret.reserve(PRINTER_PART_POLYGONS_EX.size());
for(auto& p : PRINTER_PART_POLYGONS_EX) {
ret.emplace_back(p.Contour, p.Holes);
}
}
return ret;
}
void arrangeRectangles() {
using namespace libnest2d;
const int SCALE = 1000000;
// const int SCALE = 1;
std::vector<Rectangle> rects = {
{80*SCALE, 80*SCALE},
{60*SCALE, 90*SCALE},
{70*SCALE, 30*SCALE},
{80*SCALE, 60*SCALE},
{60*SCALE, 60*SCALE},
{60*SCALE, 40*SCALE},
{40*SCALE, 40*SCALE},
{10*SCALE, 10*SCALE},
{10*SCALE, 10*SCALE},
{10*SCALE, 10*SCALE},
{10*SCALE, 10*SCALE},
{10*SCALE, 10*SCALE},
{5*SCALE, 5*SCALE},
{5*SCALE, 5*SCALE},
{5*SCALE, 5*SCALE},
{5*SCALE, 5*SCALE},
{5*SCALE, 5*SCALE},
{5*SCALE, 5*SCALE},
{5*SCALE, 5*SCALE},
{20*SCALE, 20*SCALE}
};
// std::vector<Rectangle> rects = {
// {20*SCALE, 10*SCALE},
// {20*SCALE, 10*SCALE},
// {20*SCALE, 20*SCALE},
// };
// std::vector<Item> input {
// {{0, 0}, {0, 20*SCALE}, {10*SCALE, 0}, {0, 0}}
// };
std::vector<Item> crasher = {
{
{-5000000, 8954050},
{5000000, 8954050},
{5000000, -45949},
{4972609, -568549},
{3500000, -8954050},
{-3500000, -8954050},
{-4972609, -568549},
{-5000000, -45949},
{-5000000, 8954050},
},
{
{-5000000, 8954050},
{5000000, 8954050},
{5000000, -45949},
{4972609, -568549},
{3500000, -8954050},
{-3500000, -8954050},
{-4972609, -568549},
{-5000000, -45949},
{-5000000, 8954050},
},
{
{-5000000, 8954050},
{5000000, 8954050},
{5000000, -45949},
{4972609, -568549},
{3500000, -8954050},
{-3500000, -8954050},
{-4972609, -568549},
{-5000000, -45949},
{-5000000, 8954050},
},
{
{-5000000, 8954050},
{5000000, 8954050},
{5000000, -45949},
{4972609, -568549},
{3500000, -8954050},
{-3500000, -8954050},
{-4972609, -568549},
{-5000000, -45949},
{-5000000, 8954050},
},
{
{-5000000, 8954050},
{5000000, 8954050},
{5000000, -45949},
{4972609, -568549},
{3500000, -8954050},
{-3500000, -8954050},
{-4972609, -568549},
{-5000000, -45949},
{-5000000, 8954050},
},
{
{-5000000, 8954050},
{5000000, 8954050},
{5000000, -45949},
{4972609, -568549},
{3500000, -8954050},
{-3500000, -8954050},
{-4972609, -568549},
{-5000000, -45949},
{-5000000, 8954050},
},
{
{-9945219, -3065619},
{-9781479, -2031780},
{-9510560, -1020730},
{-9135450, -43529},
{-2099999, 14110899},
{2099999, 14110899},
{9135450, -43529},
{9510560, -1020730},
{9781479, -2031780},
{9945219, -3065619},
{10000000, -4110899},
{9945219, -5156179},
{9781479, -6190020},
{9510560, -7201069},
{9135450, -8178270},
{8660249, -9110899},
{8090169, -9988750},
{7431449, -10802200},
{6691309, -11542300},
{5877850, -12201100},
{5000000, -12771100},
{4067369, -13246399},
{3090169, -13621500},
{2079119, -13892399},
{1045279, -14056099},
{0, -14110899},
{-1045279, -14056099},
{-2079119, -13892399},
{-3090169, -13621500},
{-4067369, -13246399},
{-5000000, -12771100},
{-5877850, -12201100},
{-6691309, -11542300},
{-7431449, -10802200},
{-8090169, -9988750},
{-8660249, -9110899},
{-9135450, -8178270},
{-9510560, -7201069},
{-9781479, -6190020},
{-9945219, -5156179},
{-10000000, -4110899},
{-9945219, -3065619},
},
{
{-9945219, -3065619},
{-9781479, -2031780},
{-9510560, -1020730},
{-9135450, -43529},
{-2099999, 14110899},
{2099999, 14110899},
{9135450, -43529},
{9510560, -1020730},
{9781479, -2031780},
{9945219, -3065619},
{10000000, -4110899},
{9945219, -5156179},
{9781479, -6190020},
{9510560, -7201069},
{9135450, -8178270},
{8660249, -9110899},
{8090169, -9988750},
{7431449, -10802200},
{6691309, -11542300},
{5877850, -12201100},
{5000000, -12771100},
{4067369, -13246399},
{3090169, -13621500},
{2079119, -13892399},
{1045279, -14056099},
{0, -14110899},
{-1045279, -14056099},
{-2079119, -13892399},
{-3090169, -13621500},
{-4067369, -13246399},
{-5000000, -12771100},
{-5877850, -12201100},
{-6691309, -11542300},
{-7431449, -10802200},
{-8090169, -9988750},
{-8660249, -9110899},
{-9135450, -8178270},
{-9510560, -7201069},
{-9781479, -6190020},
{-9945219, -5156179},
{-10000000, -4110899},
{-9945219, -3065619},
},
{
{-9945219, -3065619},
{-9781479, -2031780},
{-9510560, -1020730},
{-9135450, -43529},
{-2099999, 14110899},
{2099999, 14110899},
{9135450, -43529},
{9510560, -1020730},
{9781479, -2031780},
{9945219, -3065619},
{10000000, -4110899},
{9945219, -5156179},
{9781479, -6190020},
{9510560, -7201069},
{9135450, -8178270},
{8660249, -9110899},
{8090169, -9988750},
{7431449, -10802200},
{6691309, -11542300},
{5877850, -12201100},
{5000000, -12771100},
{4067369, -13246399},
{3090169, -13621500},
{2079119, -13892399},
{1045279, -14056099},
{0, -14110899},
{-1045279, -14056099},
{-2079119, -13892399},
{-3090169, -13621500},
{-4067369, -13246399},
{-5000000, -12771100},
{-5877850, -12201100},
{-6691309, -11542300},
{-7431449, -10802200},
{-8090169, -9988750},
{-8660249, -9110899},
{-9135450, -8178270},
{-9510560, -7201069},
{-9781479, -6190020},
{-9945219, -5156179},
{-10000000, -4110899},
{-9945219, -3065619},
},
{
{-9945219, -3065619},
{-9781479, -2031780},
{-9510560, -1020730},
{-9135450, -43529},
{-2099999, 14110899},
{2099999, 14110899},
{9135450, -43529},
{9510560, -1020730},
{9781479, -2031780},
{9945219, -3065619},
{10000000, -4110899},
{9945219, -5156179},
{9781479, -6190020},
{9510560, -7201069},
{9135450, -8178270},
{8660249, -9110899},
{8090169, -9988750},
{7431449, -10802200},
{6691309, -11542300},
{5877850, -12201100},
{5000000, -12771100},
{4067369, -13246399},
{3090169, -13621500},
{2079119, -13892399},
{1045279, -14056099},
{0, -14110899},
{-1045279, -14056099},
{-2079119, -13892399},
{-3090169, -13621500},
{-4067369, -13246399},
{-5000000, -12771100},
{-5877850, -12201100},
{-6691309, -11542300},
{-7431449, -10802200},
{-8090169, -9988750},
{-8660249, -9110899},
{-9135450, -8178270},
{-9510560, -7201069},
{-9781479, -6190020},
{-9945219, -5156179},
{-10000000, -4110899},
{-9945219, -3065619},
},
{
{-9945219, -3065619},
{-9781479, -2031780},
{-9510560, -1020730},
{-9135450, -43529},
{-2099999, 14110899},
{2099999, 14110899},
{9135450, -43529},
{9510560, -1020730},
{9781479, -2031780},
{9945219, -3065619},
{10000000, -4110899},
{9945219, -5156179},
{9781479, -6190020},
{9510560, -7201069},
{9135450, -8178270},
{8660249, -9110899},
{8090169, -9988750},
{7431449, -10802200},
{6691309, -11542300},
{5877850, -12201100},
{5000000, -12771100},
{4067369, -13246399},
{3090169, -13621500},
{2079119, -13892399},
{1045279, -14056099},
{0, -14110899},
{-1045279, -14056099},
{-2079119, -13892399},
{-3090169, -13621500},
{-4067369, -13246399},
{-5000000, -12771100},
{-5877850, -12201100},
{-6691309, -11542300},
{-7431449, -10802200},
{-8090169, -9988750},
{-8660249, -9110899},
{-9135450, -8178270},
{-9510560, -7201069},
{-9781479, -6190020},
{-9945219, -5156179},
{-10000000, -4110899},
{-9945219, -3065619},
},
{
{-9945219, -3065619},
{-9781479, -2031780},
{-9510560, -1020730},
{-9135450, -43529},
{-2099999, 14110899},
{2099999, 14110899},
{9135450, -43529},
{9510560, -1020730},
{9781479, -2031780},
{9945219, -3065619},
{10000000, -4110899},
{9945219, -5156179},
{9781479, -6190020},
{9510560, -7201069},
{9135450, -8178270},
{8660249, -9110899},
{8090169, -9988750},
{7431449, -10802200},
{6691309, -11542300},
{5877850, -12201100},
{5000000, -12771100},
{4067369, -13246399},
{3090169, -13621500},
{2079119, -13892399},
{1045279, -14056099},
{0, -14110899},
{-1045279, -14056099},
{-2079119, -13892399},
{-3090169, -13621500},
{-4067369, -13246399},
{-5000000, -12771100},
{-5877850, -12201100},
{-6691309, -11542300},
{-7431449, -10802200},
{-8090169, -9988750},
{-8660249, -9110899},
{-9135450, -8178270},
{-9510560, -7201069},
{-9781479, -6190020},
{-9945219, -5156179},
{-10000000, -4110899},
{-9945219, -3065619},
},
{
{-9945219, -3065619},
{-9781479, -2031780},
{-9510560, -1020730},
{-9135450, -43529},
{-2099999, 14110899},
{2099999, 14110899},
{9135450, -43529},
{9510560, -1020730},
{9781479, -2031780},
{9945219, -3065619},
{10000000, -4110899},
{9945219, -5156179},
{9781479, -6190020},
{9510560, -7201069},
{9135450, -8178270},
{8660249, -9110899},
{8090169, -9988750},
{7431449, -10802200},
{6691309, -11542300},
{5877850, -12201100},
{5000000, -12771100},
{4067369, -13246399},
{3090169, -13621500},
{2079119, -13892399},
{1045279, -14056099},
{0, -14110899},
{-1045279, -14056099},
{-2079119, -13892399},
{-3090169, -13621500},
{-4067369, -13246399},
{-5000000, -12771100},
{-5877850, -12201100},
{-6691309, -11542300},
{-7431449, -10802200},
{-8090169, -9988750},
{-8660249, -9110899},
{-9135450, -8178270},
{-9510560, -7201069},
{-9781479, -6190020},
{-9945219, -5156179},
{-10000000, -4110899},
{-9945219, -3065619},
},
{
{-9945219, -3065619},
{-9781479, -2031780},
{-9510560, -1020730},
{-9135450, -43529},
{-2099999, 14110899},
{2099999, 14110899},
{9135450, -43529},
{9510560, -1020730},
{9781479, -2031780},
{9945219, -3065619},
{10000000, -4110899},
{9945219, -5156179},
{9781479, -6190020},
{9510560, -7201069},
{9135450, -8178270},
{8660249, -9110899},
{8090169, -9988750},
{7431449, -10802200},
{6691309, -11542300},
{5877850, -12201100},
{5000000, -12771100},
{4067369, -13246399},
{3090169, -13621500},
{2079119, -13892399},
{1045279, -14056099},
{0, -14110899},
{-1045279, -14056099},
{-2079119, -13892399},
{-3090169, -13621500},
{-4067369, -13246399},
{-5000000, -12771100},
{-5877850, -12201100},
{-6691309, -11542300},
{-7431449, -10802200},
{-8090169, -9988750},
{-8660249, -9110899},
{-9135450, -8178270},
{-9510560, -7201069},
{-9781479, -6190020},
{-9945219, -5156179},
{-10000000, -4110899},
{-9945219, -3065619},
},
{
{-18000000, -1000000},
{-15000000, 22000000},
{-11000000, 26000000},
{11000000, 26000000},
{15000000, 22000000},
{18000000, -1000000},
{18000000, -26000000},
{-18000000, -26000000},
{-18000000, -1000000},
},
};
std::vector<Item> proba = {
{
{ {0, 0}, {20, 20}, {40, 0}, {0, 0} }
},
{
{ {0, 100}, {50, 60}, {100, 100}, {50, 0}, {0, 100} }
},
};
std::vector<Item> input;
// input.insert(input.end(), prusaParts().begin(), prusaParts().end());
// input.insert(input.end(), prusaExParts().begin(), prusaExParts().end());
// input.insert(input.end(), stegoParts().begin(), stegoParts().end());
// input.insert(input.end(), rects.begin(), rects.end());
// input.insert(input.end(), proba.begin(), proba.end());
input.insert(input.end(), crasher.begin(), crasher.end());
Box bin(250*SCALE, 210*SCALE);
Coord min_obj_distance = 6*SCALE;
using Placer = NfpPlacer;
using Packer = Arranger<Placer, FirstFitSelection>;
Packer arrange(bin, min_obj_distance);
Packer::PlacementConfig pconf;
pconf.alignment = Placer::Config::Alignment::CENTER;
pconf.rotations = {0.0/*, Pi/2.0, Pi, 3*Pi/2*/};
pconf.object_function = [&bin](Placer::Pile pile, double area,
double norm, double penality) {
auto bb = ShapeLike::boundingBox(pile);
double diameter = PointLike::distance(bb.minCorner(),
bb.maxCorner());
// We will optimize to the diameter of the circle around the bounding
// box and use the norming factor to get rid of the physical dimensions
double score = diameter / norm;
// If it does not fit into the print bed we will beat it
// with a large penality
if(!NfpPlacer::wouldFit(bb, bin)) score = 2*penality - score;
return score;
};
Packer::SelectionConfig sconf;
// sconf.allow_parallel = false;
// sconf.force_parallel = false;
// sconf.try_reverse_order = true;
arrange.configure(pconf, sconf);
arrange.progressIndicator([&](unsigned r){
// svg::SVGWriter::Config conf;
// conf.mm_in_coord_units = SCALE;
// svg::SVGWriter svgw(conf);
// svgw.setSize(bin);
// svgw.writePackGroup(arrange.lastResult());
// svgw.save("debout");
std::cout << "Remaining items: " << r << std::endl;
})/*.useMinimumBoundigBoxRotation()*/;
Benchmark bench;
bench.start();
Packer::ResultType result;
try {
result = arrange.arrange(input.begin(), input.end());
} catch(GeometryException& ge) {
std::cerr << "Geometry error: " << ge.what() << std::endl;
return ;
} catch(std::exception& e) {
std::cerr << "Exception: " << e.what() << std::endl;
return ;
}
bench.stop();
std::vector<double> eff;
eff.reserve(result.size());
auto bin_area = double(bin.height()*bin.width());
for(auto& r : result) {
double a = 0;
std::for_each(r.begin(), r.end(), [&a] (Item& e ){ a += e.area(); });
eff.emplace_back(a/bin_area);
};
std::cout << bench.getElapsedSec() << " bin count: " << result.size()
<< std::endl;
std::cout << "Bin efficiency: (";
for(double e : eff) std::cout << e*100.0 << "% ";
std::cout << ") Average: "
<< std::accumulate(eff.begin(), eff.end(), 0.0)*100.0/result.size()
<< " %" << std::endl;
std::cout << "Bin usage: (";
unsigned total = 0;
for(auto& r : result) { std::cout << r.size() << " "; total += r.size(); }
std::cout << ") Total: " << total << std::endl;
for(auto& it : input) {
auto ret = ShapeLike::isValid(it.transformedShape());
std::cout << ret.second << std::endl;
}
if(total != input.size()) std::cout << "ERROR " << "could not pack "
<< input.size() - total << " elements!"
<< std::endl;
svg::SVGWriter::Config conf;
conf.mm_in_coord_units = SCALE;
svg::SVGWriter svgw(conf);
svgw.setSize(bin);
svgw.writePackGroup(result);
// std::for_each(input.begin(), input.end(), [&svgw](Item& item){ svgw.writeItem(item);});
svgw.save("out");
}
int main(void /*int argc, char **argv*/) {
arrangeRectangles();
// findDegenerateCase();
return EXIT_SUCCESS;
}

View file

@ -0,0 +1,44 @@
#ifndef LIBNEST2D_H
#define LIBNEST2D_H
// The type of backend should be set conditionally by the cmake configuriation
// for now we set it statically to clipper backend
#include <libnest2d/clipper_backend/clipper_backend.hpp>
// We include the stock optimizers for local and global optimization
#include <libnest2d/optimizers/simplex.hpp> // Local subplex for NfpPlacer
#include <libnest2d/optimizers/genetic.hpp> // Genetic for min. bounding box
#include <libnest2d/libnest2d.hpp>
#include <libnest2d/placers/bottomleftplacer.hpp>
#include <libnest2d/placers/nfpplacer.hpp>
#include <libnest2d/selections/firstfit.hpp>
#include <libnest2d/selections/filler.hpp>
#include <libnest2d/selections/djd_heuristic.hpp>
namespace libnest2d {
using Point = PointImpl;
using Coord = TCoord<PointImpl>;
using Box = _Box<PointImpl>;
using Segment = _Segment<PointImpl>;
using Item = _Item<PolygonImpl>;
using Rectangle = _Rectangle<PolygonImpl>;
using PackGroup = _PackGroup<PolygonImpl>;
using IndexedPackGroup = _IndexedPackGroup<PolygonImpl>;
using FillerSelection = strategies::_FillerSelection<PolygonImpl>;
using FirstFitSelection = strategies::_FirstFitSelection<PolygonImpl>;
using DJDHeuristic = strategies::_DJDHeuristic<PolygonImpl>;
using NfpPlacer = strategies::_NofitPolyPlacer<PolygonImpl>;
using BottomLeftPlacer = strategies::_BottomLeftPlacer<PolygonImpl>;
//template<NfpLevel lvl = NfpLevel::BOTH_CONCAVE_WITH_HOLES>
//using NofitPolyPlacer = strategies::_NofitPolyPlacer<PolygonImpl, lvl>;
}
#endif // LIBNEST2D_H

View file

@ -0,0 +1,536 @@
#ifndef BOOST_ALG_HPP
#define BOOST_ALG_HPP
#ifndef DISABLE_BOOST_SERIALIZE
#include <sstream>
#endif
#ifdef __clang__
#undef _MSC_EXTENSIONS
#endif
#include <boost/geometry.hpp>
// this should be removed to not confuse the compiler
// #include <libnest2d.h>
namespace bp2d {
using libnest2d::TCoord;
using libnest2d::PointImpl;
using Coord = TCoord<PointImpl>;
using libnest2d::PolygonImpl;
using libnest2d::PathImpl;
using libnest2d::Orientation;
using libnest2d::OrientationType;
using libnest2d::getX;
using libnest2d::getY;
using libnest2d::setX;
using libnest2d::setY;
using Box = libnest2d::_Box<PointImpl>;
using Segment = libnest2d::_Segment<PointImpl>;
using Shapes = libnest2d::Nfp::Shapes<PolygonImpl>;
}
/**
* We have to make all the libnest2d geometry types available to boost. The real
* models of the geometries remain the same if a conforming model for libnest2d
* was defined by the library client. Boost is used only as an optional
* implementer of some algorithms that can be implemented by the model itself
* if a faster alternative exists.
*
* However, boost has its own type traits and we have to define the needed
* specializations to be able to use boost::geometry. This can be done with the
* already provided model.
*/
namespace boost {
namespace geometry {
namespace traits {
/* ************************************************************************** */
/* Point concept adaptaion ************************************************** */
/* ************************************************************************** */
template<> struct tag<bp2d::PointImpl> {
using type = point_tag;
};
template<> struct coordinate_type<bp2d::PointImpl> {
using type = bp2d::Coord;
};
template<> struct coordinate_system<bp2d::PointImpl> {
using type = cs::cartesian;
};
template<> struct dimension<bp2d::PointImpl>: boost::mpl::int_<2> {};
template<>
struct access<bp2d::PointImpl, 0 > {
static inline bp2d::Coord get(bp2d::PointImpl const& a) {
return libnest2d::getX(a);
}
static inline void set(bp2d::PointImpl& a,
bp2d::Coord const& value) {
libnest2d::setX(a, value);
}
};
template<>
struct access<bp2d::PointImpl, 1 > {
static inline bp2d::Coord get(bp2d::PointImpl const& a) {
return libnest2d::getY(a);
}
static inline void set(bp2d::PointImpl& a,
bp2d::Coord const& value) {
libnest2d::setY(a, value);
}
};
/* ************************************************************************** */
/* Box concept adaptaion **************************************************** */
/* ************************************************************************** */
template<> struct tag<bp2d::Box> {
using type = box_tag;
};
template<> struct point_type<bp2d::Box> {
using type = bp2d::PointImpl;
};
template<> struct indexed_access<bp2d::Box, min_corner, 0> {
static inline bp2d::Coord get(bp2d::Box const& box) {
return bp2d::getX(box.minCorner());
}
static inline void set(bp2d::Box &box, bp2d::Coord const& coord) {
bp2d::setX(box.minCorner(), coord);
}
};
template<> struct indexed_access<bp2d::Box, min_corner, 1> {
static inline bp2d::Coord get(bp2d::Box const& box) {
return bp2d::getY(box.minCorner());
}
static inline void set(bp2d::Box &box, bp2d::Coord const& coord) {
bp2d::setY(box.minCorner(), coord);
}
};
template<> struct indexed_access<bp2d::Box, max_corner, 0> {
static inline bp2d::Coord get(bp2d::Box const& box) {
return bp2d::getX(box.maxCorner());
}
static inline void set(bp2d::Box &box, bp2d::Coord const& coord) {
bp2d::setX(box.maxCorner(), coord);
}
};
template<> struct indexed_access<bp2d::Box, max_corner, 1> {
static inline bp2d::Coord get(bp2d::Box const& box) {
return bp2d::getY(box.maxCorner());
}
static inline void set(bp2d::Box &box, bp2d::Coord const& coord) {
bp2d::setY(box.maxCorner(), coord);
}
};
/* ************************************************************************** */
/* Segment concept adaptaion ************************************************ */
/* ************************************************************************** */
template<> struct tag<bp2d::Segment> {
using type = segment_tag;
};
template<> struct point_type<bp2d::Segment> {
using type = bp2d::PointImpl;
};
template<> struct indexed_access<bp2d::Segment, 0, 0> {
static inline bp2d::Coord get(bp2d::Segment const& seg) {
return bp2d::getX(seg.first());
}
static inline void set(bp2d::Segment &seg, bp2d::Coord const& coord) {
auto p = seg.first(); bp2d::setX(p, coord); seg.first(p);
}
};
template<> struct indexed_access<bp2d::Segment, 0, 1> {
static inline bp2d::Coord get(bp2d::Segment const& seg) {
return bp2d::getY(seg.first());
}
static inline void set(bp2d::Segment &seg, bp2d::Coord const& coord) {
auto p = seg.first(); bp2d::setY(p, coord); seg.first(p);
}
};
template<> struct indexed_access<bp2d::Segment, 1, 0> {
static inline bp2d::Coord get(bp2d::Segment const& seg) {
return bp2d::getX(seg.second());
}
static inline void set(bp2d::Segment &seg, bp2d::Coord const& coord) {
auto p = seg.second(); bp2d::setX(p, coord); seg.second(p);
}
};
template<> struct indexed_access<bp2d::Segment, 1, 1> {
static inline bp2d::Coord get(bp2d::Segment const& seg) {
return bp2d::getY(seg.second());
}
static inline void set(bp2d::Segment &seg, bp2d::Coord const& coord) {
auto p = seg.second(); bp2d::setY(p, coord); seg.second(p);
}
};
/* ************************************************************************** */
/* Polygon concept adaptation *********************************************** */
/* ************************************************************************** */
// Connversion between libnest2d::Orientation and order_selector ///////////////
template<bp2d::Orientation> struct ToBoostOrienation {};
template<>
struct ToBoostOrienation<bp2d::Orientation::CLOCKWISE> {
static const order_selector Value = clockwise;
};
template<>
struct ToBoostOrienation<bp2d::Orientation::COUNTER_CLOCKWISE> {
static const order_selector Value = counterclockwise;
};
static const bp2d::Orientation RealOrientation =
bp2d::OrientationType<bp2d::PolygonImpl>::Value;
// Ring implementation /////////////////////////////////////////////////////////
// Boost would refer to ClipperLib::Path (alias bp2d::PolygonImpl) as a ring
template<> struct tag<bp2d::PathImpl> {
using type = ring_tag;
};
template<> struct point_order<bp2d::PathImpl> {
static const order_selector value =
ToBoostOrienation<RealOrientation>::Value;
};
// All our Paths should be closed for the bin packing application
template<> struct closure<bp2d::PathImpl> {
static const closure_selector value = closed;
};
// Polygon implementation //////////////////////////////////////////////////////
template<> struct tag<bp2d::PolygonImpl> {
using type = polygon_tag;
};
template<> struct exterior_ring<bp2d::PolygonImpl> {
static inline bp2d::PathImpl& get(bp2d::PolygonImpl& p) {
return libnest2d::ShapeLike::getContour(p);
}
static inline bp2d::PathImpl const& get(bp2d::PolygonImpl const& p) {
return libnest2d::ShapeLike::getContour(p);
}
};
template<> struct ring_const_type<bp2d::PolygonImpl> {
using type = const bp2d::PathImpl&;
};
template<> struct ring_mutable_type<bp2d::PolygonImpl> {
using type = bp2d::PathImpl&;
};
template<> struct interior_const_type<bp2d::PolygonImpl> {
using type = const libnest2d::THolesContainer<bp2d::PolygonImpl>&;
};
template<> struct interior_mutable_type<bp2d::PolygonImpl> {
using type = libnest2d::THolesContainer<bp2d::PolygonImpl>&;
};
template<>
struct interior_rings<bp2d::PolygonImpl> {
static inline libnest2d::THolesContainer<bp2d::PolygonImpl>& get(
bp2d::PolygonImpl& p)
{
return libnest2d::ShapeLike::holes(p);
}
static inline const libnest2d::THolesContainer<bp2d::PolygonImpl>& get(
bp2d::PolygonImpl const& p)
{
return libnest2d::ShapeLike::holes(p);
}
};
/* ************************************************************************** */
/* MultiPolygon concept adaptation ****************************************** */
/* ************************************************************************** */
template<> struct tag<bp2d::Shapes> {
using type = multi_polygon_tag;
};
} // traits
} // geometry
// This is an addition to the ring implementation of Polygon concept
template<>
struct range_value<bp2d::PathImpl> {
using type = bp2d::PointImpl;
};
template<>
struct range_value<bp2d::Shapes> {
using type = bp2d::PolygonImpl;
};
} // boost
/* ************************************************************************** */
/* Algorithms *************************************************************** */
/* ************************************************************************** */
namespace libnest2d { // Now the algorithms that boost can provide...
template<>
inline double PointLike::distance(const PointImpl& p1,
const PointImpl& p2 )
{
return boost::geometry::distance(p1, p2);
}
template<>
inline double PointLike::distance(const PointImpl& p,
const bp2d::Segment& seg )
{
return boost::geometry::distance(p, seg);
}
// Tell libnest2d how to make string out of a ClipperPolygon object
template<>
inline bool ShapeLike::intersects(const PathImpl& sh1,
const PathImpl& sh2)
{
return boost::geometry::intersects(sh1, sh2);
}
// Tell libnest2d how to make string out of a ClipperPolygon object
template<>
inline bool ShapeLike::intersects(const PolygonImpl& sh1,
const PolygonImpl& sh2)
{
return boost::geometry::intersects(sh1, sh2);
}
// Tell libnest2d how to make string out of a ClipperPolygon object
template<>
inline bool ShapeLike::intersects(const bp2d::Segment& s1,
const bp2d::Segment& s2)
{
return boost::geometry::intersects(s1, s2);
}
#ifndef DISABLE_BOOST_AREA
template<>
inline double ShapeLike::area(const PolygonImpl& shape)
{
return boost::geometry::area(shape);
}
#endif
template<>
inline bool ShapeLike::isInside(const PointImpl& point,
const PolygonImpl& shape)
{
return boost::geometry::within(point, shape);
}
template<>
inline bool ShapeLike::isInside(const PolygonImpl& sh1,
const PolygonImpl& sh2)
{
return boost::geometry::within(sh1, sh2);
}
template<>
inline bool ShapeLike::touches( const PolygonImpl& sh1,
const PolygonImpl& sh2)
{
return boost::geometry::touches(sh1, sh2);
}
template<>
inline bool ShapeLike::touches( const PointImpl& point,
const PolygonImpl& shape)
{
return boost::geometry::touches(point, shape);
}
#ifndef DISABLE_BOOST_BOUNDING_BOX
template<>
inline bp2d::Box ShapeLike::boundingBox(const PolygonImpl& sh)
{
bp2d::Box b;
boost::geometry::envelope(sh, b);
return b;
}
template<>
inline bp2d::Box ShapeLike::boundingBox<PolygonImpl>(const bp2d::Shapes& shapes)
{
bp2d::Box b;
boost::geometry::envelope(shapes, b);
return b;
}
#endif
#ifndef DISABLE_BOOST_CONVEX_HULL
template<>
inline PolygonImpl ShapeLike::convexHull(const PolygonImpl& sh)
{
PolygonImpl ret;
boost::geometry::convex_hull(sh, ret);
return ret;
}
template<>
inline PolygonImpl ShapeLike::convexHull(const bp2d::Shapes& shapes)
{
PolygonImpl ret;
boost::geometry::convex_hull(shapes, ret);
return ret;
}
#endif
#ifndef DISABLE_BOOST_ROTATE
template<>
inline void ShapeLike::rotate(PolygonImpl& sh, const Radians& rads)
{
namespace trans = boost::geometry::strategy::transform;
PolygonImpl cpy = sh;
trans::rotate_transformer<boost::geometry::radian, Radians, 2, 2>
rotate(rads);
boost::geometry::transform(cpy, sh, rotate);
}
#endif
#ifndef DISABLE_BOOST_TRANSLATE
template<>
inline void ShapeLike::translate(PolygonImpl& sh, const PointImpl& offs)
{
namespace trans = boost::geometry::strategy::transform;
PolygonImpl cpy = sh;
trans::translate_transformer<bp2d::Coord, 2, 2> translate(
bp2d::getX(offs), bp2d::getY(offs));
boost::geometry::transform(cpy, sh, translate);
}
#endif
#ifndef DISABLE_BOOST_OFFSET
template<>
inline void ShapeLike::offset(PolygonImpl& sh, bp2d::Coord distance)
{
PolygonImpl cpy = sh;
boost::geometry::buffer(cpy, sh, distance);
}
#endif
#ifndef DISABLE_BOOST_NFP_MERGE
template<>
inline bp2d::Shapes Nfp::merge(const bp2d::Shapes& shapes,
const PolygonImpl& sh)
{
bp2d::Shapes retv;
boost::geometry::union_(shapes, sh, retv);
return retv;
}
#endif
//#ifndef DISABLE_BOOST_MINKOWSKI_ADD
//template<>
//inline PolygonImpl& Nfp::minkowskiAdd(PolygonImpl& sh,
// const PolygonImpl& /*other*/)
//{
// return sh;
//}
//#endif
#ifndef DISABLE_BOOST_SERIALIZE
template<> inline std::string ShapeLike::serialize<libnest2d::Formats::SVG>(
const PolygonImpl& sh, double scale)
{
std::stringstream ss;
std::string style = "fill: none; stroke: black; stroke-width: 1px;";
using namespace boost::geometry;
using Pointf = model::point<double, 2, cs::cartesian>;
using Polygonf = model::polygon<Pointf>;
Polygonf::ring_type ring;
Polygonf::inner_container_type holes;
ring.reserve(ShapeLike::contourVertexCount(sh));
for(auto it = ShapeLike::cbegin(sh); it != ShapeLike::cend(sh); it++) {
auto& v = *it;
ring.emplace_back(getX(v)*scale, getY(v)*scale);
};
auto H = ShapeLike::holes(sh);
for(PathImpl& h : H ) {
Polygonf::ring_type hf;
for(auto it = h.begin(); it != h.end(); it++) {
auto& v = *it;
hf.emplace_back(getX(v)*scale, getY(v)*scale);
};
holes.push_back(hf);
}
Polygonf poly;
poly.outer() = ring;
poly.inners() = holes;
auto svg_data = boost::geometry::svg(poly, style);
ss << svg_data << std::endl;
return ss.str();
}
#endif
#ifndef DISABLE_BOOST_UNSERIALIZE
template<>
inline void ShapeLike::unserialize<libnest2d::Formats::SVG>(
PolygonImpl& sh,
const std::string& str)
{
}
#endif
template<> inline std::pair<bool, std::string>
ShapeLike::isValid(const PolygonImpl& sh)
{
std::string message;
bool ret = boost::geometry::is_valid(sh, message);
return {ret, message};
}
}
#endif // BOOST_ALG_HPP

View file

@ -0,0 +1,48 @@
if(NOT TARGET clipper) # If there is a clipper target in the parent project we are good to go.
find_package(Clipper 6.1)
if(NOT CLIPPER_FOUND)
find_package(Subversion QUIET)
if(Subversion_FOUND)
message(STATUS "Clipper not found so it will be downloaded.")
# Silently download and build the library in the build dir
if (CMAKE_VERSION VERSION_LESS 3.2)
set(UPDATE_DISCONNECTED_IF_AVAILABLE "")
else()
set(UPDATE_DISCONNECTED_IF_AVAILABLE "UPDATE_DISCONNECTED 1")
endif()
include(DownloadProject)
download_project( PROJ clipper_library
SVN_REPOSITORY https://svn.code.sf.net/p/polyclipping/code/trunk/cpp
SVN_REVISION -r540
#SOURCE_SUBDIR cpp
INSTALL_COMMAND ""
CONFIGURE_COMMAND "" # Not working, I will just add the source files
${UPDATE_DISCONNECTED_IF_AVAILABLE}
)
# This is not working and I dont have time to fix it
# add_subdirectory(${clipper_library_SOURCE_DIR}/cpp
# ${clipper_library_BINARY_DIR}
# )
add_library(clipper_lib STATIC
${clipper_library_SOURCE_DIR}/clipper.cpp
${clipper_library_SOURCE_DIR}/clipper.hpp)
set(CLIPPER_INCLUDE_DIRS ${clipper_library_SOURCE_DIR}
PARENT_SCOPE)
set(CLIPPER_LIBRARIES clipper_lib PARENT_SCOPE)
else()
message(FATAL_ERROR "Can't find clipper library and no SVN client found to download.
You can download the clipper sources and define a clipper target in your project, that will work for libnest2d.")
endif()
endif()
else()
set(CLIPPER_LIBRARIES clipper PARENT_SCOPE)
endif()

View file

@ -0,0 +1,58 @@
//#include "clipper_backend.hpp"
//#include <atomic>
//namespace libnest2d {
//namespace {
//class SpinLock {
// std::atomic_flag& lck_;
//public:
// inline SpinLock(std::atomic_flag& flg): lck_(flg) {}
// inline void lock() {
// while(lck_.test_and_set(std::memory_order_acquire)) {}
// }
// inline void unlock() { lck_.clear(std::memory_order_release); }
//};
//class HoleCache {
// friend struct libnest2d::ShapeLike;
// std::unordered_map< const PolygonImpl*, ClipperLib::Paths> map;
// ClipperLib::Paths& _getHoles(const PolygonImpl* p) {
// static std::atomic_flag flg = ATOMIC_FLAG_INIT;
// SpinLock lock(flg);
// lock.lock();
// ClipperLib::Paths& paths = map[p];
// lock.unlock();
// if(paths.size() != p->Childs.size()) {
// paths.reserve(p->Childs.size());
// for(auto np : p->Childs) {
// paths.emplace_back(np->Contour);
// }
// }
// return paths;
// }
// ClipperLib::Paths& getHoles(PolygonImpl& p) {
// return _getHoles(&p);
// }
// const ClipperLib::Paths& getHoles(const PolygonImpl& p) {
// return _getHoles(&p);
// }
//};
//}
//HoleCache holeCache;
//}

View file

@ -0,0 +1,474 @@
#ifndef CLIPPER_BACKEND_HPP
#define CLIPPER_BACKEND_HPP
#include <sstream>
#include <unordered_map>
#include <cassert>
#include <vector>
#include <iostream>
#include "../geometry_traits.hpp"
#include "../geometry_traits_nfp.hpp"
#include <clipper.hpp>
namespace ClipperLib {
using PointImpl = IntPoint;
using PathImpl = Path;
using HoleStore = std::vector<PathImpl>;
struct PolygonImpl {
PathImpl Contour;
HoleStore Holes;
inline PolygonImpl() {}
inline explicit PolygonImpl(const PathImpl& cont): Contour(cont) {}
inline explicit PolygonImpl(const HoleStore& holes):
Holes(holes) {}
inline PolygonImpl(const Path& cont, const HoleStore& holes):
Contour(cont), Holes(holes) {}
inline explicit PolygonImpl(PathImpl&& cont): Contour(std::move(cont)) {}
inline explicit PolygonImpl(HoleStore&& holes): Holes(std::move(holes)) {}
inline PolygonImpl(Path&& cont, HoleStore&& holes):
Contour(std::move(cont)), Holes(std::move(holes)) {}
};
inline PointImpl& operator +=(PointImpl& p, const PointImpl& pa ) {
// This could be done with SIMD
p.X += pa.X;
p.Y += pa.Y;
return p;
}
inline PointImpl operator+(const PointImpl& p1, const PointImpl& p2) {
PointImpl ret = p1;
ret += p2;
return ret;
}
inline PointImpl& operator -=(PointImpl& p, const PointImpl& pa ) {
p.X -= pa.X;
p.Y -= pa.Y;
return p;
}
inline PointImpl operator -(PointImpl& p ) {
PointImpl ret = p;
ret.X = -ret.X;
ret.Y = -ret.Y;
return ret;
}
inline PointImpl operator-(const PointImpl& p1, const PointImpl& p2) {
PointImpl ret = p1;
ret -= p2;
return ret;
}
}
namespace libnest2d {
// Aliases for convinience
using ClipperLib::PointImpl;
using ClipperLib::PathImpl;
using ClipperLib::PolygonImpl;
using ClipperLib::HoleStore;
// Type of coordinate units used by Clipper
template<> struct CoordType<PointImpl> {
using Type = ClipperLib::cInt;
};
// Type of point used by Clipper
template<> struct PointType<PolygonImpl> {
using Type = PointImpl;
};
// Type of vertex iterator used by Clipper
template<> struct VertexIteratorType<PolygonImpl> {
using Type = ClipperLib::Path::iterator;
};
// Type of vertex iterator used by Clipper
template<> struct VertexConstIteratorType<PolygonImpl> {
using Type = ClipperLib::Path::const_iterator;
};
template<> struct CountourType<PolygonImpl> {
using Type = PathImpl;
};
// Tell binpack2d how to extract the X coord from a ClipperPoint object
template<> inline TCoord<PointImpl> PointLike::x(const PointImpl& p)
{
return p.X;
}
// Tell binpack2d how to extract the Y coord from a ClipperPoint object
template<> inline TCoord<PointImpl> PointLike::y(const PointImpl& p)
{
return p.Y;
}
// Tell binpack2d how to extract the X coord from a ClipperPoint object
template<> inline TCoord<PointImpl>& PointLike::x(PointImpl& p)
{
return p.X;
}
// Tell binpack2d how to extract the Y coord from a ClipperPoint object
template<>
inline TCoord<PointImpl>& PointLike::y(PointImpl& p)
{
return p.Y;
}
template<>
inline void ShapeLike::reserve(PolygonImpl& sh, size_t vertex_capacity)
{
return sh.Contour.reserve(vertex_capacity);
}
#define DISABLE_BOOST_AREA
namespace _smartarea {
template<Orientation o>
inline double area(const PolygonImpl& sh) {
return std::nan("");
}
template<>
inline double area<Orientation::CLOCKWISE>(const PolygonImpl& sh) {
double a = 0;
std::for_each(sh.Holes.begin(), sh.Holes.end(), [&a](const PathImpl& h)
{
a -= ClipperLib::Area(h);
});
return -ClipperLib::Area(sh.Contour) + a;
}
template<>
inline double area<Orientation::COUNTER_CLOCKWISE>(const PolygonImpl& sh) {
double a = 0;
std::for_each(sh.Holes.begin(), sh.Holes.end(), [&a](const PathImpl& h)
{
a += ClipperLib::Area(h);
});
return ClipperLib::Area(sh.Contour) + a;
}
}
// Tell binpack2d how to make string out of a ClipperPolygon object
template<>
inline double ShapeLike::area(const PolygonImpl& sh) {
return _smartarea::area<OrientationType<PolygonImpl>::Value>(sh);
}
template<>
inline void ShapeLike::offset(PolygonImpl& sh, TCoord<PointImpl> distance) {
#define DISABLE_BOOST_OFFSET
using ClipperLib::ClipperOffset;
using ClipperLib::jtMiter;
using ClipperLib::etClosedPolygon;
using ClipperLib::Paths;
// If the input is not at least a triangle, we can not do this algorithm
if(sh.Contour.size() <= 3 ||
std::any_of(sh.Holes.begin(), sh.Holes.end(),
[](const PathImpl& p) { return p.size() <= 3; })
) throw GeometryException(GeomErr::OFFSET);
ClipperOffset offs;
Paths result;
offs.AddPath(sh.Contour, jtMiter, etClosedPolygon);
offs.AddPaths(sh.Holes, jtMiter, etClosedPolygon);
offs.Execute(result, static_cast<double>(distance));
// Offsetting reverts the orientation and also removes the last vertex
// so boost will not have a closed polygon.
bool found_the_contour = false;
for(auto& r : result) {
if(ClipperLib::Orientation(r)) {
// We don't like if the offsetting generates more than one contour
// but throwing would be an overkill. Instead, we should warn the
// caller about the inability to create correct geometries
if(!found_the_contour) {
sh.Contour = r;
ClipperLib::ReversePath(sh.Contour);
sh.Contour.push_back(sh.Contour.front());
found_the_contour = true;
} else {
dout() << "Warning: offsetting result is invalid!";
/* TODO warning */
}
} else {
// TODO If there are multiple contours we can't be sure which hole
// belongs to the first contour. (But in this case the situation is
// bad enough to let it go...)
sh.Holes.push_back(r);
ClipperLib::ReversePath(sh.Holes.back());
sh.Holes.back().push_back(sh.Holes.back().front());
}
}
}
//template<> // TODO make it support holes if this method will ever be needed.
//inline PolygonImpl Nfp::minkowskiDiff(const PolygonImpl& sh,
// const PolygonImpl& other)
//{
// #define DISABLE_BOOST_MINKOWSKI_ADD
// ClipperLib::Paths solution;
// ClipperLib::MinkowskiDiff(sh.Contour, other.Contour, solution);
// PolygonImpl ret;
// ret.Contour = solution.front();
// return sh;
//}
// Tell libnest2d how to make string out of a ClipperPolygon object
template<> inline std::string ShapeLike::toString(const PolygonImpl& sh) {
std::stringstream ss;
ss << "Contour {\n";
for(auto p : sh.Contour) {
ss << "\t" << p.X << " " << p.Y << "\n";
}
ss << "}\n";
for(auto& h : sh.Holes) {
ss << "Holes {\n";
for(auto p : h) {
ss << "\t{\n";
ss << "\t\t" << p.X << " " << p.Y << "\n";
ss << "\t}\n";
}
ss << "}\n";
}
return ss.str();
}
template<>
inline TVertexIterator<PolygonImpl> ShapeLike::begin(PolygonImpl& sh)
{
return sh.Contour.begin();
}
template<>
inline TVertexIterator<PolygonImpl> ShapeLike::end(PolygonImpl& sh)
{
return sh.Contour.end();
}
template<>
inline TVertexConstIterator<PolygonImpl> ShapeLike::cbegin(
const PolygonImpl& sh)
{
return sh.Contour.cbegin();
}
template<>
inline TVertexConstIterator<PolygonImpl> ShapeLike::cend(
const PolygonImpl& sh)
{
return sh.Contour.cend();
}
template<> struct HolesContainer<PolygonImpl> {
using Type = ClipperLib::Paths;
};
template<> inline PolygonImpl ShapeLike::create(const PathImpl& path,
const HoleStore& holes) {
PolygonImpl p;
p.Contour = path;
// Expecting that the coordinate system Y axis is positive in upwards
// direction
if(ClipperLib::Orientation(p.Contour)) {
// Not clockwise then reverse the b*tch
ClipperLib::ReversePath(p.Contour);
}
p.Holes = holes;
for(auto& h : p.Holes) {
if(!ClipperLib::Orientation(h)) {
ClipperLib::ReversePath(h);
}
}
return p;
}
template<> inline PolygonImpl ShapeLike::create( PathImpl&& path,
HoleStore&& holes) {
PolygonImpl p;
p.Contour.swap(path);
// Expecting that the coordinate system Y axis is positive in upwards
// direction
if(ClipperLib::Orientation(p.Contour)) {
// Not clockwise then reverse the b*tch
ClipperLib::ReversePath(p.Contour);
}
p.Holes.swap(holes);
for(auto& h : p.Holes) {
if(!ClipperLib::Orientation(h)) {
ClipperLib::ReversePath(h);
}
}
return p;
}
template<> inline const THolesContainer<PolygonImpl>&
ShapeLike::holes(const PolygonImpl& sh)
{
return sh.Holes;
}
template<> inline THolesContainer<PolygonImpl>&
ShapeLike::holes(PolygonImpl& sh)
{
return sh.Holes;
}
template<> inline TContour<PolygonImpl>&
ShapeLike::getHole(PolygonImpl& sh, unsigned long idx)
{
return sh.Holes[idx];
}
template<> inline const TContour<PolygonImpl>&
ShapeLike::getHole(const PolygonImpl& sh, unsigned long idx)
{
return sh.Holes[idx];
}
template<> inline size_t ShapeLike::holeCount(const PolygonImpl& sh)
{
return sh.Holes.size();
}
template<> inline PathImpl& ShapeLike::getContour(PolygonImpl& sh)
{
return sh.Contour;
}
template<>
inline const PathImpl& ShapeLike::getContour(const PolygonImpl& sh)
{
return sh.Contour;
}
#define DISABLE_BOOST_TRANSLATE
template<>
inline void ShapeLike::translate(PolygonImpl& sh, const PointImpl& offs)
{
for(auto& p : sh.Contour) { p += offs; }
for(auto& hole : sh.Holes) for(auto& p : hole) { p += offs; }
}
#define DISABLE_BOOST_ROTATE
template<>
inline void ShapeLike::rotate(PolygonImpl& sh, const Radians& rads)
{
using Coord = TCoord<PointImpl>;
auto cosa = rads.cos();
auto sina = rads.sin();
for(auto& p : sh.Contour) {
p = {
static_cast<Coord>(p.X * cosa - p.Y * sina),
static_cast<Coord>(p.X * sina + p.Y * cosa)
};
}
for(auto& hole : sh.Holes) for(auto& p : hole) {
p = {
static_cast<Coord>(p.X * cosa - p.Y * sina),
static_cast<Coord>(p.X * sina + p.Y * cosa)
};
}
}
#define DISABLE_BOOST_NFP_MERGE
template<> inline Nfp::Shapes<PolygonImpl>
Nfp::merge(const Nfp::Shapes<PolygonImpl>& shapes, const PolygonImpl& sh)
{
Nfp::Shapes<PolygonImpl> retv;
ClipperLib::Clipper clipper(ClipperLib::ioReverseSolution);
bool closed = true;
bool valid = false;
valid = clipper.AddPath(sh.Contour, ClipperLib::ptSubject, closed);
for(auto& hole : sh.Holes) {
valid &= clipper.AddPath(hole, ClipperLib::ptSubject, closed);
}
for(auto& path : shapes) {
valid &= clipper.AddPath(path.Contour, ClipperLib::ptSubject, closed);
for(auto& hole : path.Holes) {
valid &= clipper.AddPath(hole, ClipperLib::ptSubject, closed);
}
}
if(!valid) throw GeometryException(GeomErr::MERGE);
ClipperLib::PolyTree result;
clipper.Execute(ClipperLib::ctUnion, result, ClipperLib::pftNonZero);
retv.reserve(result.Total());
std::function<void(ClipperLib::PolyNode*, PolygonImpl&)> processHole;
auto processPoly = [&retv, &processHole](ClipperLib::PolyNode *pptr) {
PolygonImpl poly(pptr->Contour);
poly.Contour.push_back(poly.Contour.front());
for(auto h : pptr->Childs) { processHole(h, poly); }
retv.push_back(poly);
};
processHole = [&processPoly](ClipperLib::PolyNode *pptr, PolygonImpl& poly) {
poly.Holes.push_back(pptr->Contour);
poly.Holes.back().push_back(poly.Holes.back().front());
for(auto c : pptr->Childs) processPoly(c);
};
auto traverse = [&processPoly] (ClipperLib::PolyNode *node)
{
for(auto ch : node->Childs) {
processPoly(ch);
}
};
traverse(&result);
return retv;
}
}
//#define DISABLE_BOOST_SERIALIZE
//#define DISABLE_BOOST_UNSERIALIZE
// All other operators and algorithms are implemented with boost
#include "../boost_alg.hpp"
#endif // CLIPPER_BACKEND_HPP

View file

@ -0,0 +1,239 @@
#ifndef LIBNEST2D_CONFIG_HPP
#define LIBNEST2D_CONFIG_HPP
#ifndef NDEBUG
#include <iostream>
#endif
#include <stdexcept>
#include <string>
#include <cmath>
#include <type_traits>
#if defined(_MSC_VER) && _MSC_VER <= 1800 || __cplusplus < 201103L
#define BP2D_NOEXCEPT
#define BP2D_CONSTEXPR
#elif __cplusplus >= 201103L
#define BP2D_NOEXCEPT noexcept
#define BP2D_CONSTEXPR constexpr
#endif
/*
* Debugging output dout and derr definition
*/
//#ifndef NDEBUG
//# define dout std::cout
//# define derr std::cerr
//#else
//# define dout 0 && std::cout
//# define derr 0 && std::cerr
//#endif
namespace libnest2d {
struct DOut {
#ifndef NDEBUG
std::ostream& out = std::cout;
#endif
};
struct DErr {
#ifndef NDEBUG
std::ostream& out = std::cerr;
#endif
};
template<class T>
inline DOut&& operator<<( DOut&& out, T&& d) {
#ifndef NDEBUG
out.out << d;
#endif
return std::move(out);
}
template<class T>
inline DErr&& operator<<( DErr&& out, T&& d) {
#ifndef NDEBUG
out.out << d;
#endif
return std::move(out);
}
inline DOut dout() { return DOut(); }
inline DErr derr() { return DErr(); }
template< class T >
struct remove_cvref {
using type = typename std::remove_cv<
typename std::remove_reference<T>::type>::type;
};
template< class T >
using remove_cvref_t = typename remove_cvref<T>::type;
template< class T >
using remove_ref_t = typename std::remove_reference<T>::type;
template<bool B, class T>
using enable_if_t = typename std::enable_if<B, T>::type;
template<class F, class...Args>
struct invoke_result {
using type = typename std::result_of<F(Args...)>::type;
};
template<class F, class...Args>
using invoke_result_t = typename invoke_result<F, Args...>::type;
/* ************************************************************************** */
/* C++14 std::index_sequence implementation: */
/* ************************************************************************** */
/**
* \brief C++11 conformant implementation of the index_sequence type from C++14
*/
template<size_t...Ints> struct index_sequence {
using value_type = size_t;
BP2D_CONSTEXPR value_type size() const { return sizeof...(Ints); }
};
// A Help structure to generate the integer list
template<size_t...Nseq> struct genSeq;
// Recursive template to generate the list
template<size_t I, size_t...Nseq> struct genSeq<I, Nseq...> {
// Type will contain a genSeq with Nseq appended by one element
using Type = typename genSeq< I - 1, I - 1, Nseq...>::Type;
};
// Terminating recursion
template <size_t ... Nseq> struct genSeq<0, Nseq...> {
// If I is zero, Type will contain index_sequence with the fuly generated
// integer list.
using Type = index_sequence<Nseq...>;
};
/// Helper alias to make an index sequence from 0 to N
template<size_t N> using make_index_sequence = typename genSeq<N>::Type;
/// Helper alias to make an index sequence for a parameter pack
template<class...Args>
using index_sequence_for = make_index_sequence<sizeof...(Args)>;
/* ************************************************************************** */
/**
* A useful little tool for triggering static_assert error messages e.g. when
* a mandatory template specialization (implementation) is missing.
*
* \tparam T A template argument that may come from and outer template method.
*/
template<class T> struct always_false { enum { value = false }; };
const double BP2D_CONSTEXPR Pi = 3.141592653589793238463; // 2*std::acos(0);
const double BP2D_CONSTEXPR Pi_2 = 2*Pi;
/**
* @brief Only for the Radian and Degrees classes to behave as doubles.
*/
class Double {
protected:
double val_;
public:
Double(): val_(double{}) { }
Double(double d) : val_(d) { }
operator double() const BP2D_NOEXCEPT { return val_; }
operator double&() BP2D_NOEXCEPT { return val_; }
};
class Degrees;
/**
* @brief Data type representing radians. It supports conversion to degrees.
*/
class Radians: public Double {
mutable double sin_ = std::nan(""), cos_ = std::nan("");
public:
Radians(double rads = Double() ): Double(rads) {}
inline Radians(const Degrees& degs);
inline operator Degrees();
inline double toDegrees();
inline double sin() const {
if(std::isnan(sin_)) {
cos_ = std::cos(val_);
sin_ = std::sin(val_);
}
return sin_;
}
inline double cos() const {
if(std::isnan(cos_)) {
cos_ = std::cos(val_);
sin_ = std::sin(val_);
}
return cos_;
}
};
/**
* @brief Data type representing degrees. It supports conversion to radians.
*/
class Degrees: public Double {
public:
Degrees(double deg = Double()): Double(deg) {}
Degrees(const Radians& rads): Double( rads * 180/Pi ) {}
inline double toRadians() { return Radians(*this);}
};
inline bool operator==(const Degrees& deg, const Radians& rads) {
Degrees deg2 = rads;
auto diff = std::abs(deg - deg2);
return diff < 0.0001;
}
inline bool operator==(const Radians& rads, const Degrees& deg) {
return deg == rads;
}
inline Radians::operator Degrees() { return *this * 180/Pi; }
inline Radians::Radians(const Degrees &degs): Double( degs * Pi/180) {}
inline double Radians::toDegrees() { return operator Degrees(); }
enum class GeomErr : std::size_t {
OFFSET,
MERGE,
NFP
};
const std::string ERROR_STR[] = {
"Offsetting could not be done! An invalid geometry may have been added.",
"Error while merging geometries!",
"No fit polygon cannot be calculated."
};
class GeometryException: public std::exception {
virtual const std::string& errorstr(GeomErr errcode) const BP2D_NOEXCEPT {
return ERROR_STR[static_cast<std::size_t>(errcode)];
}
GeomErr errcode_;
public:
GeometryException(GeomErr code): errcode_(code) {}
GeomErr errcode() const { return errcode_; }
virtual const char * what() const BP2D_NOEXCEPT override {
return errorstr(errcode_).c_str();
}
};
}
#endif // LIBNEST2D_CONFIG_HPP

View file

@ -0,0 +1,695 @@
#ifndef GEOMETRY_TRAITS_HPP
#define GEOMETRY_TRAITS_HPP
#include <string>
#include <type_traits>
#include <array>
#include <vector>
#include <numeric>
#include <limits>
#include <cmath>
#include "common.hpp"
namespace libnest2d {
/// Getting the coordinate data type for a geometry class.
template<class GeomClass> struct CoordType { using Type = long; };
/// TCoord<GeomType> as shorthand for typename `CoordType<GeomType>::Type`.
template<class GeomType>
using TCoord = typename CoordType<remove_cvref_t<GeomType>>::Type;
/// Getting the type of point structure used by a shape.
template<class Shape> struct PointType { /*using Type = void;*/ };
/// TPoint<ShapeClass> as shorthand for `typename PointType<ShapeClass>::Type`.
template<class Shape>
using TPoint = typename PointType<remove_cvref_t<Shape>>::Type;
/// Getting the VertexIterator type of a shape class.
template<class Shape> struct VertexIteratorType { /*using Type = void;*/ };
/// Getting the const vertex iterator for a shape class.
template<class Shape> struct VertexConstIteratorType {/* using Type = void;*/ };
/**
* TVertexIterator<Shape> as shorthand for
* `typename VertexIteratorType<Shape>::Type`
*/
template<class Shape>
using TVertexIterator =
typename VertexIteratorType<remove_cvref_t<Shape>>::Type;
/**
* \brief TVertexConstIterator<Shape> as shorthand for
* `typename VertexConstIteratorType<Shape>::Type`
*/
template<class ShapeClass>
using TVertexConstIterator =
typename VertexConstIteratorType<remove_cvref_t<ShapeClass>>::Type;
/**
* \brief A point pair base class for other point pairs (segment, box, ...).
* \tparam RawPoint The actual point type to use.
*/
template<class RawPoint>
struct PointPair {
RawPoint p1;
RawPoint p2;
};
/**
* \brief An abstraction of a box;
*/
template<class RawPoint>
class _Box: PointPair<RawPoint> {
using PointPair<RawPoint>::p1;
using PointPair<RawPoint>::p2;
public:
inline _Box() {}
inline _Box(const RawPoint& p, const RawPoint& pp):
PointPair<RawPoint>({p, pp}) {}
inline _Box(TCoord<RawPoint> width, TCoord<RawPoint> height):
_Box(RawPoint{0, 0}, RawPoint{width, height}) {}
inline const RawPoint& minCorner() const BP2D_NOEXCEPT { return p1; }
inline const RawPoint& maxCorner() const BP2D_NOEXCEPT { return p2; }
inline RawPoint& minCorner() BP2D_NOEXCEPT { return p1; }
inline RawPoint& maxCorner() BP2D_NOEXCEPT { return p2; }
inline TCoord<RawPoint> width() const BP2D_NOEXCEPT;
inline TCoord<RawPoint> height() const BP2D_NOEXCEPT;
inline RawPoint center() const BP2D_NOEXCEPT;
};
/**
* \brief An abstraction of a directed line segment with two points.
*/
template<class RawPoint>
class _Segment: PointPair<RawPoint> {
using PointPair<RawPoint>::p1;
using PointPair<RawPoint>::p2;
mutable Radians angletox_ = std::nan("");
public:
inline _Segment() {}
inline _Segment(const RawPoint& p, const RawPoint& pp):
PointPair<RawPoint>({p, pp}) {}
/**
* @brief Get the first point.
* @return Returns the starting point.
*/
inline const RawPoint& first() const BP2D_NOEXCEPT { return p1; }
/**
* @brief The end point.
* @return Returns the end point of the segment.
*/
inline const RawPoint& second() const BP2D_NOEXCEPT { return p2; }
inline void first(const RawPoint& p) BP2D_NOEXCEPT
{
angletox_ = std::nan(""); p1 = p;
}
inline void second(const RawPoint& p) BP2D_NOEXCEPT {
angletox_ = std::nan(""); p2 = p;
}
/// Returns the angle measured to the X (horizontal) axis.
inline Radians angleToXaxis() const;
/// The length of the segment in the measure of the coordinate system.
inline double length();
};
// This struct serves as a namespace. The only difference is that is can be
// used in friend declarations.
struct PointLike {
template<class RawPoint>
static TCoord<RawPoint> x(const RawPoint& p)
{
return p.x();
}
template<class RawPoint>
static TCoord<RawPoint> y(const RawPoint& p)
{
return p.y();
}
template<class RawPoint>
static TCoord<RawPoint>& x(RawPoint& p)
{
return p.x();
}
template<class RawPoint>
static TCoord<RawPoint>& y(RawPoint& p)
{
return p.y();
}
template<class RawPoint>
static double distance(const RawPoint& /*p1*/, const RawPoint& /*p2*/)
{
static_assert(always_false<RawPoint>::value,
"PointLike::distance(point, point) unimplemented!");
return 0;
}
template<class RawPoint>
static double distance(const RawPoint& /*p1*/,
const _Segment<RawPoint>& /*s*/)
{
static_assert(always_false<RawPoint>::value,
"PointLike::distance(point, segment) unimplemented!");
return 0;
}
template<class RawPoint>
static std::pair<TCoord<RawPoint>, bool> horizontalDistance(
const RawPoint& p, const _Segment<RawPoint>& s)
{
using Unit = TCoord<RawPoint>;
auto x = PointLike::x(p), y = PointLike::y(p);
auto x1 = PointLike::x(s.first()), y1 = PointLike::y(s.first());
auto x2 = PointLike::x(s.second()), y2 = PointLike::y(s.second());
TCoord<RawPoint> ret;
if( (y < y1 && y < y2) || (y > y1 && y > y2) )
return {0, false};
else if ((y == y1 && y == y2) && (x > x1 && x > x2))
ret = std::min( x-x1, x -x2);
else if( (y == y1 && y == y2) && (x < x1 && x < x2))
ret = -std::min(x1 - x, x2 - x);
else if(std::abs(y - y1) <= std::numeric_limits<Unit>::epsilon() &&
std::abs(y - y2) <= std::numeric_limits<Unit>::epsilon())
ret = 0;
else
ret = x - x1 + (x1 - x2)*(y1 - y)/(y1 - y2);
return {ret, true};
}
template<class RawPoint>
static std::pair<TCoord<RawPoint>, bool> verticalDistance(
const RawPoint& p, const _Segment<RawPoint>& s)
{
using Unit = TCoord<RawPoint>;
auto x = PointLike::x(p), y = PointLike::y(p);
auto x1 = PointLike::x(s.first()), y1 = PointLike::y(s.first());
auto x2 = PointLike::x(s.second()), y2 = PointLike::y(s.second());
TCoord<RawPoint> ret;
if( (x < x1 && x < x2) || (x > x1 && x > x2) )
return {0, false};
else if ((x == x1 && x == x2) && (y > y1 && y > y2))
ret = std::min( y-y1, y -y2);
else if( (x == x1 && x == x2) && (y < y1 && y < y2))
ret = -std::min(y1 - y, y2 - y);
else if(std::abs(x - x1) <= std::numeric_limits<Unit>::epsilon() &&
std::abs(x - x2) <= std::numeric_limits<Unit>::epsilon())
ret = 0;
else
ret = y - y1 + (y1 - y2)*(x1 - x)/(x1 - x2);
return {ret, true};
}
};
template<class RawPoint>
TCoord<RawPoint> _Box<RawPoint>::width() const BP2D_NOEXCEPT
{
return PointLike::x(maxCorner()) - PointLike::x(minCorner());
}
template<class RawPoint>
TCoord<RawPoint> _Box<RawPoint>::height() const BP2D_NOEXCEPT
{
return PointLike::y(maxCorner()) - PointLike::y(minCorner());
}
template<class RawPoint>
TCoord<RawPoint> getX(const RawPoint& p) { return PointLike::x<RawPoint>(p); }
template<class RawPoint>
TCoord<RawPoint> getY(const RawPoint& p) { return PointLike::y<RawPoint>(p); }
template<class RawPoint>
void setX(RawPoint& p, const TCoord<RawPoint>& val)
{
PointLike::x<RawPoint>(p) = val;
}
template<class RawPoint>
void setY(RawPoint& p, const TCoord<RawPoint>& val)
{
PointLike::y<RawPoint>(p) = val;
}
template<class RawPoint>
inline Radians _Segment<RawPoint>::angleToXaxis() const
{
if(std::isnan(static_cast<double>(angletox_))) {
TCoord<RawPoint> dx = getX(second()) - getX(first());
TCoord<RawPoint> dy = getY(second()) - getY(first());
double a = std::atan2(dy, dx);
auto s = std::signbit(a);
if(s) a += Pi_2;
angletox_ = a;
}
return angletox_;
}
template<class RawPoint>
inline double _Segment<RawPoint>::length()
{
return PointLike::distance(first(), second());
}
template<class RawPoint>
inline RawPoint _Box<RawPoint>::center() const BP2D_NOEXCEPT {
auto& minc = minCorner();
auto& maxc = maxCorner();
using Coord = TCoord<RawPoint>;
RawPoint ret = {
static_cast<Coord>( std::round((getX(minc) + getX(maxc))/2.0) ),
static_cast<Coord>( std::round((getY(minc) + getY(maxc))/2.0) )
};
return ret;
}
template<class RawShape>
struct HolesContainer {
using Type = std::vector<RawShape>;
};
template<class RawShape>
using THolesContainer = typename HolesContainer<remove_cvref_t<RawShape>>::Type;
template<class RawShape>
struct CountourType {
using Type = RawShape;
};
template<class RawShape>
using TContour = typename CountourType<remove_cvref_t<RawShape>>::Type;
enum class Orientation {
CLOCKWISE,
COUNTER_CLOCKWISE
};
template<class RawShape>
struct OrientationType {
// Default Polygon orientation that the library expects
static const Orientation Value = Orientation::CLOCKWISE;
};
enum class Formats {
WKT,
SVG
};
// This struct serves as a namespace. The only difference is that it can be
// used in friend declarations.
struct ShapeLike {
template<class RawShape>
using Shapes = std::vector<RawShape>;
template<class RawShape>
static RawShape create(const TContour<RawShape>& contour,
const THolesContainer<RawShape>& holes)
{
return RawShape(contour, holes);
}
template<class RawShape>
static RawShape create(TContour<RawShape>&& contour,
THolesContainer<RawShape>&& holes)
{
return RawShape(contour, holes);
}
template<class RawShape>
static RawShape create(const TContour<RawShape>& contour)
{
return create<RawShape>(contour, {});
}
template<class RawShape>
static RawShape create(TContour<RawShape>&& contour)
{
return create<RawShape>(contour, {});
}
// Optional, does nothing by default
template<class RawShape>
static void reserve(RawShape& /*sh*/, size_t /*vertex_capacity*/) {}
template<class RawShape, class...Args>
static void addVertex(RawShape& sh, Args...args)
{
return getContour(sh).emplace_back(std::forward<Args>(args)...);
}
template<class RawShape>
static TVertexIterator<RawShape> begin(RawShape& sh)
{
return sh.begin();
}
template<class RawShape>
static TVertexIterator<RawShape> end(RawShape& sh)
{
return sh.end();
}
template<class RawShape>
static TVertexConstIterator<RawShape> cbegin(const RawShape& sh)
{
return sh.cbegin();
}
template<class RawShape>
static TVertexConstIterator<RawShape> cend(const RawShape& sh)
{
return sh.cend();
}
template<class RawShape>
static std::string toString(const RawShape& /*sh*/)
{
return "";
}
template<Formats, class RawShape>
static std::string serialize(const RawShape& /*sh*/, double scale=1)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::serialize() unimplemented!");
return "";
}
template<Formats, class RawShape>
static void unserialize(RawShape& /*sh*/, const std::string& /*str*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::unserialize() unimplemented!");
}
template<class RawShape>
static double area(const RawShape& /*sh*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::area() unimplemented!");
return 0;
}
template<class RawShape>
static bool intersects(const RawShape& /*sh*/, const RawShape& /*sh*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::intersects() unimplemented!");
return false;
}
template<class RawShape>
static bool isInside(const TPoint<RawShape>& /*point*/,
const RawShape& /*shape*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::isInside(point, shape) unimplemented!");
return false;
}
template<class RawShape>
static bool isInside(const RawShape& /*shape*/,
const RawShape& /*shape*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::isInside(shape, shape) unimplemented!");
return false;
}
template<class RawShape>
static bool touches( const RawShape& /*shape*/,
const RawShape& /*shape*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::touches(shape, shape) unimplemented!");
return false;
}
template<class RawShape>
static bool touches( const TPoint<RawShape>& /*point*/,
const RawShape& /*shape*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::touches(point, shape) unimplemented!");
return false;
}
template<class RawShape>
static _Box<TPoint<RawShape>> boundingBox(const RawShape& /*sh*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::boundingBox(shape) unimplemented!");
}
template<class RawShape>
static _Box<TPoint<RawShape>> boundingBox(const Shapes<RawShape>& /*sh*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::boundingBox(shapes) unimplemented!");
}
template<class RawShape>
static RawShape convexHull(const RawShape& /*sh*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::convexHull(shape) unimplemented!");
return RawShape();
}
template<class RawShape>
static RawShape convexHull(const Shapes<RawShape>& /*sh*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::convexHull(shapes) unimplemented!");
return RawShape();
}
template<class RawShape>
static THolesContainer<RawShape>& holes(RawShape& /*sh*/)
{
static THolesContainer<RawShape> empty;
return empty;
}
template<class RawShape>
static const THolesContainer<RawShape>& holes(const RawShape& /*sh*/)
{
static THolesContainer<RawShape> empty;
return empty;
}
template<class RawShape>
static TContour<RawShape>& getHole(RawShape& sh, unsigned long idx)
{
return holes(sh)[idx];
}
template<class RawShape>
static const TContour<RawShape>& getHole(const RawShape& sh,
unsigned long idx)
{
return holes(sh)[idx];
}
template<class RawShape>
static size_t holeCount(const RawShape& sh)
{
return holes(sh).size();
}
template<class RawShape>
static TContour<RawShape>& getContour(RawShape& sh)
{
return sh;
}
template<class RawShape>
static const TContour<RawShape>& getContour(const RawShape& sh)
{
return sh;
}
template<class RawShape>
static void rotate(RawShape& /*sh*/, const Radians& /*rads*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::rotate() unimplemented!");
}
template<class RawShape, class RawPoint>
static void translate(RawShape& /*sh*/, const RawPoint& /*offs*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::translate() unimplemented!");
}
template<class RawShape>
static void offset(RawShape& /*sh*/, TCoord<TPoint<RawShape>> /*distance*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::offset() unimplemented!");
}
template<class RawShape>
static std::pair<bool, std::string> isValid(const RawShape& /*sh*/)
{
return {false, "ShapeLike::isValid() unimplemented!"};
}
template<class RawShape>
static inline bool isConvex(const TContour<RawShape>& sh)
{
using Vertex = TPoint<RawShape>;
auto first = sh.begin();
auto middle = std::next(first);
auto last = std::next(middle);
using CVrRef = const Vertex&;
auto zcrossproduct = [](CVrRef k, CVrRef k1, CVrRef k2) {
auto dx1 = getX(k1) - getX(k);
auto dy1 = getY(k1) - getY(k);
auto dx2 = getX(k2) - getX(k1);
auto dy2 = getY(k2) - getY(k1);
return dx1*dy2 - dy1*dx2;
};
auto firstprod = zcrossproduct( *(std::prev(std::prev(sh.end()))),
*first,
*middle );
bool ret = true;
bool frsign = firstprod > 0;
while(last != sh.end()) {
auto &k = *first, &k1 = *middle, &k2 = *last;
auto zc = zcrossproduct(k, k1, k2);
ret &= frsign == (zc > 0);
++first; ++middle; ++last;
}
return ret;
}
// *************************************************************************
// No need to implement these
// *************************************************************************
template<class RawShape>
static inline _Box<TPoint<RawShape>> boundingBox(
const _Box<TPoint<RawShape>>& box)
{
return box;
}
template<class RawShape>
static inline double area(const _Box<TPoint<RawShape>>& box)
{
return static_cast<double>(box.width() * box.height());
}
template<class RawShape>
static double area(const Shapes<RawShape>& shapes)
{
double ret = 0;
std::accumulate(shapes.first(), shapes.end(),
[](const RawShape& a, const RawShape& b) {
return area(a) + area(b);
});
return ret;
}
template<class RawShape> // Potential O(1) implementation may exist
static inline TPoint<RawShape>& vertex(RawShape& sh, unsigned long idx)
{
return *(begin(sh) + idx);
}
template<class RawShape> // Potential O(1) implementation may exist
static inline const TPoint<RawShape>& vertex(const RawShape& sh,
unsigned long idx)
{
return *(cbegin(sh) + idx);
}
template<class RawShape>
static inline size_t contourVertexCount(const RawShape& sh)
{
return cend(sh) - cbegin(sh);
}
template<class RawShape, class Fn>
static inline void foreachContourVertex(RawShape& sh, Fn fn) {
for(auto it = begin(sh); it != end(sh); ++it) fn(*it);
}
template<class RawShape, class Fn>
static inline void foreachHoleVertex(RawShape& sh, Fn fn) {
for(int i = 0; i < holeCount(sh); ++i) {
auto& h = getHole(sh, i);
for(auto it = begin(h); it != end(h); ++it) fn(*it);
}
}
template<class RawShape, class Fn>
static inline void foreachContourVertex(const RawShape& sh, Fn fn) {
for(auto it = cbegin(sh); it != cend(sh); ++it) fn(*it);
}
template<class RawShape, class Fn>
static inline void foreachHoleVertex(const RawShape& sh, Fn fn) {
for(int i = 0; i < holeCount(sh); ++i) {
auto& h = getHole(sh, i);
for(auto it = cbegin(h); it != cend(h); ++it) fn(*it);
}
}
template<class RawShape, class Fn>
static inline void foreachVertex(RawShape& sh, Fn fn) {
foreachContourVertex(sh, fn);
foreachHoleVertex(sh, fn);
}
template<class RawShape, class Fn>
static inline void foreachVertex(const RawShape& sh, Fn fn) {
foreachContourVertex(sh, fn);
foreachHoleVertex(sh, fn);
}
};
}
#endif // GEOMETRY_TRAITS_HPP

View file

@ -0,0 +1,258 @@
#ifndef GEOMETRIES_NOFITPOLYGON_HPP
#define GEOMETRIES_NOFITPOLYGON_HPP
#include "geometry_traits.hpp"
#include <algorithm>
#include <vector>
namespace libnest2d {
/// The complexity level of a polygon that an NFP implementation can handle.
enum class NfpLevel: unsigned {
CONVEX_ONLY,
ONE_CONVEX,
BOTH_CONCAVE,
ONE_CONVEX_WITH_HOLES,
BOTH_CONCAVE_WITH_HOLES
};
/// A collection of static methods for handling the no fit polygon creation.
struct Nfp {
// Shorthand for a pile of polygons
template<class RawShape>
using Shapes = typename ShapeLike::Shapes<RawShape>;
/// Minkowski addition (not used yet)
template<class RawShape>
static RawShape minkowskiDiff(const RawShape& sh, const RawShape& /*other*/)
{
return sh;
}
/**
* Merge a bunch of polygons with the specified additional polygon.
*
* \tparam RawShape the Polygon data type.
* \param shc The pile of polygons that will be unified with sh.
* \param sh A single polygon to unify with shc.
*
* \return A set of polygons that is the union of the input polygons. Note that
* mostly it will be a set containing only one big polygon but if the input
* polygons are disjuct than the resulting set will contain more polygons.
*/
template<class RawShape>
static Shapes<RawShape> merge(const Shapes<RawShape>& shc, const RawShape& sh)
{
static_assert(always_false<RawShape>::value,
"Nfp::merge(shapes, shape) unimplemented!");
}
/**
* A method to get a vertex from a polygon that always maintains a relative
* position to the coordinate system: It is always the rightmost top vertex.
*
* This way it does not matter in what order the vertices are stored, the
* reference will be always the same for the same polygon.
*/
template<class RawShape>
inline static TPoint<RawShape> referenceVertex(const RawShape& sh)
{
return rightmostUpVertex(sh);
}
/**
* Get the vertex of the polygon that is at the lowest values (bottom) in the Y
* axis and if there are more than one vertices on the same Y coordinate than
* the result will be the leftmost (with the highest X coordinate).
*/
template<class RawShape>
static TPoint<RawShape> leftmostDownVertex(const RawShape& sh)
{
// find min x and min y vertex
auto it = std::min_element(ShapeLike::cbegin(sh), ShapeLike::cend(sh),
_vsort<RawShape>);
return *it;
}
/**
* Get the vertex of the polygon that is at the highest values (top) in the Y
* axis and if there are more than one vertices on the same Y coordinate than
* the result will be the rightmost (with the lowest X coordinate).
*/
template<class RawShape>
static TPoint<RawShape> rightmostUpVertex(const RawShape& sh)
{
// find min x and min y vertex
auto it = std::max_element(ShapeLike::cbegin(sh), ShapeLike::cend(sh),
_vsort<RawShape>);
return *it;
}
/// Helper function to get the NFP
template<NfpLevel nfptype, class RawShape>
static RawShape noFitPolygon(const RawShape& sh, const RawShape& other)
{
NfpImpl<RawShape, nfptype> nfp;
return nfp(sh, other);
}
/**
* The "trivial" Cuninghame-Green implementation of NFP for convex polygons.
*
* You can use this even if you provide implementations for the more complex
* cases (Through specializing the the NfpImpl struct). Currently, no other
* cases are covered in the library.
*
* Complexity should be no more than linear in the number of edges of the input
* polygons.
*
* \tparam RawShape the Polygon data type.
* \param sh The stationary polygon
* \param cother The orbiting polygon
* \return Returns the NFP of the two input polygons which have to be strictly
* convex. The resulting NFP is proven to be convex as well in this case.
*
*/
template<class RawShape>
static RawShape nfpConvexOnly(const RawShape& sh, const RawShape& cother)
{
using Vertex = TPoint<RawShape>; using Edge = _Segment<Vertex>;
RawShape other = cother;
// Make the other polygon counter-clockwise
std::reverse(ShapeLike::begin(other), ShapeLike::end(other));
RawShape rsh; // Final nfp placeholder
std::vector<Edge> edgelist;
auto cap = ShapeLike::contourVertexCount(sh) +
ShapeLike::contourVertexCount(other);
// Reserve the needed memory
edgelist.reserve(cap);
ShapeLike::reserve(rsh, static_cast<unsigned long>(cap));
{ // place all edges from sh into edgelist
auto first = ShapeLike::cbegin(sh);
auto next = first + 1;
auto endit = ShapeLike::cend(sh);
while(next != endit) edgelist.emplace_back(*(first++), *(next++));
}
{ // place all edges from other into edgelist
auto first = ShapeLike::cbegin(other);
auto next = first + 1;
auto endit = ShapeLike::cend(other);
while(next != endit) edgelist.emplace_back(*(first++), *(next++));
}
// Sort the edges by angle to X axis.
std::sort(edgelist.begin(), edgelist.end(),
[](const Edge& e1, const Edge& e2)
{
return e1.angleToXaxis() > e2.angleToXaxis();
});
// Add the two vertices from the first edge into the final polygon.
ShapeLike::addVertex(rsh, edgelist.front().first());
ShapeLike::addVertex(rsh, edgelist.front().second());
auto tmp = std::next(ShapeLike::begin(rsh));
// Construct final nfp by placing each edge to the end of the previous
for(auto eit = std::next(edgelist.begin());
eit != edgelist.end();
++eit)
{
auto d = *tmp - eit->first();
auto p = eit->second() + d;
ShapeLike::addVertex(rsh, p);
tmp = std::next(tmp);
}
// Now we have an nfp somewhere in the dark. We need to get it
// to the right position around the stationary shape.
// This is done by choosing the leftmost lowest vertex of the
// orbiting polygon to be touched with the rightmost upper
// vertex of the stationary polygon. In this configuration, the
// reference vertex of the orbiting polygon (which can be dragged around
// the nfp) will be its rightmost upper vertex that coincides with the
// rightmost upper vertex of the nfp. No proof provided other than Jonas
// Lindmark's reasoning about the reference vertex of nfp in his thesis
// ("No fit polygon problem" - section 2.1.9)
auto csh = sh; // Copy sh, we will sort the verices in the copy
auto& cmp = _vsort<RawShape>;
std::sort(ShapeLike::begin(csh), ShapeLike::end(csh), cmp);
std::sort(ShapeLike::begin(other), ShapeLike::end(other), cmp);
// leftmost lower vertex of the stationary polygon
auto& touch_sh = *(std::prev(ShapeLike::end(csh)));
// rightmost upper vertex of the orbiting polygon
auto& touch_other = *(ShapeLike::begin(other));
// Calculate the difference and move the orbiter to the touch position.
auto dtouch = touch_sh - touch_other;
auto top_other = *(std::prev(ShapeLike::end(other))) + dtouch;
// Get the righmost upper vertex of the nfp and move it to the RMU of
// the orbiter because they should coincide.
auto&& top_nfp = rightmostUpVertex(rsh);
auto dnfp = top_other - top_nfp;
std::for_each(ShapeLike::begin(rsh), ShapeLike::end(rsh),
[&dnfp](Vertex& v) { v+= dnfp; } );
return rsh;
}
// Specializable NFP implementation class. Specialize it if you have a faster
// or better NFP implementation
template<class RawShape, NfpLevel nfptype>
struct NfpImpl {
RawShape operator()(const RawShape& sh, const RawShape& other) {
static_assert(nfptype == NfpLevel::CONVEX_ONLY,
"Nfp::noFitPolygon() unimplemented!");
// Libnest2D has a default implementation for convex polygons and will
// use it if feasible.
return nfpConvexOnly(sh, other);
}
};
template<class RawShape> struct MaxNfpLevel {
static const BP2D_CONSTEXPR NfpLevel value = NfpLevel::CONVEX_ONLY;
};
private:
// Do not specialize this...
template<class RawShape>
static inline bool _vsort(const TPoint<RawShape>& v1,
const TPoint<RawShape>& v2)
{
using Coord = TCoord<TPoint<RawShape>>;
Coord &&x1 = getX(v1), &&x2 = getX(v2), &&y1 = getY(v1), &&y2 = getY(v2);
auto diff = y1 - y2;
if(std::abs(diff) <= std::numeric_limits<Coord>::epsilon())
return x1 < x2;
return diff < 0;
}
};
}
#endif // GEOMETRIES_NOFITPOLYGON_HPP

View file

@ -0,0 +1,919 @@
#ifndef LIBNEST2D_HPP
#define LIBNEST2D_HPP
#include <memory>
#include <vector>
#include <map>
#include <array>
#include <algorithm>
#include <functional>
#include "geometry_traits.hpp"
namespace libnest2d {
/**
* \brief An item to be placed on a bin.
*
* It holds a copy of the original shape object but supports move construction
* from the shape objects if its an rvalue reference. This way we can construct
* the items without the cost of copying a potentially large amount of input.
*
* The results of some calculations are cached for maintaining fast run times.
* For this reason, memory demands are much higher but this should pay off.
*/
template<class RawShape>
class _Item {
using Coord = TCoord<TPoint<RawShape>>;
using Vertex = TPoint<RawShape>;
using Box = _Box<Vertex>;
// The original shape that gets encapsulated.
RawShape sh_;
// Transformation data
Vertex translation_;
Radians rotation_;
Coord offset_distance_;
// Info about whether the tranformations will have to take place
// This is needed because if floating point is used, it is hard to say
// that a zero angle is not a rotation because of testing for equality.
bool has_rotation_ = false, has_translation_ = false, has_offset_ = false;
// For caching the calculations as they can get pretty expensive.
mutable RawShape tr_cache_;
mutable bool tr_cache_valid_ = false;
mutable double area_cache_ = 0;
mutable bool area_cache_valid_ = false;
mutable RawShape offset_cache_;
mutable bool offset_cache_valid_ = false;
enum class Convexity: char {
UNCHECKED,
TRUE,
FALSE
};
mutable Convexity convexity_ = Convexity::UNCHECKED;
public:
/// The type of the shape which was handed over as the template argument.
using ShapeType = RawShape;
/**
* \brief Iterator type for the outer vertices.
*
* Only const iterators can be used. The _Item type is not intended to
* modify the carried shapes from the outside. The main purpose of this type
* is to cache the calculation results from the various operators it
* supports. Giving out a non const iterator would make it impossible to
* perform correct cache invalidation.
*/
using Iterator = TVertexConstIterator<RawShape>;
/**
* @brief Get the orientation of the polygon.
*
* The orientation have to be specified as a specialization of the
* OrientationType struct which has a Value constant.
*
* @return The orientation type identifier for the _Item type.
*/
static BP2D_CONSTEXPR Orientation orientation() {
return OrientationType<RawShape>::Value;
}
/**
* @brief Constructing an _Item form an existing raw shape. The shape will
* be copied into the _Item object.
* @param sh The original shape object.
*/
explicit inline _Item(const RawShape& sh): sh_(sh) {}
/**
* @brief Construction of an item by moving the content of the raw shape,
* assuming that it supports move semantics.
* @param sh The original shape object.
*/
explicit inline _Item(RawShape&& sh): sh_(std::move(sh)) {}
/**
* @brief Create an item from an initilizer list.
* @param il The initializer list of vertices.
*/
inline _Item(const std::initializer_list< Vertex >& il):
sh_(ShapeLike::create<RawShape>(il)) {}
inline _Item(const TContour<RawShape>& contour,
const THolesContainer<RawShape>& holes = {}):
sh_(ShapeLike::create<RawShape>(contour, holes)) {}
inline _Item(TContour<RawShape>&& contour,
THolesContainer<RawShape>&& holes):
sh_(ShapeLike::create<RawShape>(std::move(contour),
std::move(holes))) {}
/**
* @brief Convert the polygon to string representation. The format depends
* on the implementation of the polygon.
* @return
*/
inline std::string toString() const
{
return ShapeLike::toString(sh_);
}
/// Iterator tho the first contour vertex in the polygon.
inline Iterator begin() const
{
return ShapeLike::cbegin(sh_);
}
/// Alias to begin()
inline Iterator cbegin() const
{
return ShapeLike::cbegin(sh_);
}
/// Iterator to the last contour vertex.
inline Iterator end() const
{
return ShapeLike::cend(sh_);
}
/// Alias to end()
inline Iterator cend() const
{
return ShapeLike::cend(sh_);
}
/**
* @brief Get a copy of an outer vertex whithin the carried shape.
*
* Note that the vertex considered here is taken from the original shape
* that this item is constructed from. This means that no transformation is
* applied to the shape in this call.
*
* @param idx The index of the requested vertex.
* @return A copy of the requested vertex.
*/
inline Vertex vertex(unsigned long idx) const
{
return ShapeLike::vertex(sh_, idx);
}
/**
* @brief Modify a vertex.
*
* Note that this method will invalidate every cached calculation result
* including polygon offset and transformations.
*
* @param idx The index of the requested vertex.
* @param v The new vertex data.
*/
inline void setVertex(unsigned long idx, const Vertex& v )
{
invalidateCache();
ShapeLike::vertex(sh_, idx) = v;
}
/**
* @brief Calculate the shape area.
*
* The method returns absolute value and does not reflect polygon
* orientation. The result is cached, subsequent calls will have very little
* cost.
* @return The shape area in floating point double precision.
*/
inline double area() const {
double ret ;
if(area_cache_valid_) ret = area_cache_;
else {
ret = ShapeLike::area(offsettedShape());
area_cache_ = ret;
area_cache_valid_ = true;
}
return ret;
}
inline bool isContourConvex() const {
bool ret = false;
switch(convexity_) {
case Convexity::UNCHECKED:
ret = ShapeLike::isConvex<RawShape>(ShapeLike::getContour(transformedShape()));
convexity_ = ret? Convexity::TRUE : Convexity::FALSE;
break;
case Convexity::TRUE: ret = true; break;
case Convexity::FALSE:;
}
return ret;
}
inline bool isHoleConvex(unsigned holeidx) const {
return false;
}
inline bool areHolesConvex() const {
return false;
}
/// The number of the outer ring vertices.
inline size_t vertexCount() const {
return ShapeLike::contourVertexCount(sh_);
}
inline size_t holeCount() const {
return ShapeLike::holeCount(sh_);
}
/**
* @brief isPointInside
* @param p
* @return
*/
inline bool isPointInside(const Vertex& p)
{
return ShapeLike::isInside(p, sh_);
}
inline bool isInside(const _Item& sh) const
{
return ShapeLike::isInside(transformedShape(), sh.transformedShape());
}
inline bool isInside(const _Box<TPoint<RawShape>>& box);
inline void translate(const Vertex& d) BP2D_NOEXCEPT
{
translation_ += d; has_translation_ = true;
tr_cache_valid_ = false;
}
inline void rotate(const Radians& rads) BP2D_NOEXCEPT
{
rotation_ += rads;
has_rotation_ = true;
tr_cache_valid_ = false;
}
inline void addOffset(Coord distance) BP2D_NOEXCEPT
{
offset_distance_ = distance;
has_offset_ = true;
offset_cache_valid_ = false;
}
inline void removeOffset() BP2D_NOEXCEPT {
has_offset_ = false;
invalidateCache();
}
inline Radians rotation() const BP2D_NOEXCEPT
{
return rotation_;
}
inline TPoint<RawShape> translation() const BP2D_NOEXCEPT
{
return translation_;
}
inline void rotation(Radians rot) BP2D_NOEXCEPT
{
if(rotation_ != rot) {
rotation_ = rot; has_rotation_ = true; tr_cache_valid_ = false;
}
}
inline void translation(const TPoint<RawShape>& tr) BP2D_NOEXCEPT
{
if(translation_ != tr) {
translation_ = tr; has_translation_ = true; tr_cache_valid_ = false;
}
}
inline const RawShape& transformedShape() const
{
if(tr_cache_valid_) return tr_cache_;
RawShape cpy = offsettedShape();
if(has_rotation_) ShapeLike::rotate(cpy, rotation_);
if(has_translation_) ShapeLike::translate(cpy, translation_);
tr_cache_ = cpy; tr_cache_valid_ = true;
return tr_cache_;
}
inline operator RawShape() const
{
return transformedShape();
}
inline const RawShape& rawShape() const BP2D_NOEXCEPT
{
return sh_;
}
inline void resetTransformation() BP2D_NOEXCEPT
{
has_translation_ = false; has_rotation_ = false; has_offset_ = false;
}
inline Box boundingBox() const {
return ShapeLike::boundingBox(transformedShape());
}
//Static methods:
inline static bool intersects(const _Item& sh1, const _Item& sh2)
{
return ShapeLike::intersects(sh1.transformedShape(),
sh2.transformedShape());
}
inline static bool touches(const _Item& sh1, const _Item& sh2)
{
return ShapeLike::touches(sh1.transformedShape(),
sh2.transformedShape());
}
private:
inline const RawShape& offsettedShape() const {
if(has_offset_ ) {
if(offset_cache_valid_) return offset_cache_;
else {
offset_cache_ = sh_;
ShapeLike::offset(offset_cache_, offset_distance_);
offset_cache_valid_ = true;
return offset_cache_;
}
}
return sh_;
}
inline void invalidateCache() const BP2D_NOEXCEPT
{
tr_cache_valid_ = false;
area_cache_valid_ = false;
offset_cache_valid_ = false;
convexity_ = Convexity::UNCHECKED;
}
};
/**
* \brief Subclass of _Item for regular rectangle items.
*/
template<class RawShape>
class _Rectangle: public _Item<RawShape> {
RawShape sh_;
using _Item<RawShape>::vertex;
using TO = Orientation;
public:
using Unit = TCoord<TPoint<RawShape>>;
template<TO o = OrientationType<RawShape>::Value>
inline _Rectangle(Unit width, Unit height,
// disable this ctor if o != CLOCKWISE
enable_if_t< o == TO::CLOCKWISE, int> = 0 ):
_Item<RawShape>( ShapeLike::create<RawShape>( {
{0, 0},
{0, height},
{width, height},
{width, 0},
{0, 0}
} ))
{
}
template<TO o = OrientationType<RawShape>::Value>
inline _Rectangle(Unit width, Unit height,
// disable this ctor if o != COUNTER_CLOCKWISE
enable_if_t< o == TO::COUNTER_CLOCKWISE, int> = 0 ):
_Item<RawShape>( ShapeLike::create<RawShape>( {
{0, 0},
{width, 0},
{width, height},
{0, height},
{0, 0}
} ))
{
}
inline Unit width() const BP2D_NOEXCEPT {
return getX(vertex(2));
}
inline Unit height() const BP2D_NOEXCEPT {
return getY(vertex(2));
}
};
template<class RawShape>
inline bool _Item<RawShape>::isInside(const _Box<TPoint<RawShape>>& box) {
_Rectangle<RawShape> rect(box.width(), box.height());
return _Item<RawShape>::isInside(rect);
}
/**
* \brief A wrapper interface (trait) class for any placement strategy provider.
*
* If a client want's to use its own placement algorithm, all it has to do is to
* specialize this class template and define all the ten methods it has. It can
* use the strategies::PlacerBoilerplace class for creating a new placement
* strategy where only the constructor and the trypack method has to be provided
* and it will work out of the box.
*/
template<class PlacementStrategy>
class PlacementStrategyLike {
PlacementStrategy impl_;
public:
/// The item type that the placer works with.
using Item = typename PlacementStrategy::Item;
/// The placer's config type. Should be a simple struct but can be anything.
using Config = typename PlacementStrategy::Config;
/**
* \brief The type of the bin that the placer works with.
*
* Can be a box or an arbitrary shape or just a width or height without a
* second dimension if an infinite bin is considered.
*/
using BinType = typename PlacementStrategy::BinType;
/**
* \brief Pack result that can be used to accept or discard it. See trypack
* method.
*/
using PackResult = typename PlacementStrategy::PackResult;
using ItemRef = std::reference_wrapper<Item>;
using ItemGroup = std::vector<ItemRef>;
/**
* @brief Constructor taking the bin and an optional configuration.
* @param bin The bin object whose type is defined by the placement strategy.
* @param config The configuration for the particular placer.
*/
explicit PlacementStrategyLike(const BinType& bin,
const Config& config = Config()):
impl_(bin)
{
configure(config);
}
/**
* @brief Provide a different configuration for the placer.
*
* Note that it depends on the particular placer implementation how it
* reacts to config changes in the middle of a calculation.
*
* @param config The configuration object defined by the placement startegy.
*/
inline void configure(const Config& config) { impl_.configure(config); }
/**
* @brief A method that tries to pack an item and returns an object
* describing the pack result.
*
* The result can be casted to bool and used as an argument to the accept
* method to accept a succesfully packed item. This way the next packing
* will consider the accepted item as well. The PackResult should carry the
* transformation info so that if the tried item is later modified or tried
* multiple times, the result object should set it to the originally
* determied position. An implementation can be found in the
* strategies::PlacerBoilerplate::PackResult class.
*
* @param item Ithe item to be packed.
* @return The PackResult object that can be implicitly casted to bool.
*/
inline PackResult trypack(Item& item) { return impl_.trypack(item); }
/**
* @brief A method to accept a previously tried item.
*
* If the pack result is a failure the method should ignore it.
* @param r The result of a previous trypack call.
*/
inline void accept(PackResult& r) { impl_.accept(r); }
/**
* @brief pack Try to pack an item and immediately accept it on success.
*
* A default implementation would be to call
* { auto&& r = trypack(item); accept(r); return r; } but we should let the
* implementor of the placement strategy to harvest any optimizations from
* the absence of an intermadiate step. The above version can still be used
* in the implementation.
*
* @param item The item to pack.
* @return Returns true if the item was packed or false if it could not be
* packed.
*/
inline bool pack(Item& item) { return impl_.pack(item); }
/// Unpack the last element (remove it from the list of packed items).
inline void unpackLast() { impl_.unpackLast(); }
/// Get the bin object.
inline const BinType& bin() const { return impl_.bin(); }
/// Set a new bin object.
inline void bin(const BinType& bin) { impl_.bin(bin); }
/// Get the packed items.
inline ItemGroup getItems() { return impl_.getItems(); }
/// Clear the packed items so a new session can be started.
inline void clearItems() { impl_.clearItems(); }
inline double filledArea() const { return impl_.filledArea(); }
#ifndef NDEBUG
inline auto getDebugItems() -> decltype(impl_.debug_items_)&
{
return impl_.debug_items_;
}
#endif
};
// The progress function will be called with the number of placed items
using ProgressFunction = std::function<void(unsigned)>;
/**
* A wrapper interface (trait) class for any selections strategy provider.
*/
template<class SelectionStrategy>
class SelectionStrategyLike {
SelectionStrategy impl_;
public:
using Item = typename SelectionStrategy::Item;
using Config = typename SelectionStrategy::Config;
using ItemRef = std::reference_wrapper<Item>;
using ItemGroup = std::vector<ItemRef>;
/**
* @brief Provide a different configuration for the selection strategy.
*
* Note that it depends on the particular placer implementation how it
* reacts to config changes in the middle of a calculation.
*
* @param config The configuration object defined by the selection startegy.
*/
inline void configure(const Config& config) {
impl_.configure(config);
}
/**
* @brief A function callback which should be called whenewer an item or
* a group of items where succesfully packed.
* @param fn A function callback object taking one unsigned integer as the
* number of the remaining items to pack.
*/
void progressIndicator(ProgressFunction fn) { impl_.progressIndicator(fn); }
/**
* \brief A method to start the calculation on the input sequence.
*
* \tparam TPlacer The only mandatory template parameter is the type of
* placer compatible with the PlacementStrategyLike interface.
*
* \param first, last The first and last iterator if the input sequence. It
* can be only an iterator of a type converitible to Item.
* \param bin. The shape of the bin. It has to be supported by the placement
* strategy.
* \param An optional config object for the placer.
*/
template<class TPlacer, class TIterator,
class TBin = typename PlacementStrategyLike<TPlacer>::BinType,
class PConfig = typename PlacementStrategyLike<TPlacer>::Config>
inline void packItems(
TIterator first,
TIterator last,
TBin&& bin,
PConfig&& config = PConfig() )
{
impl_.template packItems<TPlacer>(first, last,
std::forward<TBin>(bin),
std::forward<PConfig>(config));
}
/**
* \brief Get the number of bins opened by the selection algorithm.
*
* Initially it is zero and after the call to packItems it will return
* the number of bins opened by the packing procedure.
*
* \return The number of bins opened.
*/
inline size_t binCount() const { return impl_.binCount(); }
/**
* @brief Get the items for a particular bin.
* @param binIndex The index of the requested bin.
* @return Returns a list of allitems packed into the requested bin.
*/
inline ItemGroup itemsForBin(size_t binIndex) {
return impl_.itemsForBin(binIndex);
}
/// Same as itemsForBin but for a const context.
inline const ItemGroup itemsForBin(size_t binIndex) const {
return impl_.itemsForBin(binIndex);
}
};
/**
* \brief A list of packed item vectors. Each vector represents a bin.
*/
template<class RawShape>
using _PackGroup = std::vector<
std::vector<
std::reference_wrapper<_Item<RawShape>>
>
>;
/**
* \brief A list of packed (index, item) pair vectors. Each vector represents a
* bin.
*
* The index is points to the position of the item in the original input
* sequence. This way the caller can use the items as a transformation data
* carrier and transform the original objects manually.
*/
template<class RawShape>
using _IndexedPackGroup = std::vector<
std::vector<
std::pair<
unsigned,
std::reference_wrapper<_Item<RawShape>>
>
>
>;
/**
* The Arranger is the frontend class for the binpack2d library. It takes the
* input items and outputs the items with the proper transformations to be
* inside the provided bin.
*/
template<class PlacementStrategy, class SelectionStrategy >
class Arranger {
using TSel = SelectionStrategyLike<SelectionStrategy>;
TSel selector_;
bool use_min_bb_rotation_ = false;
public:
using Item = typename PlacementStrategy::Item;
using ItemRef = std::reference_wrapper<Item>;
using TPlacer = PlacementStrategyLike<PlacementStrategy>;
using BinType = typename TPlacer::BinType;
using PlacementConfig = typename TPlacer::Config;
using SelectionConfig = typename TSel::Config;
using Unit = TCoord<TPoint<typename Item::ShapeType>>;
using IndexedPackGroup = _IndexedPackGroup<typename Item::ShapeType>;
using PackGroup = _PackGroup<typename Item::ShapeType>;
using ResultType = PackGroup;
using ResultTypeIndexed = IndexedPackGroup;
private:
BinType bin_;
PlacementConfig pconfig_;
Unit min_obj_distance_;
using SItem = typename SelectionStrategy::Item;
using TPItem = remove_cvref_t<Item>;
using TSItem = remove_cvref_t<SItem>;
std::vector<TPItem> item_cache_;
public:
/**
* \brief Constructor taking the bin as the only mandatory parameter.
*
* \param bin The bin shape that will be used by the placers. The type
* of the bin should be one that is supported by the placer type.
*/
template<class TBinType = BinType,
class PConf = PlacementConfig,
class SConf = SelectionConfig>
Arranger( TBinType&& bin,
Unit min_obj_distance = 0,
PConf&& pconfig = PConf(),
SConf&& sconfig = SConf()):
bin_(std::forward<TBinType>(bin)),
pconfig_(std::forward<PlacementConfig>(pconfig)),
min_obj_distance_(min_obj_distance)
{
static_assert( std::is_same<TPItem, TSItem>::value,
"Incompatible placement and selection strategy!");
selector_.configure(std::forward<SelectionConfig>(sconfig));
}
void configure(const PlacementConfig& pconf) { pconfig_ = pconf; }
void configure(const SelectionConfig& sconf) { selector_.configure(sconf); }
void configure(const PlacementConfig& pconf, const SelectionConfig& sconf) {
pconfig_ = pconf;
selector_.configure(sconf);
}
void configure(const SelectionConfig& sconf, const PlacementConfig& pconf) {
pconfig_ = pconf;
selector_.configure(sconf);
}
/**
* \brief Arrange an input sequence and return a PackGroup object with
* the packed groups corresponding to the bins.
*
* The number of groups in the pack group is the number of bins opened by
* the selection algorithm.
*/
template<class TIterator>
inline PackGroup arrange(TIterator from, TIterator to)
{
return _arrange(from, to);
}
/**
* A version of the arrange method returning an IndexedPackGroup with
* the item indexes into the original input sequence.
*
* Takes a little longer to collect the indices. Scales linearly with the
* input sequence size.
*/
template<class TIterator>
inline IndexedPackGroup arrangeIndexed(TIterator from, TIterator to)
{
return _arrangeIndexed(from, to);
}
/// Shorthand to normal arrange method.
template<class TIterator>
inline PackGroup operator() (TIterator from, TIterator to)
{
return _arrange(from, to);
}
/// Set a progress indicatior function object for the selector.
inline Arranger& progressIndicator(ProgressFunction func)
{
selector_.progressIndicator(func); return *this;
}
inline PackGroup lastResult() {
PackGroup ret;
for(size_t i = 0; i < selector_.binCount(); i++) {
auto items = selector_.itemsForBin(i);
ret.push_back(items);
}
return ret;
}
inline Arranger& useMinimumBoundigBoxRotation(bool s = true) {
use_min_bb_rotation_ = s; return *this;
}
private:
template<class TIterator,
class IT = remove_cvref_t<typename TIterator::value_type>,
// This funtion will be used only if the iterators are pointing to
// a type compatible with the binpack2d::_Item template.
// This way we can use references to input elements as they will
// have to exist for the lifetime of this call.
class T = enable_if_t< std::is_convertible<IT, TPItem>::value, IT>
>
inline PackGroup _arrange(TIterator from, TIterator to, bool = false)
{
__arrange(from, to);
return lastResult();
}
template<class TIterator,
class IT = remove_cvref_t<typename TIterator::value_type>,
class T = enable_if_t<!std::is_convertible<IT, TPItem>::value, IT>
>
inline PackGroup _arrange(TIterator from, TIterator to, int = false)
{
item_cache_ = {from, to};
__arrange(item_cache_.begin(), item_cache_.end());
return lastResult();
}
template<class TIterator,
class IT = remove_cvref_t<typename TIterator::value_type>,
// This funtion will be used only if the iterators are pointing to
// a type compatible with the binpack2d::_Item template.
// This way we can use references to input elements as they will
// have to exist for the lifetime of this call.
class T = enable_if_t< std::is_convertible<IT, TPItem>::value, IT>
>
inline IndexedPackGroup _arrangeIndexed(TIterator from,
TIterator to,
bool = false)
{
__arrange(from, to);
return createIndexedPackGroup(from, to, selector_);
}
template<class TIterator,
class IT = remove_cvref_t<typename TIterator::value_type>,
class T = enable_if_t<!std::is_convertible<IT, TPItem>::value, IT>
>
inline IndexedPackGroup _arrangeIndexed(TIterator from,
TIterator to,
int = false)
{
item_cache_ = {from, to};
__arrange(item_cache_.begin(), item_cache_.end());
return createIndexedPackGroup(from, to, selector_);
}
template<class TIterator>
static IndexedPackGroup createIndexedPackGroup(TIterator from,
TIterator to,
TSel& selector)
{
IndexedPackGroup pg;
pg.reserve(selector.binCount());
for(size_t i = 0; i < selector.binCount(); i++) {
auto items = selector.itemsForBin(i);
pg.push_back({});
pg[i].reserve(items.size());
for(Item& itemA : items) {
auto it = from;
unsigned idx = 0;
while(it != to) {
Item& itemB = *it;
if(&itemB == &itemA) break;
it++; idx++;
}
pg[i].emplace_back(idx, itemA);
}
}
return pg;
}
Radians findBestRotation(Item& item) {
opt::StopCriteria stopcr;
stopcr.stoplimit = 0.01;
stopcr.max_iterations = 10000;
stopcr.type = opt::StopLimitType::RELATIVE;
opt::TOptimizer<opt::Method::G_GENETIC> solver(stopcr);
auto orig_rot = item.rotation();
auto result = solver.optimize_min([&item, &orig_rot](Radians rot){
item.rotation(orig_rot + rot);
auto bb = item.boundingBox();
return std::sqrt(bb.height()*bb.width());
}, opt::initvals(Radians(0)), opt::bound<Radians>(-Pi/2, Pi/2));
item.rotation(orig_rot);
return std::get<0>(result.optimum);
}
template<class TIter> inline void __arrange(TIter from, TIter to)
{
if(min_obj_distance_ > 0) std::for_each(from, to, [this](Item& item) {
item.addOffset(static_cast<Unit>(std::ceil(min_obj_distance_/2.0)));
});
if(use_min_bb_rotation_)
std::for_each(from, to, [this](Item& item){
Radians rot = findBestRotation(item);
item.rotate(rot);
});
selector_.template packItems<PlacementStrategy>(
from, to, bin_, pconfig_);
if(min_obj_distance_ > 0) std::for_each(from, to, [](Item& item) {
item.removeOffset();
});
}
};
}
#endif // LIBNEST2D_HPP

View file

@ -0,0 +1,419 @@
#ifndef OPTIMIZER_HPP
#define OPTIMIZER_HPP
#include <tuple>
#include <functional>
#include <limits>
#include "common.hpp"
namespace libnest2d { namespace opt {
using std::forward;
using std::tuple;
using std::get;
using std::tuple_element;
/// A Type trait for upper and lower limit of a numeric type.
template<class T, class B = void >
struct limits {
inline static T min() { return std::numeric_limits<T>::min(); }
inline static T max() { return std::numeric_limits<T>::max(); }
};
template<class T>
struct limits<T, enable_if_t<std::numeric_limits<T>::has_infinity, void>> {
inline static T min() { return -std::numeric_limits<T>::infinity(); }
inline static T max() { return std::numeric_limits<T>::infinity(); }
};
/// An interval of possible input values for optimization
template<class T>
class Bound {
T min_;
T max_;
public:
Bound(const T& min = limits<T>::min(),
const T& max = limits<T>::max()): min_(min), max_(max) {}
inline const T min() const BP2D_NOEXCEPT { return min_; }
inline const T max() const BP2D_NOEXCEPT { return max_; }
};
/**
* Helper function to make a Bound object with its type deduced automatically.
*/
template<class T>
inline Bound<T> bound(const T& min, const T& max) { return Bound<T>(min, max); }
/**
* This is the type of an input tuple for the object function. It holds the
* values and their type in each dimension.
*/
template<class...Args> using Input = tuple<Args...>;
template<class...Args>
inline tuple<Args...> initvals(Args...args) { return std::make_tuple(args...); }
/**
* @brief Helper class to be able to loop over a parameter pack's elements.
*/
class metaloop {
// The implementation is based on partial struct template specializations.
// Basically we need a template type that is callable and takes an integer
// non-type template parameter which can be used to implement recursive calls.
//
// C++11 will not allow the usage of a plain template function that is why we
// use struct with overloaded call operator. At the same time C++11 prohibits
// partial template specialization with a non type parameter such as int. We
// need to wrap that in a type (see metaloop::Int).
/*
* A helper alias to create integer values wrapped as a type. It is nessecary
* because a non type template parameter (such as int) would be prohibited in
* a partial specialization. Also for the same reason we have to use a class
* _Metaloop instead of a simple function as a functor. A function cannot be
* partially specialized in a way that is neccesary for this trick.
*/
template<int N> using Int = std::integral_constant<int, N>;
/*
* Helper class to implement in-place functors.
*
* We want to be able to use inline functors like a lambda to keep the code
* as clear as possible.
*/
template<int N, class Fn> class MapFn {
Fn&& fn_;
public:
// It takes the real functor that can be specified in-place but only
// with C++14 because the second parameter's type will depend on the
// type of the parameter pack element that is processed. In C++14 we can
// specify this second parameter type as auto in the lamda parameter list.
inline MapFn(Fn&& fn): fn_(forward<Fn>(fn)) {}
template<class T> void operator ()(T&& pack_element) {
// We provide the index as the first parameter and the pack (or tuple)
// element as the second parameter to the functor.
fn_(N, forward<T>(pack_element));
}
};
/*
* Implementation of the template loop trick.
* We create a mechanism for looping over a parameter pack in compile time.
* \tparam Idx is the loop index which will be decremented at each recursion.
* \tparam Args The parameter pack that will be processed.
*
*/
template <typename Idx, class...Args>
class _MetaLoop {};
// Implementation for the first element of Args...
template <class...Args>
class _MetaLoop<Int<0>, Args...> {
public:
const static BP2D_CONSTEXPR int N = 0;
const static BP2D_CONSTEXPR int ARGNUM = sizeof...(Args)-1;
template<class Tup, class Fn>
void run( Tup&& valtup, Fn&& fn) {
MapFn<ARGNUM-N, Fn> {forward<Fn>(fn)} (get<ARGNUM-N>(valtup));
}
};
// Implementation for the N-th element of Args...
template <int N, class...Args>
class _MetaLoop<Int<N>, Args...> {
public:
const static BP2D_CONSTEXPR int ARGNUM = sizeof...(Args)-1;
template<class Tup, class Fn>
void run(Tup&& valtup, Fn&& fn) {
MapFn<ARGNUM-N, Fn> {forward<Fn>(fn)} (std::get<ARGNUM-N>(valtup));
// Recursive call to process the next element of Args
_MetaLoop<Int<N-1>, Args...> ().run(forward<Tup>(valtup),
forward<Fn>(fn));
}
};
/*
* Instantiation: We must instantiate the template with the last index because
* the generalized version calls the decremented instantiations recursively.
* Once the instantiation with the first index is called, the terminating
* version of run is called which does not call itself anymore.
*
* If you are utterly annoyed, at least you have learned a super crazy
* functional metaprogramming pattern.
*/
template<class...Args>
using MetaLoop = _MetaLoop<Int<sizeof...(Args)-1>, Args...>;
public:
/**
* \brief The final usable function template.
*
* This is similar to what varags was on C but in compile time C++11.
* You can call:
* apply(<the mapping function>, <arbitrary number of arguments of any type>);
* For example:
*
* struct mapfunc {
* template<class T> void operator()(int N, T&& element) {
* std::cout << "The value of the parameter "<< N <<": "
* << element << std::endl;
* }
* };
*
* apply(mapfunc(), 'a', 10, 151.545);
*
* C++14:
* apply([](int N, auto&& element){
* std::cout << "The value of the parameter "<< N <<": "
* << element << std::endl;
* }, 'a', 10, 151.545);
*
* This yields the output:
* The value of the parameter 0: a
* The value of the parameter 1: 10
* The value of the parameter 2: 151.545
*
* As an addition, the function can be called with a tuple as the second
* parameter holding the arguments instead of a parameter pack.
*
*/
template<class...Args, class Fn>
inline static void apply(Fn&& fn, Args&&...args) {
MetaLoop<Args...>().run(tuple<Args&&...>(forward<Args>(args)...),
forward<Fn>(fn));
}
/// The version of apply with a tuple rvalue reference.
template<class...Args, class Fn>
inline static void apply(Fn&& fn, tuple<Args...>&& tup) {
MetaLoop<Args...>().run(std::move(tup), forward<Fn>(fn));
}
/// The version of apply with a tuple lvalue reference.
template<class...Args, class Fn>
inline static void apply(Fn&& fn, tuple<Args...>& tup) {
MetaLoop<Args...>().run(tup, forward<Fn>(fn));
}
/// The version of apply with a tuple const reference.
template<class...Args, class Fn>
inline static void apply(Fn&& fn, const tuple<Args...>& tup) {
MetaLoop<Args...>().run(tup, forward<Fn>(fn));
}
/**
* Call a function with its arguments encapsualted in a tuple.
*/
template<class Fn, class Tup, std::size_t...Is>
inline static auto
callFunWithTuple(Fn&& fn, Tup&& tup, index_sequence<Is...>) ->
decltype(fn(std::get<Is>(tup)...))
{
return fn(std::get<Is>(tup)...);
}
};
/**
* @brief Specific optimization methods for which a default optimizer
* implementation can be instantiated.
*/
enum class Method {
L_SIMPLEX,
L_SUBPLEX,
G_GENETIC,
//...
};
/**
* @brief Info about result of an optimization. These codes are exactly the same
* as the nlopt codes for convinience.
*/
enum ResultCodes {
FAILURE = -1, /* generic failure code */
INVALID_ARGS = -2,
OUT_OF_MEMORY = -3,
ROUNDOFF_LIMITED = -4,
FORCED_STOP = -5,
SUCCESS = 1, /* generic success code */
STOPVAL_REACHED = 2,
FTOL_REACHED = 3,
XTOL_REACHED = 4,
MAXEVAL_REACHED = 5,
MAXTIME_REACHED = 6
};
/**
* \brief A type to hold the complete result of the optimization.
*/
template<class...Args>
struct Result {
ResultCodes resultcode;
std::tuple<Args...> optimum;
double score;
};
/**
* @brief The stop limit can be specified as the absolute error or as the
* relative error, just like in nlopt.
*/
enum class StopLimitType {
ABSOLUTE,
RELATIVE
};
/**
* @brief A type for specifying the stop criteria.
*/
struct StopCriteria {
/// Relative or absolute termination error
StopLimitType type = StopLimitType::RELATIVE;
/// The error value that is interpredted depending on the type property.
double stoplimit = 0.0001;
unsigned max_iterations = 0;
};
/**
* \brief The Optimizer base class with CRTP pattern.
*/
template<class Subclass>
class Optimizer {
protected:
enum class OptDir{
MIN,
MAX
} dir_;
StopCriteria stopcr_;
public:
inline explicit Optimizer(const StopCriteria& scr = {}): stopcr_(scr) {}
/**
* \brief Optimize for minimum value of the provided objectfunction.
* \param objectfunction The function that will be searched for the minimum
* return value.
* \param initvals A tuple with the initial values for the search
* \param bounds A parameter pack with the bounds for each dimension.
* \return Returns a Result<Args...> structure.
* An example call would be:
* auto result = opt.optimize_min(
* [](std::tuple<double> x) // object function
* {
* return std::pow(std::get<0>(x), 2);
* },
* std::make_tuple(-0.5), // initial value
* {-1.0, 1.0} // search space bounds
* );
*/
template<class Func, class...Args>
inline Result<Args...> optimize_min(Func&& objectfunction,
Input<Args...> initvals,
Bound<Args>... bounds)
{
dir_ = OptDir::MIN;
return static_cast<Subclass*>(this)->template optimize<Func, Args...>(
forward<Func>(objectfunction), initvals, bounds... );
}
template<class Func, class...Args>
inline Result<Args...> optimize_min(Func&& objectfunction,
Input<Args...> initvals)
{
dir_ = OptDir::MIN;
return static_cast<Subclass*>(this)->template optimize<Func, Args...>(
objectfunction, initvals, Bound<Args>()... );
}
template<class...Args, class Func>
inline Result<Args...> optimize_min(Func&& objectfunction)
{
dir_ = OptDir::MIN;
return static_cast<Subclass*>(this)->template optimize<Func, Args...>(
objectfunction,
Input<Args...>(),
Bound<Args>()... );
}
/// Same as optimize_min but optimizes for maximum function value.
template<class Func, class...Args>
inline Result<Args...> optimize_max(Func&& objectfunction,
Input<Args...> initvals,
Bound<Args>... bounds)
{
dir_ = OptDir::MAX;
return static_cast<Subclass*>(this)->template optimize<Func, Args...>(
objectfunction, initvals, bounds... );
}
template<class Func, class...Args>
inline Result<Args...> optimize_max(Func&& objectfunction,
Input<Args...> initvals)
{
dir_ = OptDir::MAX;
return static_cast<Subclass*>(this)->template optimize<Func, Args...>(
objectfunction, initvals, Bound<Args>()... );
}
template<class...Args, class Func>
inline Result<Args...> optimize_max(Func&& objectfunction)
{
dir_ = OptDir::MAX;
return static_cast<Subclass*>(this)->template optimize<Func, Args...>(
objectfunction,
Input<Args...>(),
Bound<Args>()... );
}
};
// Just to be able to instantiate an unimplemented method and generate compile
// error.
template<class T = void>
class DummyOptimizer : public Optimizer<DummyOptimizer<T>> {
friend class Optimizer<DummyOptimizer<T>>;
public:
DummyOptimizer() {
static_assert(always_false<T>::value, "Optimizer unimplemented!");
}
template<class Func, class...Args>
Result<Args...> optimize(Func&& func,
std::tuple<Args...> initvals,
Bound<Args>... args)
{
return Result<Args...>();
}
};
// Specializing this struct will tell what kind of optimizer to generate for
// a given method
template<Method m> struct OptimizerSubclass { using Type = DummyOptimizer<>; };
/// Optimizer type based on the method provided in parameter m.
template<Method m> using TOptimizer = typename OptimizerSubclass<m>::Type;
/// Global optimizer with an explicitly specified local method.
template<Method m>
inline TOptimizer<m> GlobalOptimizer(Method, const StopCriteria& scr = {})
{ // Need to be specialized in order to do anything useful.
return TOptimizer<m>(scr);
}
}
}
#endif // OPTIMIZER_HPP

View file

@ -0,0 +1,31 @@
#ifndef GENETIC_HPP
#define GENETIC_HPP
#include "nlopt_boilerplate.hpp"
namespace libnest2d { namespace opt {
class GeneticOptimizer: public NloptOptimizer {
public:
inline explicit GeneticOptimizer(const StopCriteria& scr = {}):
NloptOptimizer(method2nloptAlg(Method::G_GENETIC), scr) {}
inline GeneticOptimizer& localMethod(Method m) {
localmethod_ = m;
return *this;
}
};
template<>
struct OptimizerSubclass<Method::G_GENETIC> { using Type = GeneticOptimizer; };
template<> TOptimizer<Method::G_GENETIC> GlobalOptimizer<Method::G_GENETIC>(
Method localm, const StopCriteria& scr )
{
return GeneticOptimizer (scr).localMethod(localm);
}
}
}
#endif // GENETIC_HPP

View file

@ -0,0 +1,176 @@
#ifndef NLOPT_BOILERPLATE_HPP
#define NLOPT_BOILERPLATE_HPP
#include <nlopt.hpp>
#include <libnest2d/optimizer.hpp>
#include <cassert>
#include <utility>
namespace libnest2d { namespace opt {
nlopt::algorithm method2nloptAlg(Method m) {
switch(m) {
case Method::L_SIMPLEX: return nlopt::LN_NELDERMEAD;
case Method::L_SUBPLEX: return nlopt::LN_SBPLX;
case Method::G_GENETIC: return nlopt::GN_ESCH;
default: assert(false); throw(m);
}
}
/**
* Optimizer based on NLopt.
*
* All the optimized types have to be convertible to double.
*/
class NloptOptimizer: public Optimizer<NloptOptimizer> {
protected:
nlopt::opt opt_;
std::vector<double> lower_bounds_;
std::vector<double> upper_bounds_;
std::vector<double> initvals_;
nlopt::algorithm alg_;
Method localmethod_;
using Base = Optimizer<NloptOptimizer>;
friend Base;
// ********************************************************************** */
// TODO: CHANGE FOR LAMBDAS WHEN WE WILL MOVE TO C++14
struct BoundsFunc {
NloptOptimizer& self;
inline explicit BoundsFunc(NloptOptimizer& o): self(o) {}
template<class T> void operator()(int N, T& bounds)
{
self.lower_bounds_[N] = bounds.min();
self.upper_bounds_[N] = bounds.max();
}
};
struct InitValFunc {
NloptOptimizer& self;
inline explicit InitValFunc(NloptOptimizer& o): self(o) {}
template<class T> void operator()(int N, T& initval)
{
self.initvals_[N] = initval;
}
};
struct ResultCopyFunc {
NloptOptimizer& self;
inline explicit ResultCopyFunc(NloptOptimizer& o): self(o) {}
template<class T> void operator()(int N, T& resultval)
{
resultval = self.initvals_[N];
}
};
struct FunvalCopyFunc {
using D = const std::vector<double>;
D& params;
inline explicit FunvalCopyFunc(D& p): params(p) {}
template<class T> void operator()(int N, T& resultval)
{
resultval = params[N];
}
};
/* ********************************************************************** */
template<class Fn, class...Args>
static double optfunc(const std::vector<double>& params,
std::vector<double>& grad,
void *data)
{
auto fnptr = static_cast<remove_ref_t<Fn>*>(data);
auto funval = std::tuple<Args...>();
// copy the obtained objectfunction arguments to the funval tuple.
metaloop::apply(FunvalCopyFunc(params), funval);
auto ret = metaloop::callFunWithTuple(*fnptr, funval,
index_sequence_for<Args...>());
return ret;
}
template<class Func, class...Args>
Result<Args...> optimize(Func&& func,
std::tuple<Args...> initvals,
Bound<Args>... args)
{
lower_bounds_.resize(sizeof...(Args));
upper_bounds_.resize(sizeof...(Args));
initvals_.resize(sizeof...(Args));
opt_ = nlopt::opt(alg_, sizeof...(Args) );
// Copy the bounds which is obtained as a parameter pack in args into
// lower_bounds_ and upper_bounds_
metaloop::apply(BoundsFunc(*this), args...);
opt_.set_lower_bounds(lower_bounds_);
opt_.set_upper_bounds(upper_bounds_);
nlopt::opt localopt;
switch(opt_.get_algorithm()) {
case nlopt::GN_MLSL:
case nlopt::GN_MLSL_LDS:
localopt = nlopt::opt(method2nloptAlg(localmethod_),
sizeof...(Args));
localopt.set_lower_bounds(lower_bounds_);
localopt.set_upper_bounds(upper_bounds_);
opt_.set_local_optimizer(localopt);
default: ;
}
switch(this->stopcr_.type) {
case StopLimitType::ABSOLUTE:
opt_.set_ftol_abs(stopcr_.stoplimit); break;
case StopLimitType::RELATIVE:
opt_.set_ftol_rel(stopcr_.stoplimit); break;
}
if(this->stopcr_.max_iterations > 0)
opt_.set_maxeval(this->stopcr_.max_iterations );
// Take care of the initial values, copy them to initvals_
metaloop::apply(InitValFunc(*this), initvals);
switch(dir_) {
case OptDir::MIN:
opt_.set_min_objective(optfunc<Func, Args...>, &func); break;
case OptDir::MAX:
opt_.set_max_objective(optfunc<Func, Args...>, &func); break;
}
Result<Args...> result;
auto rescode = opt_.optimize(initvals_, result.score);
result.resultcode = static_cast<ResultCodes>(rescode);
metaloop::apply(ResultCopyFunc(*this), result.optimum);
return result;
}
public:
inline explicit NloptOptimizer(nlopt::algorithm alg,
StopCriteria stopcr = {}):
Base(stopcr), alg_(alg), localmethod_(Method::L_SIMPLEX) {}
};
}
}
#endif // NLOPT_BOILERPLATE_HPP

View file

@ -0,0 +1,20 @@
#ifndef SIMPLEX_HPP
#define SIMPLEX_HPP
#include "nlopt_boilerplate.hpp"
namespace libnest2d { namespace opt {
class SimplexOptimizer: public NloptOptimizer {
public:
inline explicit SimplexOptimizer(const StopCriteria& scr = {}):
NloptOptimizer(method2nloptAlg(Method::L_SIMPLEX), scr) {}
};
template<>
struct OptimizerSubclass<Method::L_SIMPLEX> { using Type = SimplexOptimizer; };
}
}
#endif // SIMPLEX_HPP

View file

@ -0,0 +1,20 @@
#ifndef SUBPLEX_HPP
#define SUBPLEX_HPP
#include "nlopt_boilerplate.hpp"
namespace libnest2d { namespace opt {
class SubplexOptimizer: public NloptOptimizer {
public:
inline explicit SubplexOptimizer(const StopCriteria& scr = {}):
NloptOptimizer(method2nloptAlg(Method::L_SUBPLEX), scr) {}
};
template<>
struct OptimizerSubclass<Method::L_SUBPLEX> { using Type = SubplexOptimizer; };
}
}
#endif // SUBPLEX_HPP

View file

@ -0,0 +1,392 @@
#ifndef BOTTOMLEFT_HPP
#define BOTTOMLEFT_HPP
#include <limits>
#include "placer_boilerplate.hpp"
namespace libnest2d { namespace strategies {
template<class RawShape>
struct BLConfig {
TCoord<TPoint<RawShape>> min_obj_distance = 0;
bool allow_rotations = false;
};
template<class RawShape>
class _BottomLeftPlacer: public PlacerBoilerplate<
_BottomLeftPlacer<RawShape>,
RawShape, _Box<TPoint<RawShape>>,
BLConfig<RawShape> >
{
using Base = PlacerBoilerplate<_BottomLeftPlacer<RawShape>, RawShape,
_Box<TPoint<RawShape>>, BLConfig<RawShape>>;
DECLARE_PLACER(Base)
public:
explicit _BottomLeftPlacer(const BinType& bin): Base(bin) {}
PackResult trypack(Item& item) {
auto r = _trypack(item);
if(!r && Base::config_.allow_rotations) {
item.rotate(Degrees(90));
r =_trypack(item);
}
return r;
}
enum class Dir {
LEFT,
DOWN
};
inline RawShape leftPoly(const Item& item) const {
return toWallPoly(item, Dir::LEFT);
}
inline RawShape downPoly(const Item& item) const {
return toWallPoly(item, Dir::DOWN);
}
inline Unit availableSpaceLeft(const Item& item) {
return availableSpace(item, Dir::LEFT);
}
inline Unit availableSpaceDown(const Item& item) {
return availableSpace(item, Dir::DOWN);
}
protected:
PackResult _trypack(Item& item) {
// Get initial position for item in the top right corner
setInitialPosition(item);
Unit d = availableSpaceDown(item);
bool can_move = d > 1 /*std::numeric_limits<Unit>::epsilon()*/;
bool can_be_packed = can_move;
bool left = true;
while(can_move) {
if(left) { // write previous down move and go down
item.translate({0, -d+1});
d = availableSpaceLeft(item);
can_move = d > 1/*std::numeric_limits<Unit>::epsilon()*/;
left = false;
} else { // write previous left move and go down
item.translate({-d+1, 0});
d = availableSpaceDown(item);
can_move = d > 1/*std::numeric_limits<Unit>::epsilon()*/;
left = true;
}
}
if(can_be_packed) {
Item trsh(item.transformedShape());
for(auto& v : trsh) can_be_packed = can_be_packed &&
getX(v) < bin_.width() &&
getY(v) < bin_.height();
}
return can_be_packed? PackResult(item) : PackResult();
}
void setInitialPosition(Item& item) {
auto bb = item.boundingBox();
Vertex v = { getX(bb.maxCorner()), getY(bb.minCorner()) };
Coord dx = getX(bin_.maxCorner()) - getX(v);
Coord dy = getY(bin_.maxCorner()) - getY(v);
item.translate({dx, dy});
}
template<class C = Coord>
static enable_if_t<std::is_floating_point<C>::value, bool>
isInTheWayOf( const Item& item,
const Item& other,
const RawShape& scanpoly)
{
auto tsh = other.transformedShape();
return ( ShapeLike::intersects(tsh, scanpoly) ||
ShapeLike::isInside(tsh, scanpoly) ) &&
( !ShapeLike::intersects(tsh, item.rawShape()) &&
!ShapeLike::isInside(tsh, item.rawShape()) );
}
template<class C = Coord>
static enable_if_t<std::is_integral<C>::value, bool>
isInTheWayOf( const Item& item,
const Item& other,
const RawShape& scanpoly)
{
auto tsh = other.transformedShape();
bool inters_scanpoly = ShapeLike::intersects(tsh, scanpoly) &&
!ShapeLike::touches(tsh, scanpoly);
bool inters_item = ShapeLike::intersects(tsh, item.rawShape()) &&
!ShapeLike::touches(tsh, item.rawShape());
return ( inters_scanpoly ||
ShapeLike::isInside(tsh, scanpoly)) &&
( !inters_item &&
!ShapeLike::isInside(tsh, item.rawShape())
);
}
Container itemsInTheWayOf(const Item& item, const Dir dir) {
// Get the left or down polygon, that has the same area as the shadow
// of input item reflected to the left or downwards
auto&& scanpoly = dir == Dir::LEFT? leftPoly(item) :
downPoly(item);
Container ret; // packed items 'in the way' of item
ret.reserve(items_.size());
// Predicate to find items that are 'in the way' for left (down) move
auto predicate = [&scanpoly, &item](const Item& it) {
return isInTheWayOf(item, it, scanpoly);
};
// Get the items that are in the way for the left (or down) movement
std::copy_if(items_.begin(), items_.end(),
std::back_inserter(ret), predicate);
return ret;
}
Unit availableSpace(const Item& _item, const Dir dir) {
Item item (_item.transformedShape());
std::function<Coord(const Vertex&)> getCoord;
std::function< std::pair<Coord, bool>(const Segment&, const Vertex&) >
availableDistanceSV;
std::function< std::pair<Coord, bool>(const Vertex&, const Segment&) >
availableDistance;
if(dir == Dir::LEFT) {
getCoord = [](const Vertex& v) { return getX(v); };
availableDistance = PointLike::horizontalDistance<Vertex>;
availableDistanceSV = [](const Segment& s, const Vertex& v) {
auto ret = PointLike::horizontalDistance<Vertex>(v, s);
if(ret.second) ret.first = -ret.first;
return ret;
};
}
else {
getCoord = [](const Vertex& v) { return getY(v); };
availableDistance = PointLike::verticalDistance<Vertex>;
availableDistanceSV = [](const Segment& s, const Vertex& v) {
auto ret = PointLike::verticalDistance<Vertex>(v, s);
if(ret.second) ret.first = -ret.first;
return ret;
};
}
auto&& items_in_the_way = itemsInTheWayOf(item, dir);
// Comparison function for finding min vertex
auto cmp = [&getCoord](const Vertex& v1, const Vertex& v2) {
return getCoord(v1) < getCoord(v2);
};
// find minimum left or down coordinate of item
auto minvertex_it = std::min_element(item.begin(),
item.end(),
cmp);
// Get the initial distance in floating point
Unit m = getCoord(*minvertex_it);
// Check available distance for every vertex of item to the objects
// in the way for the nearest intersection
if(!items_in_the_way.empty()) { // This is crazy, should be optimized...
for(Item& pleft : items_in_the_way) {
// For all segments in items_to_left
assert(pleft.vertexCount() > 0);
auto trpleft = pleft.transformedShape();
auto first = ShapeLike::begin(trpleft);
auto next = first + 1;
auto endit = ShapeLike::end(trpleft);
while(next != endit) {
Segment seg(*(first++), *(next++));
for(auto& v : item) { // For all vertices in item
auto d = availableDistance(v, seg);
if(d.second && d.first < m) m = d.first;
}
}
}
auto first = item.begin();
auto next = first + 1;
auto endit = item.end();
// For all edges in item:
while(next != endit) {
Segment seg(*(first++), *(next++));
// for all shapes in items_to_left
for(Item& sh : items_in_the_way) {
assert(sh.vertexCount() > 0);
Item tsh(sh.transformedShape());
for(auto& v : tsh) { // For all vertices in item
auto d = availableDistanceSV(seg, v);
if(d.second && d.first < m) m = d.first;
}
}
}
}
return m;
}
/**
* Implementation of the left (and down) polygon as described by
* [López-Camacho et al. 2013]\
* (http://www.cs.stir.ac.uk/~goc/papers/EffectiveHueristic2DAOR2013.pdf)
* see algorithm 8 for details...
*/
RawShape toWallPoly(const Item& _item, const Dir dir) const {
// The variable names reflect the case of left polygon calculation.
//
// We will iterate through the item's vertices and search for the top
// and bottom vertices (or right and left if dir==Dir::DOWN).
// Save the relevant vertices and their indices into `bottom` and
// `top` vectors. In case of left polygon construction these will
// contain the top and bottom polygons which have the same vertical
// coordinates (in case there is more of them).
//
// We get the leftmost (or downmost) vertex from the `bottom` and `top`
// vectors and construct the final polygon.
Item item (_item.transformedShape());
auto getCoord = [dir](const Vertex& v) {
return dir == Dir::LEFT? getY(v) : getX(v);
};
Coord max_y = std::numeric_limits<Coord>::min();
Coord min_y = std::numeric_limits<Coord>::max();
using El = std::pair<size_t, std::reference_wrapper<const Vertex>>;
std::function<bool(const El&, const El&)> cmp;
if(dir == Dir::LEFT)
cmp = [](const El& e1, const El& e2) {
return getX(e1.second.get()) < getX(e2.second.get());
};
else
cmp = [](const El& e1, const El& e2) {
return getY(e1.second.get()) < getY(e2.second.get());
};
std::vector< El > top;
std::vector< El > bottom;
size_t idx = 0;
for(auto& v : item) { // Find the bottom and top vertices and save them
auto vref = std::cref(v);
auto vy = getCoord(v);
if( vy > max_y ) {
max_y = vy;
top.clear();
top.emplace_back(idx, vref);
}
else if(vy == max_y) { top.emplace_back(idx, vref); }
if(vy < min_y) {
min_y = vy;
bottom.clear();
bottom.emplace_back(idx, vref);
}
else if(vy == min_y) { bottom.emplace_back(idx, vref); }
idx++;
}
// Get the top and bottom leftmost vertices, or the right and left
// downmost vertices (if dir == Dir::DOWN)
auto topleft_it = std::min_element(top.begin(), top.end(), cmp);
auto bottomleft_it =
std::min_element(bottom.begin(), bottom.end(), cmp);
auto& topleft_vertex = topleft_it->second.get();
auto& bottomleft_vertex = bottomleft_it->second.get();
// Start and finish positions for the vertices that will be part of the
// new polygon
auto start = std::min(topleft_it->first, bottomleft_it->first);
auto finish = std::max(topleft_it->first, bottomleft_it->first);
// the return shape
RawShape rsh;
// reserve for all vertices plus 2 for the left horizontal wall, 2 for
// the additional vertices for maintaning min object distance
ShapeLike::reserve(rsh, finish-start+4);
/*auto addOthers = [&rsh, finish, start, &item](){
for(size_t i = start+1; i < finish; i++)
ShapeLike::addVertex(rsh, item.vertex(i));
};*/
auto reverseAddOthers = [&rsh, finish, start, &item](){
for(auto i = finish-1; i > start; i--)
ShapeLike::addVertex(rsh, item.vertex(
static_cast<unsigned long>(i)));
};
// Final polygon construction...
static_assert(OrientationType<RawShape>::Value ==
Orientation::CLOCKWISE,
"Counter clockwise toWallPoly() Unimplemented!");
// Clockwise polygon construction
ShapeLike::addVertex(rsh, topleft_vertex);
if(dir == Dir::LEFT) reverseAddOthers();
else {
ShapeLike::addVertex(rsh, getX(topleft_vertex), 0);
ShapeLike::addVertex(rsh, getX(bottomleft_vertex), 0);
}
ShapeLike::addVertex(rsh, bottomleft_vertex);
if(dir == Dir::LEFT) {
ShapeLike::addVertex(rsh, 0, getY(bottomleft_vertex));
ShapeLike::addVertex(rsh, 0, getY(topleft_vertex));
}
else reverseAddOthers();
// Close the polygon
ShapeLike::addVertex(rsh, topleft_vertex);
return rsh;
}
};
}
}
#endif //BOTTOMLEFT_HPP

View file

@ -0,0 +1,547 @@
#ifndef NOFITPOLY_HPP
#define NOFITPOLY_HPP
#ifndef NDEBUG
#include <iostream>
#endif
#include "placer_boilerplate.hpp"
#include "../geometry_traits_nfp.hpp"
namespace libnest2d { namespace strategies {
template<class RawShape>
struct NfpPConfig {
enum class Alignment {
CENTER,
BOTTOM_LEFT,
BOTTOM_RIGHT,
TOP_LEFT,
TOP_RIGHT,
};
/// Which angles to try out for better results
std::vector<Radians> rotations;
/// Where to align the resulting packed pile
Alignment alignment;
std::function<double(const Nfp::Shapes<RawShape>&, double, double, double)>
object_function;
NfpPConfig(): rotations({0.0, Pi/2.0, Pi, 3*Pi/2}),
alignment(Alignment::CENTER) {}
};
// A class for getting a point on the circumference of the polygon (in log time)
template<class RawShape> class EdgeCache {
using Vertex = TPoint<RawShape>;
using Coord = TCoord<Vertex>;
using Edge = _Segment<Vertex>;
// enum Corners {
// BOTTOM,
// LEFT,
// RIGHT,
// TOP,
// NUM_CORNERS
// };
mutable std::vector<double> corners_;
std::vector<Edge> emap_;
std::vector<double> distances_;
double full_distance_ = 0;
void createCache(const RawShape& sh) {
auto first = ShapeLike::cbegin(sh);
auto next = first + 1;
auto endit = ShapeLike::cend(sh);
distances_.reserve(ShapeLike::contourVertexCount(sh));
while(next != endit) {
emap_.emplace_back(*(first++), *(next++));
full_distance_ += emap_.back().length();
distances_.push_back(full_distance_);
}
}
void fetchCorners() const {
if(!corners_.empty()) return;
corners_ = distances_;
for(auto& d : corners_) {
d /= full_distance_;
}
// corners_ = std::vector<double>(NUM_CORNERS, 0.0);
// std::vector<unsigned> idx_ud(emap_.size(), 0);
// std::vector<unsigned> idx_lr(emap_.size(), 0);
// std::iota(idx_ud.begin(), idx_ud.end(), 0);
// std::iota(idx_lr.begin(), idx_lr.end(), 0);
// std::sort(idx_ud.begin(), idx_ud.end(),
// [this](unsigned idx1, unsigned idx2)
// {
// const Vertex& v1 = emap_[idx1].first();
// const Vertex& v2 = emap_[idx2].first();
// auto diff = getY(v1) - getY(v2);
// if(std::abs(diff) <= std::numeric_limits<Coord>::epsilon())
// return getX(v1) < getX(v2);
// return diff < 0;
// });
// std::sort(idx_lr.begin(), idx_lr.end(),
// [this](unsigned idx1, unsigned idx2)
// {
// const Vertex& v1 = emap_[idx1].first();
// const Vertex& v2 = emap_[idx2].first();
// auto diff = getX(v1) - getX(v2);
// if(std::abs(diff) <= std::numeric_limits<Coord>::epsilon())
// return getY(v1) < getY(v2);
// return diff < 0;
// });
// corners_[BOTTOM] = distances_[idx_ud.front()]/full_distance_;
// corners_[TOP] = distances_[idx_ud.back()]/full_distance_;
// corners_[LEFT] = distances_[idx_lr.front()]/full_distance_;
// corners_[RIGHT] = distances_[idx_lr.back()]/full_distance_;
}
public:
using iterator = std::vector<double>::iterator;
using const_iterator = std::vector<double>::const_iterator;
inline EdgeCache() = default;
inline EdgeCache(const _Item<RawShape>& item)
{
createCache(item.transformedShape());
}
inline EdgeCache(const RawShape& sh)
{
createCache(sh);
}
/**
* @brief Get a point on the circumference of a polygon.
* @param distance A relative distance from the starting point to the end.
* Can be from 0.0 to 1.0 where 0.0 is the starting point and 1.0 is the
* closing point (which should be eqvivalent with the starting point with
* closed polygons).
* @return Returns the coordinates of the point lying on the polygon
* circumference.
*/
inline Vertex coords(double distance) {
assert(distance >= .0 && distance <= 1.0);
// distance is from 0.0 to 1.0, we scale it up to the full length of
// the circumference
double d = distance*full_distance_;
// Magic: we find the right edge in log time
auto it = std::lower_bound(distances_.begin(), distances_.end(), d);
auto idx = it - distances_.begin(); // get the index of the edge
auto edge = emap_[idx]; // extrac the edge
// Get the remaining distance on the target edge
auto ed = d - (idx > 0 ? *std::prev(it) : 0 );
auto angle = edge.angleToXaxis();
Vertex ret = edge.first();
// Get the point on the edge which lies in ed distance from the start
ret += { static_cast<Coord>(std::round(ed*std::cos(angle))),
static_cast<Coord>(std::round(ed*std::sin(angle))) };
return ret;
}
inline double circumference() const BP2D_NOEXCEPT { return full_distance_; }
// inline double corner(Corners c) const BP2D_NOEXCEPT {
// assert(c < NUM_CORNERS);
// fetchCorners();
// return corners_[c];
// }
inline const std::vector<double>& corners() const BP2D_NOEXCEPT {
fetchCorners();
return corners_;
}
};
template<NfpLevel lvl>
struct Lvl { static const NfpLevel value = lvl; };
template<class RawShape, class Container>
Nfp::Shapes<RawShape> nfp( const Container& polygons,
const _Item<RawShape>& trsh,
Lvl<NfpLevel::CONVEX_ONLY>)
{
using Item = _Item<RawShape>;
Nfp::Shapes<RawShape> nfps;
for(Item& sh : polygons) {
auto subnfp = Nfp::noFitPolygon<NfpLevel::CONVEX_ONLY>(
sh.transformedShape(), trsh.transformedShape());
#ifndef NDEBUG
auto vv = ShapeLike::isValid(sh.transformedShape());
assert(vv.first);
auto vnfp = ShapeLike::isValid(subnfp);
assert(vnfp.first);
#endif
nfps = Nfp::merge(nfps, subnfp);
}
return nfps;
}
template<class RawShape, class Container, class Level>
Nfp::Shapes<RawShape> nfp( const Container& polygons,
const _Item<RawShape>& trsh,
Level)
{
using Item = _Item<RawShape>;
Nfp::Shapes<RawShape> nfps, stationary;
for(Item& sh : polygons) {
stationary = Nfp::merge(stationary, sh.transformedShape());
}
std::cout << "pile size: " << stationary.size() << std::endl;
for(RawShape& sh : stationary) {
RawShape subnfp;
// if(sh.isContourConvex() && trsh.isContourConvex()) {
// subnfp = Nfp::noFitPolygon<NfpLevel::CONVEX_ONLY>(
// sh.transformedShape(), trsh.transformedShape());
// } else {
subnfp = Nfp::noFitPolygon<Level::value>( sh/*.transformedShape()*/,
trsh.transformedShape());
// }
// #ifndef NDEBUG
// auto vv = ShapeLike::isValid(sh.transformedShape());
// assert(vv.first);
// auto vnfp = ShapeLike::isValid(subnfp);
// assert(vnfp.first);
// #endif
// auto vnfp = ShapeLike::isValid(subnfp);
// if(!vnfp.first) {
// std::cout << vnfp.second << std::endl;
// std::cout << ShapeLike::toString(subnfp) << std::endl;
// }
nfps = Nfp::merge(nfps, subnfp);
}
return nfps;
}
template<class RawShape>
class _NofitPolyPlacer: public PlacerBoilerplate<_NofitPolyPlacer<RawShape>,
RawShape, _Box<TPoint<RawShape>>, NfpPConfig<RawShape>> {
using Base = PlacerBoilerplate<_NofitPolyPlacer<RawShape>,
RawShape, _Box<TPoint<RawShape>>, NfpPConfig<RawShape>>;
DECLARE_PLACER(Base)
using Box = _Box<TPoint<RawShape>>;
const double norm_;
const double penality_;
using MaxNfpLevel = Nfp::MaxNfpLevel<RawShape>;
public:
using Pile = const Nfp::Shapes<RawShape>&;
inline explicit _NofitPolyPlacer(const BinType& bin):
Base(bin),
norm_(std::sqrt(ShapeLike::area<RawShape>(bin))),
penality_(1e6*norm_) {}
bool static inline wouldFit(const RawShape& chull, const RawShape& bin) {
auto bbch = ShapeLike::boundingBox<RawShape>(chull);
auto bbin = ShapeLike::boundingBox<RawShape>(bin);
auto d = bbin.minCorner() - bbch.minCorner();
auto chullcpy = chull;
ShapeLike::translate(chullcpy, d);
return ShapeLike::isInside<RawShape>(chullcpy, bbin);
}
bool static inline wouldFit(const RawShape& chull, const Box& bin)
{
auto bbch = ShapeLike::boundingBox<RawShape>(chull);
return wouldFit(bbch, bin);
}
bool static inline wouldFit(const Box& bb, const Box& bin)
{
return bb.width() <= bin.width() && bb.height() <= bin.height();
}
PackResult trypack(Item& item) {
PackResult ret;
bool can_pack = false;
if(items_.empty()) {
setInitialPosition(item);
can_pack = item.isInside(bin_);
} else {
double global_score = penality_;
auto initial_tr = item.translation();
auto initial_rot = item.rotation();
Vertex final_tr = {0, 0};
Radians final_rot = initial_rot;
Nfp::Shapes<RawShape> nfps;
for(auto rot : config_.rotations) {
item.translation(initial_tr);
item.rotation(initial_rot + rot);
// place the new item outside of the print bed to make sure
// it is disjuct from the current merged pile
placeOutsideOfBin(item);
auto trsh = item.transformedShape();
nfps = nfp(items_, item, Lvl<MaxNfpLevel::value>());
auto iv = Nfp::referenceVertex(trsh);
auto startpos = item.translation();
std::vector<EdgeCache<RawShape>> ecache;
ecache.reserve(nfps.size());
for(auto& nfp : nfps ) ecache.emplace_back(nfp);
auto getNfpPoint = [&ecache](double relpos) {
auto relpfloor = std::floor(relpos);
auto nfp_idx = static_cast<unsigned>(relpfloor);
if(nfp_idx >= ecache.size()) nfp_idx--;
auto p = relpos - relpfloor;
return ecache[nfp_idx].coords(p);
};
Nfp::Shapes<RawShape> pile;
pile.reserve(items_.size()+1);
double pile_area = 0;
for(Item& mitem : items_) {
pile.emplace_back(mitem.transformedShape());
pile_area += mitem.area();
}
auto _objfunc = config_.object_function?
config_.object_function :
[this](const Nfp::Shapes<RawShape>& pile, double occupied_area,
double /*norm*/, double penality)
{
auto ch = ShapeLike::convexHull(pile);
// The pack ratio -- how much is the convex hull occupied
double pack_rate = occupied_area/ShapeLike::area(ch);
// ratio of waste
double waste = 1.0 - pack_rate;
// Score is the square root of waste. This will extend the
// range of good (lower) values and shring the range of bad
// (larger) values.
auto score = std::sqrt(waste);
if(!wouldFit(ch, bin_)) score = 2*penality - score;
return score;
};
// Our object function for placement
auto objfunc = [&] (double relpos)
{
Vertex v = getNfpPoint(relpos);
auto d = v - iv;
d += startpos;
item.translation(d);
pile.emplace_back(item.transformedShape());
double occupied_area = pile_area + item.area();
double score = _objfunc(pile, occupied_area,
norm_, penality_);
pile.pop_back();
return score;
};
opt::StopCriteria stopcr;
stopcr.max_iterations = 1000;
stopcr.stoplimit = 0.01;
stopcr.type = opt::StopLimitType::RELATIVE;
opt::TOptimizer<opt::Method::L_SIMPLEX> solver(stopcr);
double optimum = 0;
double best_score = penality_;
// double max_bound = 1.0*nfps.size();
// Genetic should look like this:
/*auto result = solver.optimize_min(objfunc,
opt::initvals<double>(0.0),
opt::bound(0.0, max_bound)
);
if(result.score < penality_) {
best_score = result.score;
optimum = std::get<0>(result.optimum);
}*/
// Local optimization with the four polygon corners as
// starting points
for(unsigned ch = 0; ch < ecache.size(); ch++) {
auto& cache = ecache[ch];
std::for_each(cache.corners().begin(),
cache.corners().end(),
[ch, &solver, &objfunc,
&best_score, &optimum]
(double pos)
{
try {
auto result = solver.optimize_min(objfunc,
opt::initvals<double>(ch+pos),
opt::bound<double>(ch, 1.0 + ch)
);
if(result.score < best_score) {
best_score = result.score;
optimum = std::get<0>(result.optimum);
}
} catch(std::exception& e) {
derr() << "ERROR: " << e.what() << "\n";
}
});
}
if( best_score < global_score ) {
auto d = getNfpPoint(optimum) - iv;
d += startpos;
final_tr = d;
final_rot = initial_rot + rot;
can_pack = true;
global_score = best_score;
}
}
item.translation(final_tr);
item.rotation(final_rot);
}
if(can_pack) {
ret = PackResult(item);
}
return ret;
}
~_NofitPolyPlacer() {
clearItems();
}
inline void clearItems() {
Nfp::Shapes<RawShape> m;
m.reserve(items_.size());
for(Item& item : items_) m.emplace_back(item.transformedShape());
auto&& bb = ShapeLike::boundingBox<RawShape>(m);
Vertex ci, cb;
switch(config_.alignment) {
case Config::Alignment::CENTER: {
ci = bb.center();
cb = bin_.center();
break;
}
case Config::Alignment::BOTTOM_LEFT: {
ci = bb.minCorner();
cb = bin_.minCorner();
break;
}
case Config::Alignment::BOTTOM_RIGHT: {
ci = {getX(bb.maxCorner()), getY(bb.minCorner())};
cb = {getX(bin_.maxCorner()), getY(bin_.minCorner())};
break;
}
case Config::Alignment::TOP_LEFT: {
ci = {getX(bb.minCorner()), getY(bb.maxCorner())};
cb = {getX(bin_.minCorner()), getY(bin_.maxCorner())};
break;
}
case Config::Alignment::TOP_RIGHT: {
ci = bb.maxCorner();
cb = bin_.maxCorner();
break;
}
}
auto d = cb - ci;
for(Item& item : items_) item.translate(d);
Base::clearItems();
}
private:
void setInitialPosition(Item& item) {
Box&& bb = item.boundingBox();
Vertex ci = bb.minCorner();
Vertex cb = bin_.minCorner();
auto&& d = cb - ci;
item.translate(d);
}
void placeOutsideOfBin(Item& item) {
auto&& bb = item.boundingBox();
Box binbb = ShapeLike::boundingBox<RawShape>(bin_);
Vertex v = { getX(bb.maxCorner()), getY(bb.minCorner()) };
Coord dx = getX(binbb.maxCorner()) - getX(v);
Coord dy = getY(binbb.maxCorner()) - getY(v);
item.translate({dx, dy});
}
};
}
}
#endif // NOFITPOLY_H

View file

@ -0,0 +1,137 @@
#ifndef PLACER_BOILERPLATE_HPP
#define PLACER_BOILERPLATE_HPP
#include "../libnest2d.hpp"
namespace libnest2d { namespace strategies {
struct EmptyConfig {};
template<class Subclass, class RawShape, class TBin,
class Cfg = EmptyConfig,
class Store = std::vector<std::reference_wrapper<_Item<RawShape>>>
>
class PlacerBoilerplate {
mutable bool farea_valid_ = false;
mutable double farea_ = 0.0;
public:
using Item = _Item<RawShape>;
using Vertex = TPoint<RawShape>;
using Segment = _Segment<Vertex>;
using BinType = TBin;
using Coord = TCoord<Vertex>;
using Unit = Coord;
using Config = Cfg;
using Container = Store;
class PackResult {
Item *item_ptr_;
Vertex move_;
Radians rot_;
friend class PlacerBoilerplate;
friend Subclass;
PackResult(Item& item):
item_ptr_(&item),
move_(item.translation()),
rot_(item.rotation()) {}
PackResult(): item_ptr_(nullptr) {}
public:
operator bool() { return item_ptr_ != nullptr; }
};
using ItemGroup = const Container&;
inline PlacerBoilerplate(const BinType& bin, unsigned cap = 50): bin_(bin)
{
items_.reserve(cap);
}
inline const BinType& bin() const BP2D_NOEXCEPT { return bin_; }
template<class TB> inline void bin(TB&& b) {
bin_ = std::forward<BinType>(b);
}
inline void configure(const Config& config) BP2D_NOEXCEPT {
config_ = config;
}
bool pack(Item& item) {
auto&& r = static_cast<Subclass*>(this)->trypack(item);
if(r) {
items_.push_back(*(r.item_ptr_));
farea_valid_ = false;
}
return r;
}
void accept(PackResult& r) {
if(r) {
r.item_ptr_->translation(r.move_);
r.item_ptr_->rotation(r.rot_);
items_.push_back(*(r.item_ptr_));
farea_valid_ = false;
}
}
void unpackLast() {
items_.pop_back();
farea_valid_ = false;
}
inline ItemGroup getItems() const { return items_; }
inline void clearItems() {
items_.clear();
farea_valid_ = false;
#ifndef NDEBUG
debug_items_.clear();
#endif
}
inline double filledArea() const {
if(farea_valid_) return farea_;
else {
farea_ = .0;
std::for_each(items_.begin(), items_.end(),
[this] (Item& item) {
farea_ += item.area();
});
farea_valid_ = true;
}
return farea_;
}
#ifndef NDEBUG
std::vector<Item> debug_items_;
#endif
protected:
BinType bin_;
Container items_;
Cfg config_;
};
#define DECLARE_PLACER(Base) \
using Base::bin_; \
using Base::items_; \
using Base::config_; \
public: \
using typename Base::Item; \
using typename Base::BinType; \
using typename Base::Config; \
using typename Base::Vertex; \
using typename Base::Segment; \
using typename Base::PackResult; \
using typename Base::Coord; \
using typename Base::Unit; \
using typename Base::Container; \
private:
}
}
#endif // PLACER_BOILERPLATE_HPP

View file

@ -0,0 +1,686 @@
#ifndef DJD_HEURISTIC_HPP
#define DJD_HEURISTIC_HPP
#include <list>
#include <future>
#include <atomic>
#include <functional>
#include "selection_boilerplate.hpp"
namespace libnest2d { namespace strategies {
/**
* Selection heuristic based on [López-Camacho]\
* (http://www.cs.stir.ac.uk/~goc/papers/EffectiveHueristic2DAOR2013.pdf)
*/
template<class RawShape>
class _DJDHeuristic: public SelectionBoilerplate<RawShape> {
using Base = SelectionBoilerplate<RawShape>;
class SpinLock {
std::atomic_flag& lck_;
public:
inline SpinLock(std::atomic_flag& flg): lck_(flg) {}
inline void lock() {
while(lck_.test_and_set(std::memory_order_acquire)) {}
}
inline void unlock() { lck_.clear(std::memory_order_release); }
};
public:
using typename Base::Item;
using typename Base::ItemRef;
/**
* @brief The Config for DJD heuristic.
*/
struct Config {
/**
* If true, the algorithm will try to place pair and driplets in all
* possible order.
*/
bool try_reverse_order = true;
/**
* The initial fill proportion of the bin area that will be filled before
* trying items one by one, or pairs or triplets.
*
* The initial fill proportion suggested by
* [López-Camacho]\
* (http://www.cs.stir.ac.uk/~goc/papers/EffectiveHueristic2DAOR2013.pdf)
* is one third of the area of bin.
*/
double initial_fill_proportion = 1.0/3.0;
/**
* @brief How much is the acceptable waste incremented at each iteration
*/
double waste_increment = 0.1;
/**
* @brief Allow parallel jobs for filling multiple bins.
*
* This will decrease the soution quality but can greatly boost up
* performance for large number of items.
*/
bool allow_parallel = true;
/**
* @brief Always use parallel processing if the items don't fit into
* one bin.
*/
bool force_parallel = false;
};
private:
using Base::packed_bins_;
using ItemGroup = typename Base::ItemGroup;
using Container = ItemGroup;
Container store_;
Config config_;
static const unsigned MAX_ITEMS_SEQUENTIALLY = 30;
static const unsigned MAX_VERTICES_SEQUENTIALLY = MAX_ITEMS_SEQUENTIALLY*20;
public:
inline void configure(const Config& config) {
config_ = config;
}
template<class TPlacer, class TIterator,
class TBin = typename PlacementStrategyLike<TPlacer>::BinType,
class PConfig = typename PlacementStrategyLike<TPlacer>::Config>
void packItems( TIterator first,
TIterator last,
const TBin& bin,
PConfig&& pconfig = PConfig() )
{
using Placer = PlacementStrategyLike<TPlacer>;
using ItemList = std::list<ItemRef>;
const double bin_area = ShapeLike::area<RawShape>(bin);
const double w = bin_area * config_.waste_increment;
const double INITIAL_FILL_PROPORTION = config_.initial_fill_proportion;
const double INITIAL_FILL_AREA = bin_area*INITIAL_FILL_PROPORTION;
store_.clear();
store_.reserve(last-first);
packed_bins_.clear();
std::copy(first, last, std::back_inserter(store_));
std::sort(store_.begin(), store_.end(), [](Item& i1, Item& i2) {
return i1.area() > i2.area();
});
size_t glob_vertex_count = 0;
std::for_each(store_.begin(), store_.end(),
[&glob_vertex_count](const Item& item) {
glob_vertex_count += item.vertexCount();
});
std::vector<Placer> placers;
bool try_reverse = config_.try_reverse_order;
// Will use a subroutine to add a new bin
auto addBin = [this, &placers, &bin, &pconfig]()
{
placers.emplace_back(bin);
packed_bins_.emplace_back();
placers.back().configure(pconfig);
};
// Types for pairs and triplets
using TPair = std::tuple<ItemRef, ItemRef>;
using TTriplet = std::tuple<ItemRef, ItemRef, ItemRef>;
// Method for checking a pair whether it was a pack failure.
auto check_pair = [](const std::vector<TPair>& wrong_pairs,
ItemRef i1, ItemRef i2)
{
return std::any_of(wrong_pairs.begin(), wrong_pairs.end(),
[&i1, &i2](const TPair& pair)
{
Item& pi1 = std::get<0>(pair), pi2 = std::get<1>(pair);
Item& ri1 = i1, ri2 = i2;
return (&pi1 == &ri1 && &pi2 == &ri2) ||
(&pi1 == &ri2 && &pi2 == &ri1);
});
};
// Method for checking if a triplet was a pack failure
auto check_triplet = [](
const std::vector<TTriplet>& wrong_triplets,
ItemRef i1,
ItemRef i2,
ItemRef i3)
{
return std::any_of(wrong_triplets.begin(),
wrong_triplets.end(),
[&i1, &i2, &i3](const TTriplet& tripl)
{
Item& pi1 = std::get<0>(tripl);
Item& pi2 = std::get<1>(tripl);
Item& pi3 = std::get<2>(tripl);
Item& ri1 = i1, ri2 = i2, ri3 = i3;
return (&pi1 == &ri1 && &pi2 == &ri2 && &pi3 == &ri3) ||
(&pi1 == &ri1 && &pi2 == &ri3 && &pi3 == &ri2) ||
(&pi1 == &ri2 && &pi2 == &ri1 && &pi3 == &ri3) ||
(&pi1 == &ri3 && &pi2 == &ri2 && &pi3 == &ri1);
});
};
using ItemListIt = typename ItemList::iterator;
auto largestPiece = [](ItemListIt it, ItemList& not_packed) {
return it == not_packed.begin()? std::next(it) : not_packed.begin();
};
auto secondLargestPiece = [&largestPiece](ItemListIt it,
ItemList& not_packed) {
auto ret = std::next(largestPiece(it, not_packed));
return ret == it? std::next(ret) : ret;
};
auto smallestPiece = [](ItemListIt it, ItemList& not_packed) {
auto last = std::prev(not_packed.end());
return it == last? std::prev(it) : last;
};
auto secondSmallestPiece = [&smallestPiece](ItemListIt it,
ItemList& not_packed) {
auto ret = std::prev(smallestPiece(it, not_packed));
return ret == it? std::prev(ret) : ret;
};
auto tryOneByOne = // Subroutine to try adding items one by one.
[&bin_area]
(Placer& placer, ItemList& not_packed,
double waste,
double& free_area,
double& filled_area)
{
double item_area = 0;
bool ret = false;
auto it = not_packed.begin();
while(it != not_packed.end() && !ret &&
free_area - (item_area = it->get().area()) <= waste)
{
if(item_area <= free_area && placer.pack(*it) ) {
free_area -= item_area;
filled_area = bin_area - free_area;
ret = true;
} else
it++;
}
if(ret) not_packed.erase(it);
return ret;
};
auto tryGroupsOfTwo = // Try adding groups of two items into the bin.
[&bin_area, &check_pair, &largestPiece, &smallestPiece,
try_reverse]
(Placer& placer, ItemList& not_packed,
double waste,
double& free_area,
double& filled_area)
{
double item_area = 0;
const auto endit = not_packed.end();
if(not_packed.size() < 2)
return false; // No group of two items
else {
double largest_area = not_packed.front().get().area();
auto itmp = not_packed.begin(); itmp++;
double second_largest = itmp->get().area();
if( free_area - second_largest - largest_area > waste)
return false; // If even the largest two items do not fill
// the bin to the desired waste than we can end here.
}
bool ret = false;
auto it = not_packed.begin();
auto it2 = it;
std::vector<TPair> wrong_pairs;
while(it != endit && !ret &&
free_area - (item_area = it->get().area()) -
largestPiece(it, not_packed)->get().area() <= waste)
{
if(item_area + smallestPiece(it, not_packed)->get().area() >
free_area ) { it++; continue; }
auto pr = placer.trypack(*it);
// First would fit
it2 = not_packed.begin();
double item2_area = 0;
while(it2 != endit && pr && !ret && free_area -
(item2_area = it2->get().area()) - item_area <= waste)
{
double area_sum = item_area + item2_area;
if(it == it2 || area_sum > free_area ||
check_pair(wrong_pairs, *it, *it2)) {
it2++; continue;
}
placer.accept(pr);
auto pr2 = placer.trypack(*it2);
if(!pr2) {
placer.unpackLast(); // remove first
if(try_reverse) {
pr2 = placer.trypack(*it2);
if(pr2) {
placer.accept(pr2);
auto pr12 = placer.trypack(*it);
if(pr12) {
placer.accept(pr12);
ret = true;
} else {
placer.unpackLast();
}
}
}
} else {
placer.accept(pr2); ret = true;
}
if(ret)
{ // Second fits as well
free_area -= area_sum;
filled_area = bin_area - free_area;
} else {
wrong_pairs.emplace_back(*it, *it2);
it2++;
}
}
if(!ret) it++;
}
if(ret) { not_packed.erase(it); not_packed.erase(it2); }
return ret;
};
auto tryGroupsOfThree = // Try adding groups of three items.
[&bin_area,
&smallestPiece, &largestPiece,
&secondSmallestPiece, &secondLargestPiece,
&check_pair, &check_triplet, try_reverse]
(Placer& placer, ItemList& not_packed,
double waste,
double& free_area,
double& filled_area)
{
auto np_size = not_packed.size();
if(np_size < 3) return false;
auto it = not_packed.begin(); // from
const auto endit = not_packed.end(); // to
auto it2 = it, it3 = it;
// Containers for pairs and triplets that were tried before and
// do not work.
std::vector<TPair> wrong_pairs;
std::vector<TTriplet> wrong_triplets;
auto cap = np_size*np_size / 2 ;
wrong_pairs.reserve(cap);
wrong_triplets.reserve(cap);
// Will be true if a succesfull pack can be made.
bool ret = false;
while (it != endit && !ret) { // drill down 1st level
// We need to determine in each iteration the largest, second
// largest, smallest and second smallest item in terms of area.
Item& largest = *largestPiece(it, not_packed);
Item& second_largest = *secondLargestPiece(it, not_packed);
double area_of_two_largest =
largest.area() + second_largest.area();
// Check if there is enough free area for the item and the two
// largest item
if(free_area - it->get().area() - area_of_two_largest > waste)
break;
// Determine the area of the two smallest item.
Item& smallest = *smallestPiece(it, not_packed);
Item& second_smallest = *secondSmallestPiece(it, not_packed);
// Check if there is enough free area for the item and the two
// smallest item.
double area_of_two_smallest =
smallest.area() + second_smallest.area();
if(it->get().area() + area_of_two_smallest > free_area) {
it++; continue;
}
auto pr = placer.trypack(*it);
// Check for free area and try to pack the 1st item...
if(!pr) { it++; continue; }
it2 = not_packed.begin();
double rem2_area = free_area - largest.area();
double a2_sum = it->get().area() + it2->get().area();
while(it2 != endit && !ret &&
rem2_area - a2_sum <= waste) { // Drill down level 2
if(it == it2 || check_pair(wrong_pairs, *it, *it2)) {
it2++; continue;
}
a2_sum = it->get().area() + it2->get().area();
if(a2_sum + smallest.area() > free_area) {
it2++; continue;
}
bool can_pack2 = false;
placer.accept(pr);
auto pr2 = placer.trypack(*it2);
auto pr12 = pr;
if(!pr2) {
placer.unpackLast(); // remove first
if(try_reverse) {
pr2 = placer.trypack(*it2);
if(pr2) {
placer.accept(pr2);
pr12 = placer.trypack(*it);
if(pr12) can_pack2 = true;
placer.unpackLast();
}
}
} else {
placer.unpackLast();
can_pack2 = true;
}
if(!can_pack2) {
wrong_pairs.emplace_back(*it, *it2);
it2++;
continue;
}
// Now we have packed a group of 2 items.
// The 'smallest' variable now could be identical with
// it2 but we don't bother with that
if(!can_pack2) { it2++; continue; }
it3 = not_packed.begin();
double a3_sum = a2_sum + it3->get().area();
while(it3 != endit && !ret &&
free_area - a3_sum <= waste) { // 3rd level
if(it3 == it || it3 == it2 ||
check_triplet(wrong_triplets, *it, *it2, *it3))
{ it3++; continue; }
if(a3_sum > free_area) { it3++; continue; }
placer.accept(pr12); placer.accept(pr2);
bool can_pack3 = placer.pack(*it3);
if(!can_pack3) {
placer.unpackLast();
placer.unpackLast();
}
if(!can_pack3 && try_reverse) {
std::array<size_t, 3> indices = {0, 1, 2};
std::array<ItemRef, 3>
candidates = {*it, *it2, *it3};
auto tryPack = [&placer, &candidates](
const decltype(indices)& idx)
{
std::array<bool, 3> packed = {false};
for(auto id : idx) packed[id] =
placer.pack(candidates[id]);
bool check =
std::all_of(packed.begin(),
packed.end(),
[](bool b) { return b; });
if(!check) for(bool b : packed) if(b)
placer.unpackLast();
return check;
};
while (!can_pack3 && std::next_permutation(
indices.begin(),
indices.end())){
can_pack3 = tryPack(indices);
};
}
if(can_pack3) {
// finishit
free_area -= a3_sum;
filled_area = bin_area - free_area;
ret = true;
} else {
wrong_triplets.emplace_back(*it, *it2, *it3);
it3++;
}
} // 3rd while
if(!ret) it2++;
} // Second while
if(!ret) it++;
} // First while
if(ret) { // If we eventually succeeded, remove all the packed ones.
not_packed.erase(it);
not_packed.erase(it2);
not_packed.erase(it3);
}
return ret;
};
// Safety test: try to pack each item into an empty bin. If it fails
// then it should be removed from the not_packed list
{ auto it = store_.begin();
while (it != store_.end()) {
Placer p(bin);
if(!p.pack(*it)) {
auto itmp = it++;
store_.erase(itmp);
} else it++;
}
}
int acounter = int(store_.size());
std::atomic_flag flg = ATOMIC_FLAG_INIT;
SpinLock slock(flg);
auto makeProgress = [this, &acounter, &slock]
(Placer& placer, size_t idx, int packednum)
{
packed_bins_[idx] = placer.getItems();
#ifndef NDEBUG
packed_bins_[idx].insert(packed_bins_[idx].end(),
placer.getDebugItems().begin(),
placer.getDebugItems().end());
#endif
// TODO here should be a spinlock
slock.lock();
acounter -= packednum;
this->progress_(acounter);
slock.unlock();
};
double items_area = 0;
for(Item& item : store_) items_area += item.area();
// Number of bins that will definitely be needed
auto bincount_guess = unsigned(std::ceil(items_area / bin_area));
// Do parallel if feasible
bool do_parallel = config_.allow_parallel && bincount_guess > 1 &&
((glob_vertex_count > MAX_VERTICES_SEQUENTIALLY ||
store_.size() > MAX_ITEMS_SEQUENTIALLY) ||
config_.force_parallel);
if(do_parallel) dout() << "Parallel execution..." << "\n";
// The DJD heuristic algorithm itself:
auto packjob = [INITIAL_FILL_AREA, bin_area, w,
&tryOneByOne,
&tryGroupsOfTwo,
&tryGroupsOfThree,
&makeProgress]
(Placer& placer, ItemList& not_packed, size_t idx)
{
double filled_area = placer.filledArea();
double free_area = bin_area - filled_area;
double waste = .0;
bool lasttry = false;
while(!not_packed.empty() ) {
{// Fill the bin up to INITIAL_FILL_PROPORTION of its capacity
auto it = not_packed.begin();
while(it != not_packed.end() &&
filled_area < INITIAL_FILL_AREA)
{
if(placer.pack(*it)) {
filled_area += it->get().area();
free_area = bin_area - filled_area;
auto itmp = it++;
not_packed.erase(itmp);
makeProgress(placer, idx, 1);
} else it++;
}
}
// try pieses one by one
while(tryOneByOne(placer, not_packed, waste, free_area,
filled_area)) {
if(lasttry) std::cout << "Lasttry monopack" << std::endl;
waste = 0; lasttry = false;
makeProgress(placer, idx, 1);
}
// try groups of 2 pieses
while(tryGroupsOfTwo(placer, not_packed, waste, free_area,
filled_area)) {
if(lasttry) std::cout << "Lasttry bipack" << std::endl;
waste = 0; lasttry = false;
makeProgress(placer, idx, 2);
}
// // try groups of 3 pieses
// while(tryGroupsOfThree(placer, not_packed, waste, free_area,
// filled_area)) {
// if(lasttry) std::cout << "Lasttry tripack" << std::endl;
// waste = 0; lasttry = false;
// makeProgress(placer, idx, 3);
// }
waste += w;
if(!lasttry && waste > free_area) lasttry = true;
else if(lasttry) break;
}
};
size_t idx = 0;
ItemList remaining;
if(do_parallel) {
std::vector<ItemList> not_packeds(bincount_guess);
// Preallocating the bins
for(unsigned b = 0; b < bincount_guess; b++) {
addBin();
ItemList& not_packed = not_packeds[b];
for(unsigned idx = b; idx < store_.size(); idx+=bincount_guess) {
not_packed.push_back(store_[idx]);
}
}
// The parallel job
auto job = [&placers, &not_packeds, &packjob](unsigned idx) {
Placer& placer = placers[idx];
ItemList& not_packed = not_packeds[idx];
return packjob(placer, not_packed, idx);
};
// We will create jobs for each bin
std::vector<std::future<void>> rets(bincount_guess);
for(unsigned b = 0; b < bincount_guess; b++) { // launch the jobs
rets[b] = std::async(std::launch::async, job, b);
}
for(unsigned fi = 0; fi < rets.size(); ++fi) {
rets[fi].wait();
// Collect remaining items while waiting for the running jobs
remaining.merge( not_packeds[fi], [](Item& i1, Item& i2) {
return i1.area() > i2.area();
});
}
idx = placers.size();
// Try to put the remaining items into one of the packed bins
if(remaining.size() <= placers.size())
for(size_t j = 0; j < idx && !remaining.empty(); j++) {
packjob(placers[j], remaining, j);
}
} else {
remaining = ItemList(store_.begin(), store_.end());
}
while(!remaining.empty()) {
addBin();
packjob(placers[idx], remaining, idx); idx++;
}
}
};
}
}
#endif // DJD_HEURISTIC_HPP

View file

@ -0,0 +1,88 @@
#ifndef FILLER_HPP
#define FILLER_HPP
#include "selection_boilerplate.hpp"
namespace libnest2d { namespace strategies {
template<class RawShape>
class _FillerSelection: public SelectionBoilerplate<RawShape> {
using Base = SelectionBoilerplate<RawShape>;
public:
using typename Base::Item;
using Config = int; //dummy
private:
using Base::packed_bins_;
using typename Base::ItemGroup;
using Container = ItemGroup;
Container store_;
public:
void configure(const Config& /*config*/) { }
template<class TPlacer, class TIterator,
class TBin = typename PlacementStrategyLike<TPlacer>::BinType,
class PConfig = typename PlacementStrategyLike<TPlacer>::Config>
void packItems(TIterator first,
TIterator last,
TBin&& bin,
PConfig&& pconfig = PConfig())
{
store_.clear();
auto total = last-first;
store_.reserve(total);
packed_bins_.emplace_back();
auto makeProgress = [this, &total](
PlacementStrategyLike<TPlacer>& placer)
{
packed_bins_.back() = placer.getItems();
#ifndef NDEBUG
packed_bins_.back().insert(packed_bins_.back().end(),
placer.getDebugItems().begin(),
placer.getDebugItems().end());
#endif
this->progress_(--total);
};
std::copy(first, last, std::back_inserter(store_));
auto sortfunc = [](Item& i1, Item& i2) {
return i1.area() > i2.area();
};
std::sort(store_.begin(), store_.end(), sortfunc);
// Container a = {store_[0], store_[1], store_[4], store_[5] };
//// a.insert(a.end(), store_.end()-10, store_.end());
// store_ = a;
PlacementStrategyLike<TPlacer> placer(bin);
placer.configure(pconfig);
auto it = store_.begin();
while(it != store_.end()) {
if(!placer.pack(*it)) {
if(packed_bins_.back().empty()) ++it;
// makeProgress(placer);
placer.clearItems();
packed_bins_.emplace_back();
} else {
makeProgress(placer);
++it;
}
}
// if(was_packed) {
// packed_bins_.push_back(placer.getItems());
// }
}
};
}
}
#endif //BOTTOMLEFT_HPP

View file

@ -0,0 +1,81 @@
#ifndef FIRSTFIT_HPP
#define FIRSTFIT_HPP
#include "../libnest2d.hpp"
#include "selection_boilerplate.hpp"
namespace libnest2d { namespace strategies {
template<class RawShape>
class _FirstFitSelection: public SelectionBoilerplate<RawShape> {
using Base = SelectionBoilerplate<RawShape>;
public:
using typename Base::Item;
using Config = int; //dummy
private:
using Base::packed_bins_;
using typename Base::ItemGroup;
using Container = ItemGroup;//typename std::vector<_Item<RawShape>>;
Container store_;
public:
void configure(const Config& /*config*/) { }
template<class TPlacer, class TIterator,
class TBin = typename PlacementStrategyLike<TPlacer>::BinType,
class PConfig = typename PlacementStrategyLike<TPlacer>::Config>
void packItems(TIterator first,
TIterator last,
TBin&& bin,
PConfig&& pconfig = PConfig())
{
using Placer = PlacementStrategyLike<TPlacer>;
store_.clear();
store_.reserve(last-first);
packed_bins_.clear();
std::vector<Placer> placers;
std::copy(first, last, std::back_inserter(store_));
auto sortfunc = [](Item& i1, Item& i2) {
return i1.area() > i2.area();
};
std::sort(store_.begin(), store_.end(), sortfunc);
auto total = last-first;
auto makeProgress = [this, &total](Placer& placer, size_t idx) {
packed_bins_[idx] = placer.getItems();
this->progress_(--total);
};
for(auto& item : store_ ) {
bool was_packed = false;
while(!was_packed) {
for(size_t j = 0; j < placers.size() && !was_packed; j++) {
if(was_packed = placers[j].pack(item))
makeProgress(placers[j], j);
}
if(!was_packed) {
placers.emplace_back(bin);
placers.back().configure(pconfig);
packed_bins_.emplace_back();
}
}
}
}
};
}
}
#endif // FIRSTFIT_HPP

View file

@ -0,0 +1,42 @@
#ifndef SELECTION_BOILERPLATE_HPP
#define SELECTION_BOILERPLATE_HPP
#include "../libnest2d.hpp"
namespace libnest2d {
namespace strategies {
template<class RawShape>
class SelectionBoilerplate {
public:
using Item = _Item<RawShape>;
using ItemRef = std::reference_wrapper<Item>;
using ItemGroup = std::vector<ItemRef>;
using PackGroup = std::vector<ItemGroup>;
size_t binCount() const { return packed_bins_.size(); }
ItemGroup itemsForBin(size_t binIndex) {
assert(binIndex < packed_bins_.size());
return packed_bins_[binIndex];
}
inline const ItemGroup itemsForBin(size_t binIndex) const {
assert(binIndex < packed_bins_.size());
return packed_bins_[binIndex];
}
inline void progressIndicator(ProgressFunction fn) {
progress_ = fn;
}
protected:
PackGroup packed_bins_;
ProgressFunction progress_ = [](unsigned){};
};
}
}
#endif // SELECTION_BOILERPLATE_HPP

View file

@ -0,0 +1,51 @@
# Try to find existing GTest installation
find_package(GTest 1.7)
if(NOT GTEST_FOUND)
message(STATUS "GTest not found so downloading...")
# Go and download google test framework, integrate it with the build
set(GTEST_LIBS_TO_LINK gtest gtest_main)
if (CMAKE_VERSION VERSION_LESS 3.2)
set(UPDATE_DISCONNECTED_IF_AVAILABLE "")
else()
set(UPDATE_DISCONNECTED_IF_AVAILABLE "UPDATE_DISCONNECTED 1")
endif()
include(DownloadProject)
download_project(PROJ googletest
GIT_REPOSITORY https://github.com/google/googletest.git
GIT_TAG release-1.7.0
${UPDATE_DISCONNECTED_IF_AVAILABLE}
)
# Prevent GoogleTest from overriding our compiler/linker options
# when building with Visual Studio
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
add_subdirectory(${googletest_SOURCE_DIR}
${googletest_BINARY_DIR}
)
set(GTEST_INCLUDE_DIRS ${googletest_SOURCE_DIR}/include)
else()
find_package(Threads REQUIRED)
set(GTEST_LIBS_TO_LINK ${GTEST_BOTH_LIBRARIES} Threads::Threads)
endif()
add_executable(bp2d_tests test.cpp
../tools/svgtools.hpp
# ../tools/libnfpglue.hpp
# ../tools/libnfpglue.cpp
printer_parts.h
printer_parts.cpp
${LIBNEST2D_SRCFILES}
)
target_link_libraries(bp2d_tests ${LIBNEST2D_LIBRARIES} ${GTEST_LIBS_TO_LINK} )
target_include_directories(bp2d_tests PRIVATE BEFORE ${LIBNEST2D_HEADERS}
${GTEST_INCLUDE_DIRS})
add_test(libnest2d_tests bp2d_tests)

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,40 @@
#ifndef PRINTER_PARTS_H
#define PRINTER_PARTS_H
#include <vector>
#include <clipper.hpp>
#ifndef CLIPPER_BACKEND_HPP
namespace ClipperLib {
using PointImpl = IntPoint;
using PathImpl = Path;
using HoleStore = std::vector<PathImpl>;
struct PolygonImpl {
PathImpl Contour;
HoleStore Holes;
inline PolygonImpl() {}
inline explicit PolygonImpl(const PathImpl& cont): Contour(cont) {}
inline explicit PolygonImpl(const HoleStore& holes):
Holes(holes) {}
inline PolygonImpl(const Path& cont, const HoleStore& holes):
Contour(cont), Holes(holes) {}
inline explicit PolygonImpl(PathImpl&& cont): Contour(std::move(cont)) {}
inline explicit PolygonImpl(HoleStore&& holes): Holes(std::move(holes)) {}
inline PolygonImpl(Path&& cont, HoleStore&& holes):
Contour(std::move(cont)), Holes(std::move(holes)) {}
};
}
#endif
using TestData = std::vector<ClipperLib::Path>;
using TestDataEx = std::vector<ClipperLib::PolygonImpl>;
extern const TestData PRINTER_PART_POLYGONS;
extern const TestData STEGOSAUR_POLYGONS;
extern const TestDataEx PRINTER_PART_POLYGONS_EX;
#endif // PRINTER_PARTS_H

View file

@ -0,0 +1,792 @@
#include <gtest/gtest.h>
#include <fstream>
#include <libnest2d.h>
#include "printer_parts.h"
#include <libnest2d/geometry_traits_nfp.hpp>
//#include "../tools/libnfpglue.hpp"
std::vector<libnest2d::Item>& prusaParts() {
static std::vector<libnest2d::Item> ret;
if(ret.empty()) {
ret.reserve(PRINTER_PART_POLYGONS.size());
for(auto& inp : PRINTER_PART_POLYGONS) ret.emplace_back(inp);
}
return ret;
}
TEST(BasicFunctionality, Angles)
{
using namespace libnest2d;
Degrees deg(180);
Radians rad(deg);
Degrees deg2(rad);
ASSERT_DOUBLE_EQ(rad, Pi);
ASSERT_DOUBLE_EQ(deg, 180);
ASSERT_DOUBLE_EQ(deg2, 180);
ASSERT_DOUBLE_EQ(rad, (Radians) deg);
ASSERT_DOUBLE_EQ( (Degrees) rad, deg);
ASSERT_TRUE(rad == deg);
Segment seg = {{0, 0}, {12, -10}};
ASSERT_TRUE(Degrees(seg.angleToXaxis()) > 270 &&
Degrees(seg.angleToXaxis()) < 360);
seg = {{0, 0}, {12, 10}};
ASSERT_TRUE(Degrees(seg.angleToXaxis()) > 0 &&
Degrees(seg.angleToXaxis()) < 90);
seg = {{0, 0}, {-12, 10}};
ASSERT_TRUE(Degrees(seg.angleToXaxis()) > 90 &&
Degrees(seg.angleToXaxis()) < 180);
seg = {{0, 0}, {-12, -10}};
ASSERT_TRUE(Degrees(seg.angleToXaxis()) > 180 &&
Degrees(seg.angleToXaxis()) < 270);
seg = {{0, 0}, {1, 0}};
ASSERT_DOUBLE_EQ(Degrees(seg.angleToXaxis()), 0);
seg = {{0, 0}, {0, 1}};
ASSERT_DOUBLE_EQ(Degrees(seg.angleToXaxis()), 90);
seg = {{0, 0}, {-1, 0}};
ASSERT_DOUBLE_EQ(Degrees(seg.angleToXaxis()), 180);
seg = {{0, 0}, {0, -1}};
ASSERT_DOUBLE_EQ(Degrees(seg.angleToXaxis()), 270);
}
// Simple test, does not use gmock
TEST(BasicFunctionality, creationAndDestruction)
{
using namespace libnest2d;
Item sh = { {0, 0}, {1, 0}, {1, 1}, {0, 1} };
ASSERT_EQ(sh.vertexCount(), 4u);
Item sh2 ({ {0, 0}, {1, 0}, {1, 1}, {0, 1} });
ASSERT_EQ(sh2.vertexCount(), 4u);
// copy
Item sh3 = sh2;
ASSERT_EQ(sh3.vertexCount(), 4u);
sh2 = {};
ASSERT_EQ(sh2.vertexCount(), 0u);
ASSERT_EQ(sh3.vertexCount(), 4u);
}
TEST(GeometryAlgorithms, Distance) {
using namespace libnest2d;
Point p1 = {0, 0};
Point p2 = {10, 0};
Point p3 = {10, 10};
ASSERT_DOUBLE_EQ(PointLike::distance(p1, p2), 10);
ASSERT_DOUBLE_EQ(PointLike::distance(p1, p3), sqrt(200));
Segment seg(p1, p3);
ASSERT_DOUBLE_EQ(PointLike::distance(p2, seg), 7.0710678118654755);
auto result = PointLike::horizontalDistance(p2, seg);
auto check = [](Coord val, Coord expected) {
if(std::is_floating_point<Coord>::value)
ASSERT_DOUBLE_EQ(static_cast<double>(val),
static_cast<double>(expected));
else
ASSERT_EQ(val, expected);
};
ASSERT_TRUE(result.second);
check(result.first, 10);
result = PointLike::verticalDistance(p2, seg);
ASSERT_TRUE(result.second);
check(result.first, -10);
result = PointLike::verticalDistance(Point{10, 20}, seg);
ASSERT_TRUE(result.second);
check(result.first, 10);
Point p4 = {80, 0};
Segment seg2 = { {0, 0}, {0, 40} };
result = PointLike::horizontalDistance(p4, seg2);
ASSERT_TRUE(result.second);
check(result.first, 80);
result = PointLike::verticalDistance(p4, seg2);
// Point should not be related to the segment
ASSERT_FALSE(result.second);
}
TEST(GeometryAlgorithms, Area) {
using namespace libnest2d;
Rectangle rect(10, 10);
ASSERT_EQ(rect.area(), 100);
Rectangle rect2 = {100, 100};
ASSERT_EQ(rect2.area(), 10000);
Item item = {
{61, 97},
{70, 151},
{176, 151},
{189, 138},
{189, 59},
{70, 59},
{61, 77},
{61, 97}
};
ASSERT_TRUE(ShapeLike::area(item.transformedShape()) > 0 );
}
TEST(GeometryAlgorithms, IsPointInsidePolygon) {
using namespace libnest2d;
Rectangle rect(10, 10);
Point p = {1, 1};
ASSERT_TRUE(rect.isPointInside(p));
p = {11, 11};
ASSERT_FALSE(rect.isPointInside(p));
p = {11, 12};
ASSERT_FALSE(rect.isPointInside(p));
p = {3, 3};
ASSERT_TRUE(rect.isPointInside(p));
}
//TEST(GeometryAlgorithms, Intersections) {
// using namespace binpack2d;
// Rectangle rect(70, 30);
// rect.translate({80, 60});
// Rectangle rect2(80, 60);
// rect2.translate({80, 0});
//// ASSERT_FALSE(Item::intersects(rect, rect2));
// Segment s1({0, 0}, {10, 10});
// Segment s2({1, 1}, {11, 11});
// ASSERT_FALSE(ShapeLike::intersects(s1, s1));
// ASSERT_FALSE(ShapeLike::intersects(s1, s2));
//}
// Simple test, does not use gmock
TEST(GeometryAlgorithms, LeftAndDownPolygon)
{
using namespace libnest2d;
using namespace libnest2d;
Box bin(100, 100);
BottomLeftPlacer placer(bin);
Item item = {{70, 75}, {88, 60}, {65, 50}, {60, 30}, {80, 20}, {42, 20},
{35, 35}, {35, 55}, {40, 75}, {70, 75}};
Item leftControl = { {40, 75},
{35, 55},
{35, 35},
{42, 20},
{0, 20},
{0, 75},
{40, 75}};
Item downControl = {{88, 60},
{88, 0},
{35, 0},
{35, 35},
{42, 20},
{80, 20},
{60, 30},
{65, 50},
{88, 60}};
Item leftp(placer.leftPoly(item));
ASSERT_TRUE(ShapeLike::isValid(leftp.rawShape()).first);
ASSERT_EQ(leftp.vertexCount(), leftControl.vertexCount());
for(unsigned long i = 0; i < leftControl.vertexCount(); i++) {
ASSERT_EQ(getX(leftp.vertex(i)), getX(leftControl.vertex(i)));
ASSERT_EQ(getY(leftp.vertex(i)), getY(leftControl.vertex(i)));
}
Item downp(placer.downPoly(item));
ASSERT_TRUE(ShapeLike::isValid(downp.rawShape()).first);
ASSERT_EQ(downp.vertexCount(), downControl.vertexCount());
for(unsigned long i = 0; i < downControl.vertexCount(); i++) {
ASSERT_EQ(getX(downp.vertex(i)), getX(downControl.vertex(i)));
ASSERT_EQ(getY(downp.vertex(i)), getY(downControl.vertex(i)));
}
}
// Simple test, does not use gmock
TEST(GeometryAlgorithms, ArrangeRectanglesTight)
{
using namespace libnest2d;
std::vector<Rectangle> rects = {
{80, 80},
{60, 90},
{70, 30},
{80, 60},
{60, 60},
{60, 40},
{40, 40},
{10, 10},
{10, 10},
{10, 10},
{10, 10},
{10, 10},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{20, 20} };
Arranger<BottomLeftPlacer, DJDHeuristic> arrange(Box(210, 250));
auto groups = arrange(rects.begin(), rects.end());
ASSERT_EQ(groups.size(), 1u);
ASSERT_EQ(groups[0].size(), rects.size());
// check for no intersections, no containment:
for(auto result : groups) {
bool valid = true;
for(Item& r1 : result) {
for(Item& r2 : result) {
if(&r1 != &r2 ) {
valid = !Item::intersects(r1, r2) || Item::touches(r1, r2);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
ASSERT_TRUE(valid);
}
}
}
}
}
TEST(GeometryAlgorithms, ArrangeRectanglesLoose)
{
using namespace libnest2d;
// std::vector<Rectangle> rects = { {40, 40}, {10, 10}, {20, 20} };
std::vector<Rectangle> rects = {
{80, 80},
{60, 90},
{70, 30},
{80, 60},
{60, 60},
{60, 40},
{40, 40},
{10, 10},
{10, 10},
{10, 10},
{10, 10},
{10, 10},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{20, 20} };
Coord min_obj_distance = 5;
Arranger<BottomLeftPlacer, DJDHeuristic> arrange(Box(210, 250),
min_obj_distance);
auto groups = arrange(rects.begin(), rects.end());
ASSERT_EQ(groups.size(), 1u);
ASSERT_EQ(groups[0].size(), rects.size());
// check for no intersections, no containment:
auto result = groups[0];
bool valid = true;
for(Item& r1 : result) {
for(Item& r2 : result) {
if(&r1 != &r2 ) {
valid = !Item::intersects(r1, r2);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
ASSERT_TRUE(valid);
}
}
}
}
namespace {
using namespace libnest2d;
template<unsigned long SCALE = 1, class Bin>
void exportSVG(std::vector<std::reference_wrapper<Item>>& result, const Bin& bin, int idx = 0) {
std::string loc = "out";
static std::string svg_header =
R"raw(<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg height="500" width="500" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
)raw";
int i = idx;
auto r = result;
// for(auto r : result) {
std::fstream out(loc + std::to_string(i) + ".svg", std::fstream::out);
if(out.is_open()) {
out << svg_header;
Item rbin( Rectangle(bin.width(), bin.height()) );
for(unsigned i = 0; i < rbin.vertexCount(); i++) {
auto v = rbin.vertex(i);
setY(v, -getY(v)/SCALE + 500 );
setX(v, getX(v)/SCALE);
rbin.setVertex(i, v);
}
out << ShapeLike::serialize<Formats::SVG>(rbin.rawShape()) << std::endl;
for(Item& sh : r) {
Item tsh(sh.transformedShape());
for(unsigned i = 0; i < tsh.vertexCount(); i++) {
auto v = tsh.vertex(i);
setY(v, -getY(v)/SCALE + 500);
setX(v, getX(v)/SCALE);
tsh.setVertex(i, v);
}
out << ShapeLike::serialize<Formats::SVG>(tsh.rawShape()) << std::endl;
}
out << "\n</svg>" << std::endl;
}
out.close();
// i++;
// }
}
}
TEST(GeometryAlgorithms, BottomLeftStressTest) {
using namespace libnest2d;
const Coord SCALE = 1000000;
auto& input = prusaParts();
Box bin(210*SCALE, 250*SCALE);
BottomLeftPlacer placer(bin);
auto it = input.begin();
auto next = it;
int i = 0;
while(it != input.end() && ++next != input.end()) {
placer.pack(*it);
placer.pack(*next);
auto result = placer.getItems();
bool valid = true;
if(result.size() == 2) {
Item& r1 = result[0];
Item& r2 = result[1];
valid = !Item::intersects(r1, r2) || Item::touches(r1, r2);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
if(!valid) {
std::cout << "error index: " << i << std::endl;
exportSVG(result, bin, i);
}
ASSERT_TRUE(valid);
} else {
std::cout << "something went terribly wrong!" << std::endl;
FAIL();
}
placer.clearItems();
it++;
i++;
}
}
namespace {
struct ItemPair {
Item orbiter;
Item stationary;
};
std::vector<ItemPair> nfp_testdata = {
{
{
{80, 50},
{100, 70},
{120, 50},
{80, 50}
},
{
{10, 10},
{10, 40},
{40, 40},
{40, 10},
{10, 10}
}
},
{
{
{80, 50},
{60, 70},
{80, 90},
{120, 90},
{140, 70},
{120, 50},
{80, 50}
},
{
{10, 10},
{10, 40},
{40, 40},
{40, 10},
{10, 10}
}
},
{
{
{40, 10},
{30, 10},
{20, 20},
{20, 30},
{30, 40},
{40, 40},
{50, 30},
{50, 20},
{40, 10}
},
{
{80, 0},
{80, 30},
{110, 30},
{110, 0},
{80, 0}
}
},
{
{
{117, 107},
{118, 109},
{120, 112},
{122, 113},
{128, 113},
{130, 112},
{132, 109},
{133, 107},
{133, 103},
{132, 101},
{130, 98},
{128, 97},
{122, 97},
{120, 98},
{118, 101},
{117, 103},
{117, 107}
},
{
{102, 116},
{111, 126},
{114, 126},
{144, 106},
{148, 100},
{148, 85},
{147, 84},
{102, 84},
{102, 116},
}
},
{
{
{99, 122},
{108, 140},
{110, 142},
{139, 142},
{151, 122},
{151, 102},
{142, 70},
{139, 68},
{111, 68},
{108, 70},
{99, 102},
{99, 122},
},
{
{107, 124},
{128, 125},
{133, 125},
{136, 124},
{140, 121},
{142, 119},
{143, 116},
{143, 109},
{141, 93},
{139, 89},
{136, 86},
{134, 85},
{108, 85},
{107, 86},
{107, 124},
}
},
{
{
{91, 100},
{94, 144},
{117, 153},
{118, 153},
{159, 112},
{159, 110},
{156, 66},
{133, 57},
{132, 57},
{91, 98},
{91, 100},
},
{
{101, 90},
{103, 98},
{107, 113},
{114, 125},
{115, 126},
{135, 126},
{136, 125},
{144, 114},
{149, 90},
{149, 89},
{148, 87},
{145, 84},
{105, 84},
{102, 87},
{101, 89},
{101, 90},
}
}
};
std::vector<ItemPair> nfp_concave_testdata = {
{ // ItemPair
{
{
{533726, 142141},
{532359, 143386},
{530141, 142155},
{528649, 160091},
{533659, 157607},
{538669, 160091},
{537178, 142155},
{534959, 143386},
{533726, 142141},
}
},
{
{
{118305, 11603},
{118311, 26616},
{113311, 26611},
{109311, 29604},
{109300, 44608},
{109311, 49631},
{113300, 52636},
{118311, 52636},
{118308, 103636},
{223830, 103636},
{236845, 90642},
{236832, 11630},
{232825, 11616},
{210149, 11616},
{211308, 13625},
{209315, 17080},
{205326, 17080},
{203334, 13629},
{204493, 11616},
{118305, 11603},
}
},
}
};
template<NfpLevel lvl, Coord SCALE>
void testNfp(const std::vector<ItemPair>& testdata) {
using namespace libnest2d;
Box bin(210*SCALE, 250*SCALE);
int testcase = 0;
auto& exportfun = exportSVG<SCALE, Box>;
auto onetest = [&](Item& orbiter, Item& stationary){
testcase++;
orbiter.translate({210*SCALE, 0});
auto&& nfp = Nfp::noFitPolygon<lvl>(stationary.rawShape(),
orbiter.transformedShape());
auto v = ShapeLike::isValid(nfp);
if(!v.first) {
std::cout << v.second << std::endl;
}
ASSERT_TRUE(v.first);
Item infp(nfp);
int i = 0;
auto rorbiter = orbiter.transformedShape();
auto vo = Nfp::referenceVertex(rorbiter);
ASSERT_TRUE(stationary.isInside(infp));
for(auto v : infp) {
auto dx = getX(v) - getX(vo);
auto dy = getY(v) - getY(vo);
Item tmp = orbiter;
tmp.translate({dx, dy});
bool touching = Item::touches(tmp, stationary);
if(!touching) {
std::vector<std::reference_wrapper<Item>> inp = {
std::ref(stationary), std::ref(tmp), std::ref(infp)
};
exportfun(inp, bin, testcase*i++);
}
ASSERT_TRUE(touching);
}
};
for(auto& td : testdata) {
auto orbiter = td.orbiter;
auto stationary = td.stationary;
onetest(orbiter, stationary);
}
for(auto& td : testdata) {
auto orbiter = td.stationary;
auto stationary = td.orbiter;
onetest(orbiter, stationary);
}
}
}
TEST(GeometryAlgorithms, nfpConvexConvex) {
testNfp<NfpLevel::CONVEX_ONLY, 1>(nfp_testdata);
}
//TEST(GeometryAlgorithms, nfpConcaveConcave) {
// testNfp<NfpLevel::BOTH_CONCAVE, 1000>(nfp_concave_testdata);
//}
TEST(GeometryAlgorithms, pointOnPolygonContour) {
using namespace libnest2d;
Rectangle input(10, 10);
strategies::EdgeCache<PolygonImpl> ecache(input);
auto first = *input.begin();
ASSERT_TRUE(getX(first) == getX(ecache.coords(0)));
ASSERT_TRUE(getY(first) == getY(ecache.coords(0)));
auto last = *std::prev(input.end());
ASSERT_TRUE(getX(last) == getX(ecache.coords(1.0)));
ASSERT_TRUE(getY(last) == getY(ecache.coords(1.0)));
for(int i = 0; i <= 100; i++) {
auto v = ecache.coords(i*(0.01));
ASSERT_TRUE(ShapeLike::touches(v, input.transformedShape()));
}
}
TEST(GeometryAlgorithms, mergePileWithPolygon) {
using namespace libnest2d;
Rectangle rect1(10, 15);
Rectangle rect2(15, 15);
Rectangle rect3(20, 15);
rect2.translate({10, 0});
rect3.translate({25, 0});
ShapeLike::Shapes<PolygonImpl> pile;
pile.push_back(rect1.transformedShape());
pile.push_back(rect2.transformedShape());
auto result = Nfp::merge(pile, rect3.transformedShape());
ASSERT_EQ(result.size(), 1);
Rectangle ref(45, 15);
ASSERT_EQ(ShapeLike::area(result.front()), ref.area());
}
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}

View file

@ -0,0 +1,58 @@
/*
* Copyright (C) Tamás Mészáros
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef INCLUDE_BENCHMARK_H_
#define INCLUDE_BENCHMARK_H_
#include <chrono>
#include <ratio>
/**
* A class for doing benchmarks.
*/
class Benchmark {
typedef std::chrono::high_resolution_clock Clock;
typedef Clock::duration Duration;
typedef Clock::time_point TimePoint;
TimePoint t1, t2;
Duration d;
inline double to_sec(Duration d) {
return d.count() * double(Duration::period::num) / Duration::period::den;
}
public:
/**
* Measure time from the moment of this call.
*/
void start() { t1 = Clock::now(); }
/**
* Measure time to the moment of this call.
*/
void stop() { t2 = Clock::now(); }
/**
* Get the time elapsed between a start() end a stop() call.
* @return Returns the elapsed time in seconds.
*/
double getElapsedSec() { d = t2 - t1; return to_sec(d); }
};
#endif /* INCLUDE_BENCHMARK_H_ */

View file

@ -0,0 +1,182 @@
//#ifndef NDEBUG
//#define NFP_DEBUG
//#endif
#include "libnfpglue.hpp"
#include "tools/libnfporb/libnfporb.hpp"
namespace libnest2d {
namespace {
inline bool vsort(const libnfporb::point_t& v1, const libnfporb::point_t& v2)
{
using Coord = libnfporb::coord_t;
Coord x1 = v1.x_, x2 = v2.x_, y1 = v1.y_, y2 = v2.y_;
auto diff = y1 - y2;
#ifdef LIBNFP_USE_RATIONAL
long double diffv = diff.convert_to<long double>();
#else
long double diffv = diff.val();
#endif
if(std::abs(diffv) <=
std::numeric_limits<Coord>::epsilon())
return x1 < x2;
return diff < 0;
}
TCoord<PointImpl> getX(const libnfporb::point_t& p) {
#ifdef LIBNFP_USE_RATIONAL
return p.x_.convert_to<TCoord<PointImpl>>();
#else
return static_cast<TCoord<PointImpl>>(std::round(p.x_.val()));
#endif
}
TCoord<PointImpl> getY(const libnfporb::point_t& p) {
#ifdef LIBNFP_USE_RATIONAL
return p.y_.convert_to<TCoord<PointImpl>>();
#else
return static_cast<TCoord<PointImpl>>(std::round(p.y_.val()));
#endif
}
libnfporb::point_t scale(const libnfporb::point_t& p, long double factor) {
#ifdef LIBNFP_USE_RATIONAL
auto px = p.x_.convert_to<long double>();
auto py = p.y_.convert_to<long double>();
#else
long double px = p.x_.val();
long double py = p.y_.val();
#endif
return libnfporb::point_t(px*factor, py*factor);
}
}
PolygonImpl _nfp(const PolygonImpl &sh, const PolygonImpl &cother)
{
using Vertex = PointImpl;
PolygonImpl ret;
// try {
libnfporb::polygon_t pstat, porb;
boost::geometry::convert(sh, pstat);
boost::geometry::convert(cother, porb);
long double factor = 0.0000001;//libnfporb::NFP_EPSILON;
long double refactor = 1.0/factor;
for(auto& v : pstat.outer()) v = scale(v, factor);
// std::string message;
// boost::geometry::is_valid(pstat, message);
// std::cout << message << std::endl;
for(auto& h : pstat.inners()) for(auto& v : h) v = scale(v, factor);
for(auto& v : porb.outer()) v = scale(v, factor);
// message;
// boost::geometry::is_valid(porb, message);
// std::cout << message << std::endl;
for(auto& h : porb.inners()) for(auto& v : h) v = scale(v, factor);
// this can throw
auto nfp = libnfporb::generateNFP(pstat, porb, true);
auto &ct = ShapeLike::getContour(ret);
ct.reserve(nfp.front().size()+1);
for(auto v : nfp.front()) {
v = scale(v, refactor);
ct.emplace_back(getX(v), getY(v));
}
ct.push_back(ct.front());
std::reverse(ct.begin(), ct.end());
auto &rholes = ShapeLike::holes(ret);
for(size_t hidx = 1; hidx < nfp.size(); ++hidx) {
if(nfp[hidx].size() >= 3) {
rholes.push_back({});
auto& h = rholes.back();
h.reserve(nfp[hidx].size()+1);
for(auto& v : nfp[hidx]) {
v = scale(v, refactor);
h.emplace_back(getX(v), getY(v));
}
h.push_back(h.front());
std::reverse(h.begin(), h.end());
}
}
auto& cmp = vsort;
std::sort(pstat.outer().begin(), pstat.outer().end(), cmp);
std::sort(porb.outer().begin(), porb.outer().end(), cmp);
// leftmost lower vertex of the stationary polygon
auto& touch_sh = scale(pstat.outer().back(), refactor);
// rightmost upper vertex of the orbiting polygon
auto& touch_other = scale(porb.outer().front(), refactor);
// Calculate the difference and move the orbiter to the touch position.
auto dtouch = touch_sh - touch_other;
auto _top_other = scale(porb.outer().back(), refactor) + dtouch;
Vertex top_other(getX(_top_other), getY(_top_other));
// Get the righmost upper vertex of the nfp and move it to the RMU of
// the orbiter because they should coincide.
auto&& top_nfp = Nfp::rightmostUpVertex(ret);
auto dnfp = top_other - top_nfp;
std::for_each(ShapeLike::begin(ret), ShapeLike::end(ret),
[&dnfp](Vertex& v) { v+= dnfp; } );
for(auto& h : ShapeLike::holes(ret))
std::for_each( h.begin(), h.end(),
[&dnfp](Vertex& v) { v += dnfp; } );
// } catch(std::exception& e) {
// std::cout << "Error: " << e.what() << "\nTrying with convex hull..." << std::endl;
// auto ch_stat = ShapeLike::convexHull(sh);
// auto ch_orb = ShapeLike::convexHull(cother);
// ret = Nfp::nfpConvexOnly(ch_stat, ch_orb);
// }
return ret;
}
PolygonImpl Nfp::NfpImpl<PolygonImpl, NfpLevel::CONVEX_ONLY>::operator()(
const PolygonImpl &sh, const ClipperLib::PolygonImpl &cother)
{
return _nfp(sh, cother);//nfpConvexOnly(sh, cother);
}
PolygonImpl Nfp::NfpImpl<PolygonImpl, NfpLevel::ONE_CONVEX>::operator()(
const PolygonImpl &sh, const ClipperLib::PolygonImpl &cother)
{
return _nfp(sh, cother);
}
PolygonImpl Nfp::NfpImpl<PolygonImpl, NfpLevel::BOTH_CONCAVE>::operator()(
const PolygonImpl &sh, const ClipperLib::PolygonImpl &cother)
{
return _nfp(sh, cother);
}
PolygonImpl
Nfp::NfpImpl<PolygonImpl, NfpLevel::ONE_CONVEX_WITH_HOLES>::operator()(
const PolygonImpl &sh, const ClipperLib::PolygonImpl &cother)
{
return _nfp(sh, cother);
}
PolygonImpl
Nfp::NfpImpl<PolygonImpl, NfpLevel::BOTH_CONCAVE_WITH_HOLES>::operator()(
const PolygonImpl &sh, const ClipperLib::PolygonImpl &cother)
{
return _nfp(sh, cother);
}
}

View file

@ -0,0 +1,44 @@
#ifndef LIBNFPGLUE_HPP
#define LIBNFPGLUE_HPP
#include <libnest2d/clipper_backend/clipper_backend.hpp>
namespace libnest2d {
PolygonImpl _nfp(const PolygonImpl& sh, const PolygonImpl& cother);
template<>
struct Nfp::NfpImpl<PolygonImpl, NfpLevel::CONVEX_ONLY> {
PolygonImpl operator()(const PolygonImpl& sh, const PolygonImpl& cother);
};
template<>
struct Nfp::NfpImpl<PolygonImpl, NfpLevel::ONE_CONVEX> {
PolygonImpl operator()(const PolygonImpl& sh, const PolygonImpl& cother);
};
template<>
struct Nfp::NfpImpl<PolygonImpl, NfpLevel::BOTH_CONCAVE> {
PolygonImpl operator()(const PolygonImpl& sh, const PolygonImpl& cother);
};
template<>
struct Nfp::NfpImpl<PolygonImpl, NfpLevel::ONE_CONVEX_WITH_HOLES> {
PolygonImpl operator()(const PolygonImpl& sh, const PolygonImpl& cother);
};
template<>
struct Nfp::NfpImpl<PolygonImpl, NfpLevel::BOTH_CONCAVE_WITH_HOLES> {
PolygonImpl operator()(const PolygonImpl& sh, const PolygonImpl& cother);
};
template<> struct Nfp::MaxNfpLevel<PolygonImpl> {
static const BP2D_CONSTEXPR NfpLevel value =
// NfpLevel::CONVEX_ONLY;
NfpLevel::BOTH_CONCAVE_WITH_HOLES;
};
}
#endif // LIBNFPGLUE_HPP

View file

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

View file

@ -0,0 +1,2 @@
https://github.com/kallaballa/libnfp.git
commit hash a5cf9f6a76ddab95567fccf629d4d099b60237d7

View file

@ -0,0 +1,89 @@
[![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0.en.html)
##### If you give me a real good reason i might be willing to give you permission to use it under a different license for a specific application. Real good reasons include the following (non-exhausive): the greater good, educational purpose and money :)
# libnfporb
Implementation of a robust no-fit polygon generation in a C++ library using an orbiting approach.
__Please note:__ The paper this implementation is based it on has several bad assumptions that required me to "improvise". That means the code doesn't reflect the paper anymore and is running way slower than expected. At the moment I'm working on implementing a new approach based on this paper (using minkowski sums): https://eprints.soton.ac.uk/36850/1/CORMSIS-05-05.pdf
## Description
The no-fit polygon optimization makes it possible to check for overlap (or non-overlapping touch) of two polygons with only 1 point in polygon check (by providing the set of non-overlapping placements).
This library implements the orbiting approach to generate the no-fit polygon: Given two polygons A and B, A is the stationary one and B the orbiting one, B is slid as tightly as possibly around the edges of polygon A. During the orbiting a chosen reference point is tracked. By tracking the movement of the reference point a third polygon can be generated: the no-fit polygon.
Once the no-fit polygon has been generated it can be used to test for overlap by only checking if the reference point is inside the NFP (overlap) outside the NFP (no overlap) or exactly on the edge of the NFP (touch).
### Examples:
The polygons:
![Start of NFP](/images/start.png?raw=true)
Orbiting:
![State 1](/images/next0.png?raw=true)
![State 2](/images/next1.png?raw=true)
![State 3](/images/next2.png?raw=true)
![State 4](/images/next3.png?raw=true)
![State 5](/images/next4.png?raw=true)
![State 6](/images/next5.png?raw=true)
![State 7](/images/next6.png?raw=true)
![State 8](/images/next7.png?raw=true)
![State 9](/images/next8.png?raw=true)
The resulting NFP is red:
![nfp](/images/nfp.png?raw=true)
Polygons can have concavities, holes, interlocks or might fit perfectly:
![concavities](/images/concavities.png?raw=true)
![hole](/images/hole.png?raw=true)
![interlock](/images/interlock.png?raw=true)
![jigsaw](/images/jigsaw.png?raw=true)
## The Approach
The approch of this library is highly inspired by the scientific paper [Complete and robust no-fit polygon generation
for the irregular stock cutting problem](https://pdfs.semanticscholar.org/e698/0dd78306ba7d5bb349d20c6d8f2e0aa61062.pdf) and by [Svgnest](http://svgnest.com)
Note that is wasn't completely possible to implement it as suggested in the paper because it had several shortcomings that prevent complete NFP generation on some of my test cases. Especially the termination criteria (reference point returns to first point of NFP) proved to be wrong (see: test-case rect). Also tracking of used edges can't be performed as suggested in the paper since there might be situations where no edge of A is traversed (see: test-case doublecon).
By default the library is using floating point as coordinate type but by defining the flag "LIBNFP_USE_RATIONAL" the library can be instructed to use infinite precision.
## Build
The library has two dependencies: [Boost Geometry](http://www.boost.org/doc/libs/1_65_1/libs/geometry/doc/html/index.html) and [libgmp](https://gmplib.org). You need to install those first before building. Note that building is only required for the examples. The library itself is header-only.
git clone https://github.com/kallaballa/libnfp.git
cd libnfp
make
sudo make install
## Code Example
```c++
//uncomment next line to use infinite precision (slow)
//#define LIBNFP_USE_RATIONAL
#include "../src/libnfp.hpp"
int main(int argc, char** argv) {
using namespace libnfp;
polygon_t pA;
polygon_t pB;
//read polygons from wkt files
read_wkt_polygon(argv[1], pA);
read_wkt_polygon(argv[2], pB);
//generate NFP of polygon A and polygon B and check the polygons for validity.
//When the third parameters is false validity check is skipped for a little performance increase
nfp_t nfp = generateNFP(pA, pB, true);
//write a svg containing pA, pB and NFP
write_svg("nfp.svg",{pA,pB},nfp);
return 0;
}
```
Run the example program:
examples/nfp data/crossing/A.wkt data/crossing/B.wkt

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,116 @@
#ifndef SVGTOOLS_HPP
#define SVGTOOLS_HPP
#include <iostream>
#include <fstream>
#include <string>
#include <libnest2d.h>
namespace libnest2d { namespace svg {
class SVGWriter {
public:
enum OrigoLocation {
TOPLEFT,
BOTTOMLEFT
};
struct Config {
OrigoLocation origo_location;
Coord mm_in_coord_units;
double width, height;
Config():
origo_location(BOTTOMLEFT), mm_in_coord_units(1000000),
width(500), height(500) {}
};
private:
Config conf_;
std::vector<std::string> svg_layers_;
bool finished_ = false;
public:
SVGWriter(const Config& conf = Config()):
conf_(conf) {}
void setSize(const Box& box) {
conf_.height = static_cast<double>(box.height()) /
conf_.mm_in_coord_units;
conf_.width = static_cast<double>(box.width()) /
conf_.mm_in_coord_units;
}
void writeItem(const Item& item) {
if(svg_layers_.empty()) addLayer();
auto tsh = item.transformedShape();
if(conf_.origo_location == BOTTOMLEFT) {
auto d = static_cast<Coord>(
std::round(conf_.height*conf_.mm_in_coord_units) );
auto& contour = ShapeLike::getContour(tsh);
for(auto& v : contour) setY(v, -getY(v) + d);
auto& holes = ShapeLike::holes(tsh);
for(auto& h : holes) for(auto& v : h) setY(v, -getY(v) + d);
}
currentLayer() += ShapeLike::serialize<Formats::SVG>(tsh,
1.0/conf_.mm_in_coord_units) + "\n";
}
void writePackGroup(const PackGroup& result) {
for(auto r : result) {
addLayer();
for(Item& sh : r) {
writeItem(sh);
}
finishLayer();
}
}
void addLayer() {
svg_layers_.emplace_back(header());
finished_ = false;
}
void finishLayer() {
currentLayer() += "\n</svg>\n";
finished_ = true;
}
void save(const std::string& filepath) {
size_t lyrc = svg_layers_.size() > 1? 1 : 0;
size_t last = svg_layers_.size() > 1? svg_layers_.size() : 0;
for(auto& lyr : svg_layers_) {
std::fstream out(filepath + (lyrc > 0? std::to_string(lyrc) : "") +
".svg", std::fstream::out);
if(out.is_open()) out << lyr;
if(lyrc == last && !finished_) out << "\n</svg>\n";
out.flush(); out.close(); lyrc++;
};
}
private:
std::string& currentLayer() { return svg_layers_.back(); }
const std::string header() const {
std::string svg_header =
R"raw(<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg height=")raw";
svg_header += std::to_string(conf_.height) + "\" width=\"" + std::to_string(conf_.width) + "\" ";
svg_header += R"raw(xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">)raw";
return svg_header;
}
};
}
}
#endif // SVGTOOLS_HPP

View file

@ -20,6 +20,7 @@
namespace Slic3r {
// Escape \n, \r and backslash
std::string escape_string_cstyle(const std::string &str)
{
// Allocate a buffer twice the input string length,
@ -28,9 +29,15 @@ std::string escape_string_cstyle(const std::string &str)
char *outptr = out.data();
for (size_t i = 0; i < str.size(); ++ i) {
char c = str[i];
if (c == '\n' || c == '\r') {
if (c == '\r') {
(*outptr ++) = '\\';
(*outptr ++) = 'r';
} else if (c == '\n') {
(*outptr ++) = '\\';
(*outptr ++) = 'n';
} else if (c == '\\') {
(*outptr ++) = '\\';
(*outptr ++) = '\\';
} else
(*outptr ++) = c;
}
@ -69,7 +76,10 @@ std::string escape_strings_cstyle(const std::vector<std::string> &strs)
if (c == '\\' || c == '"') {
(*outptr ++) = '\\';
(*outptr ++) = c;
} else if (c == '\n' || c == '\r') {
} else if (c == '\r') {
(*outptr ++) = '\\';
(*outptr ++) = 'r';
} else if (c == '\n') {
(*outptr ++) = '\\';
(*outptr ++) = 'n';
} else
@ -84,6 +94,7 @@ std::string escape_strings_cstyle(const std::vector<std::string> &strs)
return std::string(out.data(), outptr - out.data());
}
// Unescape \n, \r and backslash
bool unescape_string_cstyle(const std::string &str, std::string &str_out)
{
std::vector<char> out(str.size(), 0);
@ -94,8 +105,12 @@ bool unescape_string_cstyle(const std::string &str, std::string &str_out)
if (++ i == str.size())
return false;
c = str[i];
if (c == 'n')
if (c == 'r')
(*outptr ++) = '\r';
else if (c == 'n')
(*outptr ++) = '\n';
else
(*outptr ++) = c;
} else
(*outptr ++) = c;
}
@ -134,7 +149,9 @@ bool unescape_strings_cstyle(const std::string &str, std::vector<std::string> &o
if (++ i == str.size())
return false;
c = str[i];
if (c == 'n')
if (c == 'r')
c = '\r';
else if (c == 'n')
c = '\n';
}
buf.push_back(c);
@ -188,7 +205,10 @@ void ConfigBase::apply_only(const ConfigBase &other, const t_config_option_keys
throw UnknownOptionException(opt_key);
}
const ConfigOption *other_opt = other.option(opt_key);
if (other_opt != nullptr)
if (other_opt == nullptr) {
// The key was not found in the source config, therefore it will not be initialized!
// printf("Not found, therefore not initialized: %s\n", opt_key.c_str());
} else
my_opt->set(other_opt);
}
}

View file

@ -291,6 +291,8 @@ public:
ConfigOptionFloats() : ConfigOptionVector<double>() {}
explicit ConfigOptionFloats(size_t n, double value) : ConfigOptionVector<double>(n, value) {}
explicit ConfigOptionFloats(std::initializer_list<double> il) : ConfigOptionVector<double>(std::move(il)) {}
explicit ConfigOptionFloats(const std::vector<double> &vec) : ConfigOptionVector<double>(vec) {}
explicit ConfigOptionFloats(std::vector<double> &&vec) : ConfigOptionVector<double>(std::move(vec)) {}
static ConfigOptionType static_type() { return coFloats; }
ConfigOptionType type() const override { return static_type(); }

View file

@ -470,9 +470,9 @@ static bool prepare_infill_hatching_segments(
int ir = std::min<int>(int(out.segs.size()) - 1, (r - x0) / line_spacing);
// The previous tests were done with floating point arithmetics over an epsilon-extended interval.
// Now do the same tests with exact arithmetics over the exact interval.
while (il <= ir && Int128::orient(out.segs[il].pos, out.segs[il].pos + out.direction, *pl) < 0)
while (il <= ir && int128::orient(out.segs[il].pos, out.segs[il].pos + out.direction, *pl) < 0)
++ il;
while (il <= ir && Int128::orient(out.segs[ir].pos, out.segs[ir].pos + out.direction, *pr) > 0)
while (il <= ir && int128::orient(out.segs[ir].pos, out.segs[ir].pos + out.direction, *pr) > 0)
-- ir;
// Here it is ensured, that
// 1) out.seg is not parallel to (pl, pr)
@ -489,8 +489,8 @@ static bool prepare_infill_hatching_segments(
is.iSegment = iSegment;
// Test whether the calculated intersection point falls into the bounding box of the input segment.
// +-1 to take rounding into account.
assert(Int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pl) >= 0);
assert(Int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pr) <= 0);
assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pl) >= 0);
assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pr) <= 0);
assert(is.pos().x + 1 >= std::min(pl->x, pr->x));
assert(is.pos().y + 1 >= std::min(pl->y, pr->y));
assert(is.pos().x <= std::max(pl->x, pr->x) + 1);
@ -527,7 +527,7 @@ static bool prepare_infill_hatching_segments(
const Points &contour = poly_with_offset.contour(iContour).points;
size_t iSegment = sil.intersections[i].iSegment;
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
int dir = Int128::cross(contour[iSegment] - contour[iPrev], sil.dir);
int dir = int128::cross(contour[iSegment] - contour[iPrev], sil.dir);
bool low = dir > 0;
sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
(low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :

View file

@ -1411,15 +1411,22 @@ void GCode::apply_print_config(const PrintConfig &print_config)
void GCode::append_full_config(const Print& print, std::string& str)
{
const StaticPrintConfig *configs[] = { &print.config, &print.default_object_config, &print.default_region_config };
const StaticPrintConfig *configs[] = { static_cast<const GCodeConfig*>(&print.config), &print.default_object_config, &print.default_region_config };
for (size_t i = 0; i < sizeof(configs) / sizeof(configs[0]); ++i) {
const StaticPrintConfig *cfg = configs[i];
for (const std::string &key : cfg->keys())
{
if (key != "compatible_printers")
str += "; " + key + " = " + cfg->serialize(key) + "\n";
}
}
const DynamicConfig &full_config = print.placeholder_parser.config();
for (const char *key : {
"print_settings_id", "filament_settings_id", "printer_settings_id",
"printer_model", "printer_variant", "default_print_profile", "default_filament_profile",
"compatible_printers_condition_cummulative", "inherits_cummulative" }) {
const ConfigOption *opt = full_config.option(key);
if (opt != nullptr)
str += std::string("; ") + key + " = " + opt->serialize() + "\n";
}
}
void GCode::set_extruders(const std::vector<unsigned int> &extruder_ids)

View file

@ -2,7 +2,12 @@
#include "PreviewData.hpp"
#include <float.h>
#include <wx/intl.h>
#include "slic3r/GUI/GUI.hpp"
#include <I18N.hpp>
#include <boost/format.hpp>
//! macro used to mark string used at localization,
#define L(s) (s)
namespace Slic3r {
@ -405,7 +410,7 @@ GCodePreviewData::LegendItemsList GCodePreviewData::get_legend_items(const std::
items.reserve(last_valid - first_valid + 1);
for (unsigned int i = (unsigned int)first_valid; i <= (unsigned int)last_valid; ++i)
{
items.emplace_back(_CHB(extrusion.role_names[i].c_str()).data(), extrusion.role_colors[i]);
items.emplace_back(Slic3r::I18N::translate(extrusion.role_names[i]), extrusion.role_colors[i]);
}
break;
@ -436,13 +441,9 @@ GCodePreviewData::LegendItemsList GCodePreviewData::get_legend_items(const std::
items.reserve(tools_colors_count);
for (unsigned int i = 0; i < tools_colors_count; ++i)
{
char buf[MIN_BUF_LENGTH_FOR_L];
sprintf(buf, _CHB(L("Extruder %d")), i + 1);
GCodePreviewData::Color color;
::memcpy((void*)color.rgba, (const void*)(tool_colors.data() + i * 4), 4 * sizeof(float));
items.emplace_back(buf, color);
items.emplace_back((boost::format(Slic3r::I18N::translate(L("Extruder %d"))) % (i + 1)).str(), color);
}
break;

18
xs/src/libslic3r/I18N.hpp Normal file
View file

@ -0,0 +1,18 @@
#ifndef slic3r_I18N_hpp_
#define slic3r_I18N_hpp_
#include <string>
namespace Slic3r {
namespace I18N {
typedef std::string (*translate_fn_type)(const char*);
extern translate_fn_type translate_fn;
inline void set_translate_callback(translate_fn_type fn) { translate_fn = fn; }
inline std::string translate(const std::string &s) { return (translate_fn == nullptr) ? s : (*translate_fn)(s.c_str()); }
inline std::string translate(const char *ptr) { return (translate_fn == nullptr) ? std::string(ptr) : (*translate_fn)(ptr); }
} // namespace I18N
} // namespace Slic3r
#endif /* slic3r_I18N_hpp_ */

View file

@ -48,7 +48,6 @@
#endif
#include <cassert>
#include "Point.hpp"
#if ! defined(_MSC_VER) && defined(__SIZEOF_INT128__)
#define HAS_INTRINSIC_128_TYPE
@ -288,20 +287,4 @@ public:
}
return sign_determinant_2x2(p1, q1, p2, q2) * invert;
}
// Exact orientation predicate,
// returns +1: CCW, 0: collinear, -1: CW.
static int orient(const Slic3r::Point &p1, const Slic3r::Point &p2, const Slic3r::Point &p3)
{
Slic3r::Vector v1(p2 - p1);
Slic3r::Vector v2(p3 - p1);
return sign_determinant_2x2_filtered(v1.x, v1.y, v2.x, v2.y);
}
// Exact orientation predicate,
// returns +1: CCW, 0: collinear, -1: CW.
static int cross(const Slic3r::Point &v1, const Slic3r::Point &v2)
{
return sign_determinant_2x2_filtered(v1.x, v1.y, v2.x, v2.y);
}
};

View file

@ -7,6 +7,11 @@
#include "Format/STL.hpp"
#include "Format/3mf.hpp"
#include <numeric>
#include <libnest2d.h>
#include <ClipperUtils.hpp>
#include "slic3r/GUI/GUI.hpp"
#include <float.h>
#include <boost/algorithm/string/predicate.hpp>
@ -14,6 +19,9 @@
#include <boost/nowide/iostream.hpp>
#include <boost/algorithm/string/replace.hpp>
// #include <benchmark.h>
#include "SVG.hpp"
namespace Slic3r {
unsigned int Model::s_auto_extruder_id = 1;
@ -296,35 +304,414 @@ static bool _arrange(const Pointfs &sizes, coordf_t dist, const BoundingBoxf* bb
return result;
}
/* arrange objects preserving their instance count
but altering their instance positions */
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
namespace arr {
using namespace libnest2d;
std::string toString(const Model& model) {
std::stringstream ss;
ss << "{\n";
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->scaling_factor);
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
for(auto& expoly_complex : expolys) {
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
if(tmp.empty()) continue;
auto expoly = tmp.front();
expoly.contour.make_clockwise();
for(auto& h : expoly.holes) h.make_counter_clockwise();
ss << "\t{\n";
ss << "\t\t{\n";
for(auto v : expoly.contour.points) ss << "\t\t\t{"
<< v.x << ", "
<< v.y << "},\n";
{
auto v = expoly.contour.points.front();
ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
}
ss << "\t\t},\n";
// Holes:
ss << "\t\t{\n";
// for(auto h : expoly.holes) {
// ss << "\t\t\t{\n";
// for(auto v : h.points) ss << "\t\t\t\t{"
// << v.x << ", "
// << v.y << "},\n";
// {
// auto v = h.points.front();
// ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
// }
// ss << "\t\t\t},\n";
// }
ss << "\t\t},\n";
ss << "\t},\n";
}
}
}
ss << "}\n";
return ss.str();
}
void toSVG(SVG& svg, const Model& model) {
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->scaling_factor);
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
svg.draw(expolys);
}
}
}
// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
using ShapeData2D =
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
ShapeData2D ret;
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
[](size_t s, ModelObject* o){
return s + o->instances.size();
});
ret.reserve(s);
for(auto objptr : model.objects) {
if(objptr) {
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(objinst) {
Slic3r::TriangleMesh tmpmesh = rmesh;
ClipperLib::PolygonImpl pn;
tmpmesh.scale(objinst->scaling_factor);
// TODO export the exact 2D projection
auto p = tmpmesh.convex_hull();
p.make_clockwise();
p.append(p.first_point());
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
// Efficient conversion to item.
Item item(std::move(pn));
// Invalid geometries would throw exceptions when arranging
if(item.vertexCount() > 3) {
item.rotation(objinst->rotation);
item.translation( {
ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
});
ret.emplace_back(objinst, item);
}
}
}
}
}
return ret;
}
/**
* \brief Arranges the model objects on the screen.
*
* The arrangement considers multiple bins (aka. print beds) for placing all
* the items provided in the model argument. If the items don't fit on one
* print bed, the remaining will be placed onto newly created print beds.
* The first_bin_only parameter, if set to true, disables this behaviour and
* makes sure that only one print bed is filled and the remaining items will be
* untouched. When set to false, the items which could not fit onto the
* print bed will be placed next to the print bed so the user should see a
* pile of items on the print bed and some other piles outside the print
* area that can be dragged later onto the print bed as a group.
*
* \param model The model object with the 3D content.
* \param dist The minimum distance which is allowed for any pair of items
* on the print bed in any direction.
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
* for bin packing.
* \param first_bin_only This parameter controls whether to place the
* remaining items which do not fit onto the print area next to the print
* bed or leave them untouched (let the user arrange them by hand or remove
* them).
*/
bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
bool first_bin_only,
std::function<void(unsigned)> progressind)
{
// get the (transformed) size of each instance so that we take
// into account their different transformations when packing
Pointfs instance_sizes;
Pointfs instance_centers;
for (const ModelObject *o : this->objects)
for (size_t i = 0; i < o->instances.size(); ++ i) {
// an accurate snug bounding box around the transformed mesh.
BoundingBoxf3 bbox(o->instance_bounding_box(i, true));
instance_sizes.push_back(bbox.size());
instance_centers.push_back(bbox.center());
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
bool ret = true;
// Create the arranger config
auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);
// Benchmark bench;
// std::cout << "Creating model siluett..." << std::endl;
// bench.start();
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model);
// bench.stop();
// std::cout << "Model siluett created in " << bench.getElapsedSec()
// << " seconds. " << "Min object distance = " << min_obj_distance << std::endl;
// std::cout << "{" << std::endl;
// std::for_each(shapemap.begin(), shapemap.end(),
// [] (ShapeData2D::value_type& it)
// {
// std::cout << "\t{" << std::endl;
// Item& item = it.second;
// for(auto& v : item) {
// std::cout << "\t\t" << "{" << getX(v)
// << ", " << getY(v) << "},\n";
// }
// std::cout << "\t}," << std::endl;
// });
// std::cout << "}" << std::endl;
// return true;
bool hasbin = bb != nullptr && bb->defined;
double area_max = 0;
Item *biggest = nullptr;
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
std::vector<std::reference_wrapper<Item>> shapes;
shapes.reserve(shapemap.size());
std::for_each(shapemap.begin(), shapemap.end(),
[&shapes, min_obj_distance, &area_max, &biggest,hasbin]
(ShapeData2D::value_type& it)
{
if(!hasbin) {
Item& item = it.second;
item.addOffset(min_obj_distance);
auto b = ShapeLike::boundingBox(item.transformedShape());
auto a = b.width()*b.height();
if(area_max < a) {
area_max = static_cast<double>(a);
biggest = &item;
}
}
Pointfs positions;
if (! _arrange(instance_sizes, dist, bb, positions))
return false;
size_t idx = 0;
for (ModelObject *o : this->objects) {
for (ModelInstance *i : o->instances) {
i->offset = positions[idx] - instance_centers[idx];
++ idx;
}
o->invalidate_bounding_box();
shapes.push_back(std::ref(it.second));
});
Box bin;
if(hasbin) {
// Scale up the bounding box to clipper scale.
BoundingBoxf bbb = *bb;
bbb.scale(1.0/SCALING_FACTOR);
bin = Box({
static_cast<libnest2d::Coord>(bbb.min.x),
static_cast<libnest2d::Coord>(bbb.min.y)
},
{
static_cast<libnest2d::Coord>(bbb.max.x),
static_cast<libnest2d::Coord>(bbb.max.y)
});
} else {
// Just take the biggest item as bin... ?
bin = ShapeLike::boundingBox(biggest->transformedShape());
}
return true;
// Will use the DJD selection heuristic with the BottomLeft placement
// strategy
using Arranger = Arranger<NfpPlacer, FirstFitSelection>;
using PConf = Arranger::PlacementConfig;
using SConf = Arranger::SelectionConfig;
PConf pcfg; // Placement configuration
SConf scfg; // Selection configuration
// Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER;
// TODO cannot use rotations until multiple objects of same geometry can
// handle different rotations
// arranger.useMinimumBoundigBoxRotation();
pcfg.rotations = { 0.0 };
// Magic: we will specify what is the goal of arrangement...
// In this case we override the default object function because we
// (apparently) don't care about pack efficiency and all we care is that the
// larger items go into the center of the pile and smaller items orbit it
// so the resulting pile has a circle-like shape.
// This is good for the print bed's heat profile.
// As a side effect, the arrange procedure is a lot faster (we do not need
// to calculate the convex hulls)
pcfg.object_function = [&bin](
NfpPlacer::Pile pile, // The currently arranged pile
double /*area*/, // Sum area of items (not needed)
double norm, // A norming factor for physical dimensions
double penality) // Min penality in case of bad arrangement
{
auto bb = ShapeLike::boundingBox(pile);
// We will optimize to the diameter of the circle around the bounding
// box and use the norming factor to get rid of the physical dimensions
double score = PointLike::distance(bb.minCorner(),
bb.maxCorner()) / norm;
// If it does not fit into the print bed we will beat it
// with a large penality
if(!NfpPlacer::wouldFit(bb, bin)) score = 2*penality - score;
return score;
};
// Create the arranger object
Arranger arranger(bin, min_obj_distance, pcfg, scfg);
// Set the progress indicator for the arranger.
arranger.progressIndicator(progressind);
// std::cout << "Arranging model..." << std::endl;
// bench.start();
// Arrange and return the items with their respective indices within the
// input sequence.
auto result = arranger.arrangeIndexed(shapes.begin(), shapes.end());
// bench.stop();
// std::cout << "Model arranged in " << bench.getElapsedSec()
// << " seconds." << std::endl;
auto applyResult = [&shapemap](ArrangeResult::value_type& group,
Coord batch_offset)
{
for(auto& r : group) {
auto idx = r.first; // get the original item index
Item& item = r.second; // get the item itself
// Get the model instance from the shapemap using the index
ModelInstance *inst_ptr = shapemap[idx].first;
// Get the tranformation data from the item object and scale it
// appropriately
auto off = item.translation();
Radians rot = item.rotation();
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
off.Y*SCALING_FACTOR);
// write the tranformation data into the model instance
inst_ptr->rotation = rot;
inst_ptr->offset = foff;
}
};
// std::cout << "Applying result..." << std::endl;
// bench.start();
if(first_bin_only) {
applyResult(result.front(), 0);
} else {
const auto STRIDE_PADDING = 1.2;
Coord stride = static_cast<Coord>(STRIDE_PADDING*
bin.width()*SCALING_FACTOR);
Coord batch_offset = 0;
for(auto& group : result) {
applyResult(group, batch_offset);
// Only the first pack group can be placed onto the print bed. The
// other objects which could not fit will be placed next to the
// print bed
batch_offset += stride;
}
}
// bench.stop();
// std::cout << "Result applied in " << bench.getElapsedSec()
// << " seconds." << std::endl;
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
return ret && result.size() == 1;
}
}
/* arrange objects preserving their instance count
but altering their instance positions */
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb,
std::function<void(unsigned)> progressind)
{
bool ret = false;
if(bb != nullptr && bb->defined) {
ret = arr::arrange(*this, dist, bb, false, progressind);
// std::fstream out("out.cpp", std::fstream::out);
// if(out.good()) {
// out << "const TestData OBJECTS = \n";
// out << arr::toString(*this);
// }
// out.close();
// SVG svg("out.svg");
// arr::toSVG(svg, *this);
// svg.Close();
} else {
// get the (transformed) size of each instance so that we take
// into account their different transformations when packing
Pointfs instance_sizes;
Pointfs instance_centers;
for (const ModelObject *o : this->objects)
for (size_t i = 0; i < o->instances.size(); ++ i) {
// an accurate snug bounding box around the transformed mesh.
BoundingBoxf3 bbox(o->instance_bounding_box(i, true));
instance_sizes.push_back(bbox.size());
instance_centers.push_back(bbox.center());
}
Pointfs positions;
if (! _arrange(instance_sizes, dist, bb, positions))
return false;
size_t idx = 0;
for (ModelObject *o : this->objects) {
for (ModelInstance *i : o->instances) {
i->offset = positions[idx] - instance_centers[idx];
++ idx;
}
o->invalidate_bounding_box();
}
}
return ret;
}
// Duplicate the entire model preserving instance relative positions.

View file

@ -207,7 +207,7 @@ public:
double scaling_factor;
Pointf offset; // in unscaled coordinates
ModelObject* get_object() const { return this->object; };
ModelObject* get_object() const { return this->object; }
// To be called on an external mesh
void transform_mesh(TriangleMesh* mesh, bool dont_translate = false) const;
@ -278,7 +278,8 @@ public:
void center_instances_around_point(const Pointf &point);
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
TriangleMesh mesh() const;
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL);
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL,
std::function<void(unsigned)> progressind = [](unsigned){});
// Croaks if the duplicated objects do not fit the print bed.
void duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
void duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);

View file

@ -1,6 +1,7 @@
#include "Point.hpp"
#include "Line.hpp"
#include "MultiPoint.hpp"
#include "Int128.hpp"
#include <algorithm>
#include <cmath>
@ -375,4 +376,20 @@ Pointf3::vector_to(const Pointf3 &point) const
return Vectorf3(point.x - this->x, point.y - this->y, point.z - this->z);
}
namespace int128 {
int orient(const Point &p1, const Point &p2, const Point &p3)
{
Slic3r::Vector v1(p2 - p1);
Slic3r::Vector v2(p3 - p1);
return Int128::sign_determinant_2x2_filtered(v1.x, v1.y, v2.x, v2.y);
}
int cross(const Point &v1, const Point &v2)
{
return Int128::sign_determinant_2x2_filtered(v1.x, v1.y, v2.x, v2.y);
}
}
}

View file

@ -81,6 +81,17 @@ inline Point operator*(double scalar, const Point& point2) { return Point(scalar
inline int64_t cross(const Point &v1, const Point &v2) { return int64_t(v1.x) * int64_t(v2.y) - int64_t(v1.y) * int64_t(v2.x); }
inline int64_t dot(const Point &v1, const Point &v2) { return int64_t(v1.x) * int64_t(v2.x) + int64_t(v1.y) * int64_t(v2.y); }
namespace int128 {
// Exact orientation predicate,
// returns +1: CCW, 0: collinear, -1: CW.
int orient(const Point &p1, const Point &p2, const Point &p3);
// Exact orientation predicate,
// returns +1: CCW, 0: collinear, -1: CW.
int cross(const Point &v1, const Slic3r::Point &v2);
}
// To be used by std::unordered_map, std::unordered_multimap and friends.
struct PointHash {
size_t operator()(const Point &pt) const {

View file

@ -4,6 +4,7 @@
#include "Extruder.hpp"
#include "Flow.hpp"
#include "Geometry.hpp"
#include "I18N.hpp"
#include "SupportMaterial.hpp"
#include "GCode/WipeTowerPrusaMM.hpp"
#include <algorithm>
@ -11,6 +12,10 @@
#include <boost/filesystem.hpp>
#include <boost/lexical_cast.hpp>
//! macro used to mark string used at localization,
//! return same string
#define L(s) Slic3r::I18N::translate(s)
namespace Slic3r {
template class PrintState<PrintStep, psCount>;
@ -444,7 +449,7 @@ bool Print::apply_config(DynamicPrintConfig config)
const ModelVolume &volume = *object->model_object()->volumes[volume_id];
if (this_region_config_set) {
// If the new config for this volume differs from the other
// volume configs currently associated to this region, it means
// volume configs currently associated to this region, it means
// the region subdivision does not make sense anymore.
if (! this_region_config.equals(this->_region_config_from_model_volume(volume))) {
rearrange_regions = true;
@ -523,7 +528,7 @@ std::string Print::validate() const
print_volume.min.z = -1e10;
for (PrintObject *po : this->objects) {
if (!print_volume.contains(po->model_object()->tight_bounding_box(false)))
return "Some objects are outside of the print volume.";
return L("Some objects are outside of the print volume.");
}
if (this->config.complete_objects) {
@ -550,7 +555,7 @@ std::string Print::validate() const
Polygon p = convex_hull;
p.translate(copy);
if (! intersection(convex_hulls_other, p).empty())
return "Some objects are too close; your extruder will collide with them.";
return L("Some objects are too close; your extruder will collide with them.");
polygons_append(convex_hulls_other, p);
}
}
@ -565,7 +570,7 @@ std::string Print::validate() const
// it will be printed as last one so its height doesn't matter.
object_height.pop_back();
if (! object_height.empty() && object_height.back() > scale_(this->config.extruder_clearance_height.value))
return "Some objects are too tall and cannot be printed without extruder collisions.";
return L("Some objects are too tall and cannot be printed without extruder collisions.");
}
} // end if (this->config.complete_objects)
@ -575,27 +580,22 @@ std::string Print::validate() const
total_copies_count += object->copies().size();
// #4043
if (total_copies_count > 1 && ! this->config.complete_objects.value)
return "The Spiral Vase option can only be used when printing a single object.";
return L("The Spiral Vase option can only be used when printing a single object.");
if (this->regions.size() > 1)
return "The Spiral Vase option can only be used when printing single material objects.";
return L("The Spiral Vase option can only be used when printing single material objects.");
}
if (this->config.single_extruder_multi_material) {
for (size_t i=1; i<this->config.nozzle_diameter.values.size(); ++i)
if (this->config.nozzle_diameter.values[i] != this->config.nozzle_diameter.values[i-1])
return "All extruders must have the same diameter for single extruder multimaterial printer.";
return L("All extruders must have the same diameter for single extruder multimaterial printer.");
}
if (this->has_wipe_tower() && ! this->objects.empty()) {
#if 0
for (auto dmr : this->config.nozzle_diameter.values)
if (std::abs(dmr - 0.4) > EPSILON)
return "The Wipe Tower is currently only supported for the 0.4mm nozzle diameter.";
#endif
if (this->config.gcode_flavor != gcfRepRap && this->config.gcode_flavor != gcfMarlin)
return "The Wipe Tower is currently only supported for the Marlin and RepRap/Sprinter G-code flavors.";
return L("The Wipe Tower is currently only supported for the Marlin and RepRap/Sprinter G-code flavors.");
if (! this->config.use_relative_e_distances)
return "The Wipe Tower is currently only supported with the relative extruder addressing (use_relative_e_distances=1).";
return L("The Wipe Tower is currently only supported with the relative extruder addressing (use_relative_e_distances=1).");
SlicingParameters slicing_params0 = this->objects.front()->slicing_parameters();
const PrintObject* tallest_object = this->objects.front(); // let's find the tallest object
@ -607,13 +607,13 @@ std::string Print::validate() const
SlicingParameters slicing_params = object->slicing_parameters();
if (std::abs(slicing_params.first_print_layer_height - slicing_params0.first_print_layer_height) > EPSILON ||
std::abs(slicing_params.layer_height - slicing_params0.layer_height ) > EPSILON)
return "The Wipe Tower is only supported for multiple objects if they have equal layer heigths";
return L("The Wipe Tower is only supported for multiple objects if they have equal layer heigths");
if (slicing_params.raft_layers() != slicing_params0.raft_layers())
return "The Wipe Tower is only supported for multiple objects if they are printed over an equal number of raft layers";
return L("The Wipe Tower is only supported for multiple objects if they are printed over an equal number of raft layers");
if (object->config.support_material_contact_distance != this->objects.front()->config.support_material_contact_distance)
return "The Wipe Tower is only supported for multiple objects if they are printed with the same support_material_contact_distance";
return L("The Wipe Tower is only supported for multiple objects if they are printed with the same support_material_contact_distance");
if (! equal_layering(slicing_params, slicing_params0))
return "The Wipe Tower is only supported for multiple objects if they are sliced equally.";
return L("The Wipe Tower is only supported for multiple objects if they are sliced equally.");
bool was_layer_height_profile_valid = object->layer_height_profile_valid;
object->update_layer_height_profile();
object->layer_height_profile_valid = was_layer_height_profile_valid;
@ -637,13 +637,8 @@ std::string Print::validate() const
failed = true;
if (failed)
return "The Wipe tower is only supported if all objects have the same layer height profile";
return L("The Wipe tower is only supported if all objects have the same layer height profile");
}
/*for (size_t i = 5; i < object->layer_height_profile.size(); i += 2)
if (object->layer_height_profile[i-1] > slicing_params.object_print_z_min + EPSILON &&
std::abs(object->layer_height_profile[i] - object->config.layer_height) > EPSILON)
return "The Wipe Tower is currently only supported with constant Z layer spacing. Layer editing is not allowed.";*/
}
}
@ -651,7 +646,7 @@ std::string Print::validate() const
// find the smallest nozzle diameter
std::vector<unsigned int> extruders = this->extruders();
if (extruders.empty())
return "The supplied settings will cause an empty print.";
return L("The supplied settings will cause an empty print.");
std::vector<double> nozzle_diameters;
for (unsigned int extruder_id : extruders)
@ -661,7 +656,7 @@ std::string Print::validate() const
unsigned int total_extruders_count = this->config.nozzle_diameter.size();
for (const auto& extruder_idx : extruders)
if ( extruder_idx >= total_extruders_count )
return "One or more object were assigned an extruder that the printer does not have.";
return L("One or more object were assigned an extruder that the printer does not have.");
for (PrintObject *object : this->objects) {
if ((object->config.support_material_extruder == -1 || object->config.support_material_interface_extruder == -1) &&
@ -670,13 +665,13 @@ std::string Print::validate() const
// will be printed with the current tool without a forced tool change. Play safe, assert that all object nozzles
// are of the same diameter.
if (nozzle_diameters.size() > 1)
return "Printing with multiple extruders of differing nozzle diameters. "
return L("Printing with multiple extruders of differing nozzle diameters. "
"If support is to be printed with the current extruder (support_material_extruder == 0 or support_material_interface_extruder == 0), "
"all nozzles have to be of the same diameter.";
"all nozzles have to be of the same diameter.");
}
// validate first_layer_height
double first_layer_height = object->config.get_abs_value("first_layer_height");
double first_layer_height = object->config.get_abs_value(L("first_layer_height"));
double first_layer_min_nozzle_diameter;
if (object->config.raft_layers > 0) {
// if we have raft layers, only support material extruder is used on first layer
@ -691,11 +686,11 @@ std::string Print::validate() const
first_layer_min_nozzle_diameter = min_nozzle_diameter;
}
if (first_layer_height > first_layer_min_nozzle_diameter)
return "First layer height can't be greater than nozzle diameter";
return L("First layer height can't be greater than nozzle diameter");
// validate layer_height
if (object->config.layer_height.value > min_nozzle_diameter)
return "Layer height can't be greater than nozzle diameter";
return L("Layer height can't be greater than nozzle diameter");
}
}
@ -1212,7 +1207,7 @@ std::string Print::output_filename()
try {
return this->placeholder_parser.process(this->config.output_filename_format.value, 0);
} catch (std::runtime_error &err) {
throw std::runtime_error(std::string("Failed processing of the output_filename_format template.\n") + err.what());
throw std::runtime_error(L("Failed processing of the output_filename_format template.") + "\n" + err.what());
}
}

View file

@ -1,7 +1,10 @@
#include "PrintConfig.hpp"
#include "I18N.hpp"
#include <set>
#include <boost/algorithm/string/replace.hpp>
#include <boost/algorithm/string/case_conv.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/thread.hpp>
@ -11,7 +14,7 @@ namespace Slic3r {
//! macro used to mark string used at localization,
//! return same string
#define L(s) s
#define L(s) Slic3r::I18N::translate(s)
PrintConfigDef::PrintConfigDef()
{
@ -151,6 +154,11 @@ PrintConfigDef::PrintConfigDef()
"with the active printer profile.");
def->default_value = new ConfigOptionString();
// The following value is to be stored into the project file (AMF, 3MF, Config ...)
// and it contains a sum of "compatible_printers_condition" values over the print and filament profiles.
def = this->add("compatible_printers_condition_cummulative", coStrings);
def->default_value = new ConfigOptionStrings();
def = this->add("complete_objects", coBool);
def->label = L("Complete individual objects");
def->tooltip = L("When printing multiple objects or copies, this feature will complete "
@ -821,7 +829,12 @@ PrintConfigDef::PrintConfigDef()
def->tooltip = L("Name of the profile, from which this profile inherits.");
def->full_width = true;
def->height = 50;
def->default_value = new ConfigOptionString("");
def->default_value = new ConfigOptionString();
// The following value is to be stored into the project file (AMF, 3MF, Config ...)
// and it contains a sum of "inherits" values over the print and filament profiles.
def = this->add("inherits_cummulative", coStrings);
def->default_value = new ConfigOptionStrings();
def = this->add("interface_shells", coBool);
def->label = L("Interface shells");
@ -853,6 +866,85 @@ PrintConfigDef::PrintConfigDef()
def->min = 0;
def->default_value = new ConfigOptionFloat(0.3);
{
struct AxisDefault {
std::string name;
std::vector<double> max_feedrate;
std::vector<double> max_acceleration;
std::vector<double> max_jerk;
};
std::vector<AxisDefault> axes {
// name, max_feedrate, max_acceleration, max_jerk
{ "x", { 200., 200. }, { 1000., 1000. }, { 10., 10. } },
{ "y", { 200., 200. }, { 1000., 1000. }, { 10., 10. } },
{ "z", { 12., 12. }, { 200., 200. }, { 0.4, 0.4 } },
{ "e", { 120., 120. }, { 5000., 5000. }, { 2.5, 2.5 } }
};
for (const AxisDefault &axis : axes) {
std::string axis_upper = boost::to_upper_copy<std::string>(axis.name);
// Add the machine feedrate limits for XYZE axes. (M203)
def = this->add("machine_max_feedrate_" + axis.name, coFloats);
def->label = (boost::format(L("Maximum feedrate %1%")) % axis_upper).str();
def->category = L("Machine limits");
def->tooltip = (boost::format(L("Maximum feedrate of the %1% axis")) % axis_upper).str();
def->sidetext = L("mm/s");
def->min = 0;
def->default_value = new ConfigOptionFloats(axis.max_feedrate);
// Add the machine acceleration limits for XYZE axes (M201)
def = this->add("machine_max_acceleration_" + axis.name, coFloats);
def->label = (boost::format(L("Maximum acceleration %1%")) % axis_upper).str();
def->category = L("Machine limits");
def->tooltip = (boost::format(L("Maximum acceleration of the %1% axis")) % axis_upper).str();
def->sidetext = L("mm/s²");
def->min = 0;
def->default_value = new ConfigOptionFloats(axis.max_acceleration);
// Add the machine jerk limits for XYZE axes (M205)
def = this->add("machine_max_jerk_" + axis.name, coFloats);
def->label = (boost::format(L("Maximum jerk %1%")) % axis_upper).str();
def->category = L("Machine limits");
def->tooltip = (boost::format(L("Maximum jerk of the %1% axis")) % axis_upper).str();
def->sidetext = L("mm/s");
def->min = 0;
def->default_value = new ConfigOptionFloats(axis.max_jerk);
}
}
// M205 S... [mm/sec]
def = this->add("machine_min_extruding_rate", coFloats);
def->label = L("Minimum feedrate when extruding");
def->category = L("Machine limits");
def->tooltip = L("Minimum feedrate when extruding") + " (M205 S)";
def->sidetext = L("mm/s");
def->min = 0;
def->default_value = new ConfigOptionFloats(0., 0.);
// M205 T... [mm/sec]
def = this->add("machine_min_travel_rate", coFloats);
def->label = L("Minimum travel feedrate");
def->category = L("Machine limits");
def->tooltip = L("Minimum travel feedrate") + " (M205 T)";
def->sidetext = L("mm/s");
def->min = 0;
def->default_value = new ConfigOptionFloats(0., 0.);
// M204 S... [mm/sec^2]
def = this->add("machine_max_acceleration_extruding", coFloats);
def->label = L("Maximum acceleration when extruding");
def->category = L("Machine limits");
def->tooltip = L("Maximum acceleration when extruding") + " (M204 S)";
def->sidetext = L("mm/s²");
def->min = 0;
def->default_value = new ConfigOptionFloats(1250., 1250.);
// M204 T... [mm/sec^2]
def = this->add("machine_max_acceleration_retracting", coFloats);
def->label = L("Maximum acceleration when retracting");
def->category = L("Machine limits");
def->tooltip = L("Maximum acceleration when retracting") + " (M204 T)";
def->sidetext = L("mm/s²");
def->min = 0;
def->default_value = new ConfigOptionFloats(1250., 1250.);
def = this->add("max_fan_speed", coInts);
def->label = L("Max");
def->tooltip = L("This setting represents the maximum speed of your fan.");
@ -2198,6 +2290,7 @@ std::string FullPrintConfig::validate()
// Declare the static caches for each StaticPrintConfig derived class.
StaticPrintConfig::StaticCache<class Slic3r::PrintObjectConfig> PrintObjectConfig::s_cache_PrintObjectConfig;
StaticPrintConfig::StaticCache<class Slic3r::PrintRegionConfig> PrintRegionConfig::s_cache_PrintRegionConfig;
StaticPrintConfig::StaticCache<class Slic3r::MachineEnvelopeConfig> MachineEnvelopeConfig::s_cache_MachineEnvelopeConfig;
StaticPrintConfig::StaticCache<class Slic3r::GCodeConfig> GCodeConfig::s_cache_GCodeConfig;
StaticPrintConfig::StaticCache<class Slic3r::PrintConfig> PrintConfig::s_cache_PrintConfig;
StaticPrintConfig::StaticCache<class Slic3r::HostConfig> HostConfig::s_cache_HostConfig;

View file

@ -455,6 +455,56 @@ protected:
}
};
class MachineEnvelopeConfig : public StaticPrintConfig
{
STATIC_PRINT_CONFIG_CACHE(MachineEnvelopeConfig)
public:
// M201 X... Y... Z... E... [mm/sec^2]
ConfigOptionFloats machine_max_acceleration_x;
ConfigOptionFloats machine_max_acceleration_y;
ConfigOptionFloats machine_max_acceleration_z;
ConfigOptionFloats machine_max_acceleration_e;
// M203 X... Y... Z... E... [mm/sec]
ConfigOptionFloats machine_max_feedrate_x;
ConfigOptionFloats machine_max_feedrate_y;
ConfigOptionFloats machine_max_feedrate_z;
ConfigOptionFloats machine_max_feedrate_e;
// M204 S... [mm/sec^2]
ConfigOptionFloats machine_max_acceleration_extruding;
// M204 T... [mm/sec^2]
ConfigOptionFloats machine_max_acceleration_retracting;
// M205 X... Y... Z... E... [mm/sec]
ConfigOptionFloats machine_max_jerk_x;
ConfigOptionFloats machine_max_jerk_y;
ConfigOptionFloats machine_max_jerk_z;
ConfigOptionFloats machine_max_jerk_e;
// M205 T... [mm/sec]
ConfigOptionFloats machine_min_travel_rate;
// M205 S... [mm/sec]
ConfigOptionFloats machine_min_extruding_rate;
protected:
void initialize(StaticCacheBase &cache, const char *base_ptr)
{
OPT_PTR(machine_max_acceleration_x);
OPT_PTR(machine_max_acceleration_y);
OPT_PTR(machine_max_acceleration_z);
OPT_PTR(machine_max_acceleration_e);
OPT_PTR(machine_max_feedrate_x);
OPT_PTR(machine_max_feedrate_y);
OPT_PTR(machine_max_feedrate_z);
OPT_PTR(machine_max_feedrate_e);
OPT_PTR(machine_max_acceleration_extruding);
OPT_PTR(machine_max_acceleration_retracting);
OPT_PTR(machine_max_jerk_x);
OPT_PTR(machine_max_jerk_y);
OPT_PTR(machine_max_jerk_z);
OPT_PTR(machine_max_jerk_e);
OPT_PTR(machine_min_travel_rate);
OPT_PTR(machine_min_extruding_rate);
}
};
// This object is mapped to Perl as Slic3r::Config::GCode.
class GCodeConfig : public StaticPrintConfig
{
@ -566,7 +616,7 @@ protected:
};
// This object is mapped to Perl as Slic3r::Config::Print.
class PrintConfig : public GCodeConfig
class PrintConfig : public MachineEnvelopeConfig, public GCodeConfig
{
STATIC_PRINT_CONFIG_CACHE_DERIVED(PrintConfig)
PrintConfig() : GCodeConfig(0) { initialize_cache(); *this = s_cache_PrintConfig.defaults(); }
@ -642,6 +692,7 @@ protected:
PrintConfig(int) : GCodeConfig(1) {}
void initialize(StaticCacheBase &cache, const char *base_ptr)
{
this->MachineEnvelopeConfig::initialize(cache, base_ptr);
this->GCodeConfig::initialize(cache, base_ptr);
OPT_PTR(avoid_crossing_perimeters);
OPT_PTR(bed_shape);

View file

@ -1,4 +1,5 @@
#include "Utils.hpp"
#include "I18N.hpp"
#include <locale>
#include <ctime>
@ -123,6 +124,9 @@ const std::string& localization_dir()
return g_local_dir;
}
// Translate function callback, to call wxWidgets translate function to convert non-localized UTF8 string to a localized one.
Slic3r::I18N::translate_fn_type Slic3r::I18N::translate_fn = nullptr;
static std::string g_data_dir;
void set_data_dir(const std::string &dir)

View file

@ -65,6 +65,8 @@ REGISTER_CLASS(PresetBundle, "GUI::PresetBundle");
REGISTER_CLASS(TabIface, "GUI::Tab");
REGISTER_CLASS(PresetUpdater, "PresetUpdater");
REGISTER_CLASS(OctoPrint, "OctoPrint");
REGISTER_CLASS(AppController, "AppController");
REGISTER_CLASS(PrintController, "PrintController");
SV* ConfigBase__as_hash(ConfigBase* THIS)
{

View file

@ -0,0 +1,342 @@
#include "AppController.hpp"
#include <future>
#include <chrono>
#include <sstream>
#include <cstdarg>
#include <thread>
#include <unordered_map>
#include <slic3r/GUI/GUI.hpp>
#include <slic3r/GUI/PresetBundle.hpp>
#include <Geometry.hpp>
#include <PrintConfig.hpp>
#include <Print.hpp>
#include <Model.hpp>
#include <Utils.hpp>
namespace Slic3r {
class AppControllerBoilerplate::PriData {
public:
std::mutex m;
std::thread::id ui_thread;
inline explicit PriData(std::thread::id uit): ui_thread(uit) {}
};
AppControllerBoilerplate::AppControllerBoilerplate()
:pri_data_(new PriData(std::this_thread::get_id())) {}
AppControllerBoilerplate::~AppControllerBoilerplate() {
pri_data_.reset();
}
bool AppControllerBoilerplate::is_main_thread() const
{
return pri_data_->ui_thread == std::this_thread::get_id();
}
namespace GUI {
PresetBundle* get_preset_bundle();
}
static const PrintObjectStep STEP_SLICE = posSlice;
static const PrintObjectStep STEP_PERIMETERS = posPerimeters;
static const PrintObjectStep STEP_PREPARE_INFILL = posPrepareInfill;
static const PrintObjectStep STEP_INFILL = posInfill;
static const PrintObjectStep STEP_SUPPORTMATERIAL = posSupportMaterial;
static const PrintStep STEP_SKIRT = psSkirt;
static const PrintStep STEP_BRIM = psBrim;
static const PrintStep STEP_WIPE_TOWER = psWipeTower;
AppControllerBoilerplate::ProgresIndicatorPtr
AppControllerBoilerplate::global_progress_indicator() {
ProgresIndicatorPtr ret;
pri_data_->m.lock();
ret = global_progressind_;
pri_data_->m.unlock();
return ret;
}
void AppControllerBoilerplate::global_progress_indicator(
AppControllerBoilerplate::ProgresIndicatorPtr gpri)
{
pri_data_->m.lock();
global_progressind_ = gpri;
pri_data_->m.unlock();
}
void PrintController::make_skirt()
{
assert(print_ != nullptr);
// prerequisites
for(auto obj : print_->objects) make_perimeters(obj);
for(auto obj : print_->objects) infill(obj);
for(auto obj : print_->objects) gen_support_material(obj);
if(!print_->state.is_done(STEP_SKIRT)) {
print_->state.set_started(STEP_SKIRT);
print_->skirt.clear();
if(print_->has_skirt()) print_->_make_skirt();
print_->state.set_done(STEP_SKIRT);
}
}
void PrintController::make_brim()
{
assert(print_ != nullptr);
// prerequisites
for(auto obj : print_->objects) make_perimeters(obj);
for(auto obj : print_->objects) infill(obj);
for(auto obj : print_->objects) gen_support_material(obj);
make_skirt();
if(!print_->state.is_done(STEP_BRIM)) {
print_->state.set_started(STEP_BRIM);
// since this method must be idempotent, we clear brim paths *before*
// checking whether we need to generate them
print_->brim.clear();
if(print_->config.brim_width > 0) print_->_make_brim();
print_->state.set_done(STEP_BRIM);
}
}
void PrintController::make_wipe_tower()
{
assert(print_ != nullptr);
// prerequisites
for(auto obj : print_->objects) make_perimeters(obj);
for(auto obj : print_->objects) infill(obj);
for(auto obj : print_->objects) gen_support_material(obj);
make_skirt();
make_brim();
if(!print_->state.is_done(STEP_WIPE_TOWER)) {
print_->state.set_started(STEP_WIPE_TOWER);
// since this method must be idempotent, we clear brim paths *before*
// checking whether we need to generate them
print_->brim.clear();
if(print_->has_wipe_tower()) print_->_make_wipe_tower();
print_->state.set_done(STEP_WIPE_TOWER);
}
}
void PrintController::slice(PrintObject *pobj)
{
assert(pobj != nullptr && print_ != nullptr);
if(pobj->state.is_done(STEP_SLICE)) return;
pobj->state.set_started(STEP_SLICE);
pobj->_slice();
auto msg = pobj->_fix_slicing_errors();
if(!msg.empty()) report_issue(IssueType::WARN, msg);
// simplify slices if required
if (print_->config.resolution)
pobj->_simplify_slices(scale_(print_->config.resolution));
if(pobj->layers.empty())
report_issue(IssueType::ERR,
_(L("No layers were detected. You might want to repair your "
"STL file(s) or check their size or thickness and retry"))
);
pobj->state.set_done(STEP_SLICE);
}
void PrintController::make_perimeters(PrintObject *pobj)
{
assert(pobj != nullptr);
slice(pobj);
if (!pobj->state.is_done(STEP_PERIMETERS)) {
pobj->_make_perimeters();
}
}
void PrintController::infill(PrintObject *pobj)
{
assert(pobj != nullptr);
make_perimeters(pobj);
if (!pobj->state.is_done(STEP_PREPARE_INFILL)) {
pobj->state.set_started(STEP_PREPARE_INFILL);
pobj->_prepare_infill();
pobj->state.set_done(STEP_PREPARE_INFILL);
}
pobj->_infill();
}
void PrintController::gen_support_material(PrintObject *pobj)
{
assert(pobj != nullptr);
// prerequisites
slice(pobj);
if(!pobj->state.is_done(STEP_SUPPORTMATERIAL)) {
pobj->state.set_started(STEP_SUPPORTMATERIAL);
pobj->clear_support_layers();
if((pobj->config.support_material || pobj->config.raft_layers > 0)
&& pobj->layers.size() > 1) {
pobj->_generate_support_material();
}
pobj->state.set_done(STEP_SUPPORTMATERIAL);
}
}
void PrintController::slice(AppControllerBoilerplate::ProgresIndicatorPtr pri)
{
auto st = pri->state();
Slic3r::trace(3, "Starting the slicing process.");
pri->update(st+20, _(L("Generating perimeters")));
for(auto obj : print_->objects) make_perimeters(obj);
pri->update(st+60, _(L("Infilling layers")));
for(auto obj : print_->objects) infill(obj);
pri->update(st+70, _(L("Generating support material")));
for(auto obj : print_->objects) gen_support_material(obj);
pri->message_fmt(_(L("Weight: %.1fg, Cost: %.1f")),
print_->total_weight, print_->total_cost);
pri->state(st+85);
pri->update(st+88, _(L("Generating skirt")));
make_skirt();
pri->update(st+90, _(L("Generating brim")));
make_brim();
pri->update(st+95, _(L("Generating wipe tower")));
make_wipe_tower();
pri->update(st+100, _(L("Done")));
// time to make some statistics..
Slic3r::trace(3, _(L("Slicing process finished.")));
}
void PrintController::slice()
{
auto pri = global_progress_indicator();
if(!pri) pri = create_progress_indicator(100, L("Slicing"));
slice(pri);
}
void IProgressIndicator::message_fmt(
const string &fmtstr, ...) {
std::stringstream ss;
va_list args;
va_start(args, fmtstr);
auto fmt = fmtstr.begin();
while (*fmt != '\0') {
if (*fmt == 'd') {
int i = va_arg(args, int);
ss << i << '\n';
} else if (*fmt == 'c') {
// note automatic conversion to integral type
int c = va_arg(args, int);
ss << static_cast<char>(c) << '\n';
} else if (*fmt == 'f') {
double d = va_arg(args, double);
ss << d << '\n';
}
++fmt;
}
va_end(args);
message(ss.str());
}
const PrintConfig &PrintController::config() const
{
return print_->config;
}
void AppController::arrange_model()
{
auto ftr = std::async(
supports_asynch()? std::launch::async : std::launch::deferred,
[this]()
{
unsigned count = 0;
for(auto obj : model_->objects) count += obj->instances.size();
auto pind = global_progress_indicator();
float pmax = 1.0;
if(pind) {
pmax = pind->max();
// Set the range of the progress to the object count
pind->max(count);
}
auto dist = print_ctl()->config().min_object_distance();
BoundingBoxf bb(print_ctl()->config().bed_shape.values);
if(pind) pind->update(0, _(L("Arranging objects...")));
try {
model_->arrange_objects(dist, &bb, [pind, count](unsigned rem){
if(pind) pind->update(count - rem, _(L("Arranging objects...")));
});
} catch(std::exception& e) {
std::cerr << e.what() << std::endl;
report_issue(IssueType::ERR,
_(L("Could not arrange model objects! "
"Some geometries may be invalid.")),
_(L("Exception occurred")));
}
// Restore previous max value
if(pind) {
pind->max(pmax);
pind->update(0, _(L("Arranging done.")));
}
});
while( ftr.wait_for(std::chrono::milliseconds(10))
!= std::future_status::ready) {
process_events();
}
}
}

View file

@ -0,0 +1,266 @@
#ifndef APPCONTROLLER_HPP
#define APPCONTROLLER_HPP
#include <string>
#include <vector>
#include <memory>
#include <atomic>
#include <iostream>
#include "IProgressIndicator.hpp"
namespace Slic3r {
class Model;
class Print;
class PrintObject;
class PrintConfig;
/**
* @brief A boilerplate class for creating application logic. It should provide
* features as issue reporting and progress indication, etc...
*
* The lower lever UI independent classes can be manipulated with a subclass
* of this controller class. We can also catch any exceptions that lower level
* methods could throw and display appropriate errors and warnings.
*
* Note that the outer and the inner interface of this class is free from any
* UI toolkit dependencies. We can implement it with any UI framework or make it
* a cli client.
*/
class AppControllerBoilerplate {
public:
/// A Progress indicator object smart pointer
using ProgresIndicatorPtr = std::shared_ptr<IProgressIndicator>;
private:
class PriData; // Some structure to store progress indication data
// Pimpl data for thread safe progress indication features
std::unique_ptr<PriData> pri_data_;
public:
AppControllerBoilerplate();
~AppControllerBoilerplate();
using Path = string;
using PathList = std::vector<Path>;
/// Common runtime issue types
enum class IssueType {
INFO,
WARN,
WARN_Q, // Warning with a question to continue
ERR,
FATAL
};
/**
* @brief Query some paths from the user.
*
* It should display a file chooser dialog in case of a UI application.
* @param title Title of a possible query dialog.
* @param extensions Recognized file extensions.
* @return Returns a list of paths choosed by the user.
*/
PathList query_destination_paths(
const string& title,
const std::string& extensions) const;
/**
* @brief Same as query_destination_paths but works for directories only.
*/
PathList query_destination_dirs(
const string& title) const;
/**
* @brief Same as query_destination_paths but returns only one path.
*/
Path query_destination_path(
const string& title,
const std::string& extensions,
const std::string& hint = "") const;
/**
* @brief Report an issue to the user be it fatal or recoverable.
*
* In a UI app this should display some message dialog.
*
* @param issuetype The type of the runtime issue.
* @param description A somewhat longer description of the issue.
* @param brief A very brief description. Can be used for message dialog
* title.
*/
bool report_issue(IssueType issuetype,
const string& description,
const string& brief);
bool report_issue(IssueType issuetype,
const string& description);
/**
* @brief Return the global progress indicator for the current controller.
* Can be empty as well.
*
* Only one thread should use the global indicator at a time.
*/
ProgresIndicatorPtr global_progress_indicator();
void global_progress_indicator(ProgresIndicatorPtr gpri);
/**
* @brief A predicate telling the caller whether it is the thread that
* created the AppConroller object itself. This probably means that the
* execution is in the UI thread. Otherwise it returns false meaning that
* some worker thread called this function.
* @return Return true for the same caller thread that created this
* object and false for every other.
*/
bool is_main_thread() const;
/**
* @brief The frontend supports asynch execution.
*
* A Graphic UI will support this, a CLI may not. This can be used in
* subclass methods to decide whether to start threads for block free UI.
*
* Note that even a progress indicator's update called regularly can solve
* the blocking UI problem in some cases even when an event loop is present.
* This is how wxWidgets gauge work but creating a separate thread will make
* the UI even more fluent.
*
* @return true if a job or method can be executed asynchronously, false
* otherwise.
*/
bool supports_asynch() const;
void process_events();
protected:
/**
* @brief Create a new progress indicator and return a smart pointer to it.
* @param statenum The number of states for the given procedure.
* @param title The title of the procedure.
* @param firstmsg The message for the first subtask to be displayed.
* @return Smart pointer to the created object.
*/
ProgresIndicatorPtr create_progress_indicator(
unsigned statenum,
const string& title,
const string& firstmsg) const;
ProgresIndicatorPtr create_progress_indicator(
unsigned statenum,
const string& title) const;
// This is a global progress indicator placeholder. In the Slic3r UI it can
// contain the progress indicator on the statusbar.
ProgresIndicatorPtr global_progressind_;
};
/**
* @brief Implementation of the printing logic.
*/
class PrintController: public AppControllerBoilerplate {
Print *print_ = nullptr;
protected:
void make_skirt();
void make_brim();
void make_wipe_tower();
void make_perimeters(PrintObject *pobj);
void infill(PrintObject *pobj);
void gen_support_material(PrintObject *pobj);
/**
* @brief Slice one pront object.
* @param pobj The print object.
*/
void slice(PrintObject *pobj);
void slice(ProgresIndicatorPtr pri);
public:
// Must be public for perl to use it
explicit inline PrintController(Print *print): print_(print) {}
PrintController(const PrintController&) = delete;
PrintController(PrintController&&) = delete;
using Ptr = std::unique_ptr<PrintController>;
inline static Ptr create(Print *print) {
return PrintController::Ptr( new PrintController(print) );
}
/**
* @brief Slice the loaded print scene.
*/
void slice();
const PrintConfig& config() const;
};
/**
* @brief Top level controller.
*/
class AppController: public AppControllerBoilerplate {
Model *model_ = nullptr;
PrintController::Ptr printctl;
public:
/**
* @brief Get the print controller object.
*
* @return Return a raw pointer instead of a smart one for perl to be able
* to use this function and access the print controller.
*/
PrintController * print_ctl() { return printctl.get(); }
/**
* @brief Set a model object.
*
* @param model A raw pointer to the model object. This can be used from
* perl.
*/
void set_model(Model *model) { model_ = model; }
/**
* @brief Set the print object from perl.
*
* This will create a print controller that will then be accessible from
* perl.
* @param print A print object which can be a perl-ish extension as well.
*/
void set_print(Print *print) {
printctl = PrintController::create(print);
}
/**
* @brief Set up a global progress indicator.
*
* In perl we have a progress indicating status bar on the bottom of the
* window which is defined and created in perl. We can pass the ID-s of the
* gauge and the statusbar id and make a wrapper implementation of the
* IProgressIndicator interface so we can use this GUI widget from C++.
*
* This function should be called from perl.
*
* @param gauge_id The ID of the gague widget of the status bar.
* @param statusbar_id The ID of the status bar.
*/
void set_global_progress_indicator(unsigned gauge_id,
unsigned statusbar_id);
void arrange_model();
};
}
#endif // APPCONTROLLER_HPP

View file

@ -0,0 +1,310 @@
#include "AppController.hpp"
#include <thread>
#include <future>
#include <slic3r/GUI/GUI.hpp>
#include <wx/app.h>
#include <wx/filedlg.h>
#include <wx/msgdlg.h>
#include <wx/progdlg.h>
#include <wx/gauge.h>
#include <wx/statusbr.h>
#include <wx/event.h>
// This source file implements the UI dependent methods of the AppControllers.
// It will be clear what is needed to be reimplemented in case of a UI framework
// change or a CLI client creation. In this particular case we use wxWidgets to
// implement everything.
namespace Slic3r {
bool AppControllerBoilerplate::supports_asynch() const
{
return true;
}
void AppControllerBoilerplate::process_events()
{
wxSafeYield();
}
AppControllerBoilerplate::PathList
AppControllerBoilerplate::query_destination_paths(
const string &title,
const std::string &extensions) const
{
wxFileDialog dlg(wxTheApp->GetTopWindow(), title );
dlg.SetWildcard(extensions);
dlg.ShowModal();
wxArrayString paths;
dlg.GetPaths(paths);
PathList ret(paths.size(), "");
for(auto& p : paths) ret.push_back(p.ToStdString());
return ret;
}
AppControllerBoilerplate::Path
AppControllerBoilerplate::query_destination_path(
const string &title,
const std::string &extensions,
const std::string& hint) const
{
wxFileDialog dlg(wxTheApp->GetTopWindow(), title );
dlg.SetWildcard(extensions);
dlg.SetFilename(hint);
Path ret;
if(dlg.ShowModal() == wxID_OK) {
ret = Path(dlg.GetPath());
}
return ret;
}
bool AppControllerBoilerplate::report_issue(IssueType issuetype,
const string &description,
const string &brief)
{
auto icon = wxICON_INFORMATION;
auto style = wxOK|wxCENTRE;
switch(issuetype) {
case IssueType::INFO: break;
case IssueType::WARN: icon = wxICON_WARNING; break;
case IssueType::WARN_Q: icon = wxICON_WARNING; style |= wxCANCEL; break;
case IssueType::ERR:
case IssueType::FATAL: icon = wxICON_ERROR;
}
auto ret = wxMessageBox(description, brief, icon | style);
return ret != wxCANCEL;
}
bool AppControllerBoilerplate::report_issue(
AppControllerBoilerplate::IssueType issuetype,
const string &description)
{
return report_issue(issuetype, description, string());
}
wxDEFINE_EVENT(PROGRESS_STATUS_UPDATE_EVENT, wxCommandEvent);
namespace {
/*
* A simple thread safe progress dialog implementation that can be used from
* the main thread as well.
*/
class GuiProgressIndicator:
public IProgressIndicator, public wxEvtHandler {
wxProgressDialog gauge_;
using Base = IProgressIndicator;
wxString message_;
int range_; wxString title_;
bool is_asynch_ = false;
const int id_ = wxWindow::NewControlId();
// status update handler
void _state( wxCommandEvent& evt) {
unsigned st = evt.GetInt();
message_ = evt.GetString();
_state(st);
}
// Status update implementation
void _state( unsigned st) {
if(!gauge_.IsShown()) gauge_.ShowModal();
Base::state(st);
gauge_.Update(static_cast<int>(st), message_);
}
public:
/// Setting whether it will be used from the UI thread or some worker thread
inline void asynch(bool is) { is_asynch_ = is; }
/// Get the mode of parallel operation.
inline bool asynch() const { return is_asynch_; }
inline GuiProgressIndicator(int range, const string& title,
const string& firstmsg) :
gauge_(title, firstmsg, range, wxTheApp->GetTopWindow(),
wxPD_APP_MODAL | wxPD_AUTO_HIDE),
message_(firstmsg),
range_(range), title_(title)
{
Base::max(static_cast<float>(range));
Base::states(static_cast<unsigned>(range));
Bind(PROGRESS_STATUS_UPDATE_EVENT,
&GuiProgressIndicator::_state,
this, id_);
}
virtual void cancel() override {
update(max(), "Abort");
IProgressIndicator::cancel();
}
virtual void state(float val) override {
state(static_cast<unsigned>(val));
}
void state(unsigned st) {
// send status update event
if(is_asynch_) {
auto evt = new wxCommandEvent(PROGRESS_STATUS_UPDATE_EVENT, id_);
evt->SetInt(st);
evt->SetString(message_);
wxQueueEvent(this, evt);
} else _state(st);
}
virtual void message(const string & msg) override {
message_ = msg;
}
virtual void messageFmt(const string& fmt, ...) {
va_list arglist;
va_start(arglist, fmt);
message_ = wxString::Format(wxString(fmt), arglist);
va_end(arglist);
}
virtual void title(const string & title) override {
title_ = title;
}
};
}
AppControllerBoilerplate::ProgresIndicatorPtr
AppControllerBoilerplate::create_progress_indicator(
unsigned statenum, const string& title, const string& firstmsg) const
{
auto pri =
std::make_shared<GuiProgressIndicator>(statenum, title, firstmsg);
// We set up the mode of operation depending of the creator thread's
// identity
pri->asynch(!is_main_thread());
return pri;
}
AppControllerBoilerplate::ProgresIndicatorPtr
AppControllerBoilerplate::create_progress_indicator(unsigned statenum,
const string &title) const
{
return create_progress_indicator(statenum, title, string());
}
namespace {
// A wrapper progress indicator class around the statusbar created in perl.
class Wrapper: public IProgressIndicator, public wxEvtHandler {
wxGauge *gauge_;
wxStatusBar *stbar_;
using Base = IProgressIndicator;
std::string message_;
AppControllerBoilerplate& ctl_;
void showProgress(bool show = true) {
gauge_->Show(show);
}
void _state(unsigned st) {
if( st <= IProgressIndicator::max() ) {
Base::state(st);
if(!gauge_->IsShown()) showProgress(true);
stbar_->SetStatusText(message_);
if(static_cast<long>(st) == gauge_->GetRange()) {
gauge_->SetValue(0);
showProgress(false);
} else {
gauge_->SetValue(static_cast<int>(st));
}
}
}
// status update handler
void _state( wxCommandEvent& evt) {
unsigned st = evt.GetInt(); _state(st);
}
const int id_ = wxWindow::NewControlId();
public:
inline Wrapper(wxGauge *gauge, wxStatusBar *stbar,
AppControllerBoilerplate& ctl):
gauge_(gauge), stbar_(stbar), ctl_(ctl)
{
Base::max(static_cast<float>(gauge->GetRange()));
Base::states(static_cast<unsigned>(gauge->GetRange()));
Bind(PROGRESS_STATUS_UPDATE_EVENT,
&Wrapper::_state,
this, id_);
}
virtual void state(float val) override {
state(unsigned(val));
}
virtual void max(float val) override {
if(val > 1.0) {
gauge_->SetRange(static_cast<int>(val));
IProgressIndicator::max(val);
}
}
void state(unsigned st) {
if(!ctl_.is_main_thread()) {
auto evt = new wxCommandEvent(PROGRESS_STATUS_UPDATE_EVENT, id_);
evt->SetInt(st);
wxQueueEvent(this, evt);
} else {
_state(st);
}
}
virtual void message(const string & msg) override {
message_ = msg;
}
virtual void message_fmt(const string& fmt, ...) override {
va_list arglist;
va_start(arglist, fmt);
message_ = wxString::Format(fmt, arglist);
va_end(arglist);
}
virtual void title(const string & /*title*/) override {}
};
}
void AppController::set_global_progress_indicator(
unsigned gid,
unsigned sid)
{
wxGauge* gauge = dynamic_cast<wxGauge*>(wxWindow::FindWindowById(gid));
wxStatusBar* sb = dynamic_cast<wxStatusBar*>(wxWindow::FindWindowById(sid));
if(gauge && sb) {
global_progressind_ = std::make_shared<Wrapper>(gauge, sb, *this);
}
}
}

View file

@ -56,9 +56,9 @@
#include "../Utils/PresetUpdater.hpp"
#include "../Config/Snapshot.hpp"
#include "libslic3r/I18N.hpp"
#include "3DScene.hpp"
namespace Slic3r { namespace GUI {
#if __APPLE__
@ -150,9 +150,13 @@ void update_label_colours_from_appconfig()
}
}
static std::string libslic3r_translate_callback(const char *s) { return wxGetTranslation(wxString(s, wxConvUTF8)).utf8_str().data(); }
void set_wxapp(wxApp *app)
{
g_wxApp = app;
// Let the libslic3r know the callback, which will translate messages on demand.
Slic3r::I18N::set_translate_callback(libslic3r_translate_callback);
init_label_colours();
}

View file

@ -33,11 +33,14 @@ class PresetUpdater;
class DynamicPrintConfig;
class TabIface;
#define _(s) Slic3r::translate((s))
inline wxString translate(const char *s) { return wxGetTranslation(wxString(s, wxConvUTF8)); }
inline wxString translate(const wchar_t *s) { return wxGetTranslation(s); }
inline wxString translate(const std::string &s) { return wxGetTranslation(wxString(s.c_str(), wxConvUTF8)); }
inline wxString translate(const std::wstring &s) { return wxGetTranslation(s.c_str()); }
#define _(s) Slic3r::GUI::I18N::translate((s))
namespace GUI { namespace I18N {
inline wxString translate(const char *s) { return wxGetTranslation(wxString(s, wxConvUTF8)); }
inline wxString translate(const wchar_t *s) { return wxGetTranslation(s); }
inline wxString translate(const std::string &s) { return wxGetTranslation(wxString(s.c_str(), wxConvUTF8)); }
inline wxString translate(const std::wstring &s) { return wxGetTranslation(s.c_str()); }
} }
// !!! If you needed to translate some wxString,
// !!! please use _(L(string))

View file

@ -234,12 +234,12 @@ std::string Preset::label() const
bool Preset::is_compatible_with_printer(const Preset &active_printer, const DynamicPrintConfig *extra_config) const
{
auto *condition = dynamic_cast<const ConfigOptionString*>(this->config.option("compatible_printers_condition"));
auto &condition = this->compatible_printers_condition();
auto *compatible_printers = dynamic_cast<const ConfigOptionStrings*>(this->config.option("compatible_printers"));
bool has_compatible_printers = compatible_printers != nullptr && ! compatible_printers->values.empty();
if (! has_compatible_printers && condition != nullptr && ! condition->value.empty()) {
if (! has_compatible_printers && ! condition.empty()) {
try {
return PlaceholderParser::evaluate_boolean_expression(condition->value, active_printer.config, extra_config);
return PlaceholderParser::evaluate_boolean_expression(condition, active_printer.config, extra_config);
} catch (const std::runtime_error &err) {
//FIXME in case of an error, return "compatible with everything".
printf("Preset::is_compatible_with_printer - parsing error of compatible_printers_condition %s:\n%s\n", active_printer.name.c_str(), err.what());
@ -424,7 +424,87 @@ Preset& PresetCollection::load_preset(const std::string &path, const std::string
{
DynamicPrintConfig cfg(this->default_preset().config);
cfg.apply_only(config, cfg.keys(), true);
return this->load_preset(path, name, std::move(cfg));
return this->load_preset(path, name, std::move(cfg), select);
}
static bool profile_print_params_same(const DynamicPrintConfig &cfg1, const DynamicPrintConfig &cfg2)
{
t_config_option_keys diff = cfg1.diff(cfg2);
// Following keys are used by the UI, not by the slicing core, therefore they are not important
// when comparing profiles for equality. Ignore them.
for (const char *key : { "compatible_printers", "compatible_printers_condition", "inherits",
"print_settings_id", "filament_settings_id", "printer_settings_id",
"printer_model", "printer_variant", "default_print_profile", "default_filament_profile" })
diff.erase(std::remove(diff.begin(), diff.end(), key), diff.end());
// Preset with the same name as stored inside the config exists.
return diff.empty();
}
// Load a preset from an already parsed config file, insert it into the sorted sequence of presets
// and select it, losing previous modifications.
// In case
Preset& PresetCollection::load_external_preset(
// Path to the profile source file (a G-code, an AMF or 3MF file, a config file)
const std::string &path,
// Name of the profile, derived from the source file name.
const std::string &name,
// Original name of the profile, extracted from the loaded config. Empty, if the name has not been stored.
const std::string &original_name,
// Config to initialize the preset from.
const DynamicPrintConfig &config,
// Select the preset after loading?
bool select)
{
// Load the preset over a default preset, so that the missing fields are filled in from the default preset.
DynamicPrintConfig cfg(this->default_preset().config);
cfg.apply_only(config, cfg.keys(), true);
// Is there a preset already loaded with the name stored inside the config?
std::deque<Preset>::iterator it = this->find_preset_internal(original_name);
if (it != m_presets.end() && it->name == original_name && profile_print_params_same(it->config, cfg)) {
// The preset exists and it matches the values stored inside config.
if (select)
this->select_preset(it - m_presets.begin());
return *it;
}
// Update the "inherits" field.
std::string &inherits = Preset::inherits(cfg);
if (it != m_presets.end() && inherits.empty()) {
// There is a profile with the same name already loaded. Should we update the "inherits" field?
if (it->vendor == nullptr)
inherits = it->inherits();
else
inherits = it->name;
}
// The external preset does not match an internal preset, load the external preset.
std::string new_name;
for (size_t idx = 0;; ++ idx) {
std::string suffix;
if (original_name.empty()) {
if (idx > 0)
suffix = " (" + std::to_string(idx) + ")";
} else {
if (idx == 0)
suffix = " (" + original_name + ")";
else
suffix = " (" + original_name + "-" + std::to_string(idx) + ")";
}
new_name = name + suffix;
it = this->find_preset_internal(new_name);
if (it == m_presets.end() || it->name != new_name)
// Unique profile name. Insert a new profile.
break;
if (profile_print_params_same(it->config, cfg)) {
// The preset exists and it matches the values stored inside config.
if (select)
this->select_preset(it - m_presets.begin());
return *it;
}
// Form another profile name.
}
// Insert a new profile.
Preset &preset = this->load_preset(path, new_name, std::move(cfg), select);
preset.is_external = true;
return preset;
}
Preset& PresetCollection::load_preset(const std::string &path, const std::string &name, DynamicPrintConfig &&config, bool select)
@ -460,7 +540,7 @@ void PresetCollection::save_current_preset(const std::string &new_name)
} else {
// Creating a new preset.
Preset &preset = *m_presets.insert(it, m_edited_preset);
std::string &inherits = preset.config.opt_string("inherits", true);
std::string &inherits = preset.inherits();
std::string old_name = preset.name;
preset.name = new_name;
preset.file = this->path_from_name(new_name);
@ -475,7 +555,6 @@ void PresetCollection::save_current_preset(const std::string &new_name)
// Inherited from a user preset. Just maintain the "inherited" flag,
// meaning it will inherit from either the system preset, or the inherited user preset.
}
preset.inherits = inherits;
preset.is_default = false;
preset.is_system = false;
preset.is_external = false;
@ -513,20 +592,20 @@ bool PresetCollection::load_bitmap_default(const std::string &file_name)
const Preset* PresetCollection::get_selected_preset_parent() const
{
auto *inherits = dynamic_cast<const ConfigOptionString*>(this->get_edited_preset().config.option("inherits"));
if (inherits == nullptr || inherits->value.empty())
return this->get_selected_preset().is_system ? &this->get_selected_preset() : nullptr; // nullptr;
const Preset* preset = this->find_preset(inherits->value, false);
const std::string &inherits = this->get_edited_preset().inherits();
if (inherits.empty())
return this->get_selected_preset().is_system ? &this->get_selected_preset() : nullptr;
const Preset* preset = this->find_preset(inherits, false);
return (preset == nullptr || preset->is_default || preset->is_external) ? nullptr : preset;
}
const Preset* PresetCollection::get_preset_parent(const Preset& child) const
{
auto *inherits = dynamic_cast<const ConfigOptionString*>(child.config.option("inherits"));
if (inherits == nullptr || inherits->value.empty())
const std::string &inherits = child.inherits();
if (inherits.empty())
// return this->get_selected_preset().is_system ? &this->get_selected_preset() : nullptr;
return nullptr;
const Preset* preset = this->find_preset(inherits->value, false);
const Preset* preset = this->find_preset(inherits, false);
return (preset == nullptr/* || preset->is_default */|| preset->is_external) ? nullptr : preset;
}
@ -763,7 +842,7 @@ std::vector<std::string> PresetCollection::dirty_options(const Preset *edited, c
// The "compatible_printers" option key is handled differently from the others:
// It is not mandatory. If the key is missing, it means it is compatible with any printer.
// If the key exists and it is empty, it means it is compatible with no printer.
std::initializer_list<const char*> optional_keys { "compatible_printers", "compatible_printers_condition" };
std::initializer_list<const char*> optional_keys { "compatible_printers" };
for (auto &opt_key : optional_keys) {
if (reference->config.has(opt_key) != edited->config.has(opt_key))
changed.emplace_back(opt_key);
@ -772,17 +851,6 @@ std::vector<std::string> PresetCollection::dirty_options(const Preset *edited, c
return changed;
}
std::vector<std::string> PresetCollection::system_equal_options() const
{
const Preset *edited = &this->get_edited_preset();
const Preset *reference = this->get_selected_preset_parent();
std::vector<std::string> equal;
if (edited != nullptr && reference != nullptr) {
equal = reference->config.equal(edited->config);
}
return equal;
}
// Select a new preset. This resets all the edits done to the currently selected preset.
// If the preset with index idx does not exist, a first visible preset is selected.
Preset& PresetCollection::select_preset(size_t idx)

View file

@ -113,9 +113,6 @@ public:
// or a Configuration file bundling the Print + Filament + Printer presets (in that case is_external and possibly is_system will be true),
// or it could be a G-code (again, is_external will be true).
std::string file;
// A user profile may inherit its settings either from a system profile, or from a user profile.
// A system profile shall never derive from any other profile, as the system profile hierarchy is being flattened during loading.
std::string inherits;
// If this is a system profile, then there should be a vendor data available to display at the UI.
const VendorProfile *vendor = nullptr;
@ -142,6 +139,16 @@ public:
bool is_compatible_with_printer(const Preset &active_printer, const DynamicPrintConfig *extra_config) const;
bool is_compatible_with_printer(const Preset &active_printer) const;
// Returns the name of the preset, from which this preset inherits.
static std::string& inherits(DynamicPrintConfig &cfg) { return cfg.option<ConfigOptionString>("inherits", true)->value; }
std::string& inherits() { return Preset::inherits(this->config); }
const std::string& inherits() const { return Preset::inherits(const_cast<Preset*>(this)->config); }
// Returns the "compatible_printers_condition".
static std::string& compatible_printers_condition(DynamicPrintConfig &cfg) { return cfg.option<ConfigOptionString>("compatible_printers_condition", true)->value; }
std::string& compatible_printers_condition() { return Preset::compatible_printers_condition(this->config); }
const std::string& compatible_printers_condition() const { return Preset::compatible_printers_condition(const_cast<Preset*>(this)->config); }
// Mark this preset as compatible if it is compatible with active_printer.
bool update_compatible_with_printer(const Preset &active_printer, const DynamicPrintConfig *extra_config);
@ -200,6 +207,18 @@ public:
Preset& load_preset(const std::string &path, const std::string &name, const DynamicPrintConfig &config, bool select = true);
Preset& load_preset(const std::string &path, const std::string &name, DynamicPrintConfig &&config, bool select = true);
Preset& load_external_preset(
// Path to the profile source file (a G-code, an AMF or 3MF file, a config file)
const std::string &path,
// Name of the profile, derived from the source file name.
const std::string &name,
// Original name of the profile, extracted from the loaded config. Empty, if the name has not been stored.
const std::string &original_name,
// Config to initialize the preset from.
const DynamicPrintConfig &config,
// Select the preset after loading?
bool select = true);
// Save the preset under a new name. If the name is different from the old one,
// a new preset is stored into the list of presets.
// All presets are marked as not modified and the new preset is activated.
@ -312,8 +331,6 @@ public:
// Compare the content of get_selected_preset() with get_edited_preset() configs, return the list of keys where they differ.
std::vector<std::string> current_different_from_parent_options(const bool is_printer_type = false) const
{ return dirty_options(&this->get_edited_preset(), this->get_selected_preset_parent(), is_printer_type); }
// Compare the content of get_selected_preset() with get_selected_preset_parent() configs, return the list of keys where they equal.
std::vector<std::string> system_equal_options() const;
// Update the choice UI from the list of presets.
// If show_incompatible, all presets are shown, otherwise only the compatible presets are shown.
@ -349,9 +366,10 @@ private:
PresetCollection(const PresetCollection &other);
PresetCollection& operator=(const PresetCollection &other);
// Find a preset in the sorted list of presets.
// Find a preset position in the sorted list of presets.
// The "-- default -- " preset is always the first, so it needs
// to be handled differently.
// If a preset does not exist, an iterator is returned indicating where to insert a preset with the same name.
std::deque<Preset>::iterator find_preset_internal(const std::string &name)
{
Preset key(m_type, name);

View file

@ -52,26 +52,37 @@ PresetBundle::PresetBundle() :
if (wxImage::FindHandler(wxBITMAP_TYPE_PNG) == nullptr)
wxImage::AddHandler(new wxPNGHandler);
// The following keys are handled by the UI, they do not have a counterpart in any StaticPrintConfig derived classes,
// therefore they need to be handled differently. As they have no counterpart in StaticPrintConfig, they are not being
// initialized based on PrintConfigDef(), but to empty values (zeros, empty vectors, empty strings).
//
// "compatible_printers", "compatible_printers_condition", "inherits",
// "print_settings_id", "filament_settings_id", "printer_settings_id",
// "printer_vendor", "printer_model", "printer_variant", "default_print_profile", "default_filament_profile"
// Create the ID config keys, as they are not part of the Static print config classes.
this->prints.default_preset().config.opt_string("print_settings_id", true);
this->filaments.default_preset().config.option<ConfigOptionStrings>("filament_settings_id", true)->values.assign(1, std::string());
this->printers.default_preset().config.opt_string("printer_settings_id", true);
// "compatible printers" are not mandatory yet.
//FIXME Rename "compatible_printers" and "compatible_printers_condition", as they are defined in both print and filament profiles,
// therefore they are clashing when generating a a config file, G-code or AMF/3MF.
// this->filaments.default_preset().config.optptr("compatible_printers", true);
// this->filaments.default_preset().config.optptr("compatible_printers_condition", true);
// this->prints.default_preset().config.optptr("compatible_printers", true);
// this->prints.default_preset().config.optptr("compatible_printers_condition", true);
// Create the "printer_vendor", "printer_model" and "printer_variant" keys.
this->prints.default_preset().config.optptr("print_settings_id", true);
this->prints.default_preset().compatible_printers_condition();
this->prints.default_preset().inherits();
this->filaments.default_preset().config.option<ConfigOptionStrings>("filament_settings_id", true)->values = { "" };
this->filaments.default_preset().compatible_printers_condition();
this->filaments.default_preset().inherits();
this->printers.default_preset().config.optptr("printer_settings_id", true);
this->printers.default_preset().config.optptr("printer_vendor", true);
this->printers.default_preset().config.optptr("printer_model", true);
this->printers.default_preset().config.optptr("printer_variant", true);
// Load the default preset bitmaps.
this->printers.default_preset().config.optptr("default_print_profile", true);
this->printers.default_preset().config.option<ConfigOptionStrings>("default_filament_profile", true)->values = { "" };
this->printers.default_preset().inherits();
// Load the default preset bitmaps.
this->prints .load_bitmap_default("cog.png");
this->filaments.load_bitmap_default("spool.png");
this->printers .load_bitmap_default("printer_empty.png");
this->load_compatible_bitmaps();
// Re-activate the default presets, so their "edited" preset copies will be updated with the additional configuration values above.
this->prints .select_preset(0);
this->filaments.select_preset(0);
@ -372,9 +383,16 @@ DynamicPrintConfig PresetBundle::full_config() const
auto *nozzle_diameter = dynamic_cast<const ConfigOptionFloats*>(out.option("nozzle_diameter"));
size_t num_extruders = nozzle_diameter->values.size();
// Collect the "compatible_printers_condition" and "inherits" values over all presets (print, filaments, printers) into a single vector.
std::vector<std::string> compatible_printers_condition;
std::vector<std::string> inherits;
compatible_printers_condition.emplace_back(this->prints.get_edited_preset().compatible_printers_condition());
inherits .emplace_back(this->prints.get_edited_preset().inherits());
if (num_extruders <= 1) {
out.apply(this->filaments.get_edited_preset().config);
compatible_printers_condition.emplace_back(this->filaments.get_edited_preset().compatible_printers_condition());
inherits .emplace_back(this->filaments.get_edited_preset().inherits());
} else {
// Retrieve filament presets and build a single config object for them.
// First collect the filament configurations based on the user selection of this->filament_presets.
@ -384,11 +402,15 @@ DynamicPrintConfig PresetBundle::full_config() const
filament_configs.emplace_back(&this->filaments.find_preset(filament_preset_name, true)->config);
while (filament_configs.size() < num_extruders)
filament_configs.emplace_back(&this->filaments.first_visible().config);
for (const DynamicPrintConfig *cfg : filament_configs) {
compatible_printers_condition.emplace_back(Preset::compatible_printers_condition(*const_cast<DynamicPrintConfig*>(cfg)));
inherits .emplace_back(Preset::inherits(*const_cast<DynamicPrintConfig*>(cfg)));
}
// Option values to set a ConfigOptionVector from.
std::vector<const ConfigOption*> filament_opts(num_extruders, nullptr);
// loop through options and apply them to the resulting config.
for (const t_config_option_key &key : this->filaments.default_preset().config.keys()) {
if (key == "compatible_printers" || key == "compatible_printers_condition")
if (key == "compatible_printers")
continue;
// Get a destination option.
ConfigOption *opt_dst = out.option(key, false);
@ -406,9 +428,13 @@ DynamicPrintConfig PresetBundle::full_config() const
}
}
//FIXME These two value types clash between the print and filament profiles. They should be renamed.
// Don't store the "compatible_printers_condition" for the printer profile, there is none.
inherits.emplace_back(this->printers.get_edited_preset().inherits());
// These two value types clash between the print and filament profiles. They should be renamed.
out.erase("compatible_printers");
out.erase("compatible_printers_condition");
out.erase("inherits");
static const char *keys[] = { "perimeter", "infill", "solid_infill", "support_material", "support_material_interface" };
for (size_t i = 0; i < sizeof(keys) / sizeof(keys[0]); ++ i) {
@ -418,6 +444,25 @@ DynamicPrintConfig PresetBundle::full_config() const
opt->value = boost::algorithm::clamp<int>(opt->value, 0, int(num_extruders));
}
out.option<ConfigOptionString >("print_settings_id", true)->value = this->prints.get_selected_preset().name;
out.option<ConfigOptionStrings>("filament_settings_id", true)->values = this->filament_presets;
out.option<ConfigOptionString >("printer_settings_id", true)->value = this->printers.get_selected_preset().name;
// Serialize the collected "compatible_printers_condition" and "inherits" fields.
// There will be 1 + num_exturders fields for "inherits" and 2 + num_extruders for "compatible_printers_condition" stored.
// The vector will not be stored if all fields are empty strings.
auto add_if_some_non_empty = [&out](std::vector<std::string> &&values, const std::string &key) {
bool nonempty = false;
for (const std::string &v : values)
if (! v.empty()) {
nonempty = true;
break;
}
if (nonempty)
out.set_key_value(key, new ConfigOptionStrings(std::move(values)));
};
add_if_some_non_empty(std::move(compatible_printers_condition), "compatible_printers_condition_cummulative");
add_if_some_non_empty(std::move(inherits), "inherits_cummulative");
return out;
}
@ -496,6 +541,18 @@ void PresetBundle::load_config_file_config(const std::string &name_or_path, bool
}
}
size_t num_extruders = std::min(config.option<ConfigOptionFloats>("nozzle_diameter" )->values.size(),
config.option<ConfigOptionFloats>("filament_diameter")->values.size());
// Make a copy of the "compatible_printers_condition_cummulative" and "inherits_cummulative" vectors, which
// accumulate values over all presets (print, filaments, printers).
// These values will be distributed into their particular presets when loading.
std::vector<std::string> compatible_printers_condition_values = std::move(config.option<ConfigOptionStrings>("compatible_printers_condition_cummulative", true)->values);
std::vector<std::string> inherits_values = std::move(config.option<ConfigOptionStrings>("inherits_cummulative", true)->values);
std::string &compatible_printers_condition = Preset::compatible_printers_condition(config);
std::string &inherits = Preset::inherits(config);
compatible_printers_condition_values.resize(num_extruders + 2, std::string());
inherits_values.resize(num_extruders + 2, std::string());
// 1) Create a name from the file name.
// Keep the suffix (.ini, .gcode, .amf, .3mf etc) to differentiate it from the normal profiles.
std::string name = is_external ? boost::filesystem::path(name_or_path).filename().string() : name_or_path;
@ -504,24 +561,31 @@ void PresetBundle::load_config_file_config(const std::string &name_or_path, bool
// First load the print and printer presets.
for (size_t i_group = 0; i_group < 2; ++ i_group) {
PresetCollection &presets = (i_group == 0) ? this->prints : this->printers;
Preset &preset = presets.load_preset(is_external ? name_or_path : presets.path_from_name(name), name, config);
if (is_external)
preset.is_external = true;
// Split the "compatible_printers_condition" and "inherits" values one by one from a single vector to the print & printer profiles.
size_t idx = (i_group == 0) ? 0 : num_extruders + 1;
inherits = inherits_values[idx];
compatible_printers_condition = compatible_printers_condition_values[idx];
if (is_external)
presets.load_external_preset(name_or_path, name,
config.opt_string((i_group == 0) ? "print_settings_id" : "printer_settings_id", true),
config);
else
preset.save();
presets.load_preset(presets.path_from_name(name), name, config).save();
}
// 3) Now load the filaments. If there are multiple filament presets, split them and load them.
auto *nozzle_diameter = dynamic_cast<const ConfigOptionFloats*>(config.option("nozzle_diameter"));
auto *filament_diameter = dynamic_cast<const ConfigOptionFloats*>(config.option("filament_diameter"));
size_t num_extruders = std::min(nozzle_diameter->values.size(), filament_diameter->values.size());
auto old_filament_profile_names = config.option<ConfigOptionStrings>("filament_settings_id", true);
old_filament_profile_names->values.resize(num_extruders, std::string());
config.option<ConfigOptionStrings>("default_filament_profile", true)->values.resize(num_extruders, std::string());
if (num_extruders <= 1) {
Preset &preset = this->filaments.load_preset(
is_external ? name_or_path : this->filaments.path_from_name(name), name, config);
// Split the "compatible_printers_condition" and "inherits" from the cummulative vectors to separate filament presets.
inherits = inherits_values[1];
compatible_printers_condition = compatible_printers_condition_values[1];
if (is_external)
preset.is_external = true;
this->filaments.load_external_preset(name_or_path, name, old_filament_profile_names->values.front(), config);
else
preset.save();
this->filaments.load_preset(this->filaments.path_from_name(name), name, config).save();
this->filament_presets.clear();
this->filament_presets.emplace_back(name);
} else {
@ -543,21 +607,30 @@ void PresetBundle::load_config_file_config(const std::string &name_or_path, bool
// Load the configs into this->filaments and make them active.
this->filament_presets.clear();
for (size_t i = 0; i < configs.size(); ++ i) {
char suffix[64];
if (i == 0)
suffix[0] = 0;
else
sprintf(suffix, " (%d)", i);
std::string new_name = name + suffix;
DynamicPrintConfig &cfg = configs[i];
// Split the "compatible_printers_condition" and "inherits" from the cummulative vectors to separate filament presets.
cfg.opt_string("compatible_printers_condition", true) = compatible_printers_condition_values[i + 1];
cfg.opt_string("inherits", true) = inherits_values[i + 1];
// Load all filament presets, but only select the first one in the preset dialog.
Preset &preset = this->filaments.load_preset(
is_external ? name_or_path : this->filaments.path_from_name(new_name),
new_name, std::move(configs[i]), i == 0);
Preset *loaded = nullptr;
if (is_external)
preset.is_external = true;
else
preset.save();
this->filament_presets.emplace_back(new_name);
loaded = &this->filaments.load_external_preset(name_or_path, name,
(i < old_filament_profile_names->values.size()) ? old_filament_profile_names->values[i] : "",
std::move(cfg), i == 0);
else {
// Used by the config wizard when creating a custom setup.
// Therefore this block should only be called for a single extruder.
char suffix[64];
if (i == 0)
suffix[0] = 0;
else
sprintf(suffix, "%d", i);
std::string new_name = name + suffix;
loaded = &this->filaments.load_preset(this->filaments.path_from_name(new_name),
new_name, std::move(cfg), i == 0);
loaded->save();
}
this->filament_presets.emplace_back(loaded->name);
}
}

View file

@ -175,7 +175,7 @@ protected:
std::vector<std::string> m_reload_dependent_tabs = {};
enum OptStatus { osSystemValue = 1, osInitValue = 2 };
std::map<std::string, int> m_options_list;
int m_opt_status_value;
int m_opt_status_value = 0;
t_icon_descriptions m_icon_descriptions = {};

View file

@ -0,0 +1,71 @@
#ifndef IPROGRESSINDICATOR_HPP
#define IPROGRESSINDICATOR_HPP
#include <string>
#include <functional>
#include "Strings.hpp"
namespace Slic3r {
/**
* @brief Generic progress indication interface.
*/
class IProgressIndicator {
public:
using CancelFn = std::function<void(void)>; // Cancel functio signature.
private:
float state_ = .0f, max_ = 1.f, step_;
CancelFn cancelfunc_ = [](){};
public:
inline virtual ~IProgressIndicator() {}
/// Get the maximum of the progress range.
float max() const { return max_; }
/// Get the current progress state
float state() const { return state_; }
/// Set the maximum of hte progress range
virtual void max(float maxval) { max_ = maxval; }
/// Set the current state of the progress.
virtual void state(float val) { state_ = val; }
/**
* @brief Number of states int the progress. Can be used insted of giving a
* maximum value.
*/
virtual void states(unsigned statenum) {
step_ = max_ / statenum;
}
/// Message shown on the next status update.
virtual void message(const string&) = 0;
/// Title of the operaton.
virtual void title(const string&) = 0;
/// Formatted message for the next status update. Works just like sprinf.
virtual void message_fmt(const string& fmt, ...);
/// Set up a cancel callback for the operation if feasible.
inline void on_cancel(CancelFn func) { cancelfunc_ = func; }
/**
* Explicitly shut down the progress indicator and call the associated
* callback.
*/
virtual void cancel() { cancelfunc_(); }
/// Convinience function to call message and status update in one function.
void update(float st, const string& msg) {
message(msg); state(st);
}
};
}
#endif // IPROGRESSINDICATOR_HPP

10
xs/src/slic3r/Strings.hpp Normal file
View file

@ -0,0 +1,10 @@
#ifndef STRINGS_HPP
#define STRINGS_HPP
#include "GUI/GUI.hpp"
namespace Slic3r {
using string = wxString;
}
#endif // STRINGS_HPP

View file

@ -80,6 +80,7 @@ extern "C" {
#include <Polygon.hpp>
#include <Polyline.hpp>
#include <TriangleMesh.hpp>
#include <slic3r/AppController.hpp>
namespace Slic3r {

27
xs/xsp/AppController.xsp Normal file
View file

@ -0,0 +1,27 @@
%module{Slic3r::XS};
%{
#include <xsinit.h>
#include "slic3r/AppController.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/Print.hpp"
%}
%name{Slic3r::PrintController} class PrintController {
PrintController(Print *print);
void slice();
};
%name{Slic3r::AppController} class AppController {
AppController();
PrintController *print_ctl();
void set_model(Model *model);
void set_print(Print *print);
void set_global_progress_indicator(unsigned gauge_id, unsigned statusbar_id);
void arrange_model();
};

View file

@ -74,13 +74,13 @@
static StaticPrintConfig* new_GCodeConfig()
%code{% RETVAL = new GCodeConfig(); %};
static StaticPrintConfig* new_PrintConfig()
%code{% RETVAL = new PrintConfig(); %};
%code{% RETVAL = static_cast<GCodeConfig*>(new PrintConfig()); %};
static StaticPrintConfig* new_PrintObjectConfig()
%code{% RETVAL = new PrintObjectConfig(); %};
static StaticPrintConfig* new_PrintRegionConfig()
%code{% RETVAL = new PrintRegionConfig(); %};
static StaticPrintConfig* new_FullPrintConfig()
%code{% RETVAL = static_cast<PrintObjectConfig*>(new FullPrintConfig()); %};
%code{% RETVAL = static_cast<GCodeConfig*>(new FullPrintConfig()); %};
~StaticPrintConfig();
bool has(t_config_option_key opt_key);
SV* as_hash()
@ -119,7 +119,7 @@
auto config = new FullPrintConfig();
try {
config->load(path);
RETVAL = static_cast<PrintObjectConfig*>(config);
RETVAL = static_cast<GCodeConfig*>(config);
} catch (std::exception& e) {
delete config;
croak("Error extracting configuration from %s:\n%s\n", path, e.what());

View file

@ -133,7 +133,7 @@ _constant()
~Print();
Ref<StaticPrintConfig> config()
%code%{ RETVAL = &THIS->config; %};
%code%{ RETVAL = static_cast<GCodeConfig*>(&THIS->config); %};
Ref<StaticPrintConfig> default_object_config()
%code%{ RETVAL = &THIS->default_object_config; %};
Ref<StaticPrintConfig> default_region_config()

View file

@ -216,6 +216,8 @@ Ref<PrintObjectSupportMaterial> O_OBJECT_SLIC3R_T
Clone<PrintObjectSupportMaterial> O_OBJECT_SLIC3R_T
AppConfig* O_OBJECT_SLIC3R
AppController* O_OBJECT_SLIC3R
PrintController* O_OBJECT_SLIC3R
Ref<AppConfig> O_OBJECT_SLIC3R_T
GLShader* O_OBJECT_SLIC3R

View file

@ -268,3 +268,5 @@
$CVar = (PrintObjectStep)SvUV($PerlVar);
%};
};
%typemap{AppController*};
%typemap{PrintController*};