mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-26 02:01:12 -06:00
Fixed conflicts after merge with master
This commit is contained in:
commit
f0aa4de20a
39 changed files with 467 additions and 402 deletions
|
|
@ -309,7 +309,7 @@ protected:
|
|||
public:
|
||||
AutoArranger(const TBin & bin,
|
||||
const ArrangeParams ¶ms,
|
||||
std::function<void(unsigned)> progressind,
|
||||
std::function<void(unsigned, unsigned /*bins*/)> progressind,
|
||||
std::function<bool(void)> stopcond)
|
||||
: m_pck(bin, params.min_obj_distance)
|
||||
, m_bin(bin)
|
||||
|
|
@ -348,7 +348,9 @@ public:
|
|||
|
||||
m_pconf.object_function = get_objfn();
|
||||
|
||||
if (progressind) m_pck.progressIndicator(progressind);
|
||||
if (progressind) m_pck.progressIndicator([this, &progressind](unsigned rem) {
|
||||
progressind(rem, m_pck.lastResult().size() - 1);
|
||||
});
|
||||
if (stopcond) m_pck.stopCondition(stopcond);
|
||||
|
||||
m_pck.configure(m_pconf);
|
||||
|
|
@ -462,7 +464,7 @@ void _arrange(
|
|||
std::vector<Item> & excludes,
|
||||
const BinT & bin,
|
||||
const ArrangeParams ¶ms,
|
||||
std::function<void(unsigned)> progressfn,
|
||||
std::function<void(unsigned, unsigned)> progressfn,
|
||||
std::function<bool()> stopfn)
|
||||
{
|
||||
// Integer ceiling the min distance from the bed perimeters
|
||||
|
|
|
|||
|
|
@ -74,7 +74,7 @@ struct ArrangeParams {
|
|||
|
||||
/// The accuracy of optimization.
|
||||
/// Goes from 0.0 to 1.0 and scales performance as well
|
||||
float accuracy = 0.65f;
|
||||
float accuracy = 1.f;
|
||||
|
||||
/// Allow parallel execution.
|
||||
bool parallel = true;
|
||||
|
|
@ -83,7 +83,8 @@ struct ArrangeParams {
|
|||
|
||||
/// Progress indicator callback called when an object gets packed.
|
||||
/// The unsigned argument is the number of items remaining to pack.
|
||||
std::function<void(unsigned)> progressind;
|
||||
/// Second is the current bed idx being filled.
|
||||
std::function<void(unsigned, unsigned /*bed_idx*/)> progressind;
|
||||
|
||||
/// A predicate returning true if abort is needed.
|
||||
std::function<bool(void)> stopcondition;
|
||||
|
|
|
|||
|
|
@ -1069,7 +1069,7 @@ Polygons variable_offset_inner(const ExPolygon &expoly, const std::vector<std::v
|
|||
ClipperLib::Paths holes;
|
||||
holes.reserve(expoly.holes.size());
|
||||
for (const Polygon& hole : expoly.holes)
|
||||
append(holes, fix_after_outer_offset(mittered_offset_path_scaled(hole, deltas[1 + &hole - expoly.holes.data()], miter_limit), ClipperLib::pftNegative, false));
|
||||
append(holes, fix_after_outer_offset(mittered_offset_path_scaled(hole.points, deltas[1 + &hole - expoly.holes.data()], miter_limit), ClipperLib::pftNegative, false));
|
||||
#ifndef NDEBUG
|
||||
for (auto &c : holes)
|
||||
assert(ClipperLib::Area(c) > 0.);
|
||||
|
|
@ -1113,7 +1113,7 @@ for (const std::vector<float>& ds : deltas)
|
|||
ClipperLib::Paths holes;
|
||||
holes.reserve(expoly.holes.size());
|
||||
for (const Polygon& hole : expoly.holes)
|
||||
append(holes, fix_after_inner_offset(mittered_offset_path_scaled(hole, deltas[1 + &hole - expoly.holes.data()], miter_limit), ClipperLib::pftPositive, true));
|
||||
append(holes, fix_after_inner_offset(mittered_offset_path_scaled(hole.points, deltas[1 + &hole - expoly.holes.data()], miter_limit), ClipperLib::pftPositive, true));
|
||||
#ifndef NDEBUG
|
||||
for (auto &c : holes)
|
||||
assert(ClipperLib::Area(c) > 0.);
|
||||
|
|
@ -1157,7 +1157,7 @@ for (const std::vector<float>& ds : deltas)
|
|||
ClipperLib::Paths holes;
|
||||
holes.reserve(expoly.holes.size());
|
||||
for (const Polygon& hole : expoly.holes)
|
||||
append(holes, fix_after_inner_offset(mittered_offset_path_scaled(hole, deltas[1 + &hole - expoly.holes.data()], miter_limit), ClipperLib::pftPositive, true));
|
||||
append(holes, fix_after_inner_offset(mittered_offset_path_scaled(hole.points, deltas[1 + &hole - expoly.holes.data()], miter_limit), ClipperLib::pftPositive, true));
|
||||
#ifndef NDEBUG
|
||||
for (auto &c : holes)
|
||||
assert(ClipperLib::Area(c) > 0.);
|
||||
|
|
@ -1205,7 +1205,7 @@ ExPolygons variable_offset_inner_ex(const ExPolygon &expoly, const std::vector<s
|
|||
ClipperLib::Paths holes;
|
||||
holes.reserve(expoly.holes.size());
|
||||
for (const Polygon& hole : expoly.holes)
|
||||
append(holes, fix_after_outer_offset(mittered_offset_path_scaled(hole, deltas[1 + &hole - expoly.holes.data()], miter_limit), ClipperLib::pftNegative, false));
|
||||
append(holes, fix_after_outer_offset(mittered_offset_path_scaled(hole.points, deltas[1 + &hole - expoly.holes.data()], miter_limit), ClipperLib::pftNegative, false));
|
||||
#ifndef NDEBUG
|
||||
for (auto &c : holes)
|
||||
assert(ClipperLib::Area(c) > 0.);
|
||||
|
|
|
|||
|
|
@ -350,23 +350,10 @@ void ExPolygon::get_trapezoids2(Polygons* polygons) const
|
|||
// find trapezoids by looping from first to next-to-last coordinate
|
||||
for (std::vector<coord_t>::const_iterator x = xx.begin(); x != xx.end()-1; ++x) {
|
||||
coord_t next_x = *(x + 1);
|
||||
if (*x == next_x) continue;
|
||||
|
||||
// build rectangle
|
||||
Polygon poly;
|
||||
poly.points.resize(4);
|
||||
poly[0](0) = *x;
|
||||
poly[0](1) = bb.min(1);
|
||||
poly[1](0) = next_x;
|
||||
poly[1](1) = bb.min(1);
|
||||
poly[2](0) = next_x;
|
||||
poly[2](1) = bb.max(1);
|
||||
poly[3](0) = *x;
|
||||
poly[3](1) = bb.max(1);
|
||||
|
||||
// intersect with this expolygon
|
||||
// append results to return value
|
||||
polygons_append(*polygons, intersection(poly, to_polygons(*this)));
|
||||
if (*x != next_x)
|
||||
// intersect with rectangle
|
||||
// append results to return value
|
||||
polygons_append(*polygons, intersection({ { { *x, bb.min.y() }, { next_x, bb.min.y() }, { next_x, bb.max.y() }, { *x, bb.max.y() } } }, to_polygons(*this)));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -14,12 +14,12 @@ namespace Slic3r {
|
|||
|
||||
void ExtrusionPath::intersect_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const
|
||||
{
|
||||
this->_inflate_collection(intersection_pl(this->polyline, (Polygons)collection), retval);
|
||||
this->_inflate_collection(intersection_pl((Polylines)polyline, to_polygons(collection.expolygons)), retval);
|
||||
}
|
||||
|
||||
void ExtrusionPath::subtract_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const
|
||||
{
|
||||
this->_inflate_collection(diff_pl(this->polyline, (Polygons)collection), retval);
|
||||
this->_inflate_collection(diff_pl((Polylines)this->polyline, to_polygons(collection.expolygons)), retval);
|
||||
}
|
||||
|
||||
void ExtrusionPath::clip_end(double distance)
|
||||
|
|
|
|||
|
|
@ -37,7 +37,8 @@ struct SurfaceFillParams
|
|||
bool dont_adjust = false;
|
||||
// Length of the infill anchor along the perimeter line.
|
||||
// 1000mm is roughly the maximum length line that fits into a 32bit coord_t.
|
||||
float anchor_length = 1000.f;
|
||||
float anchor_length = 1000.f;
|
||||
float anchor_length_max = 1000.f;
|
||||
|
||||
// width, height of extrusion, nozzle diameter, is bridge
|
||||
// For the output, for fill generator.
|
||||
|
|
@ -68,6 +69,7 @@ struct SurfaceFillParams
|
|||
RETURN_COMPARE_NON_EQUAL(density);
|
||||
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, dont_adjust);
|
||||
RETURN_COMPARE_NON_EQUAL(anchor_length);
|
||||
RETURN_COMPARE_NON_EQUAL(anchor_length_max);
|
||||
RETURN_COMPARE_NON_EQUAL(flow.width);
|
||||
RETURN_COMPARE_NON_EQUAL(flow.height);
|
||||
RETURN_COMPARE_NON_EQUAL(flow.nozzle_diameter);
|
||||
|
|
@ -85,7 +87,8 @@ struct SurfaceFillParams
|
|||
this->angle == rhs.angle &&
|
||||
this->density == rhs.density &&
|
||||
this->dont_adjust == rhs.dont_adjust &&
|
||||
this->anchor_length == rhs.anchor_length &&
|
||||
this->anchor_length == rhs.anchor_length &&
|
||||
this->anchor_length_max == rhs.anchor_length_max &&
|
||||
this->flow == rhs.flow &&
|
||||
this->extrusion_role == rhs.extrusion_role;
|
||||
}
|
||||
|
|
@ -171,8 +174,12 @@ std::vector<SurfaceFill> group_fills(const Layer &layer)
|
|||
// Anchor a sparse infill to inner perimeters with the following anchor length:
|
||||
params.anchor_length = float(region_config.infill_anchor);
|
||||
if (region_config.infill_anchor.percent)
|
||||
params.anchor_length *= 0.01 * params.spacing;
|
||||
params.anchor_length = float(params.anchor_length * 0.01 * params.spacing);
|
||||
params.anchor_length_max = float(region_config.infill_anchor_max);
|
||||
if (region_config.infill_anchor_max.percent)
|
||||
params.anchor_length_max = float(params.anchor_length_max * 0.01 * params.spacing);
|
||||
}
|
||||
params.anchor_length = std::min(params.anchor_length, params.anchor_length_max);
|
||||
|
||||
auto it_params = set_surface_params.find(params);
|
||||
if (it_params == set_surface_params.end())
|
||||
|
|
@ -376,9 +383,10 @@ void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive:
|
|||
|
||||
// apply half spacing using this flow's own spacing and generate infill
|
||||
FillParams params;
|
||||
params.density = float(0.01 * surface_fill.params.density);
|
||||
params.dont_adjust = surface_fill.params.dont_adjust; // false
|
||||
params.anchor_length = surface_fill.params.anchor_length;
|
||||
params.density = float(0.01 * surface_fill.params.density);
|
||||
params.dont_adjust = surface_fill.params.dont_adjust; // false
|
||||
params.anchor_length = surface_fill.params.anchor_length;
|
||||
params.anchor_length_max = surface_fill.params.anchor_length_max;
|
||||
|
||||
for (ExPolygon &expoly : surface_fill.expolygons) {
|
||||
// Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon.
|
||||
|
|
|
|||
|
|
@ -667,9 +667,26 @@ static inline rtree_segment_t mk_rtree_seg(const Line &l) {
|
|||
// Create a hook based on hook_line and append it to the begin or end of the polyline in the intersection
|
||||
static void add_hook(
|
||||
const Intersection &intersection, const double scaled_offset,
|
||||
const int hook_length, double scaled_trim_distance,
|
||||
const coordf_t hook_length, double scaled_trim_distance,
|
||||
const rtree_t &rtree, const Lines &lines_src)
|
||||
{
|
||||
if (hook_length < SCALED_EPSILON)
|
||||
// Ignore open hooks.
|
||||
return;
|
||||
|
||||
#ifndef NDEBUG
|
||||
{
|
||||
const Vec2d v = (intersection.closest_line->b - intersection.closest_line->a).cast<double>();
|
||||
const Vec2d va = (intersection.intersect_point - intersection.closest_line->a).cast<double>();
|
||||
const double l2 = v.squaredNorm(); // avoid a sqrt
|
||||
assert(l2 > 0.);
|
||||
const double t = va.dot(v) / l2;
|
||||
assert(t > 0. && t < 1.);
|
||||
const double d = (t * v - va).norm();
|
||||
assert(d < 1000.);
|
||||
}
|
||||
#endif // NDEBUG
|
||||
|
||||
// Trim the hook start by the infill line it will connect to.
|
||||
Point hook_start;
|
||||
bool intersection_found = intersection.intersect_line->intersection(
|
||||
|
|
@ -700,7 +717,7 @@ static void add_hook(
|
|||
const std::vector<std::pair<rtree_segment_t, size_t>> &hook_intersections,
|
||||
bool self_intersection, const std::optional<Line> &self_intersection_line, const Point &self_intersection_point) {
|
||||
// No hook is longer than hook_length, there shouldn't be any intersection closer than that.
|
||||
auto max_length = double(hook_length);
|
||||
auto max_length = hook_length;
|
||||
auto update_max_length = [&max_length](double d) {
|
||||
if (d < max_length)
|
||||
max_length = d;
|
||||
|
|
@ -757,15 +774,32 @@ static void add_hook(
|
|||
}
|
||||
}
|
||||
|
||||
static Polylines connect_lines_using_hooks(Polylines &&lines, const ExPolygon &boundary, const double spacing, const int hook_length)
|
||||
#ifndef NDEBUG
|
||||
bool validate_intersection_t_joint(const Intersection &intersection)
|
||||
{
|
||||
const Vec2d v = (intersection.closest_line->b - intersection.closest_line->a).cast<double>();
|
||||
const Vec2d va = (intersection.intersect_point - intersection.closest_line->a).cast<double>();
|
||||
const double l2 = v.squaredNorm(); // avoid a sqrt
|
||||
assert(l2 > 0.);
|
||||
const double t = va.dot(v);
|
||||
assert(t > SCALED_EPSILON && t < l2 - SCALED_EPSILON);
|
||||
const double d = ((t / l2) * v - va).norm();
|
||||
assert(d < 1000.);
|
||||
return true;
|
||||
}
|
||||
bool validate_intersections(const std::vector<Intersection> &intersections)
|
||||
{
|
||||
for (const Intersection& intersection : intersections)
|
||||
assert(validate_intersection_t_joint(intersection));
|
||||
return true;
|
||||
}
|
||||
#endif // NDEBUG
|
||||
|
||||
static Polylines connect_lines_using_hooks(Polylines &&lines, const ExPolygon &boundary, const double spacing, const coordf_t hook_length, const coordf_t hook_length_max)
|
||||
{
|
||||
rtree_t rtree;
|
||||
size_t poly_idx = 0;
|
||||
|
||||
Lines lines_src;
|
||||
lines_src.reserve(lines.size());
|
||||
std::transform(lines.begin(), lines.end(), std::back_inserter(lines_src), [](const Line& l) { return Polyline{ l.a, l.b }; });
|
||||
|
||||
// 19% overlap, slightly lower than the allowed overlap in Fill::connect_infill()
|
||||
const float scaled_offset = float(scale_(spacing) * 0.81);
|
||||
// 25% overlap
|
||||
|
|
@ -814,16 +848,19 @@ static Polylines connect_lines_using_hooks(Polylines &&lines, const ExPolygon &b
|
|||
}
|
||||
return std::make_pair(static_cast<Polyline*>(nullptr), false);
|
||||
};
|
||||
auto collinear_front = collinear_segment(poly.points.front(), poly.points.back(), &poly);
|
||||
auto collinear_front = collinear_segment(poly.points.front(), poly.points.back(), &poly);
|
||||
auto collinear_back = collinear_segment(poly.points.back(), poly.points.front(), &poly);
|
||||
assert(! collinear_front.first || ! collinear_back.first || collinear_front.first != collinear_back.first);
|
||||
if (collinear_front.first) {
|
||||
Polyline &other = *collinear_front.first;
|
||||
assert(&other != &poly);
|
||||
poly.points.front() = collinear_front.second ? other.points.back() : other.points.front();
|
||||
other.points.clear();
|
||||
}
|
||||
auto collinear_back = collinear_segment(poly.points.back(), poly.points.front(), &poly);
|
||||
if (collinear_back.first) {
|
||||
Polyline &other = *collinear_front.first;
|
||||
poly.points.back() = collinear_front.second ? other.points.back() : other.points.front();
|
||||
Polyline &other = *collinear_back.first;
|
||||
assert(&other != &poly);
|
||||
poly.points.back() = collinear_back.second ? other.points.back() : other.points.front();
|
||||
other.points.clear();
|
||||
}
|
||||
}
|
||||
|
|
@ -831,6 +868,12 @@ static Polylines connect_lines_using_hooks(Polylines &&lines, const ExPolygon &b
|
|||
}
|
||||
}
|
||||
|
||||
// Convert input polylines to lines_src after the colinear segments were merged.
|
||||
Lines lines_src;
|
||||
lines_src.reserve(lines.size());
|
||||
std::transform(lines.begin(), lines.end(), std::back_inserter(lines_src), [](const Polyline &pl) {
|
||||
return pl.empty() ? Line(Point(0, 0), Point(0, 0)) : Line(pl.points.front(), pl.points.back()); });
|
||||
|
||||
sort_remove_duplicates(lines_touching_at_endpoints);
|
||||
|
||||
std::vector<Intersection> intersections;
|
||||
|
|
@ -854,23 +897,38 @@ static Polylines connect_lines_using_hooks(Polylines &&lines, const ExPolygon &b
|
|||
// Find the nearest line from the start point of the line.
|
||||
std::optional<size_t> tjoint_front, tjoint_back;
|
||||
{
|
||||
auto has_tjoint = [&closest, line_idx, &rtree, &lines](const Point &pt) {
|
||||
auto filter_itself = [line_idx](const auto &item) { return item.second != line_idx; };
|
||||
auto has_tjoint = [&closest, line_idx, &rtree, &lines, &lines_src](const Point &pt) {
|
||||
auto filter_t_joint = [line_idx, &lines_src, pt](const auto &item) {
|
||||
if (item.second != line_idx) {
|
||||
// Verify that the point projects onto the line.
|
||||
const Line &line = lines_src[item.second];
|
||||
const Vec2d v = (line.b - line.a).cast<double>();
|
||||
const Vec2d va = (pt - line.a).cast<double>();
|
||||
const double l2 = v.squaredNorm(); // avoid a sqrt
|
||||
if (l2 > 0.) {
|
||||
const double t = va.dot(v);
|
||||
return t > SCALED_EPSILON && t < l2 - SCALED_EPSILON;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
};
|
||||
closest.clear();
|
||||
rtree.query(bgi::nearest(mk_rtree_point(pt), 1) && bgi::satisfies(filter_itself), std::back_inserter(closest));
|
||||
const Polyline &pl = lines[closest.front().second];
|
||||
rtree.query(bgi::nearest(mk_rtree_point(pt), 1) && bgi::satisfies(filter_t_joint), std::back_inserter(closest));
|
||||
std::optional<size_t> out;
|
||||
if (pl.points.empty()) {
|
||||
// The closest infill line was already dropped as it was too short.
|
||||
// Such an infill line should not make a T-joint anyways.
|
||||
#if 0 // #ifndef NDEBUG
|
||||
const auto &seg = closest.front().first;
|
||||
struct Linef { Vec2d a; Vec2d b; };
|
||||
Linef l { { bg::get<0, 0>(seg), bg::get<0, 1>(seg) }, { bg::get<1, 0>(seg), bg::get<1, 1>(seg) } };
|
||||
assert(line_alg::distance_to_squared(l, Vec2d(pt.cast<double>())) > 1000 * 1000);
|
||||
#endif // NDEBUG
|
||||
} else if (((Line)pl).distance_to_squared(pt) <= 1000 * 1000)
|
||||
out = closest.front().second;
|
||||
if (! closest.empty()) {
|
||||
const Polyline &pl = lines[closest.front().second];
|
||||
if (pl.points.empty()) {
|
||||
// The closest infill line was already dropped as it was too short.
|
||||
// Such an infill line should not make a T-joint anyways.
|
||||
#if 0 // #ifndef NDEBUG
|
||||
const auto &seg = closest.front().first;
|
||||
struct Linef { Vec2d a; Vec2d b; };
|
||||
Linef l { { bg::get<0, 0>(seg), bg::get<0, 1>(seg) }, { bg::get<1, 0>(seg), bg::get<1, 1>(seg) } };
|
||||
assert(line_alg::distance_to_squared(l, Vec2d(pt.cast<double>())) > 1000 * 1000);
|
||||
#endif // NDEBUG
|
||||
} else if (((Line)pl).distance_to_squared(pt) <= 1000 * 1000)
|
||||
out = closest.front().second;
|
||||
}
|
||||
return out;
|
||||
};
|
||||
// Refuse to create a T-joint if the infill lines touch at their ends.
|
||||
|
|
@ -912,12 +970,16 @@ static Polylines connect_lines_using_hooks(Polylines &&lines, const ExPolygon &b
|
|||
// A shorter line than spacing could produce a degenerate polyline.
|
||||
line.points.clear();
|
||||
} else if (anchor) {
|
||||
if (tjoint_front)
|
||||
if (tjoint_front) {
|
||||
// T-joint of line's front point with the 'closest' line.
|
||||
intersections.emplace_back(lines_src[*tjoint_front], lines_src[line_idx], &line, front_point, true);
|
||||
if (tjoint_back)
|
||||
assert(validate_intersection_t_joint(intersections.back()));
|
||||
}
|
||||
if (tjoint_back) {
|
||||
// T-joint of line's back point with the 'closest' line.
|
||||
intersections.emplace_back(lines_src[*tjoint_back], lines_src[line_idx], &line, back_point, false);
|
||||
assert(validate_intersection_t_joint(intersections.back()));
|
||||
}
|
||||
} else {
|
||||
if (tjoint_front)
|
||||
// T joint at the front at a 60 degree angle, the line is very short.
|
||||
|
|
@ -940,6 +1002,7 @@ static Polylines connect_lines_using_hooks(Polylines &&lines, const ExPolygon &b
|
|||
++ it;
|
||||
}
|
||||
}
|
||||
assert(validate_intersections(intersections));
|
||||
|
||||
#ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
|
||||
static int iRun = 0;
|
||||
|
|
@ -1106,7 +1169,7 @@ static Polylines connect_lines_using_hooks(Polylines &&lines, const ExPolygon &b
|
|||
}
|
||||
Points &first_points = first_i.intersect_pl->points;
|
||||
Points &second_points = nearest_i.intersect_pl->points;
|
||||
could_connect &= (nearest_i_point - first_i_point).cast<double>().squaredNorm() <= Slic3r::sqr(3. * hook_length);
|
||||
could_connect &= (nearest_i_point - first_i_point).cast<double>().squaredNorm() <= Slic3r::sqr(hook_length_max);
|
||||
if (could_connect) {
|
||||
// Both intersections are so close that their polylines can be connected.
|
||||
// Verify that no other infill line intersects this anchor line.
|
||||
|
|
@ -1219,7 +1282,7 @@ bool has_no_collinear_lines(const Polylines &polylines)
|
|||
const Point* operator()(const LineEnd &pt) const { return &pt.point(); }
|
||||
};
|
||||
typedef ClosestPointInRadiusLookup<LineEnd, LineEndAccessor> ClosestPointLookupType;
|
||||
ClosestPointLookupType closest_end_point_lookup(1001. * sqrt(2.));
|
||||
ClosestPointLookupType closest_end_point_lookup(coord_t(1001. * sqrt(2.)));
|
||||
for (const Polyline& pl : polylines) {
|
||||
// assert(pl.points.size() == 2);
|
||||
auto line_start = LineEnd(&pl, true);
|
||||
|
|
@ -1321,9 +1384,10 @@ void Filler::_fill_surface_single(
|
|||
}
|
||||
#endif /* ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT */
|
||||
|
||||
const auto hook_length = coord_t(std::min(scale_(this->spacing * 5), scale_(params.anchor_length)));
|
||||
const auto hook_length = coordf_t(std::min<float>(std::numeric_limits<coord_t>::max(), scale_(params.anchor_length)));
|
||||
const auto hook_length_max = coordf_t(std::min<float>(std::numeric_limits<coord_t>::max(), scale_(params.anchor_length_max)));
|
||||
|
||||
Polylines all_polylines_with_hooks = all_polylines.size() > 1 ? connect_lines_using_hooks(std::move(all_polylines), expolygon, this->spacing, hook_length) : std::move(all_polylines);
|
||||
Polylines all_polylines_with_hooks = all_polylines.size() > 1 ? connect_lines_using_hooks(std::move(all_polylines), expolygon, this->spacing, hook_length, hook_length_max) : std::move(all_polylines);
|
||||
|
||||
#ifdef ADAPTIVE_CUBIC_INFILL_DEBUG_OUTPUT
|
||||
{
|
||||
|
|
|
|||
|
|
@ -200,10 +200,10 @@ struct ContourIntersectionPoint {
|
|||
|
||||
// Could extrude a complete segment from this to this->prev_on_contour.
|
||||
bool could_connect_prev() const throw()
|
||||
{ return ! this->consumed && this->prev_on_contour && ! this->prev_on_contour->consumed && ! this->prev_trimmed && ! this->prev_on_contour->next_trimmed; }
|
||||
{ return ! this->consumed && this->prev_on_contour != this && ! this->prev_on_contour->consumed && ! this->prev_trimmed && ! this->prev_on_contour->next_trimmed; }
|
||||
// Could extrude a complete segment from this to this->next_on_contour.
|
||||
bool could_connect_next() const throw()
|
||||
{ return ! this->consumed && this->next_on_contour && ! this->next_on_contour->consumed && ! this->next_trimmed && ! this->next_on_contour->prev_trimmed; }
|
||||
{ return ! this->consumed && this->next_on_contour != this && ! this->next_on_contour->consumed && ! this->next_trimmed && ! this->next_on_contour->prev_trimmed; }
|
||||
};
|
||||
|
||||
// Distance from param1 to param2 when going counter-clockwise.
|
||||
|
|
@ -390,7 +390,12 @@ static void take(Polyline &pl1, const Polyline &pl2, const Points &contour, size
|
|||
|
||||
static void take(Polyline &pl1, const Polyline &pl2, const Points &contour, ContourIntersectionPoint *cp_start, ContourIntersectionPoint *cp_end, bool clockwise)
|
||||
{
|
||||
assert(cp_start->prev_on_contour != nullptr);
|
||||
assert(cp_start->next_on_contour != nullptr);
|
||||
assert(cp_end ->prev_on_contour != nullptr);
|
||||
assert(cp_end ->next_on_contour != nullptr);
|
||||
assert(cp_start != cp_end);
|
||||
|
||||
take(pl1, pl2, contour, cp_start->point_idx, cp_end->point_idx, clockwise);
|
||||
|
||||
// Mark the contour segments in between cp_start and cp_end as consumed.
|
||||
|
|
@ -410,7 +415,12 @@ static void take_limited(
|
|||
ContourIntersectionPoint *cp_start, ContourIntersectionPoint *cp_end, bool clockwise, float take_max_length, float line_half_width)
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
assert(cp_start != cp_end);
|
||||
// This is a valid case, where a single infill line connect to two different contours (outer contour + hole or two holes).
|
||||
// assert(cp_start != cp_end);
|
||||
assert(cp_start->prev_on_contour != nullptr);
|
||||
assert(cp_start->next_on_contour != nullptr);
|
||||
assert(cp_end ->prev_on_contour != nullptr);
|
||||
assert(cp_end ->next_on_contour != nullptr);
|
||||
assert(pl1.size() >= 2);
|
||||
assert(contour.size() + 1 == params.size());
|
||||
#endif /* NDEBUG */
|
||||
|
|
@ -438,8 +448,18 @@ static void take_limited(
|
|||
float length = params.back();
|
||||
float length_to_go = take_max_length;
|
||||
cp_start->consumed = true;
|
||||
if (clockwise) {
|
||||
if (cp_start == cp_end) {
|
||||
length_to_go = std::max(0.f, std::min(length_to_go, length - line_half_width));
|
||||
length_to_go = std::min(length_to_go, clockwise ? cp_start->contour_not_taken_length_prev : cp_start->contour_not_taken_length_next);
|
||||
cp_start->consume_prev();
|
||||
cp_start->consume_next();
|
||||
if (length_to_go > SCALED_EPSILON)
|
||||
clockwise ?
|
||||
take_cw_limited (pl1, contour, params, cp_start->point_idx, cp_start->point_idx, length_to_go) :
|
||||
take_ccw_limited(pl1, contour, params, cp_start->point_idx, cp_start->point_idx, length_to_go);
|
||||
} else if (clockwise) {
|
||||
// Going clockwise from cp_start to cp_end.
|
||||
assert(cp_start != cp_end);
|
||||
for (ContourIntersectionPoint *cp = cp_start; cp != cp_end; cp = cp->prev_on_contour) {
|
||||
// Length of the segment from cp to cp->prev_on_contour.
|
||||
float l = closed_contour_distance_cw(cp->param, cp->prev_on_contour->param, length);
|
||||
|
|
@ -461,6 +481,7 @@ static void take_limited(
|
|||
}
|
||||
}
|
||||
} else {
|
||||
assert(cp_start != cp_end);
|
||||
for (ContourIntersectionPoint *cp = cp_start; cp != cp_end; cp = cp->next_on_contour) {
|
||||
float l = closed_contour_distance_ccw(cp->param, cp->next_on_contour->param, length);
|
||||
length_to_go = std::min(length_to_go, cp->contour_not_taken_length_next);
|
||||
|
|
@ -869,6 +890,10 @@ void mark_boundary_segments_touching_infill(
|
|||
for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++ it_contour_and_segment) {
|
||||
// End points of the line segment and their vector.
|
||||
auto segment = this->grid.segment(*it_contour_and_segment);
|
||||
std::vector<ContourIntersectionPoint*> &intersections = boundary_intersections[it_contour_and_segment->first];
|
||||
if (intersections.empty())
|
||||
// There is no infil line touching this contour, thus effort will be saved to calculate overlap with other infill lines.
|
||||
continue;
|
||||
const Vec2d seg_pt1 = segment.first.cast<double>();
|
||||
const Vec2d seg_pt2 = segment.second.cast<double>();
|
||||
std::pair<double, double> interval;
|
||||
|
|
@ -892,20 +917,23 @@ void mark_boundary_segments_touching_infill(
|
|||
const float param_overlap1 = param_seg_pt1 + interval.first;
|
||||
const float param_overlap2 = param_seg_pt1 + interval.second;
|
||||
// 2) Find the ContourIntersectionPoints before param_overlap1 and after param_overlap2.
|
||||
std::vector<ContourIntersectionPoint*> &intersections = boundary_intersections[it_contour_and_segment->first];
|
||||
// Find the span of ContourIntersectionPoints, that is trimmed by the interval (param_overlap1, param_overlap2).
|
||||
ContourIntersectionPoint *ip_low, *ip_high;
|
||||
{
|
||||
if (intersections.size() == 1) {
|
||||
// Only a single infill line touches this contour.
|
||||
ip_low = ip_high = intersections.front();
|
||||
} else {
|
||||
assert(intersections.size() > 1);
|
||||
auto it_low = Slic3r::lower_bound_by_predicate(intersections.begin(), intersections.end(), [param_overlap1](const ContourIntersectionPoint *l) { return l->param < param_overlap1; });
|
||||
auto it_high = Slic3r::lower_bound_by_predicate(intersections.begin(), intersections.end(), [param_overlap2](const ContourIntersectionPoint *l) { return l->param < param_overlap2; });
|
||||
ip_low = it_low == intersections.end() ? intersections.front() : *it_low;
|
||||
ip_high = it_high == intersections.end() ? intersections.front() : *it_high;
|
||||
if (ip_low->param != param_overlap1)
|
||||
ip_low = ip_low->prev_on_contour;
|
||||
assert(ip_low != ip_high);
|
||||
// Verify that the interval (param_overlap1, param_overlap2) is inside the interval (ip_low->param, ip_high->param).
|
||||
assert(cyclic_interval_inside_interval(ip_low->param, ip_high->param, param_overlap1, param_overlap2, contour_length));
|
||||
}
|
||||
assert(ip_low != ip_high);
|
||||
// Verify that the interval (param_overlap1, param_overlap2) is inside the interval (ip_low->param, ip_high->param).
|
||||
assert(cyclic_interval_inside_interval(ip_low->param, ip_high->param, param_overlap1, param_overlap2, contour_length));
|
||||
assert(validate_boundary_intersections(boundary_intersections));
|
||||
// Mark all ContourIntersectionPoints between ip_low and ip_high as consumed.
|
||||
if (ip_low->next_on_contour != ip_high)
|
||||
|
|
@ -1068,8 +1096,11 @@ void Fill::connect_infill(Polylines &&infill_ordered, const Polygons &boundary_s
|
|||
void Fill::connect_infill(Polylines &&infill_ordered, const std::vector<const Polygon*> &boundary_src, const BoundingBox &bbox, Polylines &polylines_out, const double spacing, const FillParams ¶ms)
|
||||
{
|
||||
assert(! infill_ordered.empty());
|
||||
assert(params.anchor_length >= 0.01f);
|
||||
const auto anchor_length = float(scale_(params.anchor_length));
|
||||
assert(params.anchor_length >= 0.f);
|
||||
assert(params.anchor_length_max >= 0.01f);
|
||||
assert(params.anchor_length_max >= params.anchor_length);
|
||||
const auto anchor_length = float(scale_(params.anchor_length));
|
||||
const auto anchor_length_max = float(scale_(params.anchor_length_max));
|
||||
|
||||
#if 0
|
||||
append(polylines_out, infill_ordered);
|
||||
|
|
@ -1097,7 +1128,7 @@ void Fill::connect_infill(Polylines &&infill_ordered, const std::vector<const Po
|
|||
EdgeGrid::Grid::ClosestPointResult cp = grid.closest_point(*pt, SCALED_EPSILON);
|
||||
if (cp.valid()) {
|
||||
// The infill end point shall lie on the contour.
|
||||
assert(cp.distance < 2.);
|
||||
assert(cp.distance <= 3.);
|
||||
intersection_points.emplace_back(cp, (&pl - infill_ordered.data()) * 2 + (pt == &pl.points.front() ? 0 : 1));
|
||||
}
|
||||
}
|
||||
|
|
@ -1154,7 +1185,7 @@ void Fill::connect_infill(Polylines &&infill_ordered, const std::vector<const Po
|
|||
//add new point here
|
||||
contour_dst.emplace_back(pt);
|
||||
}
|
||||
if (pprev != pfirst) {
|
||||
if (pfirst) {
|
||||
pprev->next_on_contour = pfirst;
|
||||
pfirst->prev_on_contour = pprev;
|
||||
}
|
||||
|
|
@ -1170,10 +1201,15 @@ void Fill::connect_infill(Polylines &&infill_ordered, const std::vector<const Po
|
|||
ip->param = contour_params[ip->point_idx];
|
||||
// and measure distance to the previous and next intersection point.
|
||||
const float contour_length = contour_params.back();
|
||||
for (ContourIntersectionPoint *ip : contour_intersection_points) {
|
||||
ip->contour_not_taken_length_prev = closed_contour_distance_ccw(ip->prev_on_contour->param, ip->param, contour_length);
|
||||
ip->contour_not_taken_length_next = closed_contour_distance_ccw(ip->param, ip->next_on_contour->param, contour_length);
|
||||
}
|
||||
for (ContourIntersectionPoint *ip : contour_intersection_points)
|
||||
if (ip->next_on_contour == ip) {
|
||||
assert(ip->prev_on_contour == ip);
|
||||
ip->contour_not_taken_length_prev = ip->contour_not_taken_length_next = contour_length;
|
||||
} else {
|
||||
assert(ip->prev_on_contour != ip);
|
||||
ip->contour_not_taken_length_prev = closed_contour_distance_ccw(ip->prev_on_contour->param, ip->param, contour_length);
|
||||
ip->contour_not_taken_length_next = closed_contour_distance_ccw(ip->param, ip->next_on_contour->param, contour_length);
|
||||
}
|
||||
}
|
||||
|
||||
assert(boundary.size() == boundary_src.size());
|
||||
|
|
@ -1277,7 +1313,7 @@ void Fill::connect_infill(Polylines &&infill_ordered, const std::vector<const Po
|
|||
idx_first = get_and_update_merged_with(idx_first);
|
||||
assert(idx_first < idx_second);
|
||||
assert(idx_second == merged_with[idx_second]);
|
||||
if (could_connect && length < anchor_length * 2.5) {
|
||||
if (could_connect && length < anchor_length_max) {
|
||||
// Take the complete contour.
|
||||
// Connect the two polygons using the boundary contour.
|
||||
take(infill_ordered[idx_first], infill_ordered[idx_second], boundary[cp1->contour_idx], cp1, cp2, connection_cost.reversed);
|
||||
|
|
@ -1299,10 +1335,11 @@ void Fill::connect_infill(Polylines &&infill_ordered, const std::vector<const Po
|
|||
std::vector<Arc> arches;
|
||||
arches.reserve(map_infill_end_point_to_boundary.size());
|
||||
for (ContourIntersectionPoint &cp : map_infill_end_point_to_boundary)
|
||||
if (! cp.contour_idx != boundary_idx_unconnected && cp.next_on_contour != &cp && cp.could_connect_next())
|
||||
if (cp.contour_idx != boundary_idx_unconnected && cp.next_on_contour != &cp && cp.could_connect_next())
|
||||
arches.push_back({ &cp, path_length_along_contour_ccw(&cp, cp.next_on_contour, boundary_params[cp.contour_idx].back()) });
|
||||
std::sort(arches.begin(), arches.end(), [](const auto &l, const auto &r) { return l.arc_length < r.arc_length; });
|
||||
|
||||
//FIXME improve the Traveling Salesman problem with 2-opt and 3-opt local optimization.
|
||||
for (Arc &arc : arches)
|
||||
if (! arc.intersection->consumed && ! arc.intersection->next_on_contour->consumed) {
|
||||
// Indices of the polylines to be connected by a perimeter segment.
|
||||
|
|
@ -1315,7 +1352,7 @@ void Fill::connect_infill(Polylines &&infill_ordered, const std::vector<const Po
|
|||
if (polyline_idx1 != polyline_idx2) {
|
||||
Polyline &polyline1 = infill_ordered[polyline_idx1];
|
||||
Polyline &polyline2 = infill_ordered[polyline_idx2];
|
||||
if (arc.arc_length < anchor_length * 2.5) {
|
||||
if (arc.arc_length < anchor_length_max) {
|
||||
// Not closing a loop, connecting the lines.
|
||||
assert(contour[cp1->point_idx] == polyline1.points.front() || contour[cp1->point_idx] == polyline1.points.back());
|
||||
if (contour[cp1->point_idx] == polyline1.points.front())
|
||||
|
|
@ -1333,7 +1370,7 @@ void Fill::connect_infill(Polylines &&infill_ordered, const std::vector<const Po
|
|||
polyline2.points.clear();
|
||||
merged_with[polyline_idx2] = merged_with[polyline_idx1];
|
||||
}
|
||||
} else {
|
||||
} else if (anchor_length > SCALED_EPSILON) {
|
||||
// Move along the perimeter, but don't take the whole arc.
|
||||
take_limited(polyline1, contour, contour_params, cp1, cp2, false, anchor_length, line_half_width);
|
||||
take_limited(polyline2, contour, contour_params, cp2, cp1, true, anchor_length, line_half_width);
|
||||
|
|
@ -1360,7 +1397,7 @@ void Fill::connect_infill(Polylines &&infill_ordered, const std::vector<const Po
|
|||
assert(contour[contour_point.point_idx] == polyline.points.front() || contour[contour_point.point_idx] == polyline.points.back());
|
||||
bool connected = false;
|
||||
for (float l : { std::min(lprev, lnext), std::max(lprev, lnext) }) {
|
||||
if (l == std::numeric_limits<float>::max() || l > anchor_length * 2.5)
|
||||
if (l == std::numeric_limits<float>::max() || l > anchor_length_max)
|
||||
break;
|
||||
// Take the complete contour.
|
||||
bool reversed = l == lprev;
|
||||
|
|
@ -1392,7 +1429,7 @@ void Fill::connect_infill(Polylines &&infill_ordered, const std::vector<const Po
|
|||
connected = true;
|
||||
break;
|
||||
}
|
||||
if (! connected) {
|
||||
if (! connected && anchor_length > SCALED_EPSILON) {
|
||||
// Which to take? One could optimize for:
|
||||
// 1) Shortest path
|
||||
// 2) Hook length
|
||||
|
|
|
|||
|
|
@ -34,14 +34,15 @@ struct FillParams
|
|||
{
|
||||
bool full_infill() const { return density > 0.9999f; }
|
||||
// Don't connect the fill lines around the inner perimeter.
|
||||
bool dont_connect() const { return anchor_length < 0.05f; }
|
||||
bool dont_connect() const { return anchor_length_max < 0.05f; }
|
||||
|
||||
// Fill density, fraction in <0, 1>
|
||||
float density { 0.f };
|
||||
|
||||
// Length of an infill anchor along the perimeter.
|
||||
// 1000mm is roughly the maximum length line that fits into a 32bit coord_t.
|
||||
float anchor_length { 1000.f };
|
||||
float anchor_length { 1000.f };
|
||||
float anchor_length_max { 1000.f };
|
||||
|
||||
// Don't adjust spacing to fill the space evenly.
|
||||
bool dont_adjust { true };
|
||||
|
|
|
|||
|
|
@ -39,7 +39,7 @@ void FillConcentric::_fill_surface_single(
|
|||
size_t iPathFirst = polylines_out.size();
|
||||
Point last_pos(0, 0);
|
||||
for (const Polygon &loop : loops) {
|
||||
polylines_out.push_back(loop.split_at_index(last_pos.nearest_point_index(loop)));
|
||||
polylines_out.push_back(loop.split_at_index(last_pos.nearest_point_index(loop.points)));
|
||||
last_pos = polylines_out.back().last_point();
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -49,7 +49,7 @@ Slic3r::arrangement::ArrangePolygon get_arrange_poly(const Model &model)
|
|||
std::copy(pts.begin(), pts.end(), std::back_inserter(apts));
|
||||
}
|
||||
|
||||
apts = Geometry::convex_hull(apts);
|
||||
apts = std::move(Geometry::convex_hull(apts).points);
|
||||
return ap;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -264,7 +264,7 @@ Point MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) co
|
|||
for (const ExPolygon &ex : m_env.expolygons) {
|
||||
for (const Polygon &hole : ex.holes)
|
||||
if (hole.contains(from))
|
||||
pp = hole;
|
||||
pp = hole.points;
|
||||
if (! pp.empty())
|
||||
break;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -17,8 +17,6 @@ class MultiPoint
|
|||
public:
|
||||
Points points;
|
||||
|
||||
operator Points() const { return this->points; }
|
||||
|
||||
MultiPoint() {}
|
||||
MultiPoint(const MultiPoint &other) : points(other.points) {}
|
||||
MultiPoint(MultiPoint &&other) : points(std::move(other.points)) {}
|
||||
|
|
|
|||
|
|
@ -158,7 +158,7 @@ static ExtrusionEntityCollection traverse_loops(const PerimeterGenerator &perime
|
|||
// get non-overhang paths by intersecting this loop with the grown lower slices
|
||||
extrusion_paths_append(
|
||||
paths,
|
||||
intersection_pl(loop.polygon, perimeter_generator.lower_slices_polygons()),
|
||||
intersection_pl((Polygons)loop.polygon, perimeter_generator.lower_slices_polygons()),
|
||||
role,
|
||||
is_external ? perimeter_generator.ext_mm3_per_mm() : perimeter_generator.mm3_per_mm(),
|
||||
is_external ? perimeter_generator.ext_perimeter_flow.width : perimeter_generator.perimeter_flow.width,
|
||||
|
|
@ -169,7 +169,7 @@ static ExtrusionEntityCollection traverse_loops(const PerimeterGenerator &perime
|
|||
// the loop centerline and original lower slices is >= half nozzle diameter
|
||||
extrusion_paths_append(
|
||||
paths,
|
||||
diff_pl(loop.polygon, perimeter_generator.lower_slices_polygons()),
|
||||
diff_pl((Polygons)loop.polygon, perimeter_generator.lower_slices_polygons()),
|
||||
erOverhangPerimeter,
|
||||
perimeter_generator.mm3_per_mm_overhang(),
|
||||
perimeter_generator.overhang_flow.width,
|
||||
|
|
|
|||
|
|
@ -16,8 +16,8 @@ typedef std::vector<Polygon> Polygons;
|
|||
class Polygon : public MultiPoint
|
||||
{
|
||||
public:
|
||||
operator Polygons() const { Polygons pp; pp.push_back(*this); return pp; }
|
||||
operator Polyline() const { return this->split_at_first_point(); }
|
||||
explicit operator Polygons() const { Polygons pp; pp.push_back(*this); return pp; }
|
||||
explicit operator Polyline() const { return this->split_at_first_point(); }
|
||||
Point& operator[](Points::size_type idx) { return this->points[idx]; }
|
||||
const Point& operator[](Points::size_type idx) const { return this->points[idx]; }
|
||||
|
||||
|
|
|
|||
|
|
@ -200,7 +200,7 @@ BoundingBox get_extents(const Polylines &polylines)
|
|||
if (! polylines.empty()) {
|
||||
bb = polylines.front().bounding_box();
|
||||
for (size_t i = 1; i < polylines.size(); ++ i)
|
||||
bb.merge(polylines[i]);
|
||||
bb.merge(polylines[i].points);
|
||||
}
|
||||
return bb;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -60,8 +60,8 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
operator Polylines() const;
|
||||
operator Line() const;
|
||||
explicit operator Polylines() const;
|
||||
explicit operator Line() const;
|
||||
const Point& last_point() const override { return this->points.back(); }
|
||||
|
||||
const Point& leftmost_point() const;
|
||||
|
|
|
|||
|
|
@ -427,7 +427,7 @@ const std::vector<std::string>& Preset::print_options()
|
|||
"infill_extruder", "solid_infill_extruder", "support_material_extruder", "support_material_interface_extruder",
|
||||
"ooze_prevention", "standby_temperature_delta", "interface_shells", "extrusion_width", "first_layer_extrusion_width",
|
||||
"perimeter_extrusion_width", "external_perimeter_extrusion_width", "infill_extrusion_width", "solid_infill_extrusion_width",
|
||||
"top_infill_extrusion_width", "support_material_extrusion_width", "infill_overlap", "infill_anchor", "bridge_flow_ratio", "clip_multipart_objects",
|
||||
"top_infill_extrusion_width", "support_material_extrusion_width", "infill_overlap", "infill_anchor", "infill_anchor_max", "bridge_flow_ratio", "clip_multipart_objects",
|
||||
"elefant_foot_compensation", "xy_size_compensation", "threads", "resolution", "wipe_tower", "wipe_tower_x", "wipe_tower_y",
|
||||
"wipe_tower_width", "wipe_tower_rotation_angle", "wipe_tower_bridging", "single_extruder_multi_material_priming",
|
||||
"wipe_tower_no_sparse_layers", "compatible_printers", "compatible_printers_condition", "inherits"
|
||||
|
|
|
|||
|
|
@ -1220,9 +1220,9 @@ static inline bool sequential_print_horizontal_clearance_valid(const Print &prin
|
|||
// instance.shift is a position of a centered object, while model object may not be centered.
|
||||
// Conver the shift from the PrintObject's coordinates into ModelObject's coordinates by removing the centering offset.
|
||||
convex_hull.translate(instance.shift - print_object->center_offset());
|
||||
if (! intersection(convex_hulls_other, convex_hull).empty())
|
||||
if (! intersection(convex_hulls_other, (Polygons)convex_hull).empty())
|
||||
return false;
|
||||
polygons_append(convex_hulls_other, convex_hull);
|
||||
convex_hulls_other.emplace_back(std::move(convex_hull));
|
||||
}
|
||||
}
|
||||
return true;
|
||||
|
|
|
|||
|
|
@ -1064,11 +1064,15 @@ void PrintConfigDef::init_fff_params()
|
|||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionInt(1));
|
||||
|
||||
def = this->add("infill_anchor", coFloatOrPercent);
|
||||
auto def_infill_anchor_min = def = this->add("infill_anchor", coFloatOrPercent);
|
||||
def->label = L("Length of the infill anchor");
|
||||
def->category = L("Advanced");
|
||||
def->tooltip = L("Connect an infill line to an internal perimeter with a short segment of an additional perimeter. "
|
||||
"If expressed as percentage (example: 15%) it is calculated over infill extrusion width.");
|
||||
"If expressed as percentage (example: 15%) it is calculated over infill extrusion width. "
|
||||
"PrusaSlicer tries to connect two close infill lines to a short perimeter segment. If no such perimeter segment "
|
||||
"shorter than infill_anchor_max is found, the infill line is connected to a perimeter segment at just one side "
|
||||
"and the length of the perimeter segment taken is limited to this parameter, but no longer than anchor_length_max. "
|
||||
"Set this parameter to zero to disable anchoring perimeters connected to a single infill line.");
|
||||
def->sidetext = L("mm or %");
|
||||
def->ratio_over = "infill_extrusion_width";
|
||||
def->gui_type = "f_enum_open";
|
||||
|
|
@ -1078,15 +1082,36 @@ void PrintConfigDef::init_fff_params()
|
|||
def->enum_values.push_back("5");
|
||||
def->enum_values.push_back("10");
|
||||
def->enum_values.push_back("1000");
|
||||
def->enum_labels.push_back(L("0 (not anchored)"));
|
||||
def->enum_labels.push_back(L("0 (no open anchors)"));
|
||||
def->enum_labels.push_back("1 mm");
|
||||
def->enum_labels.push_back("2 mm");
|
||||
def->enum_labels.push_back("5 mm");
|
||||
def->enum_labels.push_back("10 mm");
|
||||
def->enum_labels.push_back(L("1000 (unlimited)"));
|
||||
def->mode = comAdvanced;
|
||||
// def->set_default_value(new ConfigOptionFloatOrPercent(300, true));
|
||||
def->set_default_value(new ConfigOptionFloatOrPercent(1000, false));
|
||||
def->set_default_value(new ConfigOptionFloatOrPercent(600, true));
|
||||
|
||||
def = this->add("infill_anchor_max", coFloatOrPercent);
|
||||
def->label = L("Maximum length of the infill anchor");
|
||||
def->category = def_infill_anchor_min->category;
|
||||
def->tooltip = L("Connect an infill line to an internal perimeter with a short segment of an additional perimeter. "
|
||||
"If expressed as percentage (example: 15%) it is calculated over infill extrusion width. "
|
||||
"PrusaSlicer tries to connect two close infill lines to a short perimeter segment. If no such perimeter segment "
|
||||
"shorter than this parameter is found, the infill line is connected to a perimeter segment at just one side "
|
||||
"and the length of the perimeter segment taken is limited to infill_anchor, but no longer than this parameter. "
|
||||
"Set this parameter to zero to disable anchoring.");
|
||||
def->sidetext = def_infill_anchor_min->sidetext;
|
||||
def->ratio_over = def_infill_anchor_min->ratio_over;
|
||||
def->gui_type = def_infill_anchor_min->gui_type;
|
||||
def->enum_values = def_infill_anchor_min->enum_values;
|
||||
def->enum_labels.push_back(L("0 (not anchored)"));
|
||||
def->enum_labels.push_back("1 mm");
|
||||
def->enum_labels.push_back("2 mm");
|
||||
def->enum_labels.push_back("5 mm");
|
||||
def->enum_labels.push_back("10 mm");
|
||||
def->enum_labels.push_back(L("1000 (unlimited)"));
|
||||
def->mode = def_infill_anchor_min->mode;
|
||||
def->set_default_value(new ConfigOptionFloatOrPercent(50, false));
|
||||
|
||||
def = this->add("infill_extruder", coInt);
|
||||
def->label = L("Infill extruder");
|
||||
|
|
|
|||
|
|
@ -532,6 +532,7 @@ public:
|
|||
ConfigOptionEnum<InfillPattern> fill_pattern;
|
||||
ConfigOptionFloat gap_fill_speed;
|
||||
ConfigOptionFloatOrPercent infill_anchor;
|
||||
ConfigOptionFloatOrPercent infill_anchor_max;
|
||||
ConfigOptionInt infill_extruder;
|
||||
ConfigOptionFloatOrPercent infill_extrusion_width;
|
||||
ConfigOptionInt infill_every_layers;
|
||||
|
|
@ -584,6 +585,7 @@ protected:
|
|||
OPT_PTR(fill_pattern);
|
||||
OPT_PTR(gap_fill_speed);
|
||||
OPT_PTR(infill_anchor);
|
||||
OPT_PTR(infill_anchor_max);
|
||||
OPT_PTR(infill_extruder);
|
||||
OPT_PTR(infill_extrusion_width);
|
||||
OPT_PTR(infill_every_layers);
|
||||
|
|
|
|||
|
|
@ -591,6 +591,7 @@ bool PrintObject::invalidate_state_by_config_options(const std::vector<t_config_
|
|||
|| opt_key == "fill_angle"
|
||||
|| opt_key == "fill_pattern"
|
||||
|| opt_key == "infill_anchor"
|
||||
|| opt_key == "infill_anchor_max"
|
||||
|| opt_key == "top_infill_extrusion_width"
|
||||
|| opt_key == "first_layer_extrusion_width") {
|
||||
steps.emplace_back(posInfill);
|
||||
|
|
|
|||
|
|
@ -369,7 +369,7 @@ bool add_cavity(Contour3D &pad, ExPolygon &top_poly, const PadConfig3D &cfg,
|
|||
|
||||
if (inner_base.empty() || middle_base.empty()) { logerr(); return false; }
|
||||
|
||||
ExPolygons pdiff = diff_ex(top_poly, middle_base.contour);
|
||||
ExPolygons pdiff = diff_ex((Polygons)top_poly, (Polygons)middle_base.contour);
|
||||
|
||||
if (pdiff.size() != 1) { logerr(); return false; }
|
||||
|
||||
|
|
|
|||
|
|
@ -2513,7 +2513,7 @@ void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const
|
|||
Polygon &contour = (i_contour == 0) ? it_contact_expoly->contour : it_contact_expoly->holes[i_contour - 1];
|
||||
const Point *seg_current_pt = nullptr;
|
||||
coordf_t seg_current_t = 0.;
|
||||
if (! intersection_pl(contour.split_at_first_point(), overhang_with_margin).empty()) {
|
||||
if (! intersection_pl((Polylines)contour.split_at_first_point(), overhang_with_margin).empty()) {
|
||||
// The contour is below the overhang at least to some extent.
|
||||
//FIXME ideally one would place the circles below the overhang only.
|
||||
// Walk around the contour and place circles so their centers are not closer than circle_distance from each other.
|
||||
|
|
|
|||
|
|
@ -1,9 +1,9 @@
|
|||
#ifndef _prusaslicer_technologies_h_
|
||||
#define _prusaslicer_technologies_h_
|
||||
|
||||
//============
|
||||
//=============
|
||||
// debug techs
|
||||
//============
|
||||
//=============
|
||||
|
||||
// Shows camera target in the 3D scene
|
||||
#define ENABLE_SHOW_CAMERA_TARGET 0
|
||||
|
|
@ -23,20 +23,24 @@
|
|||
#define DISABLE_INSTANCES_SYNCH 0
|
||||
// Use wxDataViewRender instead of wxDataViewCustomRenderer
|
||||
#define ENABLE_NONCUSTOM_DATA_VIEW_RENDERING 0
|
||||
// Enable G-Code viewer statistics imgui dialog
|
||||
#define ENABLE_GCODE_VIEWER_STATISTICS 0
|
||||
// Enable G-Code viewer comparison between toolpaths height and width detected from gcode and calculated at gcode generation
|
||||
#define ENABLE_GCODE_VIEWER_DATA_CHECKING 0
|
||||
|
||||
|
||||
//================
|
||||
//=================
|
||||
// 2.2.0.rc1 techs
|
||||
//================
|
||||
//=================
|
||||
#define ENABLE_2_2_0_RC1 1
|
||||
|
||||
// Enable hack to remove crash when closing on OSX 10.9.5
|
||||
#define ENABLE_HACK_CLOSING_ON_OSX_10_9_5 (1 && ENABLE_2_2_0_RC1)
|
||||
|
||||
|
||||
//===================
|
||||
//====================
|
||||
// 2.3.0.alpha1 techs
|
||||
//===================
|
||||
//====================
|
||||
#define ENABLE_2_3_0_ALPHA1 1
|
||||
|
||||
// Enable rendering of objects using environment map
|
||||
|
|
@ -51,27 +55,22 @@
|
|||
// Enable built-in DPI changed event handler of wxWidgets 3.1.3
|
||||
#define ENABLE_WX_3_1_3_DPI_CHANGED_EVENT (1 && ENABLE_2_3_0_ALPHA1)
|
||||
|
||||
// Enable G-Code viewer
|
||||
#define ENABLE_GCODE_VIEWER (1 && ENABLE_2_3_0_ALPHA1)
|
||||
#define ENABLE_GCODE_VIEWER_STATISTICS (0 && ENABLE_GCODE_VIEWER)
|
||||
#define ENABLE_GCODE_VIEWER_DATA_CHECKING (0 && ENABLE_GCODE_VIEWER)
|
||||
|
||||
|
||||
//===================
|
||||
//====================
|
||||
// 2.3.0.alpha3 techs
|
||||
//===================
|
||||
//====================
|
||||
#define ENABLE_2_3_0_ALPHA3 1
|
||||
|
||||
#define ENABLE_CTRL_M_ON_WINDOWS (0 && ENABLE_2_3_0_ALPHA3)
|
||||
|
||||
|
||||
//===================
|
||||
//====================
|
||||
// 2.3.0.alpha4 techs
|
||||
//===================
|
||||
//====================
|
||||
#define ENABLE_2_3_0_ALPHA4 1
|
||||
|
||||
#define ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS (1 && ENABLE_GCODE_VIEWER && ENABLE_2_3_0_ALPHA4)
|
||||
#define ENABLE_SHOW_OPTION_POINT_LAYERS (1 && ENABLE_GCODE_VIEWER && ENABLE_2_3_0_ALPHA4)
|
||||
#define ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS (1 && ENABLE_2_3_0_ALPHA4)
|
||||
#define ENABLE_SHOW_OPTION_POINT_LAYERS (1 && ENABLE_2_3_0_ALPHA4)
|
||||
|
||||
|
||||
//===================
|
||||
|
|
@ -79,7 +78,8 @@
|
|||
//===================
|
||||
#define ENABLE_2_3_0_BETA1 1
|
||||
|
||||
#define ENABLE_SHOW_WIPE_MOVES (1 && ENABLE_GCODE_VIEWER && ENABLE_2_3_0_BETA1)
|
||||
#define ENABLE_SHOW_WIPE_MOVES (1 && ENABLE_2_3_0_BETA1)
|
||||
#define ENABLE_DRAG_AND_DROP_FIX (1 && ENABLE_2_3_0_BETA1)
|
||||
|
||||
|
||||
#endif // _prusaslicer_technologies_h_
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue