mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-17 19:57:55 -06:00
1.4.5 features (#319)
* Changes: Improve precise wall Port PS2.6 overhang slowdown feature Implement overhang fan for new overhang slowdown algo Add option to switch between classic/new overhang slowdown implementation Set Arachne as default engine Small adjustment of temp calibration range turn off small perimeter by default Small UI tweaks Change default top_surface_pattern to monotonic Fine tune jerk Signed-off-by: SoftFever <softfeverever@gmail.com> * Disable optimizations for RelWithDebInfo Signed-off-by: SoftFever <softfeverever@gmail.com> * fix an issue that max volumetirc/vfa calibration can't send to print Signed-off-by: SoftFever <softfeverever@gmail.com> #322 * fix build errors Signed-off-by: SoftFever <softfeverever@gmail.com> --------- Signed-off-by: SoftFever <softfeverever@gmail.com>
This commit is contained in:
parent
0e0b8d297e
commit
e9613e971d
48 changed files with 3182 additions and 434 deletions
|
@ -1,8 +1,8 @@
|
|||
#ifndef slic3r_Line_hpp_
|
||||
#define slic3r_Line_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "Point.hpp"
|
||||
#include "libslic3r.h"
|
||||
|
||||
#include <type_traits>
|
||||
|
||||
|
@ -22,149 +22,201 @@ Linef3 transform(const Linef3& line, const Transform3d& t);
|
|||
|
||||
namespace line_alg {
|
||||
|
||||
template<class L, class En = void> struct Traits {
|
||||
static constexpr int Dim = L::Dim;
|
||||
using Scalar = typename L::Scalar;
|
||||
template <class L, class En = void>
|
||||
struct Traits {
|
||||
static constexpr int Dim = L::Dim;
|
||||
using Scalar = typename L::Scalar;
|
||||
|
||||
static Vec<Dim, Scalar>& get_a(L &l) { return l.a; }
|
||||
static Vec<Dim, Scalar>& get_b(L &l) { return l.b; }
|
||||
static const Vec<Dim, Scalar>& get_a(const L &l) { return l.a; }
|
||||
static const Vec<Dim, Scalar>& get_b(const L &l) { return l.b; }
|
||||
};
|
||||
static Vec<Dim, Scalar>& get_a(L& l) { return l.a; }
|
||||
static Vec<Dim, Scalar>& get_b(L& l) { return l.b; }
|
||||
static const Vec<Dim, Scalar>& get_a(const L& l) { return l.a; }
|
||||
static const Vec<Dim, Scalar>& get_b(const L& l) { return l.b; }
|
||||
};
|
||||
|
||||
template<class L> const constexpr int Dim = Traits<remove_cvref_t<L>>::Dim;
|
||||
template<class L> using Scalar = typename Traits<remove_cvref_t<L>>::Scalar;
|
||||
template <class L>
|
||||
const constexpr int Dim = Traits<remove_cvref_t<L>>::Dim;
|
||||
template <class L>
|
||||
using Scalar = typename Traits<remove_cvref_t<L>>::Scalar;
|
||||
|
||||
template<class L> auto get_a(L &&l) { return Traits<remove_cvref_t<L>>::get_a(l); }
|
||||
template<class L> auto get_b(L &&l) { return Traits<remove_cvref_t<L>>::get_b(l); }
|
||||
template <class L>
|
||||
auto get_a(L&& l) { return Traits<remove_cvref_t<L>>::get_a(l); }
|
||||
template <class L>
|
||||
auto get_b(L&& l) { return Traits<remove_cvref_t<L>>::get_b(l); }
|
||||
|
||||
// Distance to the closest point of line.
|
||||
template<class L>
|
||||
double distance_to_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point, Vec<Dim<L>, Scalar<L>> *nearest_point)
|
||||
{
|
||||
const Vec<Dim<L>, double> v = (get_b(line) - get_a(line)).template cast<double>();
|
||||
const Vec<Dim<L>, double> va = (point - get_a(line)).template cast<double>();
|
||||
const double l2 = v.squaredNorm(); // avoid a sqrt
|
||||
if (l2 == 0.0) {
|
||||
// a == b case
|
||||
*nearest_point = get_a(line);
|
||||
return va.squaredNorm();
|
||||
}
|
||||
// Consider the line extending the segment, parameterized as a + t (b - a).
|
||||
// We find projection of this point onto the line.
|
||||
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
|
||||
const double t = va.dot(v) / l2;
|
||||
if (t < 0.0) {
|
||||
// beyond the 'a' end of the segment
|
||||
*nearest_point = get_a(line);
|
||||
return va.squaredNorm();
|
||||
} else if (t > 1.0) {
|
||||
// beyond the 'b' end of the segment
|
||||
*nearest_point = get_b(line);
|
||||
return (point - get_b(line)).template cast<double>().squaredNorm();
|
||||
// Distance to the closest point of line.
|
||||
template <class L>
|
||||
double distance_to_squared(const L& line, const Vec<Dim<L>, Scalar<L>>& point, Vec<Dim<L>, Scalar<L>>* nearest_point)
|
||||
{
|
||||
const Vec<Dim<L>, double> v = (get_b(line) - get_a(line)).template cast<double>();
|
||||
const Vec<Dim<L>, double> va = (point - get_a(line)).template cast<double>();
|
||||
const double l2 = v.squaredNorm(); // avoid a sqrt
|
||||
if (l2 == 0.0) {
|
||||
// a == b case
|
||||
*nearest_point = get_a(line);
|
||||
return va.squaredNorm();
|
||||
}
|
||||
// Consider the line extending the segment, parameterized as a + t (b - a).
|
||||
// We find projection of this point onto the line.
|
||||
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
|
||||
const double t = va.dot(v) / l2;
|
||||
if (t <= 0.0) {
|
||||
// beyond the 'a' end of the segment
|
||||
*nearest_point = get_a(line);
|
||||
return va.squaredNorm();
|
||||
} else if (t >= 1.0) {
|
||||
// beyond the 'b' end of the segment
|
||||
*nearest_point = get_b(line);
|
||||
return (point - get_b(line)).template cast<double>().squaredNorm();
|
||||
}
|
||||
|
||||
*nearest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
|
||||
return (t * v - va).squaredNorm();
|
||||
}
|
||||
|
||||
*nearest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
|
||||
return (t * v - va).squaredNorm();
|
||||
}
|
||||
|
||||
// Distance to the closest point of line.
|
||||
template<class L>
|
||||
double distance_to_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
|
||||
{
|
||||
Vec<Dim<L>, Scalar<L>> nearest_point;
|
||||
return distance_to_squared<L>(line, point, &nearest_point);
|
||||
}
|
||||
|
||||
template<class L>
|
||||
double distance_to(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
|
||||
{
|
||||
return std::sqrt(distance_to_squared(line, point));
|
||||
}
|
||||
|
||||
// Returns a squared distance to the closest point on the infinite.
|
||||
// Returned nearest_point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||||
template<class L>
|
||||
double distance_to_infinite_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point, Vec<Dim<L>, Scalar<L>> *closest_point)
|
||||
{
|
||||
const Vec<Dim<L>, double> v = (get_b(line) - get_a(line)).template cast<double>();
|
||||
const Vec<Dim<L>, double> va = (point - get_a(line)).template cast<double>();
|
||||
const double l2 = v.squaredNorm(); // avoid a sqrt
|
||||
if (l2 == 0.) {
|
||||
// a == b case
|
||||
*closest_point = get_a(line);
|
||||
return va.squaredNorm();
|
||||
// Distance to the closest point of line.
|
||||
template <class L>
|
||||
double distance_to_squared(const L& line, const Vec<Dim<L>, Scalar<L>>& point)
|
||||
{
|
||||
Vec<Dim<L>, Scalar<L>> nearest_point;
|
||||
return distance_to_squared<L>(line, point, &nearest_point);
|
||||
}
|
||||
// Consider the line extending the segment, parameterized as a + t (b - a).
|
||||
// We find projection of this point onto the line.
|
||||
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
|
||||
const double t = va.dot(v) / l2;
|
||||
*closest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
|
||||
return (t * v - va).squaredNorm();
|
||||
}
|
||||
|
||||
// Returns a squared distance to the closest point on the infinite.
|
||||
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||||
template<class L>
|
||||
double distance_to_infinite_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
|
||||
{
|
||||
Vec<Dim<L>, Scalar<L>> nearest_point;
|
||||
return distance_to_infinite_squared<L>(line, point, &nearest_point);
|
||||
}
|
||||
template <class L>
|
||||
double distance_to(const L& line, const Vec<Dim<L>, Scalar<L>>& point)
|
||||
{
|
||||
return std::sqrt(distance_to_squared(line, point));
|
||||
}
|
||||
|
||||
// Returns a distance to the closest point on the infinite.
|
||||
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||||
template<class L>
|
||||
double distance_to_infinite(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
|
||||
{
|
||||
return std::sqrt(distance_to_infinite_squared(line, point));
|
||||
}
|
||||
// Returns a squared distance to the closest point on the infinite.
|
||||
// Returned nearest_point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||||
template <class L>
|
||||
double distance_to_infinite_squared(const L& line, const Vec<Dim<L>, Scalar<L>>& point, Vec<Dim<L>, Scalar<L>>* closest_point)
|
||||
{
|
||||
const Vec<Dim<L>, double> v = (get_b(line) - get_a(line)).template cast<double>();
|
||||
const Vec<Dim<L>, double> va = (point - get_a(line)).template cast<double>();
|
||||
const double l2 = v.squaredNorm(); // avoid a sqrt
|
||||
if (l2 == 0.) {
|
||||
// a == b case
|
||||
*closest_point = get_a(line);
|
||||
return va.squaredNorm();
|
||||
}
|
||||
// Consider the line extending the segment, parameterized as a + t (b - a).
|
||||
// We find projection of this point onto the line.
|
||||
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
|
||||
const double t = va.dot(v) / l2;
|
||||
*closest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
|
||||
return (t * v - va).squaredNorm();
|
||||
}
|
||||
|
||||
// Returns a squared distance to the closest point on the infinite.
|
||||
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||||
template <class L>
|
||||
double distance_to_infinite_squared(const L& line, const Vec<Dim<L>, Scalar<L>>& point)
|
||||
{
|
||||
Vec<Dim<L>, Scalar<L>> nearest_point;
|
||||
return distance_to_infinite_squared<L>(line, point, &nearest_point);
|
||||
}
|
||||
|
||||
// Returns a distance to the closest point on the infinite.
|
||||
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||||
template <class L>
|
||||
double distance_to_infinite(const L& line, const Vec<Dim<L>, Scalar<L>>& point)
|
||||
{
|
||||
return std::sqrt(distance_to_infinite_squared(line, point));
|
||||
}
|
||||
|
||||
template <class L>
|
||||
bool intersection(const L& l1, const L& l2, Vec<Dim<L>, Scalar<L>>* intersection_pt)
|
||||
{
|
||||
using Floating = typename std::conditional<std::is_floating_point<Scalar<L>>::value, Scalar<L>, double>::type;
|
||||
using VecType = const Vec<Dim<L>, Floating>;
|
||||
const VecType v1 = (l1.b - l1.a).template cast<Floating>();
|
||||
const VecType v2 = (l2.b - l2.a).template cast<Floating>();
|
||||
Floating denom = cross2(v1, v2);
|
||||
if (fabs(denom) < EPSILON)
|
||||
#if 0
|
||||
// Lines are collinear. Return true if they are coincident (overlappign).
|
||||
return ! (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON);
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
const VecType v12 = (l1.a - l2.a).template cast<Floating>();
|
||||
Floating nume_a = cross2(v2, v12);
|
||||
Floating nume_b = cross2(v1, v12);
|
||||
Floating t1 = nume_a / denom;
|
||||
Floating t2 = nume_b / denom;
|
||||
if (t1 >= 0 && t1 <= 1.0f && t2 >= 0 && t2 <= 1.0f) {
|
||||
// Get the intersection point.
|
||||
(*intersection_pt) = (l1.a.template cast<Floating>() + t1 * v1).template cast<Scalar<L>>();
|
||||
return true;
|
||||
}
|
||||
return false; // not intersecting
|
||||
}
|
||||
|
||||
} // namespace line_alg
|
||||
|
||||
class Line
|
||||
{
|
||||
class Line {
|
||||
public:
|
||||
Line() {}
|
||||
Line(const Point& _a, const Point& _b) : a(_a), b(_b) {}
|
||||
explicit operator Lines() const { Lines lines; lines.emplace_back(*this); return lines; }
|
||||
void scale(double factor) { this->a *= factor; this->b *= factor; }
|
||||
void translate(const Point &v) { this->a += v; this->b += v; }
|
||||
void translate(double x, double y) { this->translate(Point(x, y)); }
|
||||
void rotate(double angle, const Point ¢er) { this->a.rotate(angle, center); this->b.rotate(angle, center); }
|
||||
void reverse() { std::swap(this->a, this->b); }
|
||||
Line() { }
|
||||
Line(const Point& _a, const Point& _b)
|
||||
: a(_a)
|
||||
, b(_b)
|
||||
{
|
||||
}
|
||||
explicit operator Lines() const
|
||||
{
|
||||
Lines lines;
|
||||
lines.emplace_back(*this);
|
||||
return lines;
|
||||
}
|
||||
void scale(double factor)
|
||||
{
|
||||
this->a *= factor;
|
||||
this->b *= factor;
|
||||
}
|
||||
void translate(const Point& v)
|
||||
{
|
||||
this->a += v;
|
||||
this->b += v;
|
||||
}
|
||||
void translate(double x, double y) { this->translate(Point(x, y)); }
|
||||
void rotate(double angle, const Point& center)
|
||||
{
|
||||
this->a.rotate(angle, center);
|
||||
this->b.rotate(angle, center);
|
||||
}
|
||||
void reverse() { std::swap(this->a, this->b); }
|
||||
double length() const { return (b - a).cast<double>().norm(); }
|
||||
Point midpoint() const { return (this->a + this->b) / 2; }
|
||||
bool intersection_infinite(const Line &other, Point* point) const;
|
||||
bool operator==(const Line &rhs) const { return this->a == rhs.a && this->b == rhs.b; }
|
||||
double distance_to_squared(const Point &point) const { return distance_to_squared(point, this->a, this->b); }
|
||||
double distance_to_squared(const Point &point, Point *closest_point) const { return line_alg::distance_to_squared(*this, point, closest_point); }
|
||||
double distance_to(const Point &point) const { return distance_to(point, this->a, this->b); }
|
||||
double distance_to_infinite_squared(const Point &point, Point *closest_point) const { return line_alg::distance_to_infinite_squared(*this, point, closest_point); }
|
||||
double perp_distance_to(const Point &point) const;
|
||||
bool parallel_to(double angle) const;
|
||||
bool parallel_to(const Line& line) const;
|
||||
bool perpendicular_to(double angle) const;
|
||||
bool perpendicular_to(const Line& line) const;
|
||||
Point midpoint() const { return (this->a + this->b) / 2; }
|
||||
bool intersection_infinite(const Line& other, Point* point) const;
|
||||
bool operator==(const Line& rhs) const { return this->a == rhs.a && this->b == rhs.b; }
|
||||
double distance_to_squared(const Point& point) const { return distance_to_squared(point, this->a, this->b); }
|
||||
double distance_to_squared(const Point& point, Point* closest_point) const { return line_alg::distance_to_squared(*this, point, closest_point); }
|
||||
double distance_to(const Point& point) const { return distance_to(point, this->a, this->b); }
|
||||
double distance_to_infinite_squared(const Point& point, Point* closest_point) const { return line_alg::distance_to_infinite_squared(*this, point, closest_point); }
|
||||
double perp_distance_to(const Point& point) const;
|
||||
bool parallel_to(double angle) const;
|
||||
bool parallel_to(const Line& line) const;
|
||||
bool perpendicular_to(double angle) const;
|
||||
bool perpendicular_to(const Line& line) const;
|
||||
double atan2_() const { return atan2(this->b(1) - this->a(1), this->b(0) - this->a(0)); }
|
||||
double orientation() const;
|
||||
double direction() const;
|
||||
Vector vector() const { return this->b - this->a; }
|
||||
Vector normal() const { return Vector((this->b(1) - this->a(1)), -(this->b(0) - this->a(0))); }
|
||||
bool intersection(const Line& line, Point* intersection) const;
|
||||
double ccw(const Point& point) const { return point.ccw(*this); }
|
||||
bool intersection(const Line& line, Point* intersection) const;
|
||||
// Clip a line with a bounding box. Returns false if the line is completely outside of the bounding box.
|
||||
bool clip_with_bbox(const BoundingBox &bbox);
|
||||
bool clip_with_bbox(const BoundingBox& bbox);
|
||||
// Extend the line from both sides by an offset.
|
||||
void extend(double offset);
|
||||
void extend(double offset);
|
||||
|
||||
static inline double distance_to_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_squared(Line{a, b}, Vec<2, coord_t>{point}); }
|
||||
static double distance_to(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_squared(point, a, b)); }
|
||||
static inline double distance_to_squared(const Point& point, const Point& a, const Point& b) { return line_alg::distance_to_squared(Line { a, b }, Vec<2, coord_t> { point }); }
|
||||
static double distance_to(const Point& point, const Point& a, const Point& b) { return sqrt(distance_to_squared(point, a, b)); }
|
||||
|
||||
// Returns a distance to the closest point on the infinite.
|
||||
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||||
static inline double distance_to_infinite_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_infinite_squared(Line{a, b}, Vec<2, coord_t>{point}); }
|
||||
static double distance_to_infinite(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_infinite_squared(point, a, b)); }
|
||||
static inline double distance_to_infinite_squared(const Point& point, const Point& a, const Point& b) { return line_alg::distance_to_infinite_squared(Line { a, b }, Vec<2, coord_t> { point }); }
|
||||
static double distance_to_infinite(const Point& point, const Point& a, const Point& b) { return sqrt(distance_to_infinite_squared(point, a, b)); }
|
||||
|
||||
Point a;
|
||||
Point b;
|
||||
|
@ -173,23 +225,43 @@ public:
|
|||
using Scalar = Point::Scalar;
|
||||
};
|
||||
|
||||
class ThickLine : public Line
|
||||
{
|
||||
class ThickLine : public Line {
|
||||
public:
|
||||
ThickLine() : a_width(0), b_width(0) {}
|
||||
ThickLine(const Point& a, const Point& b) : Line(a, b), a_width(0), b_width(0) {}
|
||||
ThickLine(const Point& a, const Point& b, double wa, double wb) : Line(a, b), a_width(wa), b_width(wb) {}
|
||||
ThickLine()
|
||||
: a_width(0)
|
||||
, b_width(0)
|
||||
{
|
||||
}
|
||||
ThickLine(const Point& a, const Point& b)
|
||||
: Line(a, b)
|
||||
, a_width(0)
|
||||
, b_width(0)
|
||||
{
|
||||
}
|
||||
ThickLine(const Point& a, const Point& b, double wa, double wb)
|
||||
: Line(a, b)
|
||||
, a_width(wa)
|
||||
, b_width(wb)
|
||||
{
|
||||
}
|
||||
|
||||
double a_width, b_width;
|
||||
};
|
||||
|
||||
class Line3
|
||||
{
|
||||
class Line3 {
|
||||
public:
|
||||
Line3() : a(Vec3crd::Zero()), b(Vec3crd::Zero()) {}
|
||||
Line3(const Vec3crd& _a, const Vec3crd& _b) : a(_a), b(_b) {}
|
||||
Line3()
|
||||
: a(Vec3crd::Zero())
|
||||
, b(Vec3crd::Zero())
|
||||
{
|
||||
}
|
||||
Line3(const Vec3crd& _a, const Vec3crd& _b)
|
||||
: a(_a)
|
||||
, b(_b)
|
||||
{
|
||||
}
|
||||
|
||||
double length() const { return (this->a - this->b).cast<double>().norm(); }
|
||||
double length() const { return (this->a - this->b).cast<double>().norm(); }
|
||||
Vec3crd vector() const { return this->b - this->a; }
|
||||
|
||||
Vec3crd a;
|
||||
|
@ -199,11 +271,18 @@ public:
|
|||
using Scalar = Vec3crd::Scalar;
|
||||
};
|
||||
|
||||
class Linef
|
||||
{
|
||||
class Linef {
|
||||
public:
|
||||
Linef() : a(Vec2d::Zero()), b(Vec2d::Zero()) {}
|
||||
Linef(const Vec2d& _a, const Vec2d& _b) : a(_a), b(_b) {}
|
||||
Linef()
|
||||
: a(Vec2d::Zero())
|
||||
, b(Vec2d::Zero())
|
||||
{
|
||||
}
|
||||
Linef(const Vec2d& _a, const Vec2d& _b)
|
||||
: a(_a)
|
||||
, b(_b)
|
||||
{
|
||||
}
|
||||
|
||||
Vec2d a;
|
||||
Vec2d b;
|
||||
|
@ -211,18 +290,30 @@ public:
|
|||
static const constexpr int Dim = 2;
|
||||
using Scalar = Vec2d::Scalar;
|
||||
};
|
||||
using Linesf = std::vector<Linef>;
|
||||
|
||||
class Linef3
|
||||
{
|
||||
class Linef3 {
|
||||
public:
|
||||
Linef3() : a(Vec3d::Zero()), b(Vec3d::Zero()) {}
|
||||
Linef3(const Vec3d& _a, const Vec3d& _b) : a(_a), b(_b) {}
|
||||
Linef3()
|
||||
: a(Vec3d::Zero())
|
||||
, b(Vec3d::Zero())
|
||||
{
|
||||
}
|
||||
Linef3(const Vec3d& _a, const Vec3d& _b)
|
||||
: a(_a)
|
||||
, b(_b)
|
||||
{
|
||||
}
|
||||
|
||||
Vec3d intersect_plane(double z) const;
|
||||
void scale(double factor) { this->a *= factor; this->b *= factor; }
|
||||
Vec3d vector() const { return this->b - this->a; }
|
||||
Vec3d unit_vector() const { return (length() == 0.0) ? Vec3d::Zero() : vector().normalized(); }
|
||||
double length() const { return vector().norm(); }
|
||||
Vec3d intersect_plane(double z) const;
|
||||
void scale(double factor)
|
||||
{
|
||||
this->a *= factor;
|
||||
this->b *= factor;
|
||||
}
|
||||
Vec3d vector() const { return this->b - this->a; }
|
||||
Vec3d unit_vector() const { return (length() == 0.0) ? Vec3d::Zero() : vector().normalized(); }
|
||||
double length() const { return vector().norm(); }
|
||||
|
||||
Vec3d a;
|
||||
Vec3d b;
|
||||
|
@ -231,26 +322,31 @@ public:
|
|||
using Scalar = Vec3d::Scalar;
|
||||
};
|
||||
|
||||
BoundingBox get_extents(const Lines &lines);
|
||||
BoundingBox get_extents(const Lines& lines);
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
// start Boost
|
||||
#include <boost/polygon/polygon.hpp>
|
||||
namespace boost { namespace polygon {
|
||||
namespace boost {
|
||||
namespace polygon {
|
||||
template <>
|
||||
struct geometry_concept<Slic3r::Line> { typedef segment_concept type; };
|
||||
struct geometry_concept<Slic3r::Line> {
|
||||
typedef segment_concept type;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct segment_traits<Slic3r::Line> {
|
||||
typedef coord_t coordinate_type;
|
||||
typedef Slic3r::Point point_type;
|
||||
|
||||
static inline point_type get(const Slic3r::Line& line, direction_1d dir) {
|
||||
|
||||
static inline point_type get(const Slic3r::Line& line, direction_1d dir)
|
||||
{
|
||||
return dir.to_int() ? line.b : line.a;
|
||||
}
|
||||
};
|
||||
} }
|
||||
}
|
||||
}
|
||||
// end Boost
|
||||
|
||||
#endif // slic3r_Line_hpp_
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue