1.4.5 features (#319)

* Changes:
Improve precise wall
Port PS2.6 overhang slowdown feature
Implement overhang fan for new overhang slowdown algo
Add option to switch between classic/new overhang slowdown implementation
Set Arachne as default engine
Small adjustment of temp calibration range
turn off small perimeter by default
Small UI tweaks
Change default top_surface_pattern to monotonic
Fine tune jerk

Signed-off-by: SoftFever <softfeverever@gmail.com>

* Disable optimizations for RelWithDebInfo

Signed-off-by: SoftFever <softfeverever@gmail.com>

* fix an issue that max volumetirc/vfa calibration can't send to print

Signed-off-by: SoftFever <softfeverever@gmail.com>
#322

* fix build errors

Signed-off-by: SoftFever <softfeverever@gmail.com>

---------

Signed-off-by: SoftFever <softfeverever@gmail.com>
This commit is contained in:
SoftFever 2023-02-17 23:09:18 +08:00 committed by GitHub
parent 0e0b8d297e
commit e9613e971d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
48 changed files with 3182 additions and 434 deletions

View file

@ -0,0 +1,329 @@
#ifndef slic3r_ExtrusionProcessor_hpp_
#define slic3r_ExtrusionProcessor_hpp_
#include "../AABBTreeLines.hpp"
//#include "../SupportSpotsGenerator.hpp"
#include "../libslic3r.h"
#include "../ExtrusionEntity.hpp"
#include "../Layer.hpp"
#include "../Point.hpp"
#include "../SVG.hpp"
#include "../BoundingBox.hpp"
#include "../Polygon.hpp"
#include "../ClipperUtils.hpp"
#include "../Flow.hpp"
#include "../Config.hpp"
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <limits>
#include <numeric>
#include <unordered_map>
#include <utility>
#include <vector>
namespace Slic3r {
class SlidingWindowCurvatureAccumulator
{
float window_size;
float total_distance = 0; // accumulated distance
float total_curvature = 0; // accumulated signed ccw angles
deque<float> distances;
deque<float> angles;
public:
SlidingWindowCurvatureAccumulator(float window_size) : window_size(window_size) {}
void add_point(float distance, float angle)
{
total_distance += distance;
total_curvature += angle;
distances.push_back(distance);
angles.push_back(angle);
while (distances.size() > 1 && total_distance > window_size) {
total_distance -= distances.front();
total_curvature -= angles.front();
distances.pop_front();
angles.pop_front();
}
}
float get_curvature() const
{
return total_curvature / window_size;
}
void reset()
{
total_curvature = 0;
total_distance = 0;
distances.clear();
angles.clear();
}
};
class CurvatureEstimator
{
static const size_t sliders_count = 3;
SlidingWindowCurvatureAccumulator sliders[sliders_count] = {{1.0},{4.0}, {10.0}};
public:
void add_point(float distance, float angle)
{
if (distance < EPSILON)
return;
for (SlidingWindowCurvatureAccumulator &slider : sliders) {
slider.add_point(distance, angle);
}
}
float get_curvature()
{
float max_curvature = 0.0f;
for (const SlidingWindowCurvatureAccumulator &slider : sliders) {
if (abs(slider.get_curvature()) > abs(max_curvature)) {
max_curvature = slider.get_curvature();
}
}
return max_curvature;
}
void reset()
{
for (SlidingWindowCurvatureAccumulator &slider : sliders) {
slider.reset();
}
}
};
struct ExtendedPoint
{
ExtendedPoint(Vec2d position, float distance = 0.0, size_t nearest_prev_layer_line = size_t(-1), float curvature = 0.0)
: position(position), distance(distance), nearest_prev_layer_line(nearest_prev_layer_line), curvature(curvature)
{}
Vec2d position;
float distance;
size_t nearest_prev_layer_line;
float curvature;
};
template<bool SCALED_INPUT, bool ADD_INTERSECTIONS, bool PREV_LAYER_BOUNDARY_OFFSET, bool SIGNED_DISTANCE, typename P, typename L>
std::vector<ExtendedPoint> estimate_points_properties(const std::vector<P> &input_points,
const AABBTreeLines::LinesDistancer<L> &unscaled_prev_layer,
float flow_width,
float max_line_length = -1.0f)
{
using AABBScalar = typename AABBTreeLines::LinesDistancer<L>::Scalar;
if (input_points.empty())
return {};
float boundary_offset = PREV_LAYER_BOUNDARY_OFFSET ? 0.5 * flow_width : 0.0f;
CurvatureEstimator cestim;
auto maybe_unscale = [](const P &p) { return SCALED_INPUT ? unscaled(p) : p.template cast<double>(); };
std::vector<ExtendedPoint> points;
points.reserve(input_points.size() * (ADD_INTERSECTIONS ? 1.5 : 1));
{
ExtendedPoint start_point{maybe_unscale(input_points.front())};
auto [distance, nearest_line, x] = unscaled_prev_layer.template distance_from_lines_extra<SIGNED_DISTANCE>(start_point.position.cast<AABBScalar>());
start_point.distance = distance + boundary_offset;
start_point.nearest_prev_layer_line = nearest_line;
points.push_back(start_point);
}
for (size_t i = 1; i < input_points.size(); i++) {
ExtendedPoint next_point{maybe_unscale(input_points[i])};
auto [distance, nearest_line, x] = unscaled_prev_layer.template distance_from_lines_extra<SIGNED_DISTANCE>(next_point.position.cast<AABBScalar>());
next_point.distance = distance + boundary_offset;
next_point.nearest_prev_layer_line = nearest_line;
if (ADD_INTERSECTIONS &&
((points.back().distance > boundary_offset + EPSILON) != (next_point.distance > boundary_offset + EPSILON))) {
const ExtendedPoint &prev_point = points.back();
auto intersections = unscaled_prev_layer.template intersections_with_line<true>(L{prev_point.position.cast<AABBScalar>(), next_point.position.cast<AABBScalar>()});
for (const auto &intersection : intersections) {
points.emplace_back(intersection.first.template cast<double>(), boundary_offset, intersection.second);
}
}
points.push_back(next_point);
}
if (PREV_LAYER_BOUNDARY_OFFSET && ADD_INTERSECTIONS) {
std::vector<ExtendedPoint> new_points;
new_points.reserve(points.size()*2);
new_points.push_back(points.front());
for (int point_idx = 0; point_idx < int(points.size()) - 1; ++point_idx) {
const ExtendedPoint &curr = points[point_idx];
const ExtendedPoint &next = points[point_idx + 1];
if ((curr.distance > 0 && curr.distance < boundary_offset + 2.0f) ||
(next.distance > 0 && next.distance < boundary_offset + 2.0f)) {
double line_len = (next.position - curr.position).norm();
if (line_len > 4.0f) {
double a0 = std::clamp((curr.distance + 2 * boundary_offset) / line_len, 0.0, 1.0);
double a1 = std::clamp(1.0f - (next.distance + 2 * boundary_offset) / line_len, 0.0, 1.0);
double t0 = std::min(a0, a1);
double t1 = std::max(a0, a1);
if (t0 < 1.0) {
auto p0 = curr.position + t0 * (next.position - curr.position);
auto [p0_dist, p0_near_l, p0_x] = unscaled_prev_layer.template distance_from_lines_extra<SIGNED_DISTANCE>(p0.cast<AABBScalar>());
new_points.push_back(ExtendedPoint{p0, float(p0_dist + boundary_offset), p0_near_l});
}
if (t1 > 0.0) {
auto p1 = curr.position + t1 * (next.position - curr.position);
auto [p1_dist, p1_near_l, p1_x] = unscaled_prev_layer.template distance_from_lines_extra<SIGNED_DISTANCE>(p1.cast<AABBScalar>());
new_points.push_back(ExtendedPoint{p1, float(p1_dist + boundary_offset), p1_near_l});
}
}
}
new_points.push_back(next);
}
points = new_points;
}
if (max_line_length > 0) {
std::vector<ExtendedPoint> new_points;
new_points.reserve(points.size()*2);
{
for (size_t i = 0; i + 1 < points.size(); i++) {
const ExtendedPoint &curr = points[i];
const ExtendedPoint &next = points[i + 1];
new_points.push_back(curr);
double len = (next.position - curr.position).squaredNorm();
double t = sqrt((max_line_length * max_line_length) / len);
size_t new_point_count = 1.0 / t;
for (size_t j = 1; j < new_point_count + 1; j++) {
Vec2d pos = curr.position * (1.0 - j * t) + next.position * (j * t);
auto [p_dist, p_near_l,
p_x] = unscaled_prev_layer.template distance_from_lines_extra<SIGNED_DISTANCE>(pos.cast<AABBScalar>());
new_points.push_back(ExtendedPoint{pos, float(p_dist + boundary_offset), p_near_l});
}
}
new_points.push_back(points.back());
}
points = new_points;
}
for (int point_idx = 0; point_idx < int(points.size()); ++point_idx) {
ExtendedPoint &a = points[point_idx];
ExtendedPoint &prev = points[point_idx > 0 ? point_idx - 1 : point_idx];
int prev_point_idx = point_idx;
while (prev_point_idx > 0) {
prev_point_idx--;
if ((a.position - points[prev_point_idx].position).squaredNorm() > EPSILON) { break; }
}
int next_point_index = point_idx;
while (next_point_index < int(points.size()) - 1) {
next_point_index++;
if ((a.position - points[next_point_index].position).squaredNorm() > EPSILON) { break; }
}
if (prev_point_idx != point_idx && next_point_index != point_idx) {
float distance = (prev.position - a.position).norm();
float alfa = angle(a.position - points[prev_point_idx].position, points[next_point_index].position - a.position);
cestim.add_point(distance, alfa);
}
a.curvature = cestim.get_curvature();
}
return points;
}
struct ProcessedPoint
{
Point p;
float speed = 1.0f;
float overlap = 1.0f;
};
class ExtrusionQualityEstimator
{
std::unordered_map<const PrintObject *, AABBTreeLines::LinesDistancer<Linef>> prev_layer_boundaries;
std::unordered_map<const PrintObject *, AABBTreeLines::LinesDistancer<Linef>> next_layer_boundaries;
const PrintObject *current_object;
public:
void set_current_object(const PrintObject *object) { current_object = object; }
void prepare_for_new_layer(const Layer *layer)
{
if (layer == nullptr) return;
const PrintObject *object = layer->object();
prev_layer_boundaries[object] = next_layer_boundaries[object];
next_layer_boundaries[object] = AABBTreeLines::LinesDistancer<Linef>{to_unscaled_linesf(layer->lslices)};
}
std::vector<ProcessedPoint> estimate_extrusion_quality(const ExtrusionPath &path,
const ConfigOptionPercents &overlaps,
const ConfigOptionFloatsOrPercents &speeds,
float ext_perimeter_speed,
float original_speed)
{
size_t speed_sections_count = std::min(overlaps.values.size(), speeds.values.size());
std::vector<std::pair<float, float>> speed_sections;
for (size_t i = 0; i < speed_sections_count; i++) {
float distance = path.width * (1.0 - (overlaps.get_at(i) / 100.0));
float speed = speeds.get_at(i).percent ? (ext_perimeter_speed * speeds.get_at(i).value / 100.0) : speeds.get_at(i).value;
speed_sections.push_back({distance, speed});
}
std::sort(speed_sections.begin(), speed_sections.end(),
[](const std::pair<float, float> &a, const std::pair<float, float> &b) {
if (a.first == b.first) {
return a.second > b.second;
}
return a.first < b.first; });
std::pair<float, float> last_section{INFINITY, 0};
for (auto &section : speed_sections) {
if (section.first == last_section.first) {
section.second = last_section.second;
} else {
last_section = section;
}
}
std::vector<ExtendedPoint> extended_points =
estimate_points_properties<true, true, true, true>(path.polyline.points, prev_layer_boundaries[current_object], path.width);
const auto width_inv = 1.0f / path.width;
std::vector<ProcessedPoint> processed_points;
processed_points.reserve(extended_points.size());
for (size_t i = 0; i < extended_points.size(); i++) {
const ExtendedPoint &curr = extended_points[i];
const ExtendedPoint &next = extended_points[i + 1 < extended_points.size() ? i + 1 : i];
auto calculate_speed = [&speed_sections, &original_speed](float distance) {
float final_speed;
if (distance <= speed_sections.front().first) {
final_speed = original_speed;
} else if (distance >= speed_sections.back().first) {
final_speed = speed_sections.back().second;
} else {
size_t section_idx = 0;
while (distance > speed_sections[section_idx + 1].first) {
section_idx++;
}
float t = (distance - speed_sections[section_idx].first) /
(speed_sections[section_idx + 1].first - speed_sections[section_idx].first);
t = std::clamp(t, 0.0f, 1.0f);
final_speed = (1.0f - t) * speed_sections[section_idx].second + t * speed_sections[section_idx + 1].second;
}
return final_speed;
};
float extrusion_speed = std::min(calculate_speed(curr.distance), calculate_speed(next.distance));
float overlap = std::min(1 - curr.distance * width_inv, 1 - next.distance * width_inv);
processed_points.push_back({ scaled(curr.position), extrusion_speed, overlap });
}
return processed_points;
}
};
} // namespace Slic3r
#endif // slic3r_ExtrusionProcessor_hpp_