mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-12 01:07:57 -06:00
Parallel placer now works with the custom Slic3r object function. Works an order of magnitude faster.
This commit is contained in:
parent
8617b0a409
commit
e522ad1a00
18 changed files with 739 additions and 296 deletions
|
@ -100,55 +100,54 @@ namespace bgi = boost::geometry::index;
|
|||
using SpatElement = std::pair<Box, unsigned>;
|
||||
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
|
||||
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
|
||||
template<class TBin>
|
||||
using TPacker = typename placers::_NofitPolyPlacer<PolygonImpl, TBin>;
|
||||
|
||||
const double BIG_ITEM_TRESHOLD = 0.02;
|
||||
|
||||
Box boundingBox(const Box& pilebb, const Box& ibb ) {
|
||||
auto& pminc = pilebb.minCorner();
|
||||
auto& pmaxc = pilebb.maxCorner();
|
||||
auto& iminc = ibb.minCorner();
|
||||
auto& imaxc = ibb.maxCorner();
|
||||
PointImpl minc, maxc;
|
||||
|
||||
setX(minc, std::min(getX(pminc), getX(iminc)));
|
||||
setY(minc, std::min(getY(pminc), getY(iminc)));
|
||||
|
||||
setX(maxc, std::max(getX(pmaxc), getX(imaxc)));
|
||||
setY(maxc, std::max(getY(pmaxc), getY(imaxc)));
|
||||
return Box(minc, maxc);
|
||||
}
|
||||
|
||||
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
|
||||
objfunc(const PointImpl& bincenter,
|
||||
double bin_area,
|
||||
sl::Shapes<PolygonImpl>& pile, // The currently arranged pile
|
||||
const shapelike::Shapes<PolygonImpl>& merged_pile,
|
||||
const Box& pilebb,
|
||||
const ItemGroup& items,
|
||||
const Item &item,
|
||||
double bin_area,
|
||||
double norm, // A norming factor for physical dimensions
|
||||
std::vector<double>& areacache, // pile item areas will be cached
|
||||
// a spatial index to quickly get neighbors of the candidate item
|
||||
SpatIndex& spatindex,
|
||||
const SpatIndex& spatindex,
|
||||
const ItemGroup& remaining
|
||||
)
|
||||
{
|
||||
using Coord = TCoord<PointImpl>;
|
||||
|
||||
static const double BIG_ITEM_TRESHOLD = 0.02;
|
||||
static const double ROUNDNESS_RATIO = 0.5;
|
||||
static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;
|
||||
|
||||
// We will treat big items (compared to the print bed) differently
|
||||
auto isBig = [&areacache, bin_area](double a) {
|
||||
auto isBig = [bin_area](double a) {
|
||||
return a/bin_area > BIG_ITEM_TRESHOLD ;
|
||||
};
|
||||
|
||||
// If a new bin has been created:
|
||||
if(pile.size() < areacache.size()) {
|
||||
areacache.clear();
|
||||
spatindex.clear();
|
||||
}
|
||||
|
||||
// We must fill the caches:
|
||||
int idx = 0;
|
||||
for(auto& p : pile) {
|
||||
if(idx == areacache.size()) {
|
||||
areacache.emplace_back(sl::area(p));
|
||||
if(isBig(areacache[idx]))
|
||||
spatindex.insert({sl::boundingBox(p), idx});
|
||||
}
|
||||
|
||||
idx++;
|
||||
}
|
||||
|
||||
// Candidate item bounding box
|
||||
auto ibb = item.boundingBox();
|
||||
auto ibb = sl::boundingBox(item.transformedShape());
|
||||
|
||||
// Calculate the full bounding box of the pile with the candidate item
|
||||
pile.emplace_back(item.transformedShape());
|
||||
auto fullbb = sl::boundingBox(pile);
|
||||
pile.pop_back();
|
||||
auto fullbb = boundingBox(pilebb, ibb);
|
||||
|
||||
// The bounding box of the big items (they will accumulate in the center
|
||||
// of the pile
|
||||
|
@ -189,10 +188,12 @@ objfunc(const PointImpl& bincenter,
|
|||
double density = 0;
|
||||
|
||||
if(remaining.empty()) {
|
||||
pile.emplace_back(item.transformedShape());
|
||||
auto chull = sl::convexHull(pile);
|
||||
pile.pop_back();
|
||||
strategies::EdgeCache<PolygonImpl> ec(chull);
|
||||
|
||||
auto mp = merged_pile;
|
||||
mp.emplace_back(item.transformedShape());
|
||||
auto chull = sl::convexHull(mp);
|
||||
|
||||
placers::EdgeCache<PolygonImpl> ec(chull);
|
||||
|
||||
double circ = ec.circumference() / norm;
|
||||
double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm;
|
||||
|
@ -201,16 +202,15 @@ objfunc(const PointImpl& bincenter,
|
|||
} else {
|
||||
// Prepare a variable for the alignment score.
|
||||
// This will indicate: how well is the candidate item aligned with
|
||||
// its neighbors. We will check the aligment with all neighbors and
|
||||
// its neighbors. We will check the alignment with all neighbors and
|
||||
// return the score for the best alignment. So it is enough for the
|
||||
// candidate to be aligned with only one item.
|
||||
auto alignment_score = 1.0;
|
||||
|
||||
density = (fullbb.width()*fullbb.height()) / (norm*norm);
|
||||
auto& trsh = item.transformedShape();
|
||||
auto querybb = item.boundingBox();
|
||||
|
||||
// Query the spatial index for the neigbours
|
||||
// Query the spatial index for the neighbors
|
||||
std::vector<SpatElement> result;
|
||||
result.reserve(spatindex.size());
|
||||
spatindex.query(bgi::intersects(querybb),
|
||||
|
@ -218,10 +218,10 @@ objfunc(const PointImpl& bincenter,
|
|||
|
||||
for(auto& e : result) { // now get the score for the best alignment
|
||||
auto idx = e.second;
|
||||
auto& p = pile[idx];
|
||||
auto parea = areacache[idx];
|
||||
Item& p = items[idx];
|
||||
auto parea = p.area();
|
||||
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
|
||||
auto bb = sl::boundingBox(sl::Shapes<PolygonImpl>{p, trsh});
|
||||
auto bb = boundingBox(p.boundingBox(), ibb);
|
||||
auto bbarea = bb.area();
|
||||
auto ascore = 1.0 - (item.area() + parea)/bbarea;
|
||||
|
||||
|
@ -231,7 +231,7 @@ objfunc(const PointImpl& bincenter,
|
|||
|
||||
// The final mix of the score is the balance between the distance
|
||||
// from the full pile center, the pack density and the
|
||||
// alignment with the neigbours
|
||||
// alignment with the neighbors
|
||||
if(result.empty())
|
||||
score = 0.5 * dist + 0.5 * density;
|
||||
else
|
||||
|
@ -239,7 +239,6 @@ objfunc(const PointImpl& bincenter,
|
|||
}
|
||||
} else if( !isBig(item.area()) && spatindex.empty()) {
|
||||
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
|
||||
|
||||
// Bindist is surprisingly enough...
|
||||
score = bindist;
|
||||
} else {
|
||||
|
@ -271,7 +270,7 @@ void fillConfig(PConf& pcfg) {
|
|||
// Goes from 0.0 to 1.0 and scales performance as well
|
||||
pcfg.accuracy = 0.65f;
|
||||
|
||||
pcfg.parallel = false;
|
||||
pcfg.parallel = true;
|
||||
}
|
||||
|
||||
template<class TBin>
|
||||
|
@ -280,7 +279,8 @@ class AutoArranger {};
|
|||
template<class TBin>
|
||||
class _ArrBase {
|
||||
protected:
|
||||
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, TBin>;
|
||||
|
||||
using Placer = TPacker<TBin>;
|
||||
using Selector = FirstFitSelection;
|
||||
using Packer = Nester<Placer, Selector>;
|
||||
using PConfig = typename Packer::PlacementConfig;
|
||||
|
@ -290,10 +290,12 @@ protected:
|
|||
Packer pck_;
|
||||
PConfig pconf_; // Placement configuration
|
||||
double bin_area_;
|
||||
std::vector<double> areacache_;
|
||||
SpatIndex rtree_;
|
||||
double norm_;
|
||||
Pile pile_cache_;
|
||||
Pile merged_pile_;
|
||||
Box pilebb_;
|
||||
ItemGroup remaining_;
|
||||
ItemGroup items_;
|
||||
public:
|
||||
|
||||
_ArrBase(const TBin& bin, Distance dist,
|
||||
|
@ -302,11 +304,35 @@ public:
|
|||
norm_(std::sqrt(sl::area(bin)))
|
||||
{
|
||||
fillConfig(pconf_);
|
||||
|
||||
pconf_.before_packing =
|
||||
[this](const Pile& merged_pile, // merged pile
|
||||
const ItemGroup& items, // packed items
|
||||
const ItemGroup& remaining) // future items to be packed
|
||||
{
|
||||
items_ = items;
|
||||
merged_pile_ = merged_pile;
|
||||
remaining_ = remaining;
|
||||
|
||||
pilebb_ = sl::boundingBox(merged_pile);
|
||||
|
||||
rtree_.clear();
|
||||
|
||||
// We will treat big items (compared to the print bed) differently
|
||||
auto isBig = [this](double a) {
|
||||
return a/bin_area_ > BIG_ITEM_TRESHOLD ;
|
||||
};
|
||||
|
||||
for(unsigned idx = 0; idx < items.size(); ++idx) {
|
||||
Item& itm = items[idx];
|
||||
if(isBig(itm.area())) rtree_.insert({itm.boundingBox(), idx});
|
||||
}
|
||||
};
|
||||
|
||||
pck_.progressIndicator(progressind);
|
||||
}
|
||||
|
||||
template<class...Args> inline IndexedPackGroup operator()(Args&&...args) {
|
||||
areacache_.clear();
|
||||
rtree_.clear();
|
||||
return pck_.executeIndexed(std::forward<Args>(args)...);
|
||||
}
|
||||
|
@ -320,26 +346,28 @@ public:
|
|||
std::function<void(unsigned)> progressind):
|
||||
_ArrBase<Box>(bin, dist, progressind)
|
||||
{
|
||||
// pconf_.object_function = [this, bin] (
|
||||
// const Pile& pile_c,
|
||||
// const Item &item,
|
||||
// const ItemGroup& rem) {
|
||||
|
||||
// auto& pile = pile_cache_;
|
||||
// if(pile.size() != pile_c.size()) pile = pile_c;
|
||||
pconf_.object_function = [this, bin] (const Item &item) {
|
||||
|
||||
// auto result = objfunc(bin.center(), bin_area_, pile,
|
||||
// item, norm_, areacache_, rtree_, rem);
|
||||
// double score = std::get<0>(result);
|
||||
// auto& fullbb = std::get<1>(result);
|
||||
auto result = objfunc(bin.center(),
|
||||
merged_pile_,
|
||||
pilebb_,
|
||||
items_,
|
||||
item,
|
||||
bin_area_,
|
||||
norm_,
|
||||
rtree_,
|
||||
remaining_);
|
||||
|
||||
// auto wdiff = fullbb.width() - bin.width();
|
||||
// auto hdiff = fullbb.height() - bin.height();
|
||||
// if(wdiff > 0) score += std::pow(wdiff, 2) / norm_;
|
||||
// if(hdiff > 0) score += std::pow(hdiff, 2) / norm_;
|
||||
double score = std::get<0>(result);
|
||||
auto& fullbb = std::get<1>(result);
|
||||
|
||||
// return score;
|
||||
// };
|
||||
double miss = Placer::overfit(fullbb, bin);
|
||||
miss = miss > 0? miss : 0;
|
||||
score += miss*miss;
|
||||
|
||||
return score;
|
||||
};
|
||||
|
||||
pck_.configure(pconf_);
|
||||
}
|
||||
|
@ -355,36 +383,31 @@ public:
|
|||
std::function<void(unsigned)> progressind):
|
||||
_ArrBase<lnCircle>(bin, dist, progressind) {
|
||||
|
||||
pconf_.object_function = [this, &bin] (
|
||||
const Pile& pile_c,
|
||||
const Item &item,
|
||||
const ItemGroup& rem) {
|
||||
pconf_.object_function = [this, &bin] (const Item &item) {
|
||||
|
||||
auto& pile = pile_cache_;
|
||||
if(pile.size() != pile_c.size()) pile = pile_c;
|
||||
auto result = objfunc(bin.center(),
|
||||
merged_pile_,
|
||||
pilebb_,
|
||||
items_,
|
||||
item,
|
||||
bin_area_,
|
||||
norm_,
|
||||
rtree_,
|
||||
remaining_);
|
||||
|
||||
auto result = objfunc(bin.center(), bin_area_, pile, item, norm_,
|
||||
areacache_, rtree_, rem);
|
||||
double score = std::get<0>(result);
|
||||
auto& fullbb = std::get<1>(result);
|
||||
|
||||
auto d = pl::distance(fullbb.minCorner(),
|
||||
fullbb.maxCorner());
|
||||
auto diff = d - 2*bin.radius();
|
||||
auto isBig = [this](const Item& itm) {
|
||||
return itm.area()/bin_area_ > BIG_ITEM_TRESHOLD ;
|
||||
};
|
||||
|
||||
if(diff > 0) {
|
||||
if( item.area() > 0.01*bin_area_ && item.vertexCount() < 30) {
|
||||
pile.emplace_back(item.transformedShape());
|
||||
auto chull = sl::convexHull(pile);
|
||||
pile.pop_back();
|
||||
|
||||
auto C = strategies::boundingCircle(chull);
|
||||
auto rdiff = C.radius() - bin.radius();
|
||||
|
||||
if(rdiff > 0) {
|
||||
score += std::pow(rdiff, 3) / norm_;
|
||||
}
|
||||
}
|
||||
if(isBig(item)) {
|
||||
auto mp = merged_pile_;
|
||||
mp.push_back(item.transformedShape());
|
||||
auto chull = sl::convexHull(mp);
|
||||
double miss = Placer::overfit(chull, bin);
|
||||
if(miss < 0) miss = 0;
|
||||
score += miss*miss;
|
||||
}
|
||||
|
||||
return score;
|
||||
|
@ -401,17 +424,18 @@ public:
|
|||
std::function<void(unsigned)> progressind):
|
||||
_ArrBase<PolygonImpl>(bin, dist, progressind)
|
||||
{
|
||||
pconf_.object_function = [this, &bin] (
|
||||
const Pile& pile_c,
|
||||
const Item &item,
|
||||
const ItemGroup& rem) {
|
||||
|
||||
auto& pile = pile_cache_;
|
||||
if(pile.size() != pile_c.size()) pile = pile_c;
|
||||
pconf_.object_function = [this, &bin] (const Item &item) {
|
||||
|
||||
auto binbb = sl::boundingBox(bin);
|
||||
auto result = objfunc(binbb.center(), bin_area_, pile, item, norm_,
|
||||
areacache_, rtree_, rem);
|
||||
auto result = objfunc(binbb.center(),
|
||||
merged_pile_,
|
||||
pilebb_,
|
||||
items_,
|
||||
item,
|
||||
bin_area_,
|
||||
norm_,
|
||||
rtree_,
|
||||
remaining_);
|
||||
double score = std::get<0>(result);
|
||||
|
||||
return score;
|
||||
|
@ -428,16 +452,17 @@ public:
|
|||
AutoArranger(Distance dist, std::function<void(unsigned)> progressind):
|
||||
_ArrBase<Box>(Box(0, 0), dist, progressind)
|
||||
{
|
||||
this->pconf_.object_function = [this] (
|
||||
const Pile& pile_c,
|
||||
const Item &item,
|
||||
const ItemGroup& rem) {
|
||||
this->pconf_.object_function = [this] (const Item &item) {
|
||||
|
||||
auto& pile = pile_cache_;
|
||||
if(pile.size() != pile_c.size()) pile = pile_c;
|
||||
|
||||
auto result = objfunc({0, 0}, 0, pile, item, norm_,
|
||||
areacache_, rtree_, rem);
|
||||
auto result = objfunc({0, 0},
|
||||
merged_pile_,
|
||||
pilebb_,
|
||||
items_,
|
||||
item,
|
||||
0,
|
||||
norm_,
|
||||
rtree_,
|
||||
remaining_);
|
||||
return std::get<0>(result);
|
||||
};
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue