Not handling logical beds in arrange()

This commit is contained in:
tamasmeszaros 2019-07-12 21:03:49 +02:00
parent 9372f1c6ad
commit df7bb94daf
12 changed files with 256 additions and 272 deletions

View file

@ -59,20 +59,20 @@ extern template PackGroup Nester<BottomLeftPlacer, FirstFitSelection>::execute(
template<class Placer = NfpPlacer,
class Selector = FirstFitSelection,
class Iterator = std::vector<Item>::iterator>
PackGroup nest(Iterator from, Iterator to,
void nest(Iterator from, Iterator to,
const typename Placer::BinType& bin,
Coord dist = 0,
const typename Placer::Config& pconf = {},
const typename Selector::Config& sconf = {})
{
Nester<Placer, Selector> nester(bin, dist, pconf, sconf);
return nester.execute(from, to);
nester.execute(from, to);
}
template<class Placer = NfpPlacer,
class Selector = FirstFitSelection,
class Iterator = std::vector<Item>::iterator>
PackGroup nest(Iterator from, Iterator to,
void nest(Iterator from, Iterator to,
const typename Placer::BinType& bin,
ProgressFunction prg,
StopCondition scond = []() { return false; },
@ -83,7 +83,7 @@ PackGroup nest(Iterator from, Iterator to,
Nester<Placer, Selector> nester(bin, dist, pconf, sconf);
if(prg) nester.progressIndicator(prg);
if(scond) nester.stopCondition(scond);
return nester.execute(from, to);
nester.execute(from, to);
}
#ifdef LIBNEST2D_STATIC
@ -91,14 +91,14 @@ PackGroup nest(Iterator from, Iterator to,
extern template class Nester<NfpPlacer, FirstFitSelection>;
extern template class Nester<BottomLeftPlacer, FirstFitSelection>;
extern template PackGroup nest(std::vector<Item>::iterator from,
extern template void nest(std::vector<Item>::iterator from,
std::vector<Item>::iterator to,
const Box& bin,
Coord dist = 0,
const NfpPlacer::Config& pconf,
const FirstFitSelection::Config& sconf);
extern template PackGroup nest(std::vector<Item>::iterator from,
extern template void nest(std::vector<Item>::iterator from,
std::vector<Item>::iterator to,
const Box& bin,
ProgressFunction prg,
@ -112,20 +112,19 @@ extern template PackGroup nest(std::vector<Item>::iterator from,
template<class Placer = NfpPlacer,
class Selector = FirstFitSelection,
class Container = std::vector<Item>>
PackGroup nest(Container&& cont,
void nest(Container&& cont,
const typename Placer::BinType& bin,
Coord dist = 0,
const typename Placer::Config& pconf = {},
const typename Selector::Config& sconf = {})
{
return nest<Placer, Selector>(cont.begin(), cont.end(),
bin, dist, pconf, sconf);
nest<Placer, Selector>(cont.begin(), cont.end(), bin, dist, pconf, sconf);
}
template<class Placer = NfpPlacer,
class Selector = FirstFitSelection,
class Container = std::vector<Item>>
PackGroup nest(Container&& cont,
void nest(Container&& cont,
const typename Placer::BinType& bin,
ProgressFunction prg,
StopCondition scond = []() { return false; },
@ -133,8 +132,8 @@ PackGroup nest(Container&& cont,
const typename Placer::Config& pconf = {},
const typename Selector::Config& sconf = {})
{
return nest<Placer, Selector>(cont.begin(), cont.end(),
bin, prg, scond, dist, pconf, sconf);
nest<Placer, Selector>(cont.begin(), cont.end(), bin, prg, scond, dist,
pconf, sconf);
}
}

View file

@ -12,6 +12,8 @@
namespace libnest2d {
static const constexpr int BIN_ID_UNSET = -1;
/**
* \brief An item to be placed on a bin.
*
@ -34,9 +36,9 @@ class _Item {
RawShape sh_;
// Transformation data
Vertex translation_;
Radians rotation_;
Coord inflation_;
Vertex translation_{0, 0};
Radians rotation_{0.0};
Coord inflation_{0};
// Info about whether the transformations will have to take place
// This is needed because if floating point is used, it is hard to say
@ -66,9 +68,7 @@ class _Item {
BBCache(): valid(false) {}
} bb_cache_;
static const size_t ID_UNSET = size_t(-1);
size_t id_{ID_UNSET};
int binid_{BIN_ID_UNSET};
bool fixed_{false};
public:
@ -149,8 +149,8 @@ public:
inline bool isFixed() const noexcept { return fixed_; }
inline void markAsFixed(bool fixed = true) { fixed_ = fixed; }
inline void id(size_t idx) { id_ = idx; }
inline long id() const noexcept { return id_; }
inline void binId(int idx) { binid_ = idx; }
inline int binId() const noexcept { return binid_; }
/**
* @brief Convert the polygon to string representation. The format depends
@ -766,25 +766,6 @@ public:
void clear() { impl_.clear(); }
};
using BinIdx = unsigned;
template<class S, class Key = size_t> using _NestResult =
std::vector<
std::tuple<Key, // Identifier of the original shape
TPoint<S>, // Translation calculated by nesting
Radians, // Rotation calculated by nesting
BinIdx> // Logical bin index, first is zero
>;
template<class T> struct Indexed {
using ShapeType = T;
static T& get(T& obj) { return obj; }
};
template<class K, class S> struct Indexed<std::pair<K, S>> {
using ShapeType = S;
static S& get(std::pair<K, S>& obj) { return obj.second; }
};
/**
* The Arranger is the front-end class for the libnest2d library. It takes the
* input items and outputs the items with the proper transformations to be
@ -805,7 +786,6 @@ public:
using Coord = TCoord<TPoint<typename Item::ShapeType>>;
using PackGroup = _PackGroup<typename Item::ShapeType>;
using ResultType = PackGroup;
template<class K> using NestResult = _NestResult<ShapeType, K>;
private:
BinType bin_;
@ -816,8 +796,13 @@ private:
using TPItem = remove_cvref_t<Item>;
using TSItem = remove_cvref_t<SItem>;
std::vector<TPItem> item_cache_;
StopCondition stopfn_;
template<class It> using TVal = remove_cvref_t<typename It::value_type>;
template<class It, class Out>
using ConvertibleOnly =
enable_if_t< std::is_convertible<TVal<It>, TPItem>::value, void>;
public:
@ -864,12 +849,20 @@ public:
* The number of groups in the pack group is the number of bins opened by
* the selection algorithm.
*/
template<class It, class Key = size_t>
inline const NestResult<Key> execute(It from, It to,
std::function<Key(It)> keyfn = nullptr)
template<class It>
inline ConvertibleOnly<It, void> execute(It from, It to)
{
if (!keyfn) keyfn = [to](It it) { return to - it; };
return _execute(from, to, keyfn);
auto infl = static_cast<Coord>(std::ceil(min_obj_distance_/2.0));
if(infl > 0) std::for_each(from, to, [this, infl](Item& item) {
item.inflate(infl);
});
selector_.template packItems<PlacementStrategy>(
from, to, bin_, pconfig_);
if(min_obj_distance_ > 0) std::for_each(from, to, [infl](Item& item) {
item.inflate(-infl);
});
}
/// Set a progress indicator function object for the selector.
@ -890,74 +883,32 @@ public:
}
private:
template<class It> using TVal = remove_cvref_t<typename It::value_type>;
template<class It, class Out>
using ConvertibleOnly =
enable_if_t< std::is_convertible<TVal<It>, TPItem>::value, void>;
template<class It, class Out>
using NotConvertibleOnly =
enable_if_t< ! std::is_convertible<TVal<It>, TPItem>::value, void>;
// This function will be used only if the iterators are pointing to
// a type compatible with the libnets2d::_Item template.
// This way we can use references to input elements as they will
// have to exist for the lifetime of this call.
template<class It, class Key>
inline ConvertibleOnly<It, const NestResult<Key>> _execute(
It from, It to, std::function<Key(It)> keyfn)
{
{
auto it = from; size_t id = 0;
while(it != to)
if (it->id() == Item::ID_UNSET) (it++)->id(id++);
else { id = it->id() + 1; ++it; }
}
NestResult<Key> result(to - from);
__execute(from, to, keyfn);
BinIdx binidx = 0;
for(auto &itmgrp : lastResult()) {
for(const Item& itm : itmgrp)
result[itm.id()] =
std::make_tuple(keyfn(from + itm.id()), itm.translation(),
itm.rotation(), binidx);
++binidx;
}
return result;
}
// template<class It, class Key>
// inline ConvertibleOnly<It, void> _execute(It from, It to)
// {
// __execute(from, to);
// }
template<class It, class Key = size_t>
inline NotConvertibleOnly<It, const NestResult<Key>> _execute(
It from, It to, std::function<Key(It)> keyfn)
{
item_cache_.reserve(to - from);
for(auto it = from; it != to; ++it)
item_cache_.emplace_back(Indexed<typename It::value_type>::get(*it));
// template<class It> inline void _execute(It from, It to)
// {
// auto infl = static_cast<Coord>(std::ceil(min_obj_distance_/2.0));
// if(infl > 0) std::for_each(from, to, [this](Item& item) {
// item.inflate(infl);
// });
return _execute(item_cache_.begin(), item_cache_.end(), keyfn);
}
template<class It> inline void __execute(It from, It to)
{
auto infl = static_cast<Coord>(std::ceil(min_obj_distance_/2.0));
if(infl > 0) std::for_each(from, to, [this](Item& item) {
item.inflate(infl);
});
selector_.template packItems<PlacementStrategy>(
from, to, bin_, pconfig_);
// selector_.template packItems<PlacementStrategy>(
// from, to, bin_, pconfig_);
if(min_obj_distance_ > 0) std::for_each(from, to, [](Item& item) {
item.inflate(-infl);
});
}
// if(min_obj_distance_ > 0) std::for_each(from, to, [](Item& item) {
// item.inflate(-infl);
// });
// }
};
}

View file

@ -711,7 +711,12 @@ public:
addBin();
packjob(placers[idx], remaining, idx); idx++;
}
int binid = 0;
for(auto &bin : packed_bins_) {
for(Item& itm : bin) itm.binId(binid);
binid++;
}
}
};

View file

@ -90,8 +90,10 @@ public:
size_t j = 0;
while(!was_packed && !cancelled()) {
for(; j < placers.size() && !was_packed && !cancelled(); j++) {
if((was_packed = placers[j].pack(*it, rem(it, store_) )))
makeProgress(placers[j], j);
if((was_packed = placers[j].pack(*it, rem(it, store_) ))) {
it->get().binId(int(j));
makeProgress(placers[j], j);
}
}
if(!was_packed) {

View file

@ -372,27 +372,34 @@ TEST(GeometryAlgorithms, ArrangeRectanglesTight)
Nester<BottomLeftPlacer, DJDHeuristic> arrange(bin);
auto groups = arrange.execute(rects.begin(), rects.end());
ASSERT_EQ(groups.size(), 1u);
ASSERT_EQ(groups[0].size(), rects.size());
arrange.execute(rects.begin(), rects.end());
auto max_group = std::max_element(rects.begin(), rects.end(),
[](const Item &i1, const Item &i2) {
return i1.binId() < i2.binId();
});
int groups = max_group == rects.end() ? 0 : max_group->binId() + 1;
ASSERT_EQ(groups, 1u);
ASSERT_TRUE(
std::all_of(rects.begin(), rects.end(), [](const Rectangle &itm) {
return itm.binId() != BIN_ID_UNSET;
}));
// check for no intersections, no containment:
for(auto result : groups) {
bool valid = true;
for(Item& r1 : result) {
for(Item& r2 : result) {
if(&r1 != &r2 ) {
valid = !Item::intersects(r1, r2) || Item::touches(r1, r2);
ASSERT_TRUE(valid);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
ASSERT_TRUE(valid);
}
bool valid = true;
for(Item& r1 : rects) {
for(Item& r2 : rects) {
if(&r1 != &r2 ) {
valid = !Item::intersects(r1, r2) || Item::touches(r1, r2);
ASSERT_TRUE(valid);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
ASSERT_TRUE(valid);
}
}
}
}
TEST(GeometryAlgorithms, ArrangeRectanglesLoose)
@ -433,16 +440,25 @@ TEST(GeometryAlgorithms, ArrangeRectanglesLoose)
Nester<BottomLeftPlacer, DJDHeuristic> arrange(bin, min_obj_distance);
auto groups = arrange.execute(rects.begin(), rects.end());
arrange.execute(rects.begin(), rects.end());
ASSERT_EQ(groups.size(), 1u);
ASSERT_EQ(groups[0].size(), rects.size());
auto max_group = std::max_element(rects.begin(), rects.end(),
[](const Item &i1, const Item &i2) {
return i1.binId() < i2.binId();
});
size_t groups = max_group == rects.end() ? 0 : max_group->binId() + 1;
ASSERT_EQ(groups, 1u);
ASSERT_TRUE(
std::all_of(rects.begin(), rects.end(), [](const Rectangle &itm) {
return itm.binId() != BIN_ID_UNSET;
}));
// check for no intersections, no containment:
auto result = groups[0];
bool valid = true;
for(Item& r1 : result) {
for(Item& r2 : result) {
for(Item& r1 : rects) {
for(Item& r2 : rects) {
if(&r1 != &r2 ) {
valid = !Item::intersects(r1, r2);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
@ -554,27 +570,24 @@ TEST(GeometryAlgorithms, convexHull) {
TEST(GeometryAlgorithms, NestTest) {
std::vector<Item> input = prusaParts();
libnest2d::nest(input, Box(250000000, 210000000), [](unsigned cnt) {
std::cout << "parts left: " << cnt << std::endl;
});
auto max_binid_it = std::max_element(input.begin(), input.end(),
[](const Item &i1, const Item &i2) {
return i1.binId() < i2.binId();
});
size_t bins = max_binid_it == input.end() ? 0 : max_binid_it->binId() + 1;
PackGroup result = libnest2d::nest(input,
Box(250000000, 210000000),
[](unsigned cnt) {
std::cout
<< "parts left: " << cnt
<< std::endl;
});
ASSERT_LE(result.size(), 2);
size_t partsum = std::accumulate(result.begin(),
result.end(),
size_t(0),
[](size_t s,
const decltype(
result)::value_type &bin) {
return s += bin.size();
});
ASSERT_EQ(input.size(), partsum);
ASSERT_EQ(bins, 2u);
ASSERT_TRUE(
std::all_of(input.begin(), input.end(), [](const Item &itm) {
return itm.binId() != BIN_ID_UNSET;
}));
}
namespace {