Merge branch 'tm_rotfinder_fixes'

This commit is contained in:
tamasmeszaros 2021-08-16 16:43:08 +02:00
commit db7f424e46
4 changed files with 91 additions and 69 deletions

View file

@ -58,29 +58,6 @@ T sum_score(AccessFn &&accessfn, size_t facecount, size_t Nthreads)
return execution::reduce(ex_tbb, from, to, initv, mergefn, accessfn, grainsize); return execution::reduce(ex_tbb, from, to, initv, mergefn, accessfn, grainsize);
} }
// Try to guess the number of support points needed to support a mesh
double get_misalginment_score(const TriangleMesh &mesh, const Transform3f &tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
auto accessfn = [&mesh, &tr](size_t fi) {
auto triangle = get_transformed_triangle(mesh, tr, fi);
Vec3f U = triangle[1] - triangle[0];
Vec3f V = triangle[2] - triangle[0];
Vec3f C = U.cross(V);
// We should score against the alignment with the reference planes
return scaled<int_fast64_t>(std::abs(C.dot(Vec3f::UnitX())) +
std::abs(C.dot(Vec3f::UnitY())));
};
size_t facecount = mesh.its.indices.size();
size_t Nthreads = std::thread::hardware_concurrency();
double S = unscaled(sum_score<int_fast64_t>(accessfn, facecount, Nthreads));
return S / facecount;
}
// Get area and normal of a triangle // Get area and normal of a triangle
struct Facestats { struct Facestats {
Vec3f normal; Vec3f normal;
@ -96,18 +73,45 @@ struct Facestats {
} }
}; };
// Try to guess the number of support points needed to support a mesh
double get_misalginment_score(const TriangleMesh &mesh, const Transform3f &tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
auto accessfn = [&mesh, &tr](size_t fi) {
Facestats fc{get_transformed_triangle(mesh, tr, fi)};
float score = fc.area
* (std::abs(fc.normal.dot(Vec3f::UnitX()))
+ std::abs(fc.normal.dot(Vec3f::UnitY()))
+ std::abs(fc.normal.dot(Vec3f::UnitZ())));
// We should score against the alignment with the reference planes
return scaled<int_fast64_t>(score);
};
size_t facecount = mesh.its.indices.size();
size_t Nthreads = std::thread::hardware_concurrency();
double S = unscaled(sum_score<int_fast64_t>(accessfn, facecount, Nthreads));
return S / facecount;
}
// The score function for a particular face // The score function for a particular face
inline double get_supportedness_score(const Facestats &fc) inline double get_supportedness_score(const Facestats &fc)
{ {
// Simply get the angle (acos of dot product) between the face normal and // Simply get the angle (acos of dot product) between the face normal and
// the DOWN vector. // the DOWN vector.
float phi = 1. - std::acos(fc.normal.dot(DOWN)) / float(PI); float cosphi = fc.normal.dot(DOWN);
float phi = 1.f - std::acos(cosphi) / float(PI);
// Only consider faces that have slopes below 90 deg: // Phi is raised by 1.0 to not be less than zero when squared in the next
phi = phi * (phi >= 0.5f); // step. If phi is greater than 0.5 (slope is > 90 deg) make phi zero
// to not skip this face in the overall score.
phi = (1.f + phi) * (phi >= 0.5f);
// Make the huge slopes more significant than the smaller slopes // Make the huge slopes more significant than the smaller slopes
phi = phi * phi * phi; phi = phi * phi;
// Multiply with the area of the current face // Multiply with the area of the current face
return fc.area * POINTS_PER_UNIT_AREA * phi; return fc.area * POINTS_PER_UNIT_AREA * phi;
@ -121,7 +125,7 @@ double get_supportedness_score(const TriangleMesh &mesh, const Transform3f &tr)
auto accessfn = [&mesh, &tr](size_t fi) { auto accessfn = [&mesh, &tr](size_t fi) {
Facestats fc{get_transformed_triangle(mesh, tr, fi)}; Facestats fc{get_transformed_triangle(mesh, tr, fi)};
return get_supportedness_score(fc); return scaled<int_fast64_t>(get_supportedness_score(fc));
}; };
size_t facecount = mesh.its.indices.size(); size_t facecount = mesh.its.indices.size();
@ -164,7 +168,7 @@ float get_supportedness_onfloor_score(const TriangleMesh &mesh,
Facestats fc{tri}; Facestats fc{tri};
if (tri[0].z() <= zlvl && tri[1].z() <= zlvl && tri[2].z() <= zlvl) if (tri[0].z() <= zlvl && tri[1].z() <= zlvl && tri[2].z() <= zlvl)
return -fc.area * POINTS_PER_UNIT_AREA; return -2 * fc.area * POINTS_PER_UNIT_AREA;
return get_supportedness_score(fc); return get_supportedness_score(fc);
}; };
@ -283,6 +287,26 @@ std::array<double, N> find_min_score(Fn &&fn, It from, It to, StopCond &&stopfn)
} // namespace } // namespace
// Assemble the mesh with the correct transformation to be used in rotation
// optimization.
TriangleMesh get_mesh_to_rotate(const ModelObject &mo)
{
TriangleMesh mesh = mo.raw_mesh();
mesh.require_shared_vertices();
ModelInstance *mi = mo.instances[0];
auto rotation = Vec3d::Zero();
auto offset = Vec3d::Zero();
Transform3d trafo_instance = Geometry::assemble_transform(offset,
rotation,
mi->get_scaling_factor(),
mi->get_mirror());
mesh.transform(trafo_instance);
return mesh;
}
Vec2d find_best_misalignment_rotation(const ModelObject & mo, Vec2d find_best_misalignment_rotation(const ModelObject & mo,
const RotOptimizeParams &params) const RotOptimizeParams &params)
{ {
@ -293,8 +317,7 @@ Vec2d find_best_misalignment_rotation(const ModelObject & mo,
// We will use only one instance of this converted mesh to examine different // We will use only one instance of this converted mesh to examine different
// rotations // rotations
TriangleMesh mesh = mo.raw_mesh(); TriangleMesh mesh = get_mesh_to_rotate(mo);
mesh.require_shared_vertices();
// To keep track of the number of iterations // To keep track of the number of iterations
int status = 0; int status = 0;
@ -350,8 +373,7 @@ Vec2d find_least_supports_rotation(const ModelObject & mo,
// We will use only one instance of this converted mesh to examine different // We will use only one instance of this converted mesh to examine different
// rotations // rotations
TriangleMesh mesh = mo.raw_mesh(); TriangleMesh mesh = get_mesh_to_rotate(mo);
mesh.require_shared_vertices();
// To keep track of the number of iterations // To keep track of the number of iterations
unsigned status = 0; unsigned status = 0;

View file

@ -497,9 +497,6 @@ void GLGizmoRotate3D::on_render()
m_gizmos[Z].render(); m_gizmos[Z].render();
} }
const char * GLGizmoRotate3D::RotoptimzeWindow::options[RotoptimizeJob::get_methods_count()];
bool GLGizmoRotate3D::RotoptimzeWindow::options_valid = false;
GLGizmoRotate3D::RotoptimzeWindow::RotoptimzeWindow(ImGuiWrapper * imgui, GLGizmoRotate3D::RotoptimzeWindow::RotoptimzeWindow(ImGuiWrapper * imgui,
State & state, State & state,
const Alignment &alignment) const Alignment &alignment)
@ -517,19 +514,24 @@ GLGizmoRotate3D::RotoptimzeWindow::RotoptimzeWindow(ImGuiWrapper * imgui,
ImGui::PushItemWidth(200.f); ImGui::PushItemWidth(200.f);
size_t methods_cnt = RotoptimizeJob::get_methods_count(); if (ImGui::BeginCombo(_L("Choose goal").c_str(), RotoptimizeJob::get_method_name(state.method_id).c_str())) {
if (!options_valid) { for (size_t i = 0; i < RotoptimizeJob::get_methods_count(); ++i) {
for (size_t i = 0; i < methods_cnt; ++i) if (ImGui::Selectable(RotoptimizeJob::get_method_name(i).c_str())) {
options[i] = RotoptimizeJob::get_method_names()[i].c_str(); state.method_id = i;
wxGetApp().app_config->set("sla_auto_rotate",
"method_id",
std::to_string(state.method_id));
}
options_valid = true; if (ImGui::IsItemHovered())
ImGui::SetTooltip("%s", RotoptimizeJob::get_method_description(i).c_str());
}
ImGui::EndCombo();
} }
int citem = state.method_id; if (ImGui::IsItemHovered())
if (ImGui::Combo(_L("Choose goal").c_str(), &citem, options, methods_cnt) ) { ImGui::SetTooltip("%s", RotoptimizeJob::get_method_description(state.method_id).c_str());
state.method_id = citem;
wxGetApp().app_config->set("sla_auto_rotate", "method_id", std::to_string(state.method_id));
}
ImGui::Separator(); ImGui::Separator();

View file

@ -138,10 +138,6 @@ private:
class RotoptimzeWindow { class RotoptimzeWindow {
ImGuiWrapper *m_imgui = nullptr; ImGuiWrapper *m_imgui = nullptr;
static const char * options [];
static bool options_valid;
public: public:
struct State { struct State {

View file

@ -15,14 +15,21 @@ class RotoptimizeJob : public PlaterJob
using FindFn = std::function<Vec2d(const ModelObject & mo, using FindFn = std::function<Vec2d(const ModelObject & mo,
const sla::RotOptimizeParams &params)>; const sla::RotOptimizeParams &params)>;
struct FindMethod { std::string name; FindFn findfn; }; struct FindMethod { std::string name; FindFn findfn; std::string descr; };
static inline const FindMethod Methods[] = { static inline const FindMethod Methods[]
{ L("Best surface quality"), sla::find_best_misalignment_rotation }, = {{L("Best surface quality"),
{ L("Least supports"), sla::find_least_supports_rotation }, sla::find_best_misalignment_rotation,
// Just a min area bounding box that is done for all methods anyway. L("Optimize object rotation for best surface quality.")},
{ L("Z axis only"), nullptr } {L("Least supports"),
}; sla::find_least_supports_rotation,
L("Optimize object rotation to have minimum amount of overhangs needing support "
"structures.\nNote that this method will try to find the best surface of the object "
"for touching the print bed if no elevation is set.")},
// Just a min area bounding box that is done for all methods anyway.
{L("Z axis only"),
nullptr,
L("Rotate the object only in Z axis to have the smallest bounding box.")}};
size_t m_method_id = 0; size_t m_method_id = 0;
float m_accuracy = 0.75; float m_accuracy = 0.75;
@ -52,20 +59,15 @@ public:
void finalize() override; void finalize() override;
static constexpr size_t get_methods_count() { return std::size(Methods); } static constexpr size_t get_methods_count() { return std::size(Methods); }
static const auto & get_method_names()
static std::string get_method_name(size_t i)
{ {
static bool m_method_names_valid = false; return _utf8(Methods[i].name);
static std::array<std::string, std::size(Methods)> m_method_names; }
if (!m_method_names_valid) { static std::string get_method_description(size_t i)
{
for (size_t i = 0; i < std::size(Methods); ++i) return _utf8(Methods[i].descr);
m_method_names[i] = _utf8(Methods[i].name);
m_method_names_valid = true;
}
return m_method_names;
} }
}; };